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Abstract

High-throughput genomic and proteomic technologies are widely used in cancer research to build
better predictive models of diagnosis, prognosis and therapy, to identify and characterize key
signalling networks and to find new targets for drug development. These technologies present
investigators with the task of extracting meaningful statistical and biological information from high-
dimensional data spaces, wherein each sample is defined by hundreds or thousands of measurements,
usually concurrently obtained. The properties of high dimensionality are often poorly understood or
overlooked in data modelling and analysis. From the perspective of translational science, this Review
discusses the properties of high-dimensional data spaces that arise in genomic and proteomic studies
and the challenges they can pose for data analysis and interpretation.

Genomic microarray and proteomic technologies provide powerful methods with which
systems biology can be used to address important issues in cancer biology. These technologies
are often used to identify genes and proteins that may have a functional role in specific
phenotypes. It is becoming possible to define expression patterns that can identify specific
phenotypes (diagnosis)1,2, establish a patient’s expected clinical outcome independent of
treatment (prognosis)3,4 and predict a potential outcome from the effects of a specific therapy
(prediction)5,6 (BOX 1). One recent example is the MammaPrint prognostic gene-expression
signature, the first multivariate in vitro diagnostic assay approved for use by the US Food and
Drug Administration. The gene set is based on the Amsterdam 70-Gene Profile, derived from
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the analysis of 25,000 human genes in a series of 98 primary breast cancers7. Subsequently,
the signature (or classifier) was verified in an independent series of 295 breast cancers8.
Activity levels of the genes in the signature are translated into a score that is used to classify
patients into those at high risk and those at low risk of recurrent disease, thereby informing
decisions on treatment strategy to deliver appropriate treatment according to each patient’s risk
classification7. MammaPrint is applicable for patients diagnosed with node-negative, stage I
or stage II breast cancer, demonstrating a place for molecular-based technologies in modern
medicine.

Despite the encouraging progress of the MammaPrint classifier, the application of modern
systems-biology techniques has introduced into cancer research the problems of working in
high-dimensional data spaces, wherein each sample can be defined by hundreds or thousands
of measurements. Gene microarray analysis of a single cancer specimen could yield concurrent
measurements on >10,000 detectable mRNA transcripts. Even after a simple pair-wise analysis
to select differentially expressed genes in a supervised analysis (see discussion of supervised
analysis below), for example, using t-test or false discovery rate (FDR) methodology, the data
structure may still contain information on >1,500 genes per sample in a study with a small
sample size9 (BOX 2). Dimensionality may be much larger in proteomic studies10. Although
often encountered in other fields, such as engineering and computer science, this data structure
is unlike most others in biomedicine. Our goal in this Review is not to provide a guide to data
analysis, as this has been done by others11,12. Rather, we discuss the theory and properties of
these data spaces and highlight how they may affect data analysis and interpretation. We also
describe the basic properties of high-dimensional data structures and discuss the challenges
these pose for extracting accurate, reliable and optimal knowledge.

We consider data structure from several perspectives. In the simplest sense, these data represent
a direct or indirect assessment of the levels of expression of 100s to 10,000s of mRNA
transcripts or proteins. These values reside in space characterized by multiple additional
properties, as the space is also defined by the biological properties of the specimens from which
they were obtained, by the functional interactions among co-expressed genes or proteins in
signalling networks, and by the experimental design. Each of these factors can affect data
structure and the ability to analyse it effectively. We begin by discussing key aspects of data
spaces that affect many experimental designs. We then describe the properties of high-
dimensional data spaces and how they affect the derivation of meaningful information from
the data.

At a glance

• The application of several high-throughput genomic and proteomic technologies
to address questions in cancer diagnosis, prognosis and prediction generate high-
dimensional data sets.

• The multimodality of high-dimensional cancer data, for example, as a consequence
of the heterogeneous and dynamic nature of cancer tissues, the concurrent
expression of multiple biological processes and the diverse and often tissue-
specific activities of single genes, can confound both simple mechanistic
interpretations of cancer biology and the generation of complete or accurate gene
signal transduction pathways or networks.

• The mathematical and statistical properties of high-dimensional data spaces are
often poorly understood or inadequately considered. This can be particularly
challenging for the common scenario where the number of data points obtained
for each specimen greatly exceed the number of specimens.
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• Data are rarely randomly distributed in high-dimensions and are highly correlated,
often with spurious correlations.

• The distances between a data point and its nearest and farthest neighbours can
become equidistant in high dimensions, potentially compromising the accuracy of
some distance-based analysis tools.

• Owing to the ‘curse of dimensionality’ phenomenon and its negative impact on
generalization performance, for example, estimation instability, model overfitting
and local convergence, the large estimation error from complex statistical models
can easily compromise the prediction advantage provided by their greater
representation power. Conversely, simpler statistical models may produce more
reproducible predictions but their predictions may not always be adequate.

• Some machine learning methods address the ‘curse of dimensionality’ in high-
dimensional data analysis through feature selection and dimensionality reduction,
leading to better data visualization and improved classification.

• It is important to ensure that the generalization capability of classifiers derived by
supervised learning methods from high-dimensional data before using them for
cancer diagnosis, prognosis or prediction. Although this can be assessed initially
through cross-validation methods, a more rigorous approach is needed, that is, to
validate classifier performance using a blind validation data set(s) that was not
used during supervised learning.

Basic transcriptome or proteome data structure

Data points can be seen from the perspective of either the samples or the individual genes or
proteins. Viewed from the perspective of the samples, each sample exists in the number of
dimensions defined by the number of gene or protein signals that are measured. This is a
common perspective in cancer classification, patient survival analysis, identification of
significantly expressed genes and other studies in which patients or samples are treated as
observations and genes or proteins are treated as variables. These data structures are the primary
focus of this Review. By contrast, studies in which genes or proteins are treated as observations
and samples or patients are treated as variables, such as in gene function prediction13,14, face
low-dimensional challenges because there may be insufficient observations (genes or proteins)
in specific gene function classes for a supervised classification.

Transcriptome and proteome data comprise a mixture of discrete categories (clusters), each
category defining a specific class. Clusters are subgroups of data that are more like each other
than like any other subgroup of data, and are scattered throughout high-dimensional data spaces
(FIG. 1a,b). Each class can be defined by the goal of the experiment, which might be a
phenotype (such as recurrent or non-recurrent), a response (responder or non-responder), a
treatment (treated, untreated or specific dose), a timed event (time points in a longitudinal
study) or some other measure. A class can be represented by more than one cluster. Expression
data are massively parallel (FIG. 2) and represent a snapshot of the state of the transcriptome
or proteome at the time the specimen was collected. However, some biological functions
proceed in a stepwise fashion and these may be inadequately captured in a snapshot. Regulation
of expression of some genes is multifactorial, with the key regulatory determinants differing
among cell and tissue types and, indeed, among individuals. Some genes can perform different
functions in different cells, and different genes can perform more or less the same function in
the same cell15. Hence, the activity of some genes is cell context-dependent; the cellular
context is defined by the patterns of gene or protein expression and activation within a
cell16. This biological complexity, where function can be influenced by concurrent, sequential,
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redundant, degenerate, interdependent or independent events15, complicates the ability to fully
discover the information contained within high-dimensional data.

Most common approaches to exploring entire expression profiles use some measure of distance
within Euclidean space (mathematical geometric model) as a means to establish the relationship
among data points (FIG. 1c). For example, the numerator in a t-test equation uses the Euclidean
distance between the means of the two populations. A k-means clustering algorithm uses
various Euclidean distances to measure the distance from a data point to the estimated median
of a cluster. A support vector machine (SVM; BOX 3) measures the distance of a data point
or pattern from the boundary between the two populations in Euclidean space. A common
method is hard clustering using a Pearson correlation matrix to construct a hierarchical
representation of the data17, used, for example, to discover five new molecular subclasses of
breast cancer18. The k-nearest neighbour (kNN) decision rule assigns similar patterns to the
same class and requires computation of the distance between a test pattern and all the patterns
in the training set19. The number of neighbourhoods, k, is set by the user. If k = 1, the test
pattern is then assigned to the class of the closest training pattern19. For k = 3, 5, 7… the
majority vote is applied based on the assumption that the characteristics of members of the
same class are similar. A kNN approach was used in a recent study to define molecular
subclasses of childhood acute leukaemias20.

Box 1 Genomic and proteomic technologies used in cancer research

Many systems-biology technologies that are used to address questions in cancer research,
such as biomarker selection, cancer classification, cell signalling and predicting drug
responsiveness, generate high-dimensional data. Among the more common technologies
used are gene expression microarrays, serial analysis of gene expression21,94, two-
dimensional differential gel electrophoresis95,96, protein chips10 and antibody-based
arrays97. The high dimensionality of the data is readily illustrated; the U133 Plus 2 whole
human genome expression array (Affymetrix) can probe for the expression of 47,000
transcripts in a single sample. Similar numbers of measurements are obtained in proteomic
analysis, such as those using the ProteinChip System (Ciphergen)10. Although we are
primarily discussing transcriptome and proteome profiling, high-throughput screening for
genetic changes in DNA by comparative genomic hybridization (array CGH) can also
generate high-dimensional data98,99. High-throughput single nucleotide polymorphism
analysis (SNP-chips100), promoter analysis such as screening methylation status
(methylation chips)101 or genome-wide location analysis (chromatin immunoprecipitation-
on-chip)102 are also now being used and can generate multiple measurements on a single
sample.

The data are high-dimensional because 100s–1,000s of individual measurements are
obtained on each specimen. As shown in the table, there are unique challenges associated
with these data. These challenges include knowing that the statistical solution is correct,
complete or accurate and avoiding the trap of self-fulfilling prophesy. Assessing the
accuracy of the statistical solution is of particular concern when the data are subject to the
curse of dimensionality, or when the data are either unsupervised or where the supervising
information is inadequate. Using incomplete biological knowledge to guide class
identification can lead to incorrect class assignment or incorrect data interpretation.
Avoiding the trap of self-fulfilling prophesy is a challenge for which incomplete knowledge
of gene function and cellular context can lead to the creation of incorrect signalling links
in network building. For all classification studies, including those directed at prediction or
prognosis, validation in independent data sets is essential. For cell signalling and
mechanistic studies, independent functional validation of linkages and signalling is essential
(studies in cell cultures, animal models, gene transfection, small interfering RNA and so
on).
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Research question High-dimensional problems
Biomarker selection (find individual genes or
groups of genes that are functionally relevant
and/or surrogates for a specific clinical
outcome).

Trade-off between accuracy and
computational complexity; confound
of multimodality; spurious
correlations; multiple testing;
insufficient sensitivity of criterion
function; curse of dimensionality;
model overfitting.

Cancer classification (find new molecular
subclasses within a cancer that exhibit
meaningful clinical or biological properties,
for example, that enable physicians to better
direct treatment).

Curse of dimensionality; confound of
multimodality; spurious clusters;
model overfitting; small sample size;
biased performance estimate.

Cancer prognosis (predict which patients will
have a particularly good or poor outcome and
enable physicians to better direct treatment).

Curse of dimensionality; confound of
multimodality; spurious correlations;
model overfitting; small sample size;
biased performance estimate.

Cell signaling (identify how cell signalling
affects cancer cell functions and identify new
targets for drug development).

Curse of dimensionality; confound of
multimodality; spurious correlations;
multiple testing.

Predicting drug responsiveness (identify genes
or patterns of genes that will predict how a
cancer will respond to a specific therapeutic
strategy and enable physicians to better direct
treatment).

Curse of dimensionality; confound of
multimodality; spurious correlations;
model overfitting; small sample size.

Supervised and unsupervised analyses

Among the most common experimental designs are those aimed at finding molecular profiles
that establish a patient’s prognosis, or identify those signalling events that drive a specific
biological property of a cancer cell line, mouse model, therapy or other manipulation (for
examples, see REFS 6,21,22). Studies in which the endpoint measurements that are associated
with the respective expression pattern(s) are known (that is, there is external information that
can be used to guide and evaluate the process) are termed supervised analyses; these generally
have the greatest power to correctly identify important molecular changes. For example, when
one group of samples (class 1: sensitive to a cytotoxic drug) is compared with another (class
2: resistant to a cytotoxic drug), the external knowledge is the class membership of the samples
under analysis. The analysis can proceed to find genes or proteins that are differentially
expressed between the two classes. These genetic or proteomic profiles can then be used to
build a classifier to predict whether unknown samples belong to class 1 or class 2; that is, the
classifier is trained on a series of samples for which class membership is known and then
validated on an independent data set. An independent data set is one for which class
membership is known but the data are not from the samples used to identify the profile or train
the classifier. This approach allows the accuracy of the classifier to be determined without the
outcome being biased by using the same input data used to build or train the predictor (FIG.
3). Supervised analysis can be used for many aspects of high-dimensional data analysis,
including dimensionality reduction, feature selection and predictive classification.

Box 2 Multiple testing in high dimensions

A common goal in genomic and proteomic studies is to find informative and discriminant
genes (genes for which their values distinguish or discriminate between two (or more)
groups, such as selecting biomarkers in BOX 1). Typically, investigators face the problem
of testing the null hypothesis for thousands of genes simultaneously. If we only use the type
I error α = 0.05 for each gene the possible number of type I errors (false positive; identifying
a gene’s expression as being different between groups when it is not) is large because we
are conducting thousands of tests simultaneously:

Number of type I errors = number of comparisons × α
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For example, for n = 10,000 genes and α = 0.05 there are 500 potential type I errors.

Assuming that genes are independently expressed, the experiment-wide α for n independent
comparisons is as shown:

αexperiment-wide = 1−(1−αper independent comparison)n

For example, with 10 independent comparisons and αper independent comparison = 0.05, the
estimated αexperiment-wide is already 0.40 (a probability of 1.0 would be a guarantee of an
error).

Most approaches to address the multiple-testing problem are too conservative103 and over-
constrain the type I error and inflate the type II error (β; false negatives). For classification
problems, for example, predicting cancer recurrence, this limitation may be acceptable
because we are not interested in gene function, only in the ability to separate the classes.
Family-wise error rate and false-discovery rate approaches have been widely used to control
the probability of one or more false rejections and the expectation of the proportion of false-
positive errors, respectively104; several other approaches also have shown usefulness24,
105. However, the multiple-testing problem is particularly challenging for signalling
pathway studies because the statistical properties of a gene’s signal are not direct measures
of its biological activity. False negatives are rarely considered but may include
mechanistically relevant genes. An estimate of the miss rate provides one approach to guide
exploration of the potential false negatives106.

A central problem with many univariate and multivariate methods is the assumption of
independence — that the expression of each gene is independent of all others — but all
genes do not function independently. The extent and nature of correlated events may violate
the assumptions of various statistical models, whether or not the multiple-comparisons
problem is adequately controlled. Methods to deal with these issues continue to appear in
the biomedical literature107-109. Functional validation of these methods on multiple data
sets is required, as is compelling evidence that new methods are both theoretically sound
and outperform existing methods.

Unsupervised cluster analyses are an important tool for discovering underlying cancer subtypes
or gene modules23,24 and can also be applied when information for supervised analyses is
available to suggest refinements of known cancer categories: categorical labels are purposely
withheld or used to initiate a clustering algorithm25 (FIG. 1). Class labels can subsequently
be used to validate the clustering methodology and assumptions, where strong correlations
among clustering outcomes and known class labels support the applicability of this clustering
approach to other unlabelled microarray data23. The study by Golub et al.23 of acute myeloid
leukaemia and acute lymphoblastic leukaemia is one example of the use of unsupervised
analysis on data from samples with known histopathological subtypes (supervised data).

Applying unsupervised methods to data with known categorical information might seem
counterintuitive. However, an important consideration is the quality of the known categorical
information, as the extent to which data membership is defined by existing information might
be incomplete. Consider a study of the anthracycline anticancer drug doxorubicin with two
goals: the first to identify the mechanism of doxorubicin action and resistance, and the second
to build a clinically meaningful predictor of doxorubicin responsiveness. For the first goal
(molecular signalling), a common assumption is that all tumours will respond to doxorubicin
in the same way. However, data may not be fully defined by the binary outcomes (supervision)
of sensitivity and resistance. For example, doxorubicin can both produce chemically reactive
metabolites that damage nucleic acids and proteins (mechanism 1) and inhibit topoisomerase
II, an enzyme involved in maintaining DNA topology (mechanism 2)26,27. If doxorubicin can
kill cells through either mechanism, some tumours may be more sensitive to one mechanism

Clarke et al. Page 6

Nat Rev Cancer. Author manuscript; available in PMC 2008 February 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



than to the other. If only one responsive phenotype is assumed but both occur, a supervised
analysis comparing all sensitive with all resistant tumours could fail to identify, either correctly
and/or completely, consistent changes in gene expression that would identify either pathway.

An effective unsupervised analysis might allow the discovery of several molecular signatures
associated with doxorubicin responsiveness. Information that defines outcome (sensitive
versus resistant) could be used to assess the accuracy of the unsupervised clustering solution.
Some of the clusters found might contain a high proportion of doxorubicin-sensitive tumours
(clusters representing sensitivity to mechanisms 1, 2 and/or unknown mechanisms) whereas
other clusters may contain mostly resistant tumours (resistant to mechanisms 1, 2 and/or
unknown mechanisms).

To construct a classifier of prediction in a supervised analysis, the supervising information
may be a measure of clinical response used as a surrogate for a long-term outcome such as
survival. The choice of surrogate endpoint then becomes a crucial component of how to define
and test a classifier of responsiveness. If the study applies a neoadjuvant design, the surrogate
of palpable tumour shrinkage (clinical response) may be suboptimal compared with
pathological response. A complete pathological response is usually a better predictor of
survival outcome because microscopic disease rather than tumour shrinkage is
evaluated28-30. When the pathological data are not available, an unsupervised method may
help find those complete clinical responses that are not true complete pathological responses:
hence, two subclusters might be identified within the group defined as complete clinical
responses. These simple examples emphasize the importance of the hypothesis and the
experimental design, and how these can affect the approach to data analysis.

Properties of high-dimensional data spaces

The properties of high-dimensional data can affect the ability of statistical models to extract
meaningful information. For genomic and proteomic studies, these properties reflect both the
statistical and mathematical properties of high-dimensional data spaces and the consequences
of the measured values arising from the complexity of cancer biology. This section discusses
such issues and their implications.

The curse of dimensionality

The performance of a statistical model depends on the interrelationship among sample size,
data dimensionality, model complexity19 and the variability of outcome measures. Optimal
model fitting using statistical learning techniques breaks down in high dimensions, a
phenomenon called the ‘curse of dimensionality’31. FIGURE 4 illustrates the effects of
dimensionality on the geometric distribution of data and introduces the performance behaviour
of statistical models that concurrently use a large number of input variables. For example, a
naive learning technique (dividing the attribute space into cells and associating a class label
with each cell) requires the number of training data points to be an exponential function of the
attribute dimension19. Thus, the ability of an algorithm to converge to a true model degrades
rapidly as data dimensionality increases32.

The application of statistical pattern recognition to molecular profiling data is complicated by
the distortion of data structure. For many neural network classifiers, learning is confounded
by the input of high-dimensional data and the consequent large search radius — the network
must allocate its resources to represent many irrelevant components of this input space (data
attributes that do not contribute to the solution of data structure). When confronted with an
input of 1,500 dimensions (D), much of the data space will probably contain irrelevant data
subspaces unevenly distributed within the data space33. Supervised or unsupervised algorithms
can fail when attempting to find the true relationships among individual data points for each
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sample and among different groups of similar data32. Thus, the data solution obtained may be
incorrect, incomplete or suboptimal.

Because of the high dimensionality of the input data, arriving at an adequate or correct solution
will generally be computationally intensive. Although simple models, such as some
hierarchical clustering approaches, may not be computationally affected, these are often
inappropriate for tasks other than visualization11,34. Simple models can perform well when
the structure of the data is relatively simple, for example, a small number of well-defined
clusters35, but may be less effective for complex data sets. A further challenge for modelling
is to avoid overfitting the training data (FIG. 3b). Clearly, it is necessary to have methods that
can produce models with good generalization capability. Models derived from a training data
set are expected to apply equally well to an independent data set. FIGURE 3 illustrates the
effects of overfitting and underfitting and the need for smoothness regularization in a curve-
fitting problem36.

The often small number of sample replicates further compounds the problems of multimodal,
high-dimensional data spaces. The number of replicate estimates of each sample is usually
limited; often only a single measurement is obtained37. Moreover, the number of data features
may be so large that an adequate number of samples cannot be obtained for accurate analysis.
For example, logistic regression modelling is widely used to relate one or more explanatory
variables (such as a cancer biomarker) to a dependent outcome (such as recurrence status) with
a binomial distribution. However, the ability to model high-dimensional data accurately and
robustly is restricted by the ‘rule of 10’ (REF. 38); Peduzzi et al.39 showed that regression
coefficients can be biased in both directions (positive and negative) when the number of events
per variable falls below 10. For example, a logistic regression model relating the expression
of 50 genes (variables) to a binary clinical outcome such as doxorubicin responsiveness, for
which the response rate was approximately 25%, might require a study population of 2,000 to
obtain 500 responders (10 times the number of genes as required by the rule of 10 and 25% of
the study population) and 1,500 non-responders.

Two of the more common approaches to addressing the properties of high dimensionality are
reducing the dimensionality of the data set (FIG. 5) or applying or adapting methods that are
independent of data dimensionality. For classification schemes, SvMs are specifically designed
to operate in high-dimensional spaces and are less subject to the curse of dimensionality than
other classifiers (BOX 3).

Effect of high dimensionality on distance measures in Euclidean spaces

In many studies, investigators perform a similarity search of the data space that is effectively
a nearest neighbour (distance) query in Euclidean space40. A similarity search might be used
to build an agglomerative hierarchical representation of the data, in which data points are linked
in a stepwise manner using their proximity, as measured by their respective Euclidean distance
from each other17 (as was used in the molecular classification of breast cancers18). In a
different context, similarity might be used to predict a biological outcome; the task is to find
how similar (close) in gene or protein expression space is a sample of unknown phenotype to
that of a known phenotype template. Use of the MammaPrint classifier to assess the prognosis
of a patient with breast cancer is one example.

As dimensionality increases, the scalability of measures in Euclidean spaces is generally poor,
and data can become uniformly distributed41,42. FIGURE 4 illustrates the effect of
dimensionality on the geometric distribution of data and introduces the need for some statistical
models to concurrently consider a large number of variables (curse of dimensionality). In the
context of finding a nearest neighbour in Euclidean spaces, the distance to a point’s farthest
neighbour approaches that of its nearest neighbour when D increases to as few as 15 (REF.
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43); distances may eventually converge to become effectively equidistant. If all the data are
close to each other (low variance in their respective distance measures), the variability of each
data point’s measure (such as the variation in the estimate of a gene’s expression level) could
render the search for its nearest neighbour, as a means to find the gene cluster to which it truly
belongs, a venture fraught with uncertainty.

Beyer et al.43 suggest that this property may not apply to all data sets and all queries. When
the data comprise a small number of well-defined clusters, a query within or near to such a
cluster could return a meaningful answer43. It is not clear that all expression data sets exhibit
such well-defined clusters, nor is it clear that there is consensus on how this property can be
measured accurately and robustly. What does seem clear is that both dimensionality and data
structure can affect distance measures in Euclidean space and the performance of a similarity
search.

Box 3 Support vector machines

The support vector machine (SVM) is a powerful Binary classifier rooted in statistical
learning theory110. It can theoretically achieve a global optimum solution (convex
optimization) and bypass the curse of dimensionality36. The SVM provides a way to control
model complexity independent of dimensionality and offers the possibility to construct
generalized, non-linear predictors in high-dimensional spaces using a small training
set19.

Training an SVM involves finding the optimal separating hyperplane that has the maximum
distance from the nearest training patterns (see figure: the optimal hyperplane separates the
patterns into regions ℛ1 (red patterns) and ℛ2 (grey patterns). The support vectors (shown
in the figure as a dark red dot in region ℛ1 and dark grey dots in region ℛ2) define the
optimal hyperplane19,36,111. As the nearest training patterns to the optimal hyperplane,
support vectors are the most informative patterns for classification112. Once the optimal
hyperplane is determined, it serves as a decision boundary to classify an unknown pattern
into one of the two regions.

The example in the figure presents patterns from two classes in two linearly separable
regions (ℛ1 and ℛ2). In complex classification problems, where the patterns are distributed
in two linearly inseparable classes, SVM uses non-linear kernel functions to implicitly map
the patterns to a higher-dimensional feature space36. Then, the optimal hyperplane is
determined to maximize the margin of separation between the two classes in the feature
space.

The original SVM was designed for binary classification. Many classification tasks involve
more than two classes and the most common multi-category SVMs use a ‘one-versus-all
approach’113. A SVM is built for each category by comparing it against all others; for k-
category classification, k binary SVM classifiers are built: category 1 versus all others,
category 2 versus all others and so on up to category k versus all others113. To classify an
unknown sample, the distance from the sample to each classifier’s hyperplane is calculated
and the sample is classified into the category with the farthest positive hyperplane. In terms
of traditional template-matching techniques, support vectors replace the prototypes for
which characterization is not just defined by the minimum distance function, but by a more
general and possibly non-linear combination of these distances90. SVMs are not applicable
to all data sets and mining tasks. The ad hoc character of the penalty terms (error penalty)
and the computational complexity of the training procedure are limitations. SVMs are
sensitive to mislabelled training samples and they are not fully immune to the curse of
dimensionality111.
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Concentration of measure

As discussed above, in high-dimensional data spaces, the probability that a function is
concentrated around a single value, or the distance from a value to its expected mean or median
value, approaches zero as the dimensionality increases. This phenomenon is usually referred
to as the ‘concentration of measure’ and it was introduced by Milman to describe the
distribution of probabilities in high dimensions44. A simple example of the concentration of
measure in action is shown by considering the problem of missing value estimation. Missing
values can arise from several sources, such as low-abundance genes (often those of most
importance to signalling studies) that are frequently expressed at values near their limit of
detection, leading to the appearance of missing values (below detection) within the same
experimental group. A further source is the use of ‘Present Call’ and ‘Absent Call’ by
Affymetrix, which can lead to apparent missing values when a gene in some specimens in an
experimental group is called ‘present’ and in others ‘absent’.

Assuming that many signals on a microarray chip represent genes that have expression values
equivalent to that of the missing gene, if we can identify enough of these signals on other chips
from the same experimental group where the missing signal is present then we can use these
signals to predict the value of the missing signal. The concentration of measure operates here
when we can identify enough signals such that their expression values are located close to their
true, common, underlying value. Because the assumption is based on the statistical properties
of the expression values, the kNN interpolation can be applied45. Once identified, the
characteristics of these expression values can be used to estimate both the missing value and
its variance distribution, construct a normal (or other) distribution and obtain estimates for any
comparable instance of the missing value. The accuracy of such methods may be affected by
the property of the similarity of distances in high dimensions43.
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Smoothness and roughness

The properties of smoothness or roughness usually refer to the relative presence or absence of
consistency or variability in the data. Although global smoothness is a property of some high-
dimensional data spaces46, data often exhibit both global roughness and local noise47. This
variability in the data can be reduced by applying a normalization procedure; common methods
include those based on linear regression through the origin, or lowess smoothing48-50. Such
methods may affect both global roughness and local noise. Some normalization procedures
change the data points from measured values to estimated values that are expected to more
closely approximate truth. As data analysis is generally performed after such noise reduction
and normalization, investigators should understand how normalization alters data structure and
may affect the use of data-analysis tools or the interpretation of analysis outcomes (for a review
see REF. 47). For example, some normalization methods can generate estimated values with
errors that are no longer normally distributed, thereby making more complex the application
of parametric statistical models.

Biology further characterizes data properties

In addition to the statistical properties of high-dimensional data spaces, measurements obtained
from cancer specimens (cell lines, tumour tissue samples and so on) reflect the concurrent
presence of complex signalling networks. A key goal of many studies is to derive knowledge
of this signalling from within high-dimensional expression data. Two aspects of data structure
that are notable in biological systems, and that affect our ability to extract meaningful
knowledge, are the confound of multimodality (COMM) and the presence of strongly
correlated data (both discussed below).

In addressing the experimental goals of either classification or signalling, we may only be able
to measure grossly meaningful characteristics of the source tissue, such as tumour size, local
invasiveness or proliferation index; these characteristics represent combinations of biological
processes (multimodality). Often, only indirect biomarkers of these processes are available,
such as measuring the proportion of tumour cells in S phase as an indicator of proliferation. If
we now consider what an expression profile of 30,000 measured protein signals represents
from a single specimen, we are faced with the knowledge that, for the study goals of class
prediction and molecular signalling, this profile is associated with multiple and potentially
interactive, interdependent and/or overlapping components (correlated structures). Thus,
investigators must have sufficient insight to be able to determine which of the profile segments
(signatures) are definitively associated with which component of a phenotype.

The confound of multimodality

We introduce the COMM here to express the problems that are associated with extracting truth
from complex systems. Biological multimodality exists at many different levels (FIG. 2).
COMM refers to the potential that the presence of multiple interrelated biological processes
will obscure the true relationships between a gene or gene subset and a specific process or
outcome, and/or create spurious relationships that may appear statistically or intuitively correct
and yet may be false.

Multimodality can arise from several sources. Within a tumour, each subpopulation of cells
will contribute to the overall molecular profile (tissue heterogeneity). Within each cell, multiple
components of its phenotype coexist (cellular heterogeneity) and these can be driven by
independent signalling networks. Individual genes may participate concurrently in more than
one network, controlling or performing more than one process. In breast cancer, transforming
growth factor β1 (TGFB1) is implicated in regulating proliferation and apoptosis16,51,52 and
it is a key player in the regulation of bone resorption in osteolytic lesions in bone
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metastases53-55. TGFB1-regulated functions that affect bone resorption might or might not
require the cell to be in a bone environment; these functions might be expressed in the primary
tumour but only become relevant when other genes have enabled the cells to metastasize to
bone. TGFB1 activity can also be modified by other factors. The hormone prolactin can block
TGFB1-induced apoptosis in the mammary gland through a mechanism that involves the
serine/threonine kinase Akt56; anti-oestrogens also affect TGFB1 expression57. Thus, the
multimodal biological functions of TGFB1 (apoptosis, proliferation, bone resorption and other
activities) may confound a simple, correct or complete interpretation of its likely function,
particularly if the knowledge in one cellular context is used to interpret its function in different
cell types, tissues or states.

Transcription factors can regulate the expression of many genes, and understanding the precise
activity of a transcription factor could be difficult because not all of these genes may be
functionally important in every cellular context in which the transcription factor is expressed,
mutated or lost. For example, in response to tumour necrosis factor α (TNFα) stimulation, the
transcription factor nuclear factor κB p65 (RELA) occupies over 200 unique binding sites on
human chromosome22 (REF. 58). Amplification of the transcription factor oestrogen receptor
α (ERα; encoded by ESR1) is a common event in breast cancers and benign lesions59 and
ERα occupies over 3,500 unique sites in the human genome60. Hence, thousands of putative
ERα-regulated genes have the potential to affect diverse cellular functions in a cell context-
specific manner16,61. Conversely, loss of transcription factor activity, as can occur with
mutation of p53, could leave many downstream signals deregulated62,63.

Tissue heterogeneity contributes further to multimodality. It is not unusual for a breast tumour
to contain normal and neoplastic epithelial cells, adipocytes, and myoepithelial, fibroblastic,
myofibroblastic and/or reticuloendothelial cells64. When total RNA or protein is extracted
without prior microdissection, the resulting data for each gene or protein will represent the sum
of signals from every cell type present. Here, the multimodality of each signal is conferred by
the different cell types in the specimen. Furthermore, heterogeneity may also arise within the
tumour cell population itself from the differentiation of cancer stem cells, the molecular profiles
of which are the focus of considerable interest65.

Biological data are highly correlated

It is generally assumed that genes or proteins that act together in a pathway will exhibit strong
correlations among their expression values, evident as gene clusters66. Such clusters might
inform both a functional understanding of cancer cell biology and reveal patterns for diagnostic,
prognostic or predictive classification. However, the performance of algorithms that find
correlation patterns (also termed correlation structures) is affected by the nature and extent of
those correlations present in the data. Biological interpretation of the correlation structures
identified can be influenced by an understanding of how genes act in cancer biology to drive
the phenotypes under investigation.

A common property of high-dimensional data spaces is the existence of non-trivial, highly
correlated data points and/or data spaces or subspaces. The correlation structure of such data
can exhibit both global and local correlation structures67,68. Several sources of correlation are
evident and represent both statistical and biological correlations. A transcription factor may
concurrently regulate key genes in multiple signal transduction pathways. As the expression
of each downstream gene is expected to correlate with its regulating (upstream) transcription
factor(s), key genes under the same regulation are biologically correlated and are likely to be
statistically correlated. In gene network building, local correlation structures are crucial for
identifying tightly correlated gene expression signals that are expected to reflect biological
associations. However, the selection of differentially expressed genes creates a global
correlation structure. In a pairwise comparison, all genes upregulated in one group share, to
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some degree, a common correlation with that group and also share an inverse correlation with
the downregulated genes.

Biological heterogeneity can contribute to the correlation structure of the data and the overall
molecular profile and its internal correlation structure may change over time. For example, a
synchronization study in which all cells are initially in the same phase of the cell cycle may
exhibit a loss of synchronicity over time as cells transit through subsequent cell cycles69. As
a population of cancer stem cells begins to differentiate, the molecular profiles and their
correlation structures should diverge as the daughter cells acquire functionally differentiated
phenotypes70-72. In a neoadjuvant chemotherapy study, cell population remodelling may
occur in a responsive tumour as sensitive cells die out.

The highly correlated nature of high throughput genomic and proteomic data also has
deleterious effects on the performance of methods that assume an absence of correlation,
including such widely used models as FDR for gene selection (BOX 2). Spurious correlations
are a property of high-dimensional and noisy data sets67 and can be problematic for analytical
approaches that seek to define a data set solely by its correlation structures. Although data
normalization can remove both spurious and real correlations66, the application of different
normalization procedures could result in different solutions to the same data.

Some general properties of correlation structures and subspaces in high-dimensional data have
been described67,73. local properties of correlation structures include the small-world
property74, where the average distance between data points, such as genes in a data subspace
(perhaps reflecting a gene network), does not exceed a logarithm of the total system size75.
Thus, the average distance is small compared with the overall size. Connectivity among data
points, such as correlated genes in a network, may also exhibit scale-free behaviour76, at least
in some relatively well-ordered systems77. Network modularity is a manifestation of scale-
free network connectivity78,79.

Precisely how data subspaces can be grown to define overall data structure is unclear. Both
exponential neighbourhood growth and growth according to a power law (fractal-like) have
been described73. How these approaches can be applied to transcriptome and proteome data
sets and affect the extraction of statistical correlations that represent meaningful biological
interactions (as is the goal in building gene networks), and particularly in complex biological
systems such as cancer, remains to be determined. Nonetheless, it is possible to exploit the
differential dependencies or correlations using data from different conditions to extract the
local networks80,81. More advanced predictor-based approaches can be used to identify
interacting genes that are only marginally differentially expressed but that probably participate
in the upstream regulation programmes because of their intensive non-linear interactions and
joint effect82,83.

Implications of multimodality and correlation

Multimodality and correlation structures can complicate the analysis of biological data;
confounding factors or variables often reflect biological multimodality and spurious
correlations that can lead to incorrect biomarker selection84,85. For example, it is not difficult
to separate (grossly) anti-oestrogen-sensitive from anti-oestrogen-resistant breast cancers by
measuring the expression of only one or two genes. Breast tumours that do not express either
ERα or progesterone receptors (PGR) rarely respond to an anti-oestrogen, whereas
approximately 75% of tumours positive for both ERα and PGR will respond, indicating other
factors are involved16,86. Although there are clear mechanistic reasons why ERα and PGR
expression is associated with hormone responsiveness, this simple classification is also
associated with other clinical outcomes. ERα+–PGR+ tumours tend to have a lower
proliferative rate, exhibit a better differentiated cellular phenotype and have a better clinical
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outcome (prognosis) than ERα−–PGR− tumours87-89. Thus, it may be relatively
straightforward to find a robust molecular profile that does not include ERα and PGR but that
separates ERα+ and ERα− tumours. Less straightforward might be to separate each of the
subgroups of ERα+−PGR+ tumours because of multimodality. This would require sorting all
ERα+−PGR+ tumours into subgroups with a poor versus good prognosis, anti-oestrogen-
sensitive versus anti-oestrogen-resistant, high versus low proliferative rate, or well versus
poorly differentiated. The task is non-trivial because some tumours will be a member of more
than one subgroup, and the information supervising each subgroup may not be adequate to
support the correct solution of the data structure. The correlation structure can further
complicate analysis as ERα+ tumours are correlated with both good prognosis and sensitivity
to anti-oestrogens.

Applying external information to limit the subphenotypes with which a gene or gene subtype
is functionally associated requires careful consideration as this can lead to the trap of self-
fulfilling prophesy (a consequence of COMM). To be effective, the list of likely gene or protein
functions should be known and correctly annotated90. The contribution of cellular context
should also be known, as cell-type specificity and subcellular compartmentalization can
determine function and activity. When considered with the potential for redundancy and
degeneracy, the importance and complexity of cellular context in affecting cell signalling and
the uncertainty of completeness of knowledge to support deduction imply that the risk of falling
into the trap of self-fulfilling prophesy may often be high. Association of a gene or list of genes
with a known function and an apparently related phenotype may result in the interpretation
that this is the functionally relevant observation. A signalling pathway or network linking these
genes and the phenotype, but constructed primarily by intuition or deduction, may be neither
statistically nor functionally correct. Of course, the association(s) found may be both
statistically significant and intuitively satisfying. In this case the issue becomes whether these
associations are truth, partial truth or falsehood.

Conclusions and future prospects

Perhaps the most widely used approach to the analysis of high-dimensional data spaces is to
reduce dimensionality. Although essential in exploratory data analysis for improved
visualization or sample classification, dimension reduction requires careful consideration for
signalling studies (FIG. 5). A separate but related challenge to the curse of dimensionality is
computational complexity. As the best subset of variables (for example, genes or proteins) may
not contain the best individual variables, univariate variable selection is suboptimal and a
search strategy is required to find the best subset of informative variables19. For example, the
joint effect of complex gene–gene interactions can result in changes in the expression of a
single gene being uninformative, whereas it might be highly informative when considered
together with others that also may be individually uninformative91. However, the number of
possible subsets with various sizes grows exponentially with the dimensionality, making an
exhaustive search impractical. New approaches to this problem continue to emerge. Sequential
forward floating search (SFFS) is a computationally efficient method that considers variable
(for example, gene or protein) dependencies when searching for variables that exhibit such a
joint effect92,93. SFFS consists of a series of forward inclusion and backward exclusion steps
(dynamically) where the best variable that satisfies a chosen criterion function is included with
the current variable set. The worst variable is eliminated from the set when the criterion
improves after a variable (gene) is excluded.

Working in the high-dimensional data spaces generated by transcriptome and proteome
technologies has the potential to change how we approach many complex and challenging
questions in cancer research. However, our ability to fully realize this potential requires an
objective assessment of what we do and do not understand. For biologists, the most immediate
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difficulties come in attempting to interpret the biological knowledge embedded in the
expression data. It seems logical to be guided by a solid understanding of causality or
reasonable biological plausibility. However, in the absence of full knowledge of gene function
and the effect of cellular context, the risk of falling into the trap of self-fulfilling prophesy
becomes real — simply stated, “you see only what you know” (johann Wolfgang von Goethe,
1749–1832). When a solution is imperfect and/or appears to contradict biological knowledge,
it is important to assess objectively whether this reflects an incomplete knowledge of the
biological and/or functional data, whether the model applied to the data is at fault, or both.

Biologists can test experimentally their interpretations of the data and it is evidence of function
from appropriate biological studies that will usually be the ultimate arbiter of truth, partial truth
or falsehood. However, accurately extracting information from genomic or proteomic studies
is of vital importance. The properties of high-dimensional data spaces continue to be defined
and explored, and their implications require careful consideration in the processing and analysis
of data from many of the newer genomic and proteomic technologies.
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Glossary

t-Test  
A significance test for assessing hypotheses about population means, usually a
test of the equality of means of two independent populations.

False discovery rate 
A univariate statistical method that controls the type I (false-positive) errors to
correct for multiple testing.

Cluster  
A cluster consists of a relatively high density of data points separated from other
clusters by a relative low density of points; patterns within a clusterare more
similar to each other than patterns belonging to different clusters.

Massively parallel 
A large number of simultaneous processes; in biology a living cell has multiple,
concurrently active processes that are reflected in the proteome and its underlying
transcriptome.

Trap of self-fulfilling prophesy 
With thousands of measurements and the concurrent presence of multiple sub-
phenotypes, intuitively logical but functionally incorrect associations may be
implied between a signal’s (gene or protein) perceived or known function in a
biological system or phenotype of interest.

Euclidean space 
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Any mathematical space that is a generalization of the two-and three-dimensional
spaces described by the axioms and definitions of Euclidean geometry, for
example, properties of angles of plane triangles and of straight and parallel lines.

k-Means clustering algorithm 
A method of cluster analysis in which, from an initial partition of the observations
into k clusters, each observation in turn is examined and reassigned, if
appropriate, to a different cluster, in an attempt to optimize a predefined
numerical criterion that measures, in some sense, the quality of the cluster
solution.

Vector  
A coordinate-based data structure in which the information is represented by a
magnitude and a direction.

Hard clustering 
Any clustering method that forces a data point to belong only to a single cluster.

Test pattern  
Also known as the testing set, this is a data point(s) that was not part of the training
set, for example, in a leave-one-out approach the testing set is the sample that
was left out during training.

Training set  
The sample of observations from which a classification function is derived.

Null hypothesis 
The hypothesis that there is no difference between the two groups for a variable
that is being compared.

Family-wise error rate 
The probability of making any error in a given family of inferences, rather than
a per-comparison error rate or a per-experiment error rate.

Clustering algorithm 
Procedure designed to find natural groupings or clusters in multidimensional data
on the basis of measured or perceived similarities among the patterns.

Surrogate  
A measure that substitutes for (and correlates with) a real endpoint but has no
assured relationship for example tumour shrinkage in response to chemotherapy
(surrogate) does not assure that the patient will live longer (endpoint).

Soft clustering 
Any clustering method that allows a data point to be a member of more than one
cluster.

Vector space 
Space where data are represented by vectors that may be scaled and added as in
linear algebra; two-dimensional Euclidean space is one form of vector space.

Metric space 
A data space where the distance between each data point is specifically defined.

Hierarchical clustering 
A series of models for a set of observations, where each model results from adding
(or deleting) parameters from other models in the series.
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Logistic regression 
A method of analysis concerned with estimating the parameters in a postulated
relationship between a response variable (binary for logistic regression) and one
or more explanatory variables.

Hyperplane  
A higher-dimensional generalization of the concepts of a plane in three-
dimensional (or a line in two-dimensional) Euclidean geometry. A plane is a
surface where, for any two points on the surface, the straight line that passes
through those points also lies on the surface.

Kernel function 
A mathematical transform operated upon one or multiple input variables; inner
productor convolution is a popular form of kernel function.

Regression coefficient 
A component of a statistical model in which a response variable is estimated by
a number of explanatory variables, each combined with a regression coefficient
that gives the estimated change in the response variable corresponding to a unit
change in the appropriate explanatory variable.

Agglomerative hierarchical clustering 
Methods of cluster analysis that begin with each individual in a separate cluster
and then, in a series of steps, combine individuals, and later clusters, into new
and larger clusters, until a final stage is reached where all individuals are members
of a single group.

Missing value estimation 
When an expected value is not reported for a specific gene or protein the missing
value can be estimated and the estimated value used for data analysis.

Normally distributed 
The value of a random variable(s) follows a probability-density function
completely specified by the mean and variance.

Parametric statistical model 
A statistical model, the probability distribution of which is specified by a
relatively small set of quantitative parameters.

Subcubical neighbourhood 
A smaller cubical area of a larger hypercubical space.

Hypercubical neighbourhood 
A higher-dimensional generalization of the concepts of a cubic neighbourhood
in three-dimensional Euclidean geometry.

Bootstrap re-sampling 
A statistical method that iteratively uses subsets of the original data set to estimate
the bias and variance for a classification algorithm.

Scale-free behaviour 
The behaviour of an estimator is scale-free if it depends only on the ranks of the
observations, for example, the estimator is equally accurate whether the
logarithms of the observations or the values of the observations are used for
analysis.
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Figure 1. Cluster separability in data space

a | Each data point exists in the space defined by its attributes and by its relative distance to all
other data points. The nearest neighbour (dashed arrow) is the closest data point. The goal of
clustering algorithms is to assign the data point to membership in the most appropriate cluster
(red or blue cluster). Many widely used analysis methods force samples to belong to a single
group or link them to their estimated nearest neighbour and do not allow concurrent
membership of more than one area of data space (hard clustering; such as k-means clustering
or hierarchical clustering based on a distance matrix). Analysis methods that allow samples to
belong to more than one cluster (soft clustering; such as that using the expectation-
maximization algorithm) may reveal additional information. b | Data classes can be linearly
separable or non-linearly separable. When linearly separable, a linear plane can be found that
separates the data clusters (i). Non-linearly separable data can exist in relatively simple (ii) or
complex (iii) data space. Well-defined clusters in simple data space may be separated by a non-
linear plane (ii). In complex data space, cluster separability may not be apparent in low-
dimensional visualizations (iii), but may exist in higher dimensions (iv). c | Expression data
can be represented as collections of continuously valued vectors, each corresponding to a
sample’s gene-expression profile. Data are often arranged in a matrix of N rows (samples) and
D columns (variables or genes). The distance of a data point to the origin (vector space), or the
distance between two data points (metric space), is defined by general mathematical rules. A
(blue arrow) and B (green arrow) are vectors and their Euclidean distance is indicated by the
red line. Individual data points, each represented by a vector, can form clusters, as in the
examples of two clusters in b.
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Figure 2. High dimensional expression data are multimodal

Most univariate and multivariate probability theories were derived for data space where N
(number of samples) > D (number of dimensions). Expression data are usually very different
(D>>>N). A study of 100 mRNA populations (one from each of 100 tumours) arrayed against
10,000 genes can be viewed as each of the 100 tumours existing in 10,000-D space. This data
structure is the inverse of an epidemiological study of 10,000 subjects (samples) for which
there are data from 100 measurements (dimensions), yet both data sets contain 106 data points.
A further concern arises from the multimodal nature of high-dimensional data spaces. The
dynamic nature of cancer and the concurrent activity of multiple biological processes occurring
within the microenvironment of a tumour create a multimodal data set. Genes combine into
pathways; pathways combine into networks. Genes, pathways and/or networks interact to affect
subphenotypes (proliferation, apoptosis); subphenotypes contribute to clinically relevant
observations (tumour size, proliferation rate). Genes in pathway 2 are directly associated with
a network (and with pathway 1) and a common subphenotype (increased proliferation). Genes
in pathway 2 are also inversely associated with a subphenotype (apoptosis). Here,
multimodality captures the complex redundancy and degeneracy of biological systems15 and
the concurrent expression of multiple components of a complex phenotype. For example,
tumour growth reflects the balance between cell survival, proliferation and death, and cell loss
from the tumour (such as through invasion and metastasis), each being regulated by a series
of cellular signals and functions. Many such complex functions may coexist, such as growth-
factor or hormonal stimulation of tumour cell survival or proliferation, or the ability to regulate
a specific cell-death cascade. A molecular profile from a tumour may contain subpatterns of
genes that reflect each of these individual characteristics. This multimodality may be
problematic for statistical modelling to build either accurate cell signalling networks or robust
classification schemes.

Clarke et al. Page 24

Nat Rev Cancer. Author manuscript; available in PMC 2008 February 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3. Model fitting, dimensionality and the blessings of smoothness

a | Output of a smooth function that yields good generalization on previously unseen inputs.
b | A model that performs well on the training data used for model building, but fails to
generalize on independent data and is hence overfitted to the training data. c | A model that is
insufficiently constructed and trained and is considered to be underfitted. The imposition of
stability on the solution can reduce overfitting by ensuring that the function is smooth, and
some random fluctuations are well-controlled in high-dimensions46. This allows new samples
that are similar to those in the training set to be similarly labelled. This phenomenon is often
referred to as the ‘blessing of smoothness’. Stability can also be imposed using regularization
that ensures smoothness by constraining the magnitude of the parameters of the model. Support
vector machines apply a regularization term that controls the model complexity and makes it
less likely to overfit the data (BOX 3). By contrast, k-nearest neighbour or weighted voting
average algorithms overcome the challenge simply by reducing data dimensionality. Validation
of performance is a crucial component in model building. Although an iterative sequential
training is often used for both training and optimization114, validation must be done using an
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independent data set (not used for model training or optimization) and where there are adequate
outcomes relative to the number of variables in the model39. For early proof-of-principle
studies, for which an independent data set may not be available, some form of cross-validation
can be used. For example, three-fold cross-validation is common, in which the classifier is
trained on two-thirds of the overall data set and tested for predictive power on the other
third36,115,116. This process is repeated multiple times by reshuffling the data and re-testing
the classification error.
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Figure 4. The curse of dimensionality and the bias or variance dilemma

a | The geometric distributions of data points in low- and high-dimensional space differ
significantly. For example, using a subcubical neighbourhood in a 3-dimensional data space
(red cube) to capture 1% of the data to learn a local model requires coverage of 22% of the
range of each dimension (0.01 ≈ 0.223) as compared with only 10% coverage in a 2-dimensional
data space (green square) (0.01 = 0.102). Accordingly, using a hypercubical neighbourhood in
a 10-dimensional data space to capture 1% of the data to learn a local model requires coverage
of as much as 63% of the range of each dimension (0.01 ≈ 0.6310). Such neighbourhoods are
no longer ‘local’111. As a result, the sparse sampling in high dimensions creates the empty
space phenomenon: most data points are closer to the surface of the sample space than to any
other data point111. For example, with 5,000 data points uniformly distributed in a 10-
dimensional unit ball centred at the origin, the median distance from the origin to the nearest
data point is approximately 0.52 (more than halfway to the boundary), that is, a nearest-
neighbour estimate at the origin must be extrapolated or interpolated from neighbouring sample
points that are effectively far away from the origin111. b | A practical demonstration is the
bias–variance dilemma36,111,115. Specifically, the mismatch between a model and data can
be decomposed into two components; bias that represents the approximation error, and variance
that represents the estimation error. Added dimensions can degrade the performance of a model
if the number of training samples is small relative to the number of dimensions. For a fixed
sample size, as the number of dimensions is increased there is a corresponding increase in
model complexity (increase in the number of unknown parameters), and a decrease in the
reliability of the parameter estimates. Consequently, in the high-dimensional data space there
is a trade-off between the decreased predictor bias and the increased prediction
uncertainty36,111.
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Figure 5. Dimensionality reduction

A practical implication of the curse of dimensionality is that, when confronted with a limited
training sample, an investigator will select a small number of informative features (variables
or genes). A supervised method can select these features (reduce dimensionality), where the
most useful subset of features (genes or proteins) is selected on the basis of the classification
performance of the features. The crucial issue is the choice of a criterion function. Commonly
used criteria are the classification error and joint likelihood of a gene subset, but such criteria
cannot be reliably estimated when data dimensionality is high. One strategy is to apply
bootstrap re-sampling to improve the reliability of the model parameter estimates. Most
approaches use relatively simple criterion functions to control the magnitude of the estimation
variance. An ensemble approach can be derived, as multiple algorithms can be applied to the
same data with embedded multiple runs (different initializations, parameter settings) using
bootstrap samples and leave-one-out cross-validation. Stability analysis can then be used to
assess and select the converged solutions114. Unsupervised methods such as principal
component analysis (PCA) can transform the original features into new features (principal
components (PC)), each PC representing a linear combination of the original features117. PCA
reduces input dimensionality by providing a subset of components that captures most of the
information in the original data118. For example, those genes that are highly correlated with
the most informative PCs could be selected as classifier inputs, rather than a large dimension
of original variables containing redundant features119,120. Non-linear PCA, such as kernel
PCA can also be used for dimensionality reduction but adds the capability, through kernel-
based feature spaces, to look for non-linear combinations of the input variables36. PCA is
useful for classification studies but is potentially problematic for molecular signalling studies.
If PC1 is used to identify genes that are differentially expressed between phenotypes 1 and 2,
then genes that are strongly associated with PC1 (black circles) would be selected. If both PC1
and PC2 are used, then genes strongly associated with PC1 (black circles) and PC2 (blue
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circles) would be selected. Some genes could be differentially expressed but weakly associated
with the top two PCs (PC1, PC2) and so not selected (red circles). As their rejection is not
based on biological function(s), key mechanistic information could be lost.
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