@, Journal of Signal and Information Processing, 2018, 9, 202-216
“‘0 Scientific http://www.scirp.org/journal/jsip
‘ 0’ Research : - =

94% Publishing ISSN Online: 2159-4481

* ISSN Print: 2159-4465

The Properties and Fast Algorithm of
Quaternion Linear Canonical Transform

Ye Zhang!, Guanlei Xu?*

'"Nanjing Changjiang Electronics Group Co. Ltd., Nanjing, China
Dalian Navy Academy, Dalian, China
Email: sjzy993200@sina.com, *xgl_86@163.com

How to cite this paper: Zhang, Y. and Xu,  Abstract

G.L. (2018) The Properties and Fast Algo-

rithm of Quaternion Linear Canonical  1he quaternion linear canonical transform (QLCT) is defined in this paper,
Transform. Journal of Signal and Informa-  with proofs given for its reversibility property, its linear property, its
tion Processing, 9, 202-216.

odd-even invariant property and additivity property. Meanwhile, the quater-
https://doi.org/10.4236/jsip.2018.93012

nion convolution (QCV), quaternion correlation (QCR) and product theo-
Received: June 28, 2018 rem of LCT are deduced. Their physical interpretation is given as classical
Accepted: August 18,2018 convolution, correlation and product theorem. Moreover, the fast algorithm
Published: August 21, 2018 of QLCT (FQLCT) is obtained, whose calculation complexity for different
Copyright © 2018 by authors and signals is similar to FFT. In addition, the paper presents the relationship be-
Scientific Research Publishing Inc. tween the convolution and correlation in LCT domains, and the convolution

This work is licensed under the Creative and correlation can be calculated via product theorem in Fourier transform
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Keywords

Quaternion Signals (Hyper-Complex Signals), LCT, Convolution, Correlation

domain using FFT.

1. Introduction

The linear canonical transform (LCT) is a new tool that comes into being in sig-
nal processing [1]-[32]. The LCT is the generalization of the FRFT and so on [2]
[3] [12]. Up till now there have been a lot of papers involving the FRFT and the
LCT, such as papers [1]-[10]. However, none of them has involved the LCT of
quaternion signals (or Hyper-complex signals) even if there has been similar
work on FRFT [5]. Quaternion signals can be taken as the generalization of sca-
lar, complex signals and vector, and after the introduction of quaternion signals
by Hamilton in 1843 [11] it has become one basic tool for multi-channel and
multi-dimensional space. For example, grey image [30] can be taken as scalar,
and the analytic signal after Hilbert transformation [12] [13] [14] [15] [16] [29]
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is complex signal. The color image can be taken as one vector [17] [18], a qua-
ternion number whose real part is zero. In [19], the transform, convolution and
correlation have been addressed in fractional Fourier transform (FRFT) domain.
In this paper we first propose the definition of the QLCT, QCV and QCR in the
LCT domain for quaternion signals, which are the generalization of those in [5].
Meanwhile, some properties and the fast algorithm of QLCT are discussed. We
also discover the relationship of QCV and QCR in the LCT domain for quater-
nion signals. We found that QCV and QCR can be implemented via product
theorem in the QLCT domain. Thus we not only yield the generalized frame for
scalar, complex signal, vector and quaternion signal [17] [20] in the QLCT do-
main, but also give one new idea and one theoretical base for future engineering
use.

In the rest of this paper, we will introduce the definition of QLCT in Section
II. We will show the properties in Section III. In Section IV, FRQCV and
FRQCR will be addressed. Section V is the fast algorithm. The last section con-

cludes our paper.

2. Definitions of QLCT

For convenience of discussion, we first give some notations used in the following
of this paper. f (X, y) denotes 2D signal in time domain; Fis classical Fourier
transform operator; F“*% (F" in short) is 1D LCT operator, and F"(u)
is the 1D LCT of f(x,y); F“'2 is the 2D LCT operator of f(X,y); F€ is
classical quaternion Fourier transform operator, and F?(U,V) is quaternion

Fourier transform of f (X, y); Iis equivalence operator; Pis odd-even operator;

(VR3] «—-»

is classical convolution operator; is conjugation operator. “N” is integer
set; “R” is real set. Define the product operator of two LCTs’ transform parame-

ter systems:

L1L2 = Li(ailbllclldl)' Lz(az’bzlcwdz): L(a,b,c,d)

a b a bia b . .
where = . Quaternion signals are also called Hyper-
c d c djc d,

complex signals, which are the generalization of complex signals. Complex sig-
nals have two components: the real part and the imaginary part. However, one

quaternion signal has four parts, one real component and three imaginary parts:
q=0q, +ig; + ja; +ka, (1)

where ¢,,0;,q i O € R, i, J,k are three imaginary units, which satisfy the fol-
lowing relations: i°=j*=k*=-1, ij=—ji=k, jk=—kj=i, ki=—ik=j.
d, =9, +id;, g, =0, +iq, . If g, =0, then g=ig + jq; + kg, is called vector,
and ¢, is called scalar. g, and ¢, are complex signals. Since the sequences
of 4 jand k will affect the result, the definition of QLCT would take them into
account.

Definition 1: For any quaternion signal

f(xy)="f (xy)+if(xy)+if;(xy)+k (xy) (f.(xy), fi(xy),
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f,(xy), f (X y) arereal ones), the QLCT of f(x,y) is F'1'2(u,v)

Fo'z (uv) =R { £ (x,y)} = 3 {f (% y)}(u,v)
N (2-1)
= [ [ Ky (xu) f(x,y)K,, ; (y.v)dxdy

—00 —00

where, K_;(x,u)= ’27rlb1i exp(i(ai ‘;sf)uz _i%}

a, +d,)v’
K (y.v)= ! - exp j( 2+ 4) - jﬂ . Meanwhile, in the following of
2 27th, 2b, b,

this paper we assume a,d, —bc =1, a,d,-b,c,=1 and b,b, #0.

The reversibility transform is defined as

o2 (uv)=F 2 {F (xy)) = F a2 { £ (xy)}(uv)
T (2-2)
= [ [ R (eu) () y) Koy, ; (v,v)dxdy

—00 —00

where, Kle,i(Xiu): {—27ltb1i exp£_i%+i;_xj)

2
exp(—j—({712 +d)v + jﬂJ .

2b, b,

Ko, (¥:v)=

—27h, j

If (ai,bl, C, dl) = (az, h,,cC,, dz) = (0,—1,1, 0) , definition 1 is quaternion Fourier
transform; if (a,,b,¢;,d;)=(0,-11,0),(a,,b,,c,,d,)=(10,0,1), definition 1 is
classical 1D Fourier transform of f(X,y) for variable x; if
(ai,bl,cl,dl)z(l,0,0,l), (az,bz,cz,dz)z(O, —1,1,0) , definition 1 is classical 1D
Fourier transform of f (X, y) for variable ; if
(ai, h,c, dl) = (az,bz,cz,dz) = (1, 0,0,1) , definition 1 is equivalence transform of
f (X, y). As shown above, definition 1 is the generalization of the fractional qu-
aternion Fourier transform and the quaternion Fourier transform [18] [19] [20]
[21]. The reversibility (or reconstruction) is one important property for one
transform, especially for the processing in another domain. The following gives
the proof of the reversibility property.

Theorem 1: One quaternion f (X, y) can be reconstructed from Fi,"jl"‘2 (U,V)
via QLCT.

Proof: The proof is trivial and omitted here.

3. The Properties of QLCT

In the following section we list the properties and present the proof.

Property 1: For any one quaternion signal f, (X,y)(neX), the following re-
lationship is true: %2 {>a f (x,y)}=Xa,-F¥2{f (xy)} (& eR).

Proof: Since QLCT is one linear transform, property 1 can be easily obtained
from definition 1.

Property 2: Fi53’L4Eh?’L2 = Eh9’L2Eh3'L4 = Fi51L3’L2L4. Proof: For any one quater-
nion signal f (X, y), from definition 1 we can obtain
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e )

= TT K (u, s){TT Ky, (x,u) f(xy) Ke,.j (y,v)dxdy} Ki.j (v,w)dudv

—00 —0 —00 —00

TT{TTKL3. Ky (6u) F(xy) Ky (v V)K (v ,W)dudv}dxdy

—00 —0 | —0 —0

+00 +00

j I{I sk (ropan £ ny) | KLz,j(y.v>KL4,j(v,vv)dv}}dxdy

3)

For 1D signal the right formula is true [2]:
[ Ky, (uu)Ky (u'u")du" =K, (u,u”) (4)

Substitute (4) into (3):
FUobRT (X, y)}

i,j i,

400 +00

= j j{ L (%08) F(X YK, | (y,w)} dxdy = F 7225 {f (x,y)}

—00 —00
Therefore,

Ll bl _ =il
R R 2 =F (5)

The result can be obtained similarly:
Fi,leYLz Fi,Lj3’L4 — Fi,leL&LZLA (6)

From (5) (6): FPMFh = RUiRlb = phlstl
Property 3: |:|-3v|-4 |: '—1v|-2 — |:|-1sz FL3'L4 ,
FLS Le (FL3 '—4|:|—1|—2> (FLs LGFL3 I-A)F'—i L
Proof: This property can be obtained from property 2.
Property 4: If F'7% { f (x,y)} = R (u,v), then
Rt {f (=x,—y)} =F%"% (-u,~v), Fr2{f(-xy)}=Fr?(-uv),
R ()} =R (0 ). .

Proof: Let A = 1/27tbll A =,2ab,j, C, = 2b1 szszz, and insert them
into (2): 2

Rt (£ (-x,-y)} = Ae"™ | J'e ble'xclf( x,—y)e¥ e b2dxdy AeYC (7)

Let S=-X,Z=-Y, and substitute them in (7):

Fute { f(—x, —y)} =Fhb { f (s, z)}
+o0 400 _j '(‘5) 7-@
= Ae" clj [e ™ " f (5,2)e e T gz A

—00 —00

(-u)s (=)
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It can be obtained as well: F+2{f(-x,y)}=F%"(-u,v) and
Fab {f(x,-y)} =R (u,~v).
We can draw the conclusion that transformed signal of the odd is odd, and
even is even.
n n n
Property 5: If neiN, then (Fi’le’Lz) = Fiijl) (L)
Proof: From property 2,

Lyx--xLy, Lox--xLy
Llbplblb,  pll _ n n _ e (p)"(p2)"
FUkF4l.. Rt = F =F

ij ij L]

n

then

i

(FleLZ )n — Fifj!ﬂ)n»('—z)n .

QLCT doesn’t satisfy Parseval’s principle. Meanwhile, it is hard to find one
obvious relationship between QLCT and Wigner-Ville time-frequency plane.

Some other properties [2] cannot find physical interpretation in QLCT domains.

4. FRQCV and FRQCR

Convolution and correlation play an important role in signal processing, espe-
cially for linear system design and filter design, etc. The convolution in time
domain is to the product in Fourier transform domain, that is to say, the classic-
al convolution in time domain can be implemented in Fourier transform do-
main via FFT, which is beneficial for real-time engineering use. In classical
time-frequency analysis correlation is special convolution in that the original
signals are implemented via conjugation and so on. This is very important for
engineering use [17] [20] [24]. The key to this paper is to discover the relation-
ships in fractional quaternion Fourier transform domain between them so that
we can find the physical interpretation as that of the classical Fourier transform.
Paper [26] yielded fractional convolution and product theorem for 1D signals
first, however, it didn’t give the similar physical interpretation as that of the clas-
sical theorem. Later papers [27] [28] [29] obtained similar result as the classical
theorems. However, they are only for 1D signals. In this section the QCV and
QCR of the LCT would be discussed, and can be implemented via FFT.

4.1. Fractional Convolution and Product Theorem

In the following, four theorems are yielded, and theorem 2 and 3 are suitable for
scalar and complex signals, and theorem 4 and 5 are suitable for scalar, complex
signals, vector and quaternion signals.

Theorem 2: For any real scalar or complex signal f(X,y) and convolution

kernel h(x,y),
9(xy)=1(xy)Fh(xy)=(f*h)(xy)
2 Ai‘ze*i(xZCﬁyZCz) (ei(xZCﬁyZCz)f (X, Y)J *(h(x, y)ei(xzcﬁyzcz)j
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1
where B =1/b, B,=1/b,, A,= , C1=i, C2=&,then:

2mi\[bb, 2by 2b,
Fu {g(x, y)} :e—i(UZCﬁszz)FLl,Lz {f (x y)} Fll {h(X, y)} (8)
Proof:
=8 |—2 TH:'EOKL1 2 X, Y, U, V (X, Y)dXdy

_ Ai’zei(uzclJrszz) T T ei(x201+y2C2) Ai’ze—i(xzcl+y2C2)e_i(xu31+vaz) (9)

(ei(xzcl+yzcz)fzw )] (h(x y)e by Cz)jdxdy

Substitute (9) with S=X-7,z2=y-7n:

Flle {g (X y) 2 ' uZCp v Cz J‘ f 01“7202 )e—i(ruBl+r]sz)

—00 —0

{f [ h(s. z)ei(SZC“ZZCZ)e“(s”B””BZ)dsdz}drdry
_ A‘Lz J- J- ei(rZCfrr]zCz)f (Tln)efi(ruBlH]sz)den = Ly.Ly {h(X, y)}

_ e_i(uzcl+v2c2)|: L.L, { f (X, Y)} gLt {h(X, Y)}

From theorem 2 it can be concluded that the convolution of scalar or complex
signal is to the product, frequency-modulated by a chirp, of them in linear ca-

nonical transform.
Theorem 3: For any real scalar or complex signal f(X,y) and convolution

kernel h(X, y) ,

g(xy)=(f*n)(xy)

[ei(xzc”yzcz)j/Zn . [ei(xzcl+y2cz) f(x, y)) * (h (x, y)ei(xzcl+yzcz)j

1 N S
where B =/by, B, =1/b,, Al'2_27ti\/blib Az 2mi /(- bl)(—bz))

C,=, C,=2 then

1>

2b, 2b,
Flte {ei(uzc“vzcz) f(xy)g(x, y)}
(10)
= Aigil( f'—r'—z (U’V)¥ h'—1v'-z (U’V))
Proof:
FiLlﬁLz (A{éﬁlfLLLz (U,V)i hLLLz (U,V))
2 2
_1'_1e_l(>< ny Cz) AR Ccu?+Cyv? = i(xuBy+
A2 e AL (1) Ty (09) e duy

2n

—00 —00

Substitute S=X-7,Z=Y~-7 inabove equation
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Fhb {A{%"lle (uv)=h, . (u, v)}

1,-1 2 —l(x Cl+y 02 o0 490 [ o0 4
<A12 >4 2 ] HJ‘ [y (s2) ety '(XSBl*yZBZ)dsdz}
T

—0 —00 ((—0 —00

_ei(XrBﬁyfiBz)fL ) (r,ry)efi(cﬂ *Can )drdn

1,1
—1,-1 400 40

= h(X, Y) 221[ J‘ J‘ ei(XrBl+yrsz) le’LZ (T’n)e’i(q’z*cznz)drdn

—00 —00

_ (X, y)h(x, y)efi(clxuczyz)
Therefore, F4'2 {ei(u2c1+v2c2) (X y) ( )} Aiz1 1( .l (U’V)ihLle (u V))

Theorem 4: For one given quaternion function

f(x,y)=f,(xy)+ f,(xy)] and convolution kernel function

h(x,y)=h,(x,y)+h(xYy)]
where f,(x,y)=f (xy)+if(x,y), f,(xy)="f(xy)+if (xy),

h,(x,y)=h (%, y)+ih (xy), h(x.y)=h(xy)+ih (xy).

l 1
Set e = and define
Az = 2mi blb > AL 2miyJ(—by )(-b,)

g(xy)=(f*h)(xy)
2 Ai‘zefi(xzcﬁyzcz) (ei(xzcﬁyzcz) f(x y)] * (h(x, y)ei(xzcﬁyzcz)j

a . .
where, CF%, szj, B,=1b, B,=1/b,, a=arcsinb, p=arcsinb,,
2

then

Fll {g (X, y)} _ e—i(u2c1+szz) {FleLz I: X, y :| Flle [ha (X, y)}
R
(T ) s (0 )] s Ty ()]

+ R f (xy) ] Fhr LZ[ (-x, y)}} j

(11)

Proof:
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From theorem 2 it can be obtained
Flts {A,ze-%xzcﬁv%z) (ei(xzwy%z) f,(x y)) " (ha (x y)ei(xzclw%z)j}
_ efi(uzclﬂlzcz) (F Ly, Ly { fa (X, y)} . F L.y {ha (X, y)})
Flb {Aa,,,e‘(xz%”%z) (ei(xzc”y%z) fo (% y)j . [E(x, y)e‘(XZCl*VZCZ)j}

_i(uzq+v202) (F Lb { f, (X, Y)} Flte {h_b(X, y)})

From the linear property of fractional Fourier transfor

F2{g(xy)}
:e—i(uzcﬁvzcz){,:leLz[f (xy)]-F==h, (xy)]

_ |:L1v'-2[fb(x, y } Flole [h (X y)}}
sl I g ()] E ey (< -y)]
+F, (y) ] 7 [y (<x-y) ]}

From theorem 4 we draw the conclusion that the convolution of two quater-
nion signals is to the summation of product of their components, conjugated or
odd-even operated, and the product is frequency modulated by chirps. Mean-
while, it must be noted that the orders of 7and jin cannot be disordered.

Theorem 5: For any two quaternion signals

f(xy)="f.(xy)+f(xy)i and h(x,y)=h(x,y)+h (X y)]

where f,(x,y)=f (xy)+if(xy), f,(x.y)="f(xy)+if (xYy),
h, (% y)=h (%, y)+ih (xy), h(xy)=h(xy)+ih (X y), set
1

1
,=————and A; ' =— |
As = iy, Sy ryTary

g(x.y)= ( fx h)(x, y)2 @(ei(xzcﬁm) f(x, y)j N (h (x, y)ei(xzcﬁyzcz)j

a,
where B =1/b, B,=1/b,, c1=%, szz then

Flt {ei(”zc”vzcz) f(xy)g(x y)}

_ A} 1{( f, (x ,y))l L (Y)),
() f(e)

+A1;1{(a M)y, * (s (xY)
(. 0o), )
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DOI: 10.4236/jsip.2018.93012 209


https://doi.org/10.4236/jsip.2018.93012

Y. Zhang, G. L. Xu

Proof: Since

ei(uzclwzcz) (

f X, y)g (X, y) |(u Cl+v Cz

+f,(xy)

From theorem 3, it can be obtained:
e e i ()
= A (o), B (), ()
Flubs {e‘(“z°“”2°2) (% y)h (%) J}
= AR (0), (0 (xy),  f(0) ]
i {0 () (1) i
= A (), 7)), fa)-
it [ Gy, ()|
= A3 00, F(R ),

2

[ () (xy)+ F (xy)h (X y) ]
o _

(x )J—f( V)R (% Y)]

f(u)
From the linear property of Fourier transform:

i(u?c +v2 2
s [

)
- A (), T (), ~(B 0w, F (R (), )
Ay, Ty, (o), (R 0eY)), ()

From theorem 5 we draw the conclusion that, the product, frequency mod-
ulated by a chirp, of two quaternion signals is to the summation, amplitude

modulated, of their pseudo convolution.

4.2. FRQCR

Headings, or heads, are organizational devices that guide the reader through
your paper. There are two types: component heads and text heads.

Theorem 6 is suitable for scalar and complex signals, and theorem 7 is suitable
for scalar, complex signals, vector and quaternion signals.

Theorem 6: For two scalar (or complex) signals f(X,y) and h(xy),
1
A, C = % =

= , G=—=, C,= >
27 jbb, 2b, 2b,
<f > TTf (z.n)h(x+7, y+77)dz'd77 and set

—00 —00

g(xy)=f(xy)®h(xy)
_ Auei(clx2+czy2)<ei(clx2+czy2)f (X, y),e*‘(clxz*cﬂz)h(x, y)>, then:
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f(xy)®h(xy)=(f (-x-y))*(h(xy)) (13)

Proof: the proof is similar with that of FRQCV and is omitted here.
From theorem 6 we draw the conclusion that correlation can be implemented
by convolution.
Theorem 7: For any two quaternion signals f(X,y) and h(xy),
A, :;) C :i’ C, :i)
2z /bb, 2b, 2b,

400 +00

'f.[f r,n)h(x+7, y+77)drd77 and let

((x

g(xy)="f(x, )®h(x,y)
x24Cy i(Cx“+Cy —i(cx2+C, , “®7 lati -
—ALe 01 Cyy? <e(c Cy y),e (c 2 Cyz)h(x, y)> is correlation op

erator, then
f(x,y)®h(xy)

= (f, (=) % (h O y) )+ (£, (-x=9)) * (1, (x. )
N {(()f(y)](m<>]} [ a9

+ A1,2e7i(xzcl+yz®) {(ei(XZCWZCZ) fo (=X, —y)j " [WEi(XZWYZQ)J } |

Proof: The proof is similar with that of FRQCV and is omitted here.
From theorem 7 we draw the conclusion that the correlation of two quater-

nion signals is to the summation of convolution of their components, conjugated
or odd-even operated. It means that correlation can be implemented by convo-
lution via FFT.

5. Fast Algorithm of QLCT

Fast algorithm of QLCT is the key to engineering use. The following discusses
the efficient implementation in great detail through the decomposition of qua-
ternion [24] and the definition of the QLCT. For one quaternion function
f (X, y) , from definition 1 we have

+00 +00

Fi,LjLLZ J' J' KL1 x u y) L j(y,v)dxdy

—00 —0

00 UK xa1 Y gy 1 1%
e j .[e b 2 x,y)e e b2dxdy —e ™
27[bl| S o ZTEbZ]

+0 40 ,%

=G,(u)[ [e ™g xye”zdxdyG()

where,
idqu? jdpv?
1 S5 1 S
G (u)= /—_e ™G (V)= e,
2nhi 2mh, j
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¥y y%a,

j . .
g(xy)=e ™ f(xy)e ™ =g, (xy)+ig (xy)+jg;(xy)+kg (xy)
gr(x,y), gi(x, y) are real signals.

Let
TTe blg X, y)e bzdxdy (17)
Then, o
W (u, v)+W TTQ blg X, y)cos ( dedy (18)
S b,
W (u, V) T‘Te blg (xy)s [ﬂ]dxdy (19)
Therefore, o '
W(u,v)+2W(u,—v)+W(u,V)—2W(u,—V) Iijie blg X,y)e bdedy (20)
Therefore,
iy (1) =6, () LB EEK G ()

2
Then the following task is to implement W (U,V) .
g (X, y) can be expressed as

g(xy)=9,(xy)+ig (x.y)+ g; (% y) +ka (X, ¥) =0, (X, ¥) + Gy (X, ¥)- ]
where, g, (X,y)=0, (% Y)+igi(xy), 6(xy)=0;(xy)+ig (xy).

Therefore,

4ot _jUX W oo WX W
W(uv)= [e e g, (x y)dxdyJ{'[ [e ™e ™g,(x y)dxdy]
(22)

—00 —0

el

W (U,V) can be Calculated by two 2D FFT and some scaling transform. The
steps of calculating QLCT:

1) Calculate g(x,y) from f(x,y) using (16);

2) Calculate W (u,v) from g(X,y) using (22)and (17);

3) Calculate G( ) and G, ( ) using (16);

4) At last Calculate F,} L (u V) using (20) and (21).

For one 2D discrete signal with size M x N, one 2D-DFT needs
MN -log, (MN) real number multiplications [25]. To implement W (U,V), we

—00 —0

require 2MN -|Og2(|\/|N) real number multiplications. Therefore, the com-
plexity of quaternion signal f (X y) is O(ZMN -Iogz(MN)). And the com-

MN ~IogZ(MN)])

plexity of scalar, complex signal and vector is: O[ >

2

O(MN -log, (MN)), o(wj.
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For any discrete 2D signal f(m,n) (me[l,M],ne[l,N]), it can be ex-

pressed as:

f(m.n)=f,(mn)+f,(mn)+f,(mn)+f,(mn)

. fo(mm) - L0+ TN ‘”)”(Z" —m.n)+ f(M-mN-n)
() O LN ) F (M) (MmN )
i, (mm) = (mn)=f(nN —n)+f(l;/| —m,n)— f (M —m,N—n)
foo (M) = f(m.n)-f(nN —n)—f(I;/I —m,n)+ (M -mN-n)

If in the right side of f(m,n)=f,(m,n)+ f, (mn)+f,(mn)+f,(m,n)
there is only one term, we call f (m,n) symmetric;

If f(M-mn)=+f(mn),wecall f(mn) symmetricabout x

If f(mN-n)=%f(mn),wecall f(mn) symmetric about y;

If any above relationship is not true, we call f (m, n) asymmetric.

The symmetry is of great importance to greatly decreasing the calculation
complexity of them. Table 1 lists the calculation complexity of different types of
signals. It gives the conclusion that the symmetry can decrease the calculation
complexity by a few times. Meanwhile, the calculation complexity will increase
with the number of components by a few times.

Meanwhile, the calculation complexity of QLCT for different signals is mul-
tiplications. Also, the complexity of QCV and QCR for the same type of signals
is the same and is much less than calculation in time-domain directly.

Figure 1 shows one intuitive result. The QCR of the quaternion signal

f (X, y) and kernel h(X, y) is calculated. We take different signals (scalar,
complex, vector and quaternion) as the convolution kernel h(x, y). The red
lines denote the complexity of implementing QCR in time domain directly, and

the blue lines denote the complexity of implementing QCR via FFT. For example,

Table 1. The calculation complexity of QLCT for different signals.

Types of signals Asymmetric Symmetric Symmetric about xor y
MN -1 MN MN -1 MN MN -1 MN
Scalar (o] 09, (MN) (o] 09, (MN) 0 g, (M)
2 8 4
MN -log, (MN MN -log, (MN
Complex O(MN -log, (MN)) o[ 32( )J o[ gZ( )J
3MN -1 MN 3MN -1 MN 3MN -1 MN
Vector 0 09 (MN) o 0g (MN) o 0g; (MN)
2 8 4
MN -log, (MN
Quaternion O(2MN -log, (MN)) o[%} O(MN -log, (MN))
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Scalar, via FFT

Complex signal, via FFT

Vector, via FFT

Quaternion signal, via FFT
Scalar, in time domain

Complex signal, in time domain
Vector, in time domain
Quaternion signal ,in time domain

sdRL

b4

Complexity(unit time)

Size of signal :M XN

Figure 1. The comparison of complexity via FFT and calculation directly.

when the size is 60, there is one nearly-ten-times relationship. Moreover, with

the increase of size the gap would become bigger and bigger.

6. Conclusion

One contribution of this paper is that the definition of QLCT is obtained, and its
properties are given, and its generalization is proved. The reversibility property
disclosed the efficiency of QLCT. The linear property indicated that LCT is li-
near transform. Another contribution of this paper is that the QCV and QCR of
LCT are defined and their relationships and physical interpretation are discov-
ered: the fractional convolution of two quaternion signals is to the summation of
product of their components, conjugated or odd-even operated, and the product
is frequency modulated by chirps; and the product, frequency modulated by a
chirp, of two quaternion signals is to the summation, amplitude modulated, of
their pseudo convolution; and the correlation of two quaternion signals is to the
summation of convolution of their components, which are conjugated or
odd-even operated. The last contribution is that the complexity of QLCT, QCV
and QCR are given, and its Fast Algorithm is obtained through implementing
them via the product theorem in transformed domain whose complexity is simi-

lar to FFT, which is of great importance to engineering use [31] [32].
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