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It is shown that the pressure signal measured at the outer edge of a jet mixing layer is
entirely hydrodynamic in nature and provides a good measure of the large-scale
structure of the turbulent flow. Measurement of the pressure signal provides a unique
opportunity to utilize proper orthogonal decomposition (POD) to deduce the
streamwise structure. Since pressure is a scalar, a significant reduction in the numerical
and experimental complexity inherent in the analysis of velocity vector fields results.

The POD streamwise eigenfunctions show that the structure associated with any
frequency–azimuthal mode number combination displays the general characteristics of
amplification–saturation–decay of an instability wave, all within about three
wavelengths. High-frequency components saturate early in x and low-frequency
components saturate further downstream, indicative of the inhomogeneous character
of the flow in the streamwise direction. Application of the POD technique allows the
phase velocity to be determined taking into account the inhomogeneity of the flow in
the streamwise direction. The phase velocity of each instability wave (POD eigenvector)
is constant and equal to 0.58U

j
, indicating that the jet structure is non-dispersive.

Using the shot-noise decomposition, a characteristic event is constructed. This event
is found to contain evidence of both pairings and triplings of vortex structures. The
tripling results in a rapid increase in the first asymmetric (m¯ 1) component. On
average, pairing occurs once every four U

j
}D while tripling occurs once every 13U

j
}D.

1. Introduction

This paper deals with the identification of large-scale structures in turbulent jets
through an examination of the near-field pressure signal which is an outgrowth of
studies going back more than 20 years (Arndt & George 1974). The measurement
procedure is based on the proper orthogonal decomposition (POD) originally
proposed by Lumley (1967) for the study of spatial structure associated with
inhomogeneous flows.

The measurements reported herein are based on work initiated in 1980 to study the
influence of coherent structures on jet noise radiation using these earlier concepts. At
the time no reliable method for deducing coherent structures in high-Reynolds-number
flows in an unbiased manner was available. A review of the literature indicated that
coherent structures were readily identified in clean jets at low Mach number and
Reynolds numbers less than about 10&. However, subsonic jet noise measurements
were made at higher Mach numbers and correspondingly higher Reynolds numbers as
reviewed by Long & Arndt (1984). Clearly, there was a need to deduce the presence of
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coherent structures at Reynolds numbers that are typical for jet noise experiments. The
work of Professor Hussain and his co-workers supports this contention (Hussain 1983,
1986).

Three institutions were involved in a collaborative study of this issue. The approach
was to develop a POD scheme using low-Reynolds-number experiments where
comparisons with high-quality flow visualizations could be carried out. After the POD
technique was developed, it could be applied to higher-Reynolds-number flows. A
group at the Illinois Institute of Technology under the direction of Professor H.
Nagib carried out a series of careful flow visualizations using the smoke-wire technique
developed at their laboratory (Drubka 1981). Professor W. K. George and his group
at SUNY Buffalo developed the POD system using a multi-probe hot-wire technique
(Glauser, Leib & George 1985, 1987; Glauser & George 1987a, b, 1992; Grinstein,
Glauser & George 1995). Professor R. E. A. Arndt and his group at the St. Anthony
Falls Hydraulic Laboratory (SAFHL) carried out a series of jet noise experiments over
a range of Reynolds number that spanned the values used in flow visualization and
typical jet noise experiments (Long & Arndt 1984). In this portion of the study,
Reynolds number could be varied independently of Mach number by using a series of
different nozzles ranging in size from 1.4 mm to 25 mm. Every effort was made to
ensure commonality of nozzle design and initial conditions in the three different
laboratories. As the study progressed, it became clear that POD measurements at low
Reynolds number but at high Mach number would be extremely difficult if not
impossible because of the very small nozzle sizes involved. Thus it was decided to
extend the POD technique to the pressure signal at the outer edge of the mixing layer
in the jets used in the SAFHL studies. As a first step, we were able to carry out POD
pressure measurements at moderate Reynolds number and low Mach number with and
without jet excitation. The results of this effort were first published in a dissertation by
Long (1985) and a conference proceedings article by Long & Arndt (1985). Publication
was delayed because of concerns about the proper selection of phase angle as outlined
in §6 of this paper.

The implementation of POD to the pressure field offers significant advantages in
several applications. For example, a natural extension of this work would be the
application of POD to both hot and cold high-speed jets. Such experiments are
presently underway at NASA-Langley where both the pressure and velocity fields are
being examined via POD. The examination of the pressure field is of particular interest
because of the relative simplicity in its measurement, which will provide practical
opportunities for the application of POD-based control strategies (Carlson, Berkooz &
Lumley 1995).

Since the turbulence characteristics of a round jet are well documented, initial
application of the POD to its pressure field provided the opportunity for comparisons
with the results of various diagnostics (including POD) of the velocity field. Since the
pioneering work of Crow & Champagne (1971) it has been well established that large-
scale structures govern the mixing and entrainment of the entire jet, and may also play
a significant role in the noise radiation process (Arndt & George 1974; Michalke 1977;
Moore 1977; Hussain 1983, 1986; Crighton 1981; Ho & Huerre 1984; Liu 1989; Seiner
& Gilinsky 1995; Tam 1995). In addition, Ran & Katz (1994) suggest that cavitation
in turbulent jets is due to high-amplitude negative peaks in pressure that result from
the pairing process.

There are numerous examples of application of POD to the velocity field from which
comparisons with POD of the pressure field can be made. Moin (1984) and Moin &
Moser (1989) utilized channel flow simulations to provide the two-point correlation
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tensor. They found that the dominant eddy contributes as much as 76% to the
turbulent kinetic energy. Glezer, Kadioglu & Pearlstein (1989) applied an extended
version of POD to a time-periodically forced mixing layer. Delville, Bellin & Bonnet
(1991) applied POD to a plane fully turbulent mixing layer. They found that 70% of
the mean-square streamwise velocity was contained in the first three modes. Ukeiley et
al. (1992) examined the multifractal character of the POD reconstructions of the
instantaneous streamwise velocity fields in a lobed mixer flow. They found that the
higher POD mode contributions to the fluctuating velocity field were more multifractal
in character, indicative of smaller scales.

Much of the recent work has been driven by interest in chaos and its relation to
turbulence. Aubry et al. (1988) utilized the eigenfunctions of Herzog (1986) as a
good set of basis functions in a dynamical systems approach to the near-wall
region. Their results are not inconsistent with events such as bursting seen in
experimental work. Zheng & Glauser (1991) have used their jet eigenfunctions to
develop a similar type of dynamical systems model for the jet mixing layer. They find
clear evidence of pairs of vortices interacting in the streamwise direction resulting in a
transfer of azimuthal to streamwise vorticity. Rajaee, Karlson & Sirovich (1994)
developed a low-dimensional model for a non-turbulent forced mixing layer. They
found good agreement between their model coefficients and those obtained directly
from experiment. A joint effort between CEAT}LEA Poitiers and Clarkson University
has involved an examination of a fully turbulent mixing layer via a POD-based
dynamical systems model (Ukeiley & Glauser 1995; Delville 1995; Manceau 1995). The
reconstructed velocity fields from their model capture the main streamwise and
spanwise vortical structures known to exist in the mixing layer. Chambers et al. (1988)
and Sirovich & Rodriguez (1987) have applied this approach to Burgers equation and
the Ginsburg–Landau equation respectively. Although these two applications are not
in turbulent flows, both of the equations exhibit chaotic dynamics. For a more
comprehensive review of the POD and its application in turbulent flows see Berkooz,
Holmes & Lumley (1993).

2. Experimental procedure

The experiments were carried out in a mini-anechoic chamber at the St. Anthony
Falls Laboratory at the University of Minnesota. Its features are described by Long &
Arndt (1984). The chamber measures 2.2 m on a side and is lined with acoustic foam
wedges that are 7 cm in length and are backed with fibreglass insulation. This provides
anechoic conditions at frequencies above 1 kHz. The chamber has a porous front wall
constructed with offset sections of acoustic foam so that there is no direct line of sight
into the test chamber. The entrained flow is captured at the end of the chamber and
recirculated through a carefully designed acoustically treated return duct and blower
arrangement. The air for the jet is supplied from an air compressor. It passes through
two filters, a pressure regulator, two mufflers and a 12.7 cm plenum just upstream of
the contraction. Considerable development of the mufflers was needed to ensure that
the flow was free of acoustic disturbances in the frequency range of interest.

The measurement of the cross-spectral density matrix was conducted using a 2.54 cm
nozzle operated an exit speed of 23 m s−". These measurements were complemented
with other near-field measurements using a 7.1 mm nozzle. Both nozzles have a wall
contour specified by a fifth-order polynomial. The larger nozzle contraction ratio is 25
and the length-to-diameter ratio is 1.25. The smaller nozzle attaches directly to the end
of the larger contraction and has a length-to-inlet diameter ratio of 1.0 and a
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contraction ratio of 12.8. The overall contraction ratio of the two nozzles in tandem
is 321. The exit turbulence intensity for both nozzles was below 0.15%. The boundary
layer at the exit of the 2.54 cm nozzle is laminar with a momentum thickness of 0.1 mm.
This was determined using a procedure described by Long, Kim & Arndt (1985).

Two B and K 3 mm microphones are used to measure the pressure fluctuations. The
data were sampled simultaneously at 5.12 kHz (resulting in a bandwidth of 20 Hz) by
a two-channel, 12-bit Preston A}D converter and were processed with a DEC PDP
11}34 mini-processor. The cross-spectral density was determined by a software FFT
using 100 ensembles each containing 256 points. These spectra were stored on magnetic
disk for future processing. A discussion of the use of microphones to measure
hydrodynamic pressure fluctuations can be found in Long (1985). A detailed discussion
of the measurement grid and sampling rate is given in §5.2, which is preceded by a
detailed discussion of the application of POD to the pressure field.

3. Preliminary velocity measurements

In order to facilitate comparisons between the POD pressure application presented
here and other jet studies where POD was applied to the velocity field, some velocity
field measurements were necessary. Hence the spectra of the streamwise velocity
fluctuations on the centreline within the potential core and within the mixing region
were measured in order to describe the global nature of the jet flow.

Most velocity measurements were made with a TSI T1.5 subminiature hot-wire
probe. Because of the very small spatial resolution that was necessary to measure the
instability frequency of the exiting laminar shear layer, even smaller probes were
manufactured in house. This was motivated by the concerns raised by Hussain &
Zaman (1978) that the probe body of the probe could produce a strong shear tone
when introduced into the shear layer close to the tip. Only the tips of the wire supports
in the smaller probe are inserted into the shear flow allowing a measurement of the
instability frequency that is not influenced by the probe itself. The TSI probe uses a
2 mm long segment of 4 µm diameter tungsten wire with a cold resistance of 6 Ω,
whereas the smaller probes have a 1 mm segment of 4 µm wire having a cold resistance
of 3 Ω. A TSI 1050 series anemometer was used with either probe and the g1 bridge.

It was concluded from these preliminary velocity measurements that the high
wavenumbers (small scales) show almost the same character and amplitude throughout
the flow, independent of location, as evidenced by the collapse of the data in the inertial
subrange. On the other hand, the low wavenumbers behave differently depending on
the spatial location. This is evidenced by the increasing amplitude as the hot-wire probe
was moved downstream. In other words, the large-scale structure is somewhat
inhomogeneous in the downstream direction. Since Fourier methods are only optimal
for homogeneous directions a more general approach is desirable, hence the
implementation of the proper orthogonal decomposition.

4. Spectral behaviour of pressure fluctuations

4.1. A simple model

It is known from numerous flow visualization experiments that the flow field can be
roughly divided into three parts : the potential core, the shear layer, and the
entrainment region. See Long et al. (1985) for a more complete description. Their
photographs suggest that the entrainment region is basically an unsteady irrotational
flow. The average boundary between the entrainment region and the shear region
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occurs at roughly an angle of 10°. Since the POD is going to be applied in the
irrotational entrainment region, it is necessary to first study the spectral behaviour of
the pressure fluctuations in this region. These measurements are complementary to the
measurements of pressure fluctuations within a turbulent shear flow as studied
previously by George, Beuther & Arndt (1984) and by Jones et al. (1979).

Since an exact solution for the pressure field surrounding a jet is not available, a
simple model that will display the essential features of spatial decay and spectral
variations is desired. To do this we look to the point-source solution of the spherical
wave equation that is consistent with a turbulent free shear flow. It is recognized that
this solution will not model the magnitude of the pressure fluctuations resulting from
a turbulent jet since only a single source is considered but it serves to satisfy the desired
objectives stated above.

In irrotational flows, the relationship between pressure and velocity is described by
the unsteady Bernoulli equation.

P®P¢

ρ
¯

¥φ

¥t
®

¡φ[¡φ

2
, (4.1)

where P¢ is the pressure far from the flow and φ is the velocity potential. The pressure
fluctuations described by (4.1) can be divided into two parts : propagating or acoustic
fluctuations that are in phase with the velocity fluctuations, and non-propagating or
hydrodynamic fluctuations that are 90° out of phase with the velocity. Acoustic
disturbances occur far away from a source in the active or far field. Hydrodynamic
disturbances occur near the source in the reactive or near field. The terms near field and
far field are somewhat vague and need to be given a more formal definition.

In the usual acoustic approximation, the convective term in the Bernoulli equation
is neglected. This approximation is valid in the far field and, as will be shown, is also
valid in the near field if one does not get too close to the source. It is assumed that the
turbulent shear flow is composed of a finite number of individual sources. The
pertinent question to ask is what is the nature of the resulting pressure outside the
source region?

In unbounded turbulence (shear flows for instance) there can be no sources of mass
and no unbalanced forces so the solution of the spherical wave equation must have a
quadrupole character (Lighthill 1954). The appropriate solution for the velocity
potential is (Morse & Ingard 1968)

φ¯
¥#

¥r# (
®iqR#

o

4πr
ei(ωt−kr)* , (4.2)

where R
o

is the source size and q is the source strength. For simplicity, the boundary
condition for an axial quadrupole,

®
¥φ

¥r )
r=Ro

¯ iU
o
cos# θ eiωt (4.3)

is used to eliminate q in favour of U
o
, which is the acoustic source velocity. After

performing the differentiation the pressure is obtained by substitution into equation
(4.1). The solution for the mean-square pressure (which is the necessary quantity for
comparison with experimental measurements) is found as

I¯
(P®P¢)#

ρ
o
a
o

¯ ρο ao
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o
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o
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B )#, (4.4)
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where B¯ 6®3(kR
o
)#i [6kR

o
®(kR

o
)$] (4.5)

and ρa
o

is the acoustic impedance.
The assumption is now made that the product (kR

o
) is a constant. This follows from

assuming that long-wavelength disturbances are associated with large sources and
short-wavelength disturbances are associated with small sources. The product (kR

o
) is

probably not exactly constant, but for the present discussion this approximation
appears valid. The value of this constant is unknown. Since variations in the intensity
rather than the absolute magnitude are sought, its precise value is not needed.

In the limit as the product of wavenumber and distance becomes large (kr( 1) the
mean-square pressure shows far-field behaviour. This implies that

I£ ρ
o
a
o
U#

o
(kr)−#. (4.6)

It should be noted that this is the necessary form for far-field fluctuations in a three-
dimensional field. The intensity must decay as r−# in space in order to conserve the
propagation of energy. Since (4.6) represents the radiation field, wavenumber can be
transformed into frequency by

ω¯ a
o
k, (4.7)

resulting in the intensity having a spectral decay of ω−#. This is in qualitative agreement
with measured noise spectra.

In the limit as the project of wavenumber and distance becomes small (kr' 1, but
keeping r"R

o
) the intensity shows near-field behaviour. Performing this limit

operation on (4.5) shows that
I£ ρ

o
a
o
U#

o
(kr)−'. (4.8)

The source velocity, U
o
, can be approximated as a typical turbulence intensity in the jet

shear layer. If broken down into its spectral components this implies that

U#
o
CkE(k), (4.9)

where E(k) is the turbulent energy spectrum. Inspection of preliminary velocity data
indicated that the spectrum can be divided into an energy-containing region where the
spectral level is relatively flat and an inertial subrange which shows a k−&/$ dependence.

The variation of the pressure intensity follows from inserting this turbulent energy
spectrum into (4.9). It follows directly that in the energy-containing region at constant
wavenumber, the intensity will have a spatial decay of

I£ r' (k¯ const), (4.10)

while in the inertial subrange the intensity will have a spectral variation (at constant r)
of

I£k−#/$k−'£k−'.'( (r¯ const). (4.11)

4.2. Experimental �erification

To test these ideas, a microphone was traversed radially outward from the edge of a
jet as shown in figure 1. The power spectrum of the measured pressure, S(ω), was
obtained at various locations with frequencies transformed into acoustic wavenumbers
by equation (4.7). This allows one to look at the spatial decay of the pressure
fluctuations at a constant wavenumber or at the wavenumber spectrum at a constant
radial distance, y. The variable y is taken as the distance from the microphone face to
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y

x

F 1. The experimental set-up designed to test the near-field pressure model.

the centre of the mixing region. The centre of the mixing region was determined from
hot-wire measurements and is approximately equal to the nozzle lip line. Other
definitions for y were tried such as from the centreline of the jet and from the edge of
the shear layer but the centre of the mixing region seemed to produce the best results.

These results qualitatively agree with the simple model presented above. This is
illustrated in figures 2(a) and 2(b) for a low-Mach-number case where far-field
behaviour can be neglected. The data in these figures corresponded to a 2.54 cm jet
operated at U¯ 23 m s−". Two axial distances were chosen: x¯ 1.5D, and x¯ 2.25D.
To explain how to interpret these figures the reader’s attention is first drawn to figure
2(a). The solid curves represent the individual spectra measured by the microphone as
it is moved radially outward. Wavenumbers are non-dimensionalized by the radial
distance y on the abscissa. As the microphone is moved further away from the shear
region, the intensity of the fluctuations becomes less and the spectra become more
broad band. The data points are the amplitudes of individual spectra at constant values
of kD or St

D
. In particular, the St

D
¯ 0.5 data points represent the fluctuations at the

peak of each individual spectrum. A best-fit line through these points exhibits a (ky)−'
decay which is consistent with the expected (y)−' behaviour for constant k in the
energy-containing region. The St

D
¯ 1.0 data points represent the inertial-subrange

fluctuations and the slope of these data has the expected k−'.'( behaviour for constant
y. Moving to figure 2(b) for the axial distance of x¯ 2.25D these slopes are seen more
clearly. Note that the data points in figure 2(b) correspond to the same values of St

D
as shown in figure 2(a). Since the measurement takes place further downstream, the
energy-containing scales have moved to lower wavenumber (St

D
¯ 0.22 data points)

and the inertial subrange is shown to the right of this.
Attention should now be focused on the low-wavenumber region of figure 2(b). The

slope through any of these data points (for instance the open circles) is less than the
expected value of y−'. The reason for this is depicted pictorially on figure 3. As shown,
this is primarily an effect of the inhomogeneous nature of the shear flow. Generally it
is expected that small sources will occur in the shear layer near the nozzle exit and
larger sources will occur further downstream. In particular, large sources will produce
low-wavenumber (long wavelength) disturbances. Figure 3 shows that as the
microphone is moved from y to 2y the actual distance from the low-wavenumber
source changes by a smaller amount. Thus, the decay rate is expected to be less than
y−'. It is obvious from the geometry of the situation that the spatial decay rate depends
on how far downstream the source is located. For lower and lower wavenumbers the
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F 3. Relationship between changes in y and changes in the actual source–observer distance.
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spatial decay rate will become flatter and flatter in terms of the variable y. If the exact
location of the source were known, the correct distance could be chosen to obey the r−'

decay law.†
Now consider a case where the Mach number is high enough so that far-field

pressure fluctuations will occur with sufficient amplitude to be measurable. This is
shown on figure 4 where the Mach number is M¯ 0.52. The near-field characteristics
are similar to the low-Mach-number case in the low-wavenumber region. Rather than
the expected k−'.'( decay at higher wavenumbers, the influence of the radiated acoustic
field is seen, as a result of the higher Mach number. This is a consequence of the
intensity of the radiated field scaling as M &. The far field shows y−# behaviour at all
frequencies (wavenumbers). It is interesting to note that there is a very sharp dividing
line at ky¯ 2 between near-field and far-field behaviour. When ky" 2, the probe sees
far-field fluctuations‡ and when ky! 2, the probe sees near-field fluctuations. The
conclusion is that the dividing line between near field and far field is frequency
dependent; it is not a rigidly fixed location in space. This also implies that far-field
behaviour can be observed much closer to the jet, consistent with present thought.
Most far-field noise experiments are conducted at a distance on the order of 100
diameters from the nozzle exit. However, depending on the frequency of interest the
microphone may be placed much closer as long as the criterion ky" 2 is maintained.

This observation may be useful where correlation techniques are used to pinpoint
source locations. The accepted method is to place microphones on a polar arc centred
around the nozzle exit. Details of this procedure can be found in Fisher, Harper-

† As pointed out by a reviewer, the reverse statement is also correct. With the assumption that the
r−' law is valid, the exact downstream location of the source can be calculated. This could provide
a unique way to determine the source.

‡ In principle ky should be corrected for Doppler shift by a factor of (1M
C
cos θ)−" where M

C
is the convective Mach number (in this case M

C
is approximately 0.3) and θ is the angle between the

observation point and the source. Unfortunately θ is an unknown function of y, see figure 3.
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F 5. An example of the pressure spectrum showing all four regions.

Bourne & Glegg (1977). It was used by Kim (1983) and Long et al. (1985) to determine
the source locations. It was found that for frequencies below St

D
¯ 0.5 the technique

was not very accurate because the phase angle of the correlation signal decreases as
frequency is decreased. In other words, at low frequency the difference in phase from
the source to each of the microphones is not very large and cannot be measured
accurately. By moving the microphones inward towards the limiting value of ky¯ 2 it
may be possible to achieve greater accuracy, especially at frequencies where the jet
radiates the bulk of the noise.

By picking an intermediate value of Mach number all four spectral regions of the
pressure fluctuations can be seen. This is shown on figure 5. The spectrum for values
of ky! 0.2 shows low-wavenumber behaviour where the spatial decay is somewhat less
than y−'. For 0.20!ky! 0.8 the pressure fluctuations show y−' behaviour
characteristic of the energy-containing region being directly in front of the microphone.
For 0.8!ky! 2.0, the pressure fluctuations are due to inertial-subrange turbulence,
and for ky" 2.0 the pressure fluctuations are acoustic.

These preliminary measurements clearly indicate that the most energetic part of the
spectrum results from the turbulence that is directly in front of the microphone. This
is an important point. It means that there is a direct link between the measured pressure
and the location of turbulence in the shear layer. This shows that the scalar pressure
field near the edge of the mixing layer is a significant dynamical quantity and is
therefore an appropriate variable to decompose using the POD.

5. Structure of near-field pressure fluctuations

5.1. Near-field pressure and large scales

In order to relate the features of the large-scale structure of a jet to the hydrodynamic
pressure field, we must consider the effect of ‘wavenumber filtering’ of the velocity
fluctuations. In analysing the Green’s function solution of the Poisson equation,
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George et al. (1984) found that the mean-square pressure is related to the Reynolds
stress by a weighing function W(k),

W(k)¯
(4π)#

rkr%
. (5.1)

The nature of the rapid roll-off of this weighting function indicates that the pressure
spectrum will be dominated by the larger turbulent scales. This is termed wavenumber
filtering.

This means that the pressure signal is dominated by the larger scales and will be
correlated over larger distances, implying that a coarser grid can be used to collect
information on the pressure fluctuations than can be used for the velocity field. In fact,
Fuchs (1972) showed that only the first few azimuthal modes (m¯ 0, 1, 2) were
important in the pressure field within the mixing region. More recently Glauser &
George (1987b) and Grinstein et al. (1995) have shown that a greater number of
azimuthal modes (m¯ 0–6) are important in the velocity field in the mixing region
which is also consistent with (5.1). Although the analysis of George et al. (1984) was
for the homogeneous case, it is expected that similar results will apply to the non-
homogeneous case as well. For this reason, it can be assumed that the pressure
fluctuations in the axial direction will also be correlated over a longer distance. Hence
sufficient information can be obtained by using an axial grid spacing roughly
equivalent to that required to describe the low-order azimuthal modes.

5.2. Application of the proper orthogonal decomposition to the near-field
pressure signal

As has been pointed out previously, the integral nature of the Poisson equation
suggests that the pressure sampled at any axial position will be representative of the
global structure of the events in the shear layer at that location. With this in mind, the
pressure field is sampled just outside the jet at relatively few locations to obtain a
‘picture’ of the large structure without having to resort to sampling the velocity at a
multitude of points within the shear region, cross-correlating and then performing the
POD. This procedure does not yield ‘characteristic eddies ’, but it does give more
quantitative information on the size and orientation of the correlated regions.

We consider the jet to be stationary in time, periodic in the azimuthal variable, θ, and
inhomogeneous in the axial variable, x, (figure 6). We can write the random pressure
signal as

P¯P(x, θ, t). (5.2)

It should be emphasized that the radial inhomogeneities have been integrated out
because of the character of the pressure signal. The proper orthogonal decomposition
theorem (also known as the Karhunen–Loeve expansion), interpreted in terms of the
pressure signal states that P(x) has an orthogonal decomposition (Loeve 1978)

P(x)¯ 3

¢

n="

λ
n
ζ
n
ψ

n
(x), (5.3)

with &
x

ψ
n
(x)ψ

n« (x) dx¯ δ
nn«, E(ζ

n
ζ
n«)¯ δ

nn« (5.4a, b)

if, and only if, the rλ
n
r# are the proper values and the ψ

n
(x) are the proper functions of

its covariance, where E(E) implies ‘expected value’. The proper values and proper
functions (hereafter called eigenvalues and eigenfunctions) represent the decomposition
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F 6. Cross-spectral density measurement locations for input to the orthogonal
decomposition: (a) general layout, (b) azimuthal spacing, (c) axial spacing.

of the axial direction into its orthogonal components, and are found from the solution
to the equation

&R(x,x« )ψ
n
(x« ) dx«¯ rλ

n
r#ψ

n
(x), (5.5)

where R(x,x« ) is the covariance of the pressure signal. The dependence on t and θ (or
ω and m) has been suppressed for simplicity. The eigenvalue rλ

n
r# represents the energy

content and the eigenfunction ψ
n

represents the characteristic signal form of that
frequency–mode number combination.

Stationarity in time implies that a Fourier transform may be used to decompose the
time signal into its orthogonal components. That is, a cross-spectral density of the
pressure signal is defined as

φ(x,x«, θ ;ω)¯&
¢

−¢

R(x,x«, θ ; t) e−iωtdt. (5.6)

Symmetry and periodicity in azimuthal angle imply that a Fourier cosine series can be
used to represent the θ-direction. The spectral density determined from (5.6) is
decomposed as

φ(x,x«, θ ;ω)¯ 3

¢

m=!

Φ(x,x« ;ω,m) cosmθ, (5.7)

where m is the azimuthal mode number and the complex coefficients of the series are
defined by

Φ(x,x«,ω, 0)¯
1

π &
π

o

φ(x,x«, θ ;ω) dθ (5.8)
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and by Φ(x,x« ;ω,m)¯
2

π&
π

o

φ(x,x«, θ ;ω) cosmθdθ. (5.9)

Performing these operations on the pressure signal allows us to write (5.5) as

&Φ(x,x« ;ω,m)ψ
n
(x« ;ω,m) dx«¯ rλ

n
(ω,m)r#ψ

n
(x,ω,m). (5.10)

For each frequency–azimuthal mode number combination, this equation is solved to
determine the axial dependence. The numerical details, which are similar to those
discussed in Moin & Moser (1989), can be found in Long (1985).

The decomposition is intended to take place on the surface of an imaginary cone
whose axis is coincident with the jet axis (figure 6a). The surface of the cone passes
through the nozzle lip. The proper cone angle is not obvious. Some preliminary data
were taken along a cone angle of 15°. Subsequent to these preliminary measurements,
flow visualization indicated that a 10° cone angle is more appropriate (Long et al.
1985). This is consistent with the measurements of Ko & Davies (1971) and Peterson
(1978). This two-dimensional decomposition (x, θ ) of the scalar pressure field is
considerably easier to obtain than the three-dimensional decomposition of the velocity
field. The diameter of the jet used was 25.4 mm and the exit velocity was 23 m s−",
corresponding to a Reynolds number of 3.9¬10%.

As will be discussed, the required input for the POD is the cross-spectral density
matrix of pressure fluctuations between x¯ 0.5D and x¯ 3.0D. This range includes at
least 90% of the energy in the frequency range of interest. Eight axial probe locations
and four azimuthal intervals are chosen to provide adequate information up to the
m¯ 2 mode. The size of the matrix for this scalar problem dictates the number of
eigensolutions that can be computed. If the eigenvalues are widely separated in
magnitude, there is a firm basis for believing that the turbulent motion associated with
the matrix is coherent. If the amplitude does not fall off rapidly with mode number, the
matrix does not correspond to a coherent motion. For an n¬n matrix, n eigenvalues
could be computed (eight in this experiment). However, Lumley (1970) indicates that
probably no more than three or four will be necessary and possibly only one (the
largest) will be sufficient. This has been experimentally verified for jet flow by Glauser
et al. (1987).

The four azimuthal intervals are spaced as shown in figure 6(b). With the assumption
that the jet structure is periodic in azimuthal angle it is not necessary to make
measurements on the upper half of the figure. This simplification reduces the
measurements by a factor of two with the only drawback being that the plus and minus
spinning modes cannot be distinguished from one another ; they are lumped into the
same value. This is justified by the assumption that a well-designed jet experiment
should have no preferential direction of swirl.

The eight axial locations are spaced to take advantage of the observation that small
scales occur near the jet exit and large scales occur further downstream. The spacing
between the probes is logarithmic and has been designed to roughly satisfy the folding
frequency criterion. That is, there should be at least two probe locations per
wavelength. The locations are shown in figure 6(c).

Using eight axial locations and four azimuthal locations indicates that 256 single-
sided cross-spectra are necessary; however utilizing the symmetry properties of the
FFT allows the number to be reduced to 144 double-sided spectra. The range of
frequency over which accurate data is necessary lies between St

D
¯ 0.1 and St

D
¯ 4.0.

This includes the column mode frequency of 450 Hz (St
D

¯ 0.5) and the instability
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F 7. Axial variation of near-field pressure spectra along β¯ 15° (the dark line intersecting
each curve indicates a dimensionless level of 10−& or ®50 dB.

frequency of the shear layer of 3.6 kHz (St
D

¯ 4.0). Inspection of the near-field
pressure spectra (figure 7) indicates that only pressure data below St

D
¯ 2.0 are

important, which corresponds to the first pairing. Based on these requirements, the
sampling rate was chosen at 5.12 kHz. This produces a spectrum with a 20 Hz
bandwidth, the most accurate range being one decade wide from 0.2!St

D
! 2.0.

The data collection was initiated after normal work hours to ensure constant
conditions and minimum interference from extraneous noise sources from within the
laboratory. Two sets of data were obtained; one for an unexcited jet and one for a jet
excited at 3.0 kHz. Excitation at 3.0 kHz results in a very stable signal with a spectrum
containing discrete tones at f

e
}2¯ 1.5 kHz and f

e
}4¯ 750 Hz. Presumably these

frequencies correspond to the pairings of axisymmetric ring vortices. This part of the
experiment provides a good test for the POD.

5.3. Discussion of unexcited jet results

It has been suggested in the past that the axial direction can be rendered homogeneous
if the data are scaled by l}(x®x

o
) where x

o
is a virtual origin. The statistics can then

be manipulated so that the axial direction appears homogeneous. That is, as the probe
moves downstream, the spectral shape remains unchanged when normalized in this
manner but gets shifted to lower frequencies. By applying the l}(x®x

o
) scaling the

spectra can be made to collapse onto one curve and the data appear homogeneous. If
this assumption is valid, the required amount of data is reduced tremendously.
However, preliminary velocity measurements indicated that this appears to be so only
in the region downstream of x¯ 2.5D. The measured turbulence spectra for x}D" 3
are apparently similar and could be scaled to collapse to a single curve. The preliminary
near-field pressure spectra also show this trend. Figure 7 shows a sequence of spectra
from x¯ 0.5D to x¯ 7.0D along a 15° ray† emanating from the nozzle lip. Clearly the

† Subsequent to obtaining these preliminary data the microphones were traversed along a 10° ray
as mentioned above in §5.2.
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F 8. Examples of the near-field pressure spectra along β¯ 10°.

spectra have a similar shape only in the region downstream of 2.5D. Upstream of this
position the spectra vary in shape. The conclusion is that the region between x¯ 0 and
x¯ 3D must be considered inhomogeneous; scaling laws will not collapse the data onto
one curve. Thus, the POD scheme has been restricted to this inhomogeneous range.

Of the 256 cross-spectra (8¬8¬4), eight will be power spectra corresponding to
x¯x« and θ¯ 0. Since these data were obtained along a 10° ray, which is different than
figure 7, sample spectra are shown in figure 8. Note that the scaling has been changed.
This sequence also shows clearly that scaling the data to make the turbulence appear
homogeneous will not work in this region because the spectral shape changes. There
are some curious peaks and discrete tones that should be mentioned briefly. In the
spectrum corresponding to x¯ 0.56D, there are tones corresponding to the
subharmonics of the natural instability frequency, f

i
¯ 3.6 kHz ( f

i
D}U¯ 4.0). The

f
i
}2, f

i
}4, and f

i
}8 tones, corresponding to the pairing process occurring further

downstream, are evident. Moving downstream, some of these disappear and new ones
emerge. In particular at x¯ 0.89D, there is, in addition to the f

i
}8 ( f

i
D}U¯ 0.5) peak,

an interesting tone at St
D

¯ 1.3 which is not an even subharmonic of the instability
frequency but an odd subharmonic equal to f

i
}3. This indicates that the merging

process cannot be completely described by a pairing of vortices. Further downstream
at x¯ 1.37D only the St

D
¯ 0.5 tone is dominant. Still further downstream the

spectrum begins to approach the shape that can be scaled to appear independent of x.
The sequence of events that produces these changes is embodied in the eigenfunctions
of the POD obtained from application of (5.10). Before discussing this the eigenvalues
must be considered because they are what determines whether or not there is sufficient
coherent energy in a particular azimuthal mode to warrant looking at the details of the
POD eigenfunctions. If a particular eigenvalue is large, the details of the corresponding
eigenfunction are important. If that eigenvalue is small, the details are not important.
If we sum up all these power spectra (for x¯x« and θ¯ 0) according to the equation

T(ω)¯ 3
)

i="

S
i
(ω) dx

i
(5.11)

we obtain the total energy spectrum. Note that is equivalent to summing the POD
eigenvalues over all POD and azimuthal modes. This is shown in figure 9. It
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F 9. Total energy spectrum (equation (5.13)) and the dominant eigenvalue spectra for
various azimuthal modes.

corresponds to the baseline situation. Most of the fluctuations in the total energy
spectrum are found at the column mode frequency of St

D
¯ 0.5. There is also a small

hump at St
D

¯ 1.3 which is a 1}3 harmonic of the original instability wave which forms
at the nozzle lip (cf. figure 10d ).

The dominant POD eigenvalue spectrum of each azimuthal mode (i.e. rλ
"
(ω ;m)r#,

m¯ 0, 1, 2, 3 in (5.10)) is compared to the total energy spectrum in figure 9 to decide if
this particular mode is significant or not. Clearly the St

D
¯ 0.5 tone belongs to the

axisymmetric class ; the higher-order azimuthal modes contain significantly less energy
at this frequency. If we sum up the coherent energy at this frequency represented by
the first (largest) eigenvalue for each azimuthal mode, we find that this sum contains
98% at the total. If we integrate the rλ

"
r# with respect to ω, we find that 50% of the

energy associated with the pressure fluctuations is contained in the m¯ 0 mode; 23%
is contained in the m¯ 1 mode; 14% is contained in the m¯ 2 mode; and 5% is
contained in the m¯ 3 mode. Thus, it is safe to say that all the energy associated with
the pressure fluctuations is contained in the first four azimuthal modes of the largest
POD eigenvalue spectra. In fact, the second POD eigenvalue spectrum of the
axisymmetric mode is typically twenty times smaller than the first eigenvalue spectrum
of the axisymmetric mode. This indicates that the pressure signal is filtering out the
higher POD modes as well (as discussed earlier in this section). This is in stark contrast
to the results of the decomposition of velocity fields (Moin & Moser 1989; Glauser &
George 1987a, b ; Grinstein et al. 1995).

This concept can also be seen in the bar charts shown on figure 10. Clearly, almost
all the energy is located in the various modes of the first (largest) POD eigenvalue; the
other eigenvalues contain no significant energy. It is interesting to note that the m¯ 0
azimuthal mode is dominant at St

D
¯ 0.5 and St

D
¯ 1.3, indicating axisymmetric

structures, while at other frequencies a significantly greater amount of energy is
contained in the m¯ 1 component relative to the m¯ 0 component. This implies that
the turbulence is less coherent at these frequencies indicating smaller turbulent
structures.

The POD eigenvectors represent the spatial signal form associated with any
particular frequency–azimuthal mode number combination. In view of the eigenvalue
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F 11. Eigenvector ψ
"

(St
D
¯ 0.5, m¯ 0), corresponding to the largest eigenvalue for the

axisymmetric mode at the column mode frequency.

spectrum of figure 9, the most important frequency–azimuthal mode number
combination is the one that corresponds to the column mode frequency of St

D
¯ 0.5

and the axisymmetric or m¯ 0 mode because this azimuthal mode contains most of the
energy. The POD eigenvector is shown in figure 11. The amplitude of the eigenvector
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is shown at the heavy line through the solid circles. Since each eigenvector is a complex
quantity, this amplitude is found by the square root of the sum of the squares of the
real and imaginary parts, i.e.

A¯ (Re (A)#Im (A)#)"/#. (5.12)

The real part is shown in the vertical plane and the imaginary part is shown in the
horizontal plane.

Due to the sparseness of the measurement locations these curves must be generated
with some care. In particular, note that neither of the components is just a smooth
curve passing through the data. The figure is constructed as follows: First, the
amplitude at each point is computed by (5.12) and is plotted as an envelop with a
smooth curve drawn through the data. Secondly, realizing that the eigenvector
represents a travelling wave train ensures that whenever the imaginary part has a zero
crossing the real part must equal the amplitude curve. Whenever the real part has a
zero crossing, the imaginary part must equal the amplitude curve. Following these rules
a fairly representative curve can be constructed.

It turns out that the form of the eigenvector presented in figure 11 is representative
of the axial wave form associated with any particular frequency–azimuthal mode
number combination. They all indicate the characteristics of amplification, saturation
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and subsequent decay of an instability wave within about three wavelengths. An
example of the eigenvector for a different frequency is shown in figure 12. This
corresponds to the axisymmetric mode and St

D
¯ 1.3. This also shows the general

character of amplification saturation and decay, but the saturation occurs closer to the
jet exit. This is to be expected since the frequency is higher. Note how the magnitude
of the eigenvector peaks at xC 0.9D, which corresponds to the streamwise location
where the near-field pressure spectrum exhibits a peak at this Strouhal number. The
peak amplitude has been determined for each frequency component of the m¯ 0 mode
and plotted on figure 13 along with the 50% amplitude line. Note that the peak
amplitude curve can be approximated by St

D
¯D}x or fx}U¯ 1 which is in good

agreement with the shear layer mode of the jet.
Figure 14 shows the m¯ 1 component for St

D
¯ 0.5. It shows the same character as

the m¯ 0 mode of amplification, saturation and decay. Even the wavy structure is
similar. Both real and imaginary parts have their peaks and valleys at approximately
the same axial location as in the m¯ 0 case. In fact, for a given frequency, the spatial
structure of the eigenvectors appears to be similar for all four azimuthal modes studied.
This would be expected on the basis of the requirement for orthogonality.

It is tempting to view the results thus far in terms of classical linear modal analysis.
Recognizing that the process under investigation is nonlinear, caution must be
exercised when interpreting the results. We cannot directly associate an individual eddy
with an individual POD mode. This can be resolved by viewing the eigenfunctions as
simply building blocks from which an eddy is composed. As the eddy or coherent
structure evolves, different eigenmodes will be dominant at different phases in its life
cycle (Long 1985; Glauser & George 1987a, b ; George 1988; Grinstein et al. 1995). As
an example, it is very easy to picture the m¯ 0 as an axisymmetric ring vortex and that
the m¯ 1 component corresponds to a distinct helical or flapping-type motion. In fact,
Drubka (1981) found that the jet structure was actually intermittent, jumping back and
forth between axisymmetric and right- and left-handed helical modes. In earlier work,
Peterson (1978) simultaneously measured the near-field pressure signal with nine
separate azimuthally spaced microphones. He found that the signal from each
microphone did not line up exactly but that there was some variation in time
(Peterson’s figure 12). The interpretation given was that the pulses in the pressure
signal corresponds to the passage of large-scale coherent structures, consistent with the
discussion in §4.
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(St
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¯ 0.5, m¯ 1) corresponding to the largest eigenvalue for the

m¯ 1 mode at the column mode frequency.

Treating the flow as inhomogeneous in the streamwise direction presents an
opportunity to correctly calculate the phase velocity with the POD eigenfunctions.
There have been many attempts to measure the phase velocity in turbulent shear flows.
Wills (1964) found from hot-wire measurements that the phase velocity was a weak
function of frequency; in other words, the wave-like structure was dispersive.
Armstrong (1981) measured the phase velocity of the near-field pressure signal and
found that the high-frequency components have a constant phase velocity, but at lower
frequencies the phase velocity decreased, also indicating dispersive wave-like structures.
There are two problems that must be recognized when attempting to measure the phase
velocity. As correctly recognized by Wills, the phase velocity must be associated with
a wavenumber rather than a frequency. The usual method is to measure the time delay
where the maximum correlation between two fixed probes occurs. This gives a
convection velocity that is associated with a frequency component which is not what
is wanted. The correct method is to fix a time delay and vary the spatial separation
between the probes until maximum correlation is achieved. An excellent and more
complete discussion of this topic is given by Wills (1964).

The second aspect of the problem, which was not recognized by Wills, is associated
with the growth, saturation and decay of the instability waves, i.e. the flow is
inhomogeneous in the streamwise direction. Instability waves are used here as an
alternative term for the proper orthogonal eigenfunctions. In all previous experiments,
including those of Wills, the streamwise direction was treated as if it were homogeneous.
That is, a fixed probe is located at one location and a traversable probe is somewhere
downstream. Subtle errors can be incurred in this process. If it is imagined that all of
the instability waves corresponding to various components are overlain at the various
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probe locations, it is easy to see that the correlation measurements are actually taking
place at different axial positions of the growth–saturation–decay of various instability
waves. High wavenumbers saturate early in x. Therefore, the downstream probe is
actually sampling data in the region where the wave is decaying. Similarly the probe
system would be positioned in the saturation region for midrange wavenumbers and
would be positioned in the growth phase of low wavenumbers. The relative definition
of high and low wavenumbers depends on the axial location of the two-probe system.
In summary, measurements of waves which are growing or decaying are biased by the
rate of growth or decay. Accurate estimates of the phase velocity can be only obtained
for instability waves that are close to saturation at the measurement location. This is
a possible explanation for the discrepancy between previously reported results.

Phase velocity can easily be determined from the results of this investigation, after
all the POD eigenvectors have been constructed. The wavelength of an eigenvector for
a given frequency can be measured in the region of peak amplitude (saturation). The
phase velocity is simply the quotient of frequency and wavenumber

U
p
¯ω}k¯ fλ. (5.13)

Repeating this process for all measured combinations of frequency and eigenvectors
results in the dispersion relationship shown in figure 15, which is a plot of frequency
versus wavenumber. The convection velocity for each data point is found from the
slope of the vector from the origin to the data point. It is clear that after accounting
for experimental error, all the data from the present experiment lie on a straight line
passing through the origin. This implies that the wave-like characteristics are non-
dispersive, i.e. the convection velocity is a constant, independent of frequency. The
convection velocity determined from the slope of the line is U

c
¯ 13.3 m s−" or

U
c
}U

j
¯ 0.58.

Care must be taken when interpreting these results due to the effects of wavenumber
filtering. At a given location there is an entire spectrum of eddy scales, each with its
own convection velocity. The convection velocity obtained here is determined from the
pressure field that has already been shown to be associated with the large structure due
to wavenumber filtering. It should also be kept in mind that inhomogeneities in the
radial direction have been averaged out due to the nature of the pressure measurements.
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Since the measurements all took place close to the jet exit (x! 3D) the convection
velocity for low wavenumbers (that is, for frequencies less than f

c
) are somewhat less

accurate because saturation occurs downstream of the last measurement location.
Similar errors are inherent in the measurements of Armstrong (1981) and suggest that
the measurement is biased because of accuracy limitations.

The wavenumber-dependent convection velocity determined by Wills (1964) is
included on figure 15. His data actually extend to much higher wavenumbers than can
be shown on this figure. Clearly the trend of both data sets is different, and we believe
this to be due to the reasons discussed previously. However, as noted by Wills, the
experimental errors associated with each of these techniques precludes the possibility
of giving an accurate value to U

c
(k). In other words the error bands of each data set

overlap.
Peterson (1978) apparently came to the same conclusion regarding the non-

dispersive nature of jet flow. He showed that a subharmonic disturbance with a
wavelength twice the spacing of the paired vortices have a phase speed that matched
the convection speed of the vortices before pairing occurred. In other words, there is
a definite phase relationship between a particular frequency and its subharmonic. The
same result is found in this study. If the eigenvectors for a given frequency and its first
subharmonic are plotted together (for instance St

D
¯ 1.0 and St

D
¯ 0.5), it is found

that one wavelength of the St
D

¯ 1.0 tone exactly fits into half a wavelength of the
St

D
¯ 0.5 tone, such that the zero-crossing points are the same. This pattern is seen for

all frequency combinations, i.e. the phase relationship between any frequency and its
subharmonic is the same for all pairs having sufficient amplitude to make an accurate
comparison. Further discussion of these results in the context of stability theory is
given by Liu (1989).

5.4. Discussion of excited jet results

One of the reasons for conducting this part of the experiment was to test the POD in
a more organized flow field. This was accomplished by exciting the jet acoustically with
a mid-frequency horn placed in the anechoic chamber and driven at 3.0 kHz
(St

D
¯ 3.32) to produce a level of 90 dB re 20¬10−' N m−# at the nozzle exit. The wave-

length of the excitation signal is approximately 4.5 times the nozzle diameter, strongly
suggesting that the excitation is axisymmetric (Long 1985). Excitation at this frequency
produces a spectrum of the near-field pressure signal which has two discrete tones
corresponding to the subharmonics of the excitation signal, namely 1.5 kHz
(St

D
¯ 1.66) and 750 Hz (St

D
¯ 0.83). A simple explanation of this phenomenon can

be obtained by considering two successive pairings of ring-like vortices, one associated
with the St

D
¯ 1.66 tone and the other associated with the St

D
¯ 0.83 tone. For all

practical purposes the bulk of the spectral energy can be assumed to be concentrated in
these two tones. Hence, it is easier to present the eigenvalues in tabular form rather than
in graphical form as was done for the unexcited jet. The results are given in table 1.

Some care must be exercised in interpreting the results in this table. As shown, 73%
of the total energy is concentrated at St

D
¯ 0.83 and 27% of the total energy is

concentrated at St
D

¯ 1.66. Consider now the contribution to the total energy from the
first POD mode, λ

"
. As shown on the table, λ

"
(St

D
¯ 0.83, 0) contains 29% of the total

energy. Summing up the first four azimuthal modes of λ
"

results in 71% of the total
energy, nearly 100% of the energy concentrated at this frequency. By comparison,
summing up the first four azimuthal modes of λ

"
at St

D
¯ 1.66 results in 15% of the

total which is still more than 50% of the energy at this frequency. The data presented
in the table clearly indicate that all the energy is not located in the m¯ 0 mode as
would be expected from a model of axisymmetric vortices. It was expected that the
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F 16. (a) Eigenvector ψ
"

(St
D
¯ 0.83, m¯ 0) corresponding to the largest eigenvalue for the

axisymmetric mode at f
e
}4 in the excited jet. (b) Eigenvector ψ

"
(St

D
¯ 1.66, m¯ 0) corresponding to

the largest eigenvalue for the axisymmetric mode at f
e
}2 in the excited jet.

St
D
¯ 0.83 St

D
¯ 1.66

Fraction of total energy 0.73 0.27
Mode: m¯ 0 0.29 0.06

m¯ 1 0.25 0.03
m¯ 2 0.14 0.02
m¯ 3 0.04 0.04

Sum of first four azimuthal 0.72 0.15
modes of rλ

"
(ω,m)r#

T 1. Comparison of azimuthal decomposition of rλ
"
(ω,m)r# and the total mean square

of the spatially integrated signal

excitation would result in a more organized pattern with less jitter than was assumed
to be associated with the m¯ 1 and higher azimuthal mode components. Apparently
what has happened is that the excitation has phase locked the signal but not in the
axisymmetric mode. The ring-like structures are still apparent in the signal but have
become stretched and distorted in the axial direction (Peterson 1978). The real and
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imaginary parts of the first eigenvector for the St
D

¯ 0.83 tone are shown in figure
16(a). It shows the same general character as in the unexcited jet. The phase velocity
is computed as U

c
¯ 0.59 U

j
. The first eigenvector for the St

D
¯ 1.66 tone is shown in

figure 16(b). Only the decay region is seen; apparently the wave saturated closer to the
exit than the first measurement location. The phase velocity for this wave is also
computed as U

c
¯ 0.59 U

j
. As in the unexcited case, the first eigenvector is dominant at

each of the two frequencies. Since the total energy is concentrated at these two
frequencies, the entire jet structure can be described by these two dominant
eigenvectors.

6. The shot effect

By combining the shot-effect decomposition originated by Rice (1944) with the POD
Lumley (1981) was able to develop a useful method that allows a quantitative measure
of coherent structures in turbulent flows. The shot effect was considered by Rice (1944)
for studying the statistics of vacuum tube noise where a pulse is emitted every time an
electron reached the anode. Since that time, several researchers have used Rice’s theory
to reconstruct eddies from POD data (Long & Arndt 1985; Herzog 1986; Glauser et
al. 1985, 1987; Moin & Moser 1989). In his theory, the measured spectrum is the
Fourier transform of an individual pulse and a characteristic event can be reconstructed
from the inverse Fourier transform of the measured spectrum of the shot noise. Lumley
extended this idea for continuously variable amplitude and defined the inverse Fourier
transform of the spectrum associated with the largest eigenvalue as a ‘characteristic
eddy’. In the present work, this function is defined as a characteristic event.

In most experiments where correlation techniques are used, a fixed probe is located
at a specific point and another probe is traversed. This method can produce correlation
lengths and amplitudes for individual frequency components, but it cannot produce the
phase relationship between frequencies ; all frequencies are phase referenced to the
location of the fixed probe. In the present experiment the phase is chosen so that the
downstream convection is preserved. This information can be used as an input to the
shot-effect decomposition to reconstruct a typical signal or characteristic event.

Only the dominant POD eigenfunction will be used so that a POD mode estimate of
the pressure signal is written as a function of time and space x (the θ-dependence is
suppressed for now) as

p"¯ p"(x, t), (6.1)

where the superscript 1 denotes the first POD mode. It is supposed that this signal can
be decomposed in time as

p"(x, t)¯ f(x, t) n g(t), (6.2)

where the n represents a convolution, f is the characteristic event, and g is the random
strength function. Since the signal is a stationary function, g must also be a stationary
function which should satisfy ergodicity: uncorrelated in non-overlapping intervals.
Choosing a strength function to have the same correlation as white noise allows

g(t) g(t®τ)¯ a# δ(τ), (6.3)

where a# is the average energy associated with each individual event.
An estimate of the cross-spectrum utilizing the first POD mode can be written as

Φ
(")

(x,x« ;ω)¯λ#
(")

(ω)ψ
(")

(x,ω)ψ
(")

(x« ;ω)H, (6.4)

where the superscript H stands for Hermitian transpose.
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Using (6.3) it can also be shown that

Φ
(")

(x,x« ;ω)¯ a#F² f (x, t)´F*² f (x«, t)´, (6.5)

where F²[´ stands for the Fourier transform of the quantity inside the curly brackets.
For the particular case of x¯x«, a direct association between (6.4) and (6.5) can be
made so that

(a# )"/#F² f(x, t)´¯λ
"
(ω)ψ

"
(x ;ω) eiΘ(ω) (6.6)

from which f can be found by an inverse Fourier transform.
It shall be shown that using (6.6) directly with Θ(ω)¯ 0 leads to a result entirely

consistent with the downstream convection of turbulent structures. This appears to be
consistent with the results of Herzog (1986) and Moin & Moser (1989). Herzog found
that the case of zero phase shift produced the most compact form of the typical eddy.
Herzog also showed that the principle features of the typical eddy did not change when
phase shifts other than 0 were selected. Moin & Moser (1989) found that their u-
velocity compactness condition was satisfied by the zero-phase eddy. Moin & Moser
(1989) also showed, for their two-dimensional case, that the compactness conditions
produced the same results as when the bi-spectrum was utilized. Hence, in this study,
only the Θ(ω)¯ 0 case will be examined.

Equation (6.6), with Θ(ω)¯ 0, is given by

(a# )"/#F² f(x, t)´Dλ
(")

(ω)ψ
(")

(x,ω), (6.7)

where the eigenvector ψ
(")

is determined from (5.10). For each azimuthal mode, (6.7)
is to be evaluated eight times, once for each of the eight measurement locations.
Remember that the characteristic event is a function of both downstream distance and
time

f¯ f(x, t ;m) (6.8)

for each azimuthal mode m. It is evident that a shot-effect decomposition and
subsequent inverse transform could be performed for the azimuthal mode as well. This
would lead to a characteristic event of the form

f¯ f(x, t, θ). (6.9)

This is not done here since it is felt that the structure is more clearly evident when
displayed in the form described by (6.8) especially since three independent variables
and one dependent variable cannot be plotted conveniently. It is easy, however, to plot
(6.8) as a contour map because it consists of only two independent variables.

As previously discussed, the spectrum for the excited jet experiment contains two
subharmonics of the excitation frequency, St

D
¯ 3.32. The first subharmonic is due to

an instability wave that saturates close to the nozzle lip. The second subharmonic is due
to the instability wave that saturates further downstream. In this case the characteristic
event for the flow would be associated with the pairing event that results in the
formation of the second subharmonic.

The result for the excited case is shown in figure 17 as a contour map in the form
described by (6.8). Only the axisymmetric mode is considered. Time is plotted
horizontally and normalized by U

j
and D. Axial distance is plotted obliquely for

0!x}D! 3, and amplitude is plotted vertically. As expected, the high-frequency tone
occurs near the jet exit and the low-frequency tone occurs further downstream. This is
usually associated with pairing where one eddy slows down and the one behind it
speeds up, which leads to the coalescence. This apparently does not happen here. The
even-numbered humps seem to persist and convect downstream at a constant speed
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F 17. Characteristic event in the excited jet, axisymmetric mode.
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F 18. Characteristic spectra to be used in (6.7). x¯ 1.37D. Open circles are the real part ;
asterisks are the imaginary part. (a) m¯ 0, (b) m¯ 1.

while odd-numbered humps simply die away beyond one diameter. As previously
discussed, an individual ridge in ²t,x}D´-space of the pressure signal cannot be directly
related to an individual eddy. However, Long (1985) conjectured that the data in figure
17 are consistent with a model of two non-adjacent eddies stretching and tearing a third
eddy that was originally between them as proposed by Moore & Saffman (1975). This
third vortex gets stretched into a braid and the vorticity is entrained into the first two
eddies. Bernal (1981) found evidence for this by a flow visualization experiment. It was
a rather rare occurrence compared to the vortex pairing, but it is possible that the
excitation in the present experiment locked onto this phenomenon and resulted in the
pattern seen in figure 17.

After consideration of this relatively simple experiment it is now easier to interpret
the results for the unexcited jet. Before discussing the contour plots described by (6.9)
some of the intermediate results are considered. Figure 18 is an example of the
frequency function for use on the right-hand side of (6.7). Both real and imaginary
parts are shown. The inverse Fourier transform of this function yields the characteristic
event at the specified location. Note again that this is for Θ(ω)¯ 0. The result is shown
in figure 19. It is real valued and can be thought of as a typical time trace. When this
operation is carried out at each of the seven other locations, the result can be displayed
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F 19. Characteristic signals obtained from (6.7). x¯ 1.37D ; (a) m¯ 0, (b) m¯ 1.
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F 20. Characteristic event for (a) the m¯ 0 and (b) the m¯ 1 mode viewed obliquely.

as a contour map similar to figure 17. Figure 20(a) is the result for the axisymmetric
mode and figure 20(b) is the result for the m¯ 1 mode.

Evidently the characteristic event described by these figures consists of a sequence of
pressure ridges of varying amplitude. One can see evidence for the coalescence and
annihilation of certain ridges as the structure progresses downstream. If each of these
ridges is interpreted as the passage of a vortex structure this phenomenon can be
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F 21. (a) Plan view of (a) figure 20(a), m¯ 0, (b) figure 20(b) m¯ 1.

thought of as a vortex pairing or vortex tearing. For the most part however, each ridge
that forms convects downstream and does not interact with its neighbours.

Another way to look at these data is to view the contour plots directly from above.
This yields the typical form of an (x, t)-diagram. The axisymmetric mode corresponding
to figure 20(a) is shown on figure 21(a). The m¯ 1 mode corresponding to figure 20(b)
is shown on figure 21(b). The solid lines indicate the location of the peaks and the
dotted lines the valleys of the signal. Heavier lines indicate high peaks and light lines
indicate low peaks. A void in the plot indicates that no peak or valley is discernable
because the level is too low. The figures clearly demonstrate that the peaks and valleys
are associated with a convected structure. The convection velocity determined here
is the same as the phase velocity determined from the eigenfunctions directly as
U
c
¯ 0.58U

j
. This shows that the reconstruction using zero phase is a physically realistic

structure, consistent with the results of Herzog (1986) and Moin & Moser (1989).
From an analysis of the contour plots and the associated diagrams for both the

m¯ 0 and m¯ 1 modes, the following statements concerning the large-scale turbulence
can be made:

(i) The initial growth of the large pulse in the m¯ 1 mode occurs just downstream
of a pairing event in the m¯ 0 mode. This location is denoted by a 1 in all the relevant
figures. Further downstream along the same ridge another pairing event in the m¯ 0
mode occurs and the large ridge in the m¯ 1 mode is increased. This location is
denoted by a 2. This suggests that this ‘ triple vortex interaction’ is responsible for the
general breakdown of the axisymmetric mode into higher-order modes. It appears that
the initially ring-like vortices breakdown because of incomplete pairing.

(ii) Figure 21(a) suggests that there are also ‘double vortex interactions’ occurring.
This happens at three distinct locations. These are denoted by 3, 4, 5. Apparently a
double pairing is three times more common than a triple pairing.

(iii) The point of this discussion is to show that although this is a low-Reynolds-
number ‘clean’ jet the large-scale structure is not composed of a sequence of vortex
pairings that occur at successive downstream locations. The structure is more
complicated, being made up of both pairings and triplings occurring erratically in time
and incomplete in azimuthal angle.

Having interpreted the characteristic event f(x) as being associated with vortex
pairings it is now of interest to discuss how many of these events occur in a given
period. Thus far, knowledge of this structure is limited to the average energy. There are
many ways in which this characteristic event could be divided that is consistent with



Pressure fluctuations surrounding a turbulent jet 29

the measured energy. The event could be extremely violent but relatively rare or it
could be less violent and much more frequent. The obvious goal is to determine which
of these is correct.

In order to do this an extension of Campbell’s theorem (Rice 1944) must be
discussed. The extension gives a relation for the nth moment of the probability density
function. Specifically it can be shown that, for pa ¯ 0,

p#¯ νa#&
¢

−¢

f #(τ) dτ (6.10)

and that p%¯ νa%&
¢

−¢

f %(τ) dτ, (6.11)

where ν in both cases represents the number of occurrences of the event f(t) per unit
time. The rate of occurrence is found by squaring (6.10) and dividing by (6.11) to get

ν¯ ( a%

a##
* (p##

p% * &
¢

−¢

f %(τ) dτ5(&
¢

−¢

f #(τ) dτ*#. (6.12)

To actually calculate ν from (6.12), the moments of a and p must be investigated.
Since pa ¯ 0 the second factor in (6.12) is actually the inverse of the kurtosis. An

application of the central-limit theorem indicates that the probability density of p will
approach a normal distribution and hence the kurtosis will approach 3 as ν approaches
infinity (Tennekes & Lumley 1972).

The same statement cannot be made regarding the distribution of a because the
mean value of a is not zero. The value of the fourth moment divided by the square of
the second moment depends strongly on a even though the higher moments of the
probability density function are distributed normally. To proceed, two cases must be
considered. These are given by aa }σU¢, and aa }σU 0 where σ is the standard deviation
of the event amplitude.

The first case corresponds to a physical situation where the size and shape of all
events are the same. The value of the first factor in (6.12) will approach 1. This is the
desirable situation because it is hoped that all events will be roughly the same size. The
second case implies that the amplitude of the events is a random variable centred about
a zero mean. This situation is less desirable because this randomness does not relate
well to the physical notion of a characteristic event. If its distribution is assumed
Gaussian with zero mean the first factor in (6.12) is the kurtosis and will have a value
of 3. Considering both of these cases places bounds on the estimate of ν.

In accordance with the assumption that all events are similarly sized the choice of
a¯ constant is acceptable and (6.12) can be simplified to

ν¯
1

3&
¢

−¢

f %(τ) dτ5(&
¢

−¢

f #)τ) dτ*#. (6.13)

where the pressure is assumed Gaussian.
Both numerator and denominator of (6.13) have been evaluated at each of the eight

measurement locations for both the m¯ 0 and m¯ 1 modes. The rate of occurrence
that is calculated shows some variance from location to location, but this is
unimportant and probably due to the inability to calculate the fourth moment
accurately. The average value determined from these 16 individual values is found to
be

νD}U
j
¯ 0.075. (6.14)

The inverse of this relation is
τU

j
}D¯ 13.3 (6.15)
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and represents the average time between occurrences. We estimate this value to be
accurate to within 20%. This implies that the events described by figures 20(a) and
21(b) repeat at this average rate. Since a triple pairing only occurs once within a
characteristic event, it will occur once every 13.3 dimensionless time units. Since double
interactions occur three times more frequently, they will occur once every 4–5
dimensionless time units.

The results that have been described in this section are believed to be typical of all
low-Reynolds-number low-Mach-number jets. There will of course be differences
depending on individual geometry and initial conditions as has been demonstrated by
Ho & Huerre (1984).

The results here show that the shot-noise decomposition seems to be applicable to
periodically excited flows. In general, the shot-noise method has several disadvantages
as discussed by Berkooz et al. (1993) and Sirovich (1989).

7. Conclusions

The objective of this work was to examine the inhomogeneity in the streamwise
direction for a round jet through the application of POD. For the first time POD was
applied to the pressure field surrounding the jet. This has certain advantages, such as
ease of measurement and greatly simplified data analysis as compared to applying
POD to the velocity field. For example, we have been able to study the streamwise-
temporal structure of the jet with a minimum number of spatial grid points. At any
particular frequency, the POD eigenfunction grows, saturates, and decays all within
about three wavelengths as it convects downstream. High frequencies saturate early in
x and low frequencies saturate further downstream. Due to the complexity of applying
the POD, similar data have not been obtained from the velocity field.

Since the eigenfunctions are broken down into discrete frequency components, the
phase velocity can be determined using the measured wavelength of the POD
eigenfunctions near the saturation point. This is an important result since all previous
measurements of phase velocity suffer from the probe being located on different phases
of the growth–saturation–decay cycle. There is a bias when the measurement takes
place in the growth or decay phase; only in the saturation region is a true estimate of
phase velocity obtained. The phase velocity determined from the proper orthogonal
decomposition was found to be U

p
¯ 0.58U

j
, independent of frequency. This is the first

time that phase velocity has been determined giving due consideration to the
streamwise inhomogeneity in the initial region of the jet.

POD also extracts the energy of pressure fluctuations associated with each azimuthal
mode. The axisymmetric or m¯ 0 mode contains 50% of the total ; the m¯ 1 mode
23%; the m¯ 2 mode 14%; and the m¯ 3 mode 5%. We consider this to be the
baseline situation because the jet was operated at low Reynolds number and low Mach
number. If either of these parameters increases, it is expected that the higher-order
modes will contain a greater proportion of the total, consistent with the presence of
smaller scales.

The characteristic signal form (characteristic eddy or characteristic event) was
reconstructed from the results of POD using the shot-effect decomposition. Results
showed that even at this low Reynolds number, vortex pairing does not occur in a
repeatable fashion at a specific downstream location but is random in both time and
space. Vortex tripling occurs one third as often and is associated with a strong m¯ 1
component suggesting that the jet is beginning to break down into smaller scales.

The results presented here demonstrate the utility of applying POD to the pressure
field. This sets the stage for practical opportunities for POD-based control strategies.
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