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Hydrogen and helium are the most abundant elements in the universe and, in principle, are
the simplest elements. Nonetheless, they display remarkable properties under pressure that have
fascinated theoreticians and experimentalists for over a century. Recent advances in computational
methods have made it possible to elucidate many of these properties. We review some of the
computational methods that have been applied to dense hydrogen and helium in recent years,
mainly those that perform a simulation directly from the physical picture of electrons and ions;
primarily, those based on density functional theory and quantum Monte Carlo methods. We
then discuss the predictions from such methods as applied to the phase diagram of hydrogen,
including the solid and fluid phases, with particular focus on the crystal structures, the liquid–
liquid transition and comparison of the results with experimental shock-wave data. We then
discuss predictions of ordered quantum states, including a possible low-temperature fluid and
high-temperature superconductivity in the atomic state. We also briefly discuss pure helium,
and then focus on hydrogen–helium mixtures, with particular focus on properties of relevance to
planetary science.

PACS numbers: 62.50.-p, 67.80.F-, 81.30.-t, 67.80.-s, 61.20.Ja
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Glossary

B Rotational constant of a molecule. 22

Tc Superconducting critical temperature. 37, 38

Tm Melting temperature. 38



Glossary 2

λ Attractive electron–phonon-induced interaction. 37

〈ω〉 Average phonon frequency. 37

µ∗ Renormalized Coulomb repulsion. 37

D2 Molecular deuterium. 20, 22–24

H2 Molecular hydrogen. 20, 22, 23

AIRSS Ab initio random structure searching. 23, 25,
26

bcc body-centered cubic. 29

BO Born-Oppenheimer Molecular Dynamics. 16

BO Born-Oppenheimer. 9, 16, 23

BSP Broken symmetry phase of molecular hydrogen,
also known as Phase II. 21, 22

CEIMC Coupled Electron–Ion Monte Carlo. 30

CPMD Car-Parrinello Molecular Dynamics. 15, 16, 26,
29

DAC Diamond anvil cell. 3, 20, 21, 25–28, 45

DF Density functional. 14, 18, 24, 26

DFT Density functional theory. 4, 14, 15, 18, 23, 24,
26–28, 37

EOS Equation of state. 2, 3, 20, 30

EQ Electric–quadrupole. 22

fcc Face-centered cubic. 22, 29

FPMD First-Principles Molecular Dynamics. 27

hcp Hexagonal close-packed. 22–27, 29

HK Hohenberg–Kohn. 13

HSE Heyd-Scuseria-Ernzerhof. 14

ICF Inertial confinement fusion. 4

IM Insulator-to-metal (transition). 27, 28

IR Infrared. 20, 24–26

KS Kohn–Sham. 13, 14

LDA Local density approximation. 22

LLT Liquid–liquid (phase) transition. 30, 45

OCP One-component plasma. 38

PIMC Path-integral Monte Carlo. 22, 24

PIMD Path-integral molecular dynamics. 24

PPT Plasma phase transition. 3

PSO Particle-swarm optimization. 26, 29

QMC Quantum Monte Carlo. 4, 15, 18, 19, 23, 24, 28,
29, 38, 39, 46

SCDFT Density functional theory of superconducting
state. 37

SCP Screened Coulomb Plasma. 29, 30

vdW van der Waals. 14, 24

ZPE Zero-point energy. 15, 23–25, 29, 39

ZPM Zero-point motion. 15, 23–27, 29, 39, 46

I. INTRODUCTION

Hydrogen, being the first element, is correspondingly
referred to as the most simple element. The equations
of quantum mechanics can be solved exactly for a sin-
gle atom, and thus is the mainstay of elementary Quan-
tum Mechanics textbooks. The Helium atom, with only
two electrons, is no longer analytically solvable, but still
simple relative to heavier atoms. However, despite their
atomic simplicities, bulk hydrogen and helium are sur-
prisingly complex. In this review, we describe what has
been learned from experiments, theory, and computation
about bulk hydrogen and helium under a variety of ther-
modynamic conditions of temperature and pressure, in
particular, extreme conditions hard to achieve in the lab-
oratory.
The primary motivation to study dense hydrogen and

helium under extreme conditions comes from the fact
that they are the most abundant elements in the universe.
For example, they form from 70% − 95% of the mass of
Jupiter and Saturn in our own solar system, as well as
being the principle components of a large number of re-
cently discovered exo-planets (Baraffe et al., 2010). What
is needed to model the planets is the equilibrium equation
of state (EOS), the pressure as a function of temperature,
density, and composition. Errors in the EOS lead to unre-
liable estimates of what is inside a planet, whether there
are elements other than H and He, the past history of the
planets and the process of planetary formation (Fortney,
2004; Fortney and Nettelmann, 2010). A long-standing
puzzle is to understand why Saturn is 50% more lumi-
nous than existing models. Additional energy sources
could come from H–He demixing (Fortney and Hubbard,
2003) as proposed by Smoluchowski, 1967. In addition,
the abundance in Saturn’s atmosphere shows depletion of
He. Working backward from astronomical observations
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FIG. 1 (Color online) The phase diagram (temperature vs
pressure) for hydrogen. The principal Hugoniot of hydrogen
(the densities and pressures that can be reached by shock-
ing solid hydrogen initially at 1 Bar) is shown as a solid line,
the secondary Hugoniot (i.e. points reached with a double
shock) is also shown branching downward from the principal
Hugoniot. The isentropes of three giant planets (Jupiter, Sat-
urn, and HD 209458b) and a representative brown dwarf (G1
229B) are shown as dashed lines; the estimated melting tem-
peratures of H2 is shown as a dashed-dot line. Static diamond
anvil experiments are able to access temperatures less than
roughly 1100 K and pressures less than 300 GPa as delimited
by the green dashed-line.

is a very indirect and uncertain way of learning about
the phase diagram of hydrogen-helium mixtures. It is es-
timated that the EOS needs to be accurate to ∼1% to
answer fundamental questions about the composition and
formation of Jovian planets and to make reliable models
of exo-planets (Stevenson, 2010).

Figure 1 shows the part of the phase diagram acces-
sible to experiment and the conditions needed to under-
stand the planets: the isentropes of some of the well-
characterized giant planets, Jupiter and Saturn (Saumon
and Guillot, 2004), one of the most well-characterized ex-
oplanets, HD 209458b (Guillot and Showman, 2002; Nel-
lis, 2006b), and a representative brown dwarf, G1 229B
(Burrows et al., 2001), are shown.

The planetary isentropes lie outside the realm of static
diamond anvil cell (DAC) experiments, which while they
reliably can extend to pressures of ∼320 GPa (Goncharov
et al., 2001; Loubeyre et al., 2002), can only do so at rela-
tively low temperatures, such as 1115 K at 73 GPa (Gre-
goryanz et al., 2003). The experimental range of static
measurements is depicted in Fig. 1. Dynamic shock com-
pression experiments (Nellis, 2006b), on the other hand,
can access similar temperature and pressure conditions
as well as those much more extreme. However, the con-
ditions do not overlap completely and these experiments
have great uncertainties, likely far greater than the afore-
mentioned ∼1% accuracy desired (Stevenson, 2010).

Another important motivation for studying hydrogen
and helium is to understand and predict the properties
of the simplest elements of the periodic table. Much is
still unknown about hydrogen. The longest outstanding
issue concerns an insulator-to-metal transition: the ob-
servation of metallic hydrogen has often been called the
“holy grail” of high pressure research. Early predictions
suggested that hydrogen would become a simple atomic
metal at a pressure of 25 GPa (Wigner and Huntington,
1935). As experimental pressures have steadily increased
to beyond 300 GPa, this transition has not yet been seen,
at least not at room temperature or below. Early predic-
tions were based on the assumption that metallic hydro-
gen would be a simple metal with nondirectional metal-
lic bonding. However, recent work suggests that this is
not the case and hydrogen will go through a sequence of
phase transitions, first in the molecular phase and then
in the atomic phase. One can either view this transition
as a change from molecules to atoms or a change from
insulator to metal. Both transitions are plausible and
according to Wigner’s scaling argument inevitable, but
do the transitions happen together or separately?

Figure 2 shows on an expanded scale the estimated
physical regimes of hydrogen as it transforms from a
molecular crystal at low density to an atomic crystal at
high density, and, upon increasing temperature, as it first
melts and then transforms into a plasma state.

While metallic hydrogen has not yet been observed
in the low temperature solid, metallization has been
achieved in the fluid state in the range 100 – 200 GPa
and 2000 – 3000 K, as discuss later in this review. But
important questions in characterizing the transition from
insulating molecular hydrogen to metallic atomic hydro-
gen remain: is it a first-order transition or a simple
crossover? Landau and Zeldovich, 1943 speculated that
the insulator-metal change at increasing density in liquid
mercury would be a genuine phase transition. Since then,
there has been recurring controversy concerning whether
this transition, the so-called “plasma phase transition”
(PPT), a second liquid-liquid transition(LLT) on the
phase diagram, exists, and what its relation to the molec-
ular dissociation process is. See (Redmer and Holst,
2010) for a recent overview. If the PPT exists at high
enough temperatures, then there could be a surface in-
side the giant planets separating a conducting core from
an insulating mantle. What is clear is that a number of
different physical phenomena come together in the mid-
dle of the phase diagram: the metal-insulator transition
and/or atomic-molecular transitions caused by a combi-
nation of temperature and pressure. Even the zero point
motion of the protons can play an important role.

As temperature is lowered, the liquid will freeze. It has
been suggested (Mon et al., 1980) that because of elec-
tronic screening, the effective proton-proton interaction
is much reduced so that the liquid could remain stable at
low temperatures. In fact, a large depression of the melt-
ing point temperature is seen in other alkali metals such
as sodium and lithium. But if hydrogen is a liquid at suf-
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FIG. 2 Hydrogen Phase diagram. Solid lines show the bound-
aries between the gas, liquid and solid phases. The solid cir-
cles show location of critical and triple points. The dashed
lines on the left estimate when fluid hydrogen changes from
H2 to fluid H and then to a classical two component plasma
(TCP). The dotted lines on the above 106 bar estimate the
temperature when the electrons become degenerate: the non-
interacting fermi energy EF and 0.1 EF . Also shown are three
phases (I,II,III) of solid H2 which occur as the molecules be-
come more oriented. How precisely hydrogens change from
solid H2 to solid H is not established so it is shown as a grey
box. The line going vertically away from the grey box shows
the separation between the mostly insulating molecular fluid
and the mostly conducting atomic fluid; the first order liquid-
liquid transition ends at a critical point; what is shown at
higher temperatures is a crossover. The almost vertical tran-
sition line at the extreme right of the diagram indicates the
quantum melting of the protons lattice under compression.

ficiently low temperatures, the effects of quantum statis-
tics of the light protons could be important and could
lead to very interesting phases such as occur in liquid
3He and 4He. In solid hydrogen, since electron-phonon
coupling is very large, it has been estimated(Ashcroft,
1968) that atomic hydrogen will be a room temperature
superconductor.

Further motivation for studying dense hydrogen comes
from technological applications, for example, inertial con-
finement fusion (ICF), where hydrogen gas is compressed
with a laser-driven shock into the region where DT fu-
sion could occur, at physical conditions close to that of
HD209458b in Fig.1. Such aspects will not be directly
addressed in this review; the reader is instead referred to
Lindl et al., 2004, for example. Nonetheless, the focus of
our discussion is equally pertinent.

A final theoretical motivation for studying hydrogen is
to develop and test computer simulation methods. Hy-
drogen and helium are somewhat simpler than other el-
ements but pose unique difficulties for simulation. Since
they have no core electrons, their atomic structure is sim-
ple and the errors from the pseudopotential approxima-

tion, often employed to increase computational efficiency,
are significantly smaller or absent. Furthermore, rela-
tivistic effects are small, hence spin orbit effects can be
ignored. However, because the protons, deuterons, and
alpha particles that constitute the nuclei are so light,
they too behave as quantum mechanical particles. This
has a strong influence on even the most basic proper-
ties of the system, such as relative stabilities of atomic
structures (Natoli et al., 1993). Harmonic corrections to
account for nuclear motion do not always work in hydro-
gen and helium. Thus, both the electrons and the ions
must be treated using quantum mechanics in order to
make definitive predictions. The availability of experi-
mental data and the intense physical interest has made
the study of high pressure hydrogen and helium into a
test-bed for theory and simulation. If the modern com-
putational techniques to treat electron correlation, such
as those based on quantum Monte Carlo (QMC) meth-
ods and density functional theory (DFT) are not accurate
for hydrogen and helium, there are serious problems in
trusting them for heavier elements.

This article concerns the thermodynamic properties of
Hydrogen and Helium at pressures above 10 GPa and for
temperatures less than 100,000K. Our primary focus is
on advanced simulation methods used for hydrogen and
helium in this region of pressure and temperature and
their comparison with experimental results.

We start by describing the theoretical and numerical
tools that are used for describing hydrogen (Section II).
We then provide a brief discussion of the experimental
methods that are in use (Section III), in order to facili-
tate the understanding of theory vs. experiment compar-
isons that follow. In Section IV, we describe the current
understanding of the phase diagram of hydrogen under
extreme conditions and its properties and interesting pre-
dictions such as metallization, superconductivity, and the
possibility of a quantum fluid ground-state. In Section V
we provide a brief discussion of helium, and describe the
behavior of the hydrogen–helium mixtures of primary im-
portance to astrophysical applications. Section VI con-
cludes and discusses some of the open questions that re-
main.

II. PREDICTING PROPERTIES OF MATTER UNDER

EXTREME CONDITIONS

In this section we review some of the computational
methods for hydrogen and helium at high pressures. The
properties of hydrogen and helium at conditions of inter-
est are described to high accuracy by the non-relativistic
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Hamiltonian for a collection of electrons and ions:

Ĥ = T̂n + Ĥel = T̂ + V̂

Ĥel = T̂e + V̂n−n + V̂e−e + V̂e−n

T̂ = T̂n + T̂e

T̂n =

Nn
∑

I=1

−λI▽̂
2

I , T̂e = −λe
Ne
∑

i=1

▽̂2

i ,

V̂ = V̂n−n + V̂e−e + V̂e−n

V̂n−n =
∑

I<J

zIzJ

|~RI − ~RJ |
, V̂e−e =

∑

i<j

1

|~ri − ~rj |
,

V̂e−n = −
∑

i,I

zI

|~ri − ~RI |
, (1)

where Nn and Ne are the number of nuclei and elec-
trons respectively, λe = 1/2, λI = 1/(2MI) and MI and
zI are the mass (in units of the electron mass me) and
charge (in units of the electron charge e) of the nucleus
I 1. We implicitly assume charge neutrality of the sys-
tem:

∑

I zI = Ne. We use ~r with lower case indexes (i,

j, ...) to denote the position of electrons, and ~R with
upper case indexes (I, J , ...) for the nuclei. When no

indexes are used ~r and ~R represent the full 3Ne (3Nn)
dimensional vectors. The electronic Hamiltonian in the
clamped nuclei approximation where the ions produce a
fixed external potential for the electrons is given by Ĥel.
We always treat electrically neutral systems; hence for
hydrogen the number of electrons is also Nn, while for he-
lium it is 2Nn. The electron number density is given by ρ
and parameterized with rs = a/a0 where 4πa3/3 = ρ−1.
We only need to add the temperature, particle statistics
and boundary conditions to completely specify the nu-
merical and physical problem to be solved.

Finding the eigenvalues and eigenfunctions of the
Hamiltonian of Eq. (1) is a formidable task, impossible
to do analytically except for the single hydrogen atom or
the H+

2 molecular ion; numerical or approximate theo-
retical methods are used in practice. Two of the most
widely applicable methods are based on imaginary-time
path integrals and on density functional theory, as dis-
cussed in the following subsections. The path integral
and Monte Carlo methods for solving the fundamental
equations are discussed next, followed by methods based
on density functional theory. Then we briefly discuss
semi-empirical methods.

1 We use atomic units in the methods section, where ~ = me =
kB = e = 1; me is the mass of the electron, kB is Boltzmann’s
constant and the energy is measured in Eh = 315, 775K =
27.2114eV , the energy of a hydrogen atom is 0.5Eh; the binding
energy of a H2 molecule is 0.17Eh; the unit of length is the Bohr
Radius a0 = 0.0529nm, the equilibrium hydrogen bond length is
1.4a0.

A. The Formalism of Imaginary-time Path Integrals

Path integrals provide a theoretical and computational
framework to discuss the many-body problem. The par-
tition function of a quantum system at an inverse temper-
ature β = 1/(kBT ) is the trace of the many-body density
matrix:

Z =

∫

d~R d~r ρ
(

~R,~r; ~R,~r;β
)

, (2)

where ρ
(

~R,~r; ~R′, ~r′;β
)

is the density matrix in the posi-

tion basis for the appropriate ensemble2. In the thermal
ensemble it has the form:

ρ
(

~R,~r; ~R′, ~r′;β
)

=
〈

~R,~r
∣

∣

∣e−βĤ
∣

∣

∣

~R′, ~r′
〉

. (3)

The equilibrium average of an operator Ô is computed
as:

〈

Ô
〉

ρ
= Z−1

〈

Ôρ̂
〉

= (4)

Z−1
∫

d~Rd~rd ~R′d~r′ρ
(

~R,~r; ~R′, ~r′;β
)〈

~R′, ~r′
∣

∣

∣Ô
∣

∣

∣

~R,~r
〉

.

The product property of the exponential of commuting
operators:

e−(β1+β2)Ĥ = e−β1Ĥe−β2Ĥ , (5)

repeatedly applied, gives the path integral expression for
the partition function:

Z =

∫ P−1
∏

t=0

d~Rtd~r t
〈

~Rt, ~r t
∣

∣

∣e−τĤ
∣

∣

∣

~Rt+1, ~r t+1
〉

, (6)

where τ=β/P and periodic boundary conditions in the

index t applies: ~R0 = ~RP , ~r0 = ~rP . To account for Bose
or Fermi statistics, a permutation of identical particles
can also be applied as we note below.

We define the path as ~R = { ~R0, ~r 0, . . . ~RP , ~r P }3; it
consists of 3P (Ne+Nn) variables. This expression, exact
for any value of P (the number of time slices or beads),
allows us to compute properties of a quantum system at
inverse temperature β using a density matrix evaluated at
a smaller inverse temperature, τ=β/P . At small enough
τ , accurate and computationally simple approximations
exist for the thermal density matrix which become exact
as τ → 0. The best known example is the Trotter formula
(Trotter, 1959):

e−βĤ = lim
P→∞

P−1
∏

P=0

e−τT̂ e−τV̂ ; (7)

2 For simplicity, we limit our discussion to the canonical ensemble.
It is straight-forward to extend the discussion to other ensembles.

3 Superscripts will label imaginary time indexes to avoid confusion.
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one can ignore the commutator of the kinetic and po-
tential operators in writing an integral expression for the
density matrix at large P . Using the Trotter formula,
the density matrix becomes: (Ceperley, 1992, 1996; Feyn-
man, 1972).

ρ(~R0, ~r 0; ~R0, ~r 0;β) =
1

N !

∑

P

(±1)P
∫

~R0→P ~R0

d ~R e−S( ~R).

(8)
where we have include particle statistics (Bose or Fermi)
by summing over permutations when the path is closed.
P labels the permutation of the particles and (±1)P is
its signature for bosons (+) or fermions (-). The “ac-
tion” (the logarithm of its probability density) of the path

S( ~R) is given (neglecting a constant term) by:

S( ~R) =

∫ β

0

dt





Mn

2

∣

∣

∣

∣

∣

d~R(t)

dt

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

d~r(t)

dt

∣

∣

∣

∣

2

+ V (~R(t), ~r(t))



(9)

≃
P−1
∑

t=0

[

Mn|~Rt − ~Rt+1|2
2τ

+
|~r t − ~r t+1|2

2τ
+ τV (~Rt, ~r t)

]

.(10)

Equation (9) represents the exact expression in the con-
tinuous path limit (P → ∞, τ → 0, P τ = β). To simplify
the notation, we considered a system with a single nu-
clear component of mass Mn. Nuclei, being heavier, are
represented by paths of much smaller size. For bosons
(positive sign), or boltzmannons (no sum over permu-
tations), the integrand in Eq. (8) is positive, and the
partition function becomes identical to the Boltzmann
distribution of a classical system of (Ne ×Nn) × P par-
ticles interacting with an effective classical “potential”
kBTS(R).
The electronic integral can be formally performed pro-

ducing the influence functional, Zel[ ~Rn]:

Z =

∮

D ~R

∮

D~r exp
[

−
∫ β

0

dt
(

Tn(~R
t) + Sel(~R

t, ~r t)
)

]

,

=

∮

D ~R exp

[

−
∫ β

0

dt Tn(~R
t)

]

Zel( ~Rn(t), [ ~Rn]),

Zel( ~Rn(t), [ ~Rn]) =

∮

D~r exp

[

−
∫ β

0

dt Sel(~R
t, ~r t)

]

.(11)

where
∮

D ~R (
∮

D~r) is a short hand notation for the func-

tional integral over all paths of length β, ~Rn represents

the ionic coordinates of the path ~R, and the meaning
of Tn (related to the nuclear kinetic energy operator in
the Hamiltonian) and Sel should be clear from Eqs. (1)
and (9). Eq. (11) is just a formal manipulation of the
partition function but it provides a useful framework to
understand the Born-Oppenheimer approximation intro-

duced below. Note that Zel( ~Rn(t), [ ~Rn]) is a functional

of the nuclear path, ~Rn, a fact which becomes important
below, and also a function of imaginary time through its
explicit dependence on the nuclear path coordinates.

Eq. (10) is the simplest approximation to the high
temperature density matrix commonly employed in nu-
merical calculations. In principle, any approximation
correct to first order in imaginary time will give the
same result as τ → 0. But for computational effi-
ciency and stability for path integral simulations, one
can use improved actions some of which include semi-
classical expressions, higher order expansions (De Raedt
and De Raedt, 1983; Takahashi and Imada, 1984), cu-
mulant expansions (Ceperley, 1995), and pair product
actions (Barker, 1979; Ceperley, 1995). In most cases,
improved actions lead to dramatic reductions in the nu-
merical effort required to solve quantum problems. Of
particular importance to care of is the divergence in the
potential as two charged particles approach each other.

Consider now the effect of incorporating the quan-
tum statistics of the nuclei. The temperature TQ, when
quantum statistics becomes relevant can be estimated
by setting the thermal de Broglie wavelength (propor-
tional to (kBTQMn)

−1/2) to the average spacing be-
tween the ions given by rs. One can show that for
ideal fermions this corresponds to the Fermi energy up
to a factor of order unity. For 3D protons we have
TQ = (me/Mp)r

−2
s 5.84Ry = 504K/r2s . At the metal-

insulator transition (rs ≃ 1.4), TQ ≃ 250 K. In fact, the
effects of quantum statistics for the protons are smaller
than this estimate because the correlation between pro-
tons makes their exchange less probable than for non-
interacting protons. Above the temperature, TQ we can
safely ignore the quantum statistics of the nuclei (Fermi-
Dirac for hydrogen, Bose-Einstein for deuterium) and
treat them as distinguishable particles.

To turn the path integral expression into a numer-
ical procedure, generalizations of classical simulation
methods developed to perform high dimensional inte-
grals and based on the Monte Carlo method are used.
In the following subsections, we will describe the three
main Quantum Monte Carlo methods that have been
used to treat dense hydrogen and helium: path inte-
gral Monte Carlo approaches for simulations at non-zero
temperature; zero temperature wavefunction-based ap-
proaches including variational, reptation and diffusion
Monte Carlo; and a method that explicitly separates elec-
tron and ionic degrees of freedom, the Coupled-Electron
Ion Monte Carlo. However, before discussing the numer-
ical methods we discuss the Born-Oppenheimer (BO) ap-
proximation which is used in one of the Quantum Monte
Carlo methods to be discussed next, and in the First
Principle Molecular Dynamics methods based on Density
Functional Theory which we will review in some detail in
section II.E.
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B. The Born–Oppenheimer Approximation

Electronic motion is much faster than that of the nu-
clei. The implications of the resulting separation in
time scale were recognized in the early years of quan-
tum mechanics, and led to the development of the Born-
Oppenheimer (BO) approximation (Born and Oppen-
heimer, 1927). It is based on the fact that the proton is
considerably heavier than the electron: Mp/me ≈ 1836;
all other nuclei are much heavier. Since the velocity of
electrons is much higher than that of ions, we can as-
sume that electrons relax instantaneously and adiabat-
ically to their equilibrium state as the ions move, ne-
glecting any coupling between different electronic states,
and also retardation effects in the electron-ion interac-
tion. This leads to a partial decoupling of the electronic
and ionic problems: the ions move in an effective poten-
tial defined by the solutions of the electronic hamiltonian
for fixed ionic positions.
In the BO approximation, the partition function can be

expressed in path integral notation (Feynman and Hibbs,
1965)

ZBO =
∑

q

∮

D ~R exp

[

−
∫ β

0

dt
(

Tn(~R(t)) + Eq(~R(t))
)

]

,

(12)
where the sum is over a complete set of electronic states
of Ĥel for a fixed set of ionic positions with eigenvalues

Eq(~R):

Ĥel(~r, ~R)Φq(~r, ~R) = Eq(~R)Φq(~r, ~R). (13)

If the temperature is low enough to neglect excited elec-
tronic states in Eq. (12), the standard form of the BO
approximation is obtained, where the ions move in the
potential energy surface defined by the electronic ground

state energy E0(~R). For metals and systems at high tem-
peratures, we must take into account the sum over elec-
tronic states. In that case, Eq. (12) would require a

diagonalization of Ĥel for every position of the ions, in-
cluding all relevant electronic eigenstates. Following the
work of Cao et al.(Cao and Berne, 1993), a simpler ex-
pression can be obtained by factorizing the exponential
terms and performing the sum over electronic eigenstates,
with the added complication that, in general, Tn and Eq

do not commute. This leads to the following approxima-
tion to the partition function:

ZFEBO =

∮

D ~R exp

[

−
∫ β

0

dt (T (~R) + Fel(~R(t)))

]

,

(14)
where we neglected terms of order O[me/MI ], see Cao
and Berne, 1993 for additional details. Equation (14) is
known as the Free-Energy Born-Oppenheimer (FEBO)
approximation since the electronic Free Energy along the

nuclear path, Fel(~R), at temperature β appears. Note
that in this approximation, the influence functional has

become a simple function of the nuclear path, loosing the
non-local (in imaginary time) dependence

Eq. (14) is the main result on this section; we managed
to replace the potential energy operator with a local func-
tion of the ionic coordinates: the BO free energy surface.
By employing the BO approximation, we have decoupled
the problem into two parts, making a great simplifica-
tion at the expense of a good approximation. The elec-
tronic problem has been completely encapsulated in the
potential energy surface (PES), and can be solved with
any suitable approximate method such as Density Func-
tional Theory (DFT) or Quantum Monte Carlo (QMC).
Once the PES has been defined, the ionic problem can be
solved using path integrals for quantum ions or classical
Monte Carlo or Molecular Dynamics for classical ions.

Note that FEBO formulation provides a unifying
framework to interpret several apparently different ap-
proximations routinely used in first-principle simulation
methods. Consider thermodynamic conditions at which
protons can be treated as classical particles. In the
atomic phase, these conditions are realized for T larger
than TQ defined above For example, at rs ≃ 1.4, nuclear
quantum effects are negligible for T & 1000 − 2000K.
However, in the molecular phase, the bonding potential
is much stronger than the intermolecular interaction and
produces much larger quantum effects which results in a
vibrational temperature of ∼ 6000K in the isolated hy-
drogen molecule, and even higher values at finite density .
However, the rotational temperature of a molecule is only
∼ 100K. Therefore, in the molecular phase, quantum ef-
fects are important even at relatively high temperature,
a fact often neglected in the applications. When nuclear
quantum effects can be neglected, nuclear “imaginary-
time paths” in Eq. (12) shrink to a single point and
the electronic term appearing in the partition function
is simply the exponential of the electronic free energy
function of the nuclear configuration. If, furthermore,
thermal occupation of the electronic states can be ne-
glected, the electronic free energy reduces to the ground
state electronic energy, and we recover the standard BO
approximation. Conversely, if the temperature is low
enough that neglecting thermal occupation of the elec-
tronic states is an accurate approximation, and nuclear
quantum effects need to be taken into account, the sum
over electronic states in Eq. (12) drops out and the action
for the ionic paths depends only on the electronic ground
state PES. This is the BO approximation for quantum
ions. Note that in the implementation of the numeri-
cal methods discussed below, in particular, in the DFT-
based methods applied to metals, thermal occupation of
the electronic states is necessary to ensure the stability of
the self-consistent procedure. In view of our discussion,
this fact seems to be more fundamental than simply a
technical tool.
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C. Path Integral Monte Carlo

Path integral methods for bosons and distinguishable
particles are quite well developed(Ceperley, 1995) since
there is no fermion minus sign. There are two main com-
putational problems: choice of the action, and sampling
of the paths. As mentioned in section II.A, there are
several options for the path integral action with varying
degrees of efficiency and convergence properties. For hy-
drogen and helium, the optimal strategy has been the use
of pair density matrices, where the two body problem is
solved exactly at very high temperature and the matrix
squaring method is used to produce a density matrix at
the desired temperature. Using the “pair action” instead
of the bare potential reduces the number of time slices,
and eliminates the instability that would otherwise oc-
cur in the primitive approximation to the path integral
for the hydrogen atom caused by the potential going to
−∞ as an electron approaches a proton. The sampling
of the paths is performed using a generalized Metropolis
(Markov chain Monte Carlo) procedure. This is the only
effective algorithm when the paths become very long, e.g.
for electrons or at low temperatures. Special methods
are used to change the permutation variables. See ref.
(Ceperley, 1995). As mentioned in the last subsection,
as long as the temperature is high enough (T > 100K
for hydrogen in the metallization region, P ≃ 100GPa)
nuclear exchange is irrelevant and only the identity per-
mutation has a significant contribution to the partition
function. In this case, ionic paths are isomorphic to
ring polymers. When the path integral representation is
used for the ions and the electrons are treated with other
methods (ground state QMC or DFT), nuclear paths can
also be sampled by molecular dynamics; see section II.E.5
for more details.
For electronic systems, it is possible to perform PIMC

simulations without invoking to the BO approximation.
Both electrons and ions are represented in the path in-
tegral expression, Eq. (8). Notice that this is proba-
bly the only way to simulate directly electron-ion sys-
tems at finite temperature without approximations. In
practice, the integration is complicated due to the can-
celation of positive and negative contributions from the
negative sign of the permutation, (the fermion sign prob-
lem). The efficiency (inverse of computer time needed
to reach a given precision) of treating this exactly scales
like exp(−2β(FF −FB)) where (FF −FB) is the free en-
ergy difference between the fermi and bose system; the
exponent is extensive in the size of the system (Ceperley,
1996). Because of this, in the direct approach, one can-
not treat systems where the number of electrons is large
or the temperature is comparable with the Fermi energy.
However, it has been shown (Ceperley, 1992, 1996)

that one can evaluate the path integral by restricting
the path to only positive contributions. One introduces

a reference point ~R∗ on the path that specifies the nodes

of the fermion density matrix, ρ(~R, ~R∗, t) = 0 with re-

spect to the reference point ~R∗. A node-avoiding path

for 0 < t ≤ β never crosses a node: ρ(~R(t), ~R∗, t) 6= 0.
By restricting the integral to these paths,

ρF (~Rβ , ~R
∗;β) =

∫

d~R0 ρF (~R0, ~R
∗; 0)

∮

~R0→~Rβ∈Υ(~R∗)

d~Rt e−S[~Rt], (15)

(Υ(~R∗) denotes the restriction) the contributions to the
partition function are strictly positive. This, therefore
represents, in principle, a solution to the sign problem,
but only if the exact fermionic density matrix is used for
the restriction. In practice, one must approximate the
density matrix. The simplest approximation is to use a
determinant of single particle density matrices:

ρ(~R, ~R′;β) =

∣

∣

∣

∣

∣

∣

ρ1(~r1, ~r
′
1;β) . . . ρ1(~rN , ~r

′
1;β)

. . . . . . . . .
ρ1(~r1, ~r

′
N ;β) . . . ρ1(~rN , ~r

′
N ;β)

∣

∣

∣

∣

∣

∣

.

(16)
It can be shown that for temperatures larger than the
Fermi energy, the interacting nodal surface approaches
the free particle nodal surface, i.e. the nodes of the deter-
minant in Eq. (16) when free particle (FP) single particle
density matrices are used

ρ1(~r, ~r
′, β) = (2πβ)−3/2 exp

{

−(~r − ~r ′)2/2β
}

(17)

At low density, exchange effects are unimportant, for ex-
ample, in the molecular phase, when electrons are lo-
calized in a molecule in a nodeless spin singlet state.
However, in general, at temperatures much less than
the Fermi energy, interactions could have a significant
effect on the nodal surfaces and hence on which paths
are allowed. Several methods have been developed to
go beyond the FP restriction. In Militzer and Ceperley,
2000, the nodal surface of a density matrix derived from
a variational principle (VDM) that includes interparticle
interactions and electronic bound states was used. Also
recently Khairallah et al., 2011 implemented a modified
nodal restriction, the so-called antinodal-slice constraint.
This method has the advantage of eliminating the refer-
ence point and thereby allowing the paths to be much
more easily sampled than those that have a reference
point, however, it introduces a systematic approxima-
tion which does not become exact even if exact nodes
would be employed. Note that in these methods, the trial
density matrix is only used to determine the nodal con-
straint; the complete potential is taken into account in
the path integral action (Ceperley, 1995). Although the
PIMC fermion methods have not been extensively used,
they show great promise for the study of more complex
materials at high temperature (see for instance a recent
application to water and carbon by Driver and Militzer,
2012).
An alternative simulation method based on path in-

tegrals for electron-ion systems, called the Direct Path
Integral Monte Carlo (DPIMC) method, has been devel-
oped over the last decade by Filinov et al., 2005. At vari-
ance with the RPIMC, Fermi statistics for the electrons
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is accounted by inserting a Slater determinant of sin-
gle particle propagators in the last link of the electronic
paths. The sampling of the fermionic loops is based on
the absolute value of the determinant and the sign of the
determinant is used for the estimator. This method is
adequate in the semiclassical regime where the effect of
Fermi statistics is marginal. However, it has a sign prob-
lem which will become more and more serious when ap-
proaching the quantum regime. For a given Hamiltonian,
the probable phase space for fermions is very different
from that of bosons; sampling by a bosonic density ma-
trix will produce paths irrelevant for the fermions. This
might be at the origin of formation of large density inho-
mogeneities observed by this method when lowering the
temperature(Filinov et al., 2003). Moreover, the system-
atic effect of finite imaginary time step seems not to have
been considered adequately in the original publications
(Filinov et al., 2005).

D. QMC-based First-Principles simulations

Once the BO approximation is employed, the elec-
tronic calculation can be solved with any appropriate
electronic structure method. The most common ap-
proach is to use Density Functional Theory; this leads to
methods typically known as Ab-Initio Molecular Dynam-
ics or First-Principles Molecular Dynamics. Section II.E
gives a detailed description of DFT-based approaches. A
more advanced approach consists in using QMC methods
to solve the electronic problem. QMC, although more ac-
curate than DFT in general, is also more expensive. As a
consequence, only a small number of first-principles stud-
ies using QMC have been reported in the literature, all
of them on high pressure hydrogen and helium (Attac-
calite and Sorella, 2008; Ceperley et al., 2002; Delaney
et al., 2006; Morales et al., 2010a; Pierleoni and Ceper-
ley, 2005a, 2006; Pierleoni et al., 2004, 2008). This should
be compared with the thousands of DFT-based FP simu-
lations published so far (Marx and Hutter, 2000). In the
framework of QMC-based simulations at non-zero tem-
perature, only two approaches have been tried. In the
Coupled Electron-Ion Monte Carlo method (CEIMC),
discussed below, QMC methods are used to calculate en-
ergy differences during a Metropolis MC simulation of
the nuclei. This method has been recently used to study
the equation of state and the liquid-liquid transition in
hydrogen (Morales et al., 2010b), it has also been used to
study hydrogen-helium mixtures (Morales, 2009) and to
perform free energy calculations (Liberatore et al., 2011a;
Morales, 2009; Morales et al., 2010a). An alternative MD
approach based on a “noisy” Langevin dynamics scheme,
with ionic forces from QMC, has also been developed (At-
taccalite and Sorella, 2008) and applied to high pressure
hydrogen.

Before discussing QMC-based first-principle methods
to simulate finite temperature systems, we provide a de-
tailed description of ground state QMC methods below.

These methods can be either used to obtain an accurate
solutions of the ground state electronic problem in the fi-
nite temperature QMC-based FP methods in the frame-
work of the BO approximation, or can be used, without
resorting to the BO approximation, to obtain accurate
solutions for electron-ion systems in their ground state.

1. Ground-state Quantum Monte Carlo methods

Ground state quantum Monte Carlo (QMC) methods
were the first calculations that applied quantum simu-
lation techniques to a many-body crystal including both
the electronic and ionic degrees of freedom (Ceperley and
Alder, 1981, 1987a). The ultimate goal of QMC is to
provide an exact stochastic solution to the Schrödinger
equation, similar to the way Monte Carlo methods can
be used to solve classical many body problems. In prac-
tice, approximations must be used to treat fermions. The
main advantage of QMC over alternative methods for
electronic structure calculations is the balance that it
provides between accuracy and computational cost. Cur-
rently, QMC can provide results that are more accurate
than DFT for about an order of magnitude additional
computational cost and QMC scales approximately asN2

to N3 with the number of electrons. Traditional chem-
istry methods, while providing a higher degree of accu-
racy in general, have a very unfavorable scaling and as a
consequence can only be applied to few electron systems.
QMC, on the other hand, can be applied to systems with
up to several thousand electrons with currently available
computational resources.
Variational Monte Carlo. The simplest quantum

simulation, variational Monte Carlo (VMC), was first in-
troduced by McMillan (McMillan, 1965) for liquid he-
lium (modeled as a single composite particle) and gen-
eralized to fermions by Ceperley et al., 1977. VMC
allows us to optimize the trial function needed in the

projector methods, described below. Let ψT (~R) be an
assumed trial function with adjustable parameters {a}.
Using the Metropolis Monte Carlo technique (Metropolis
et al., 1953), one samples the un-normalized distribution,

|ψT (~R)|2 and calculates an upper bound to the ground
state energy.

E ≤ EV (a) =

∫

d~R Ψ∗
T (
~R)ĤΨT (~R)

∫

d~R Ψ∗
T (
~R)ΨT (~R)

=

∫

d~R |ΨT (~R)|2EL(~R)
∫

d~R |ΨT (~R)|2
(18)

The fluctuations in the energy estimator, the local energy

EL(~R) = [ĤΨT ]/ΨT , are entirely due to inaccuracies of
the trial function: as the trial wave function approaches
the exact eigenfunction, the fluctuations, which control
how quickly the energy converges, decrease to zero. At
the same time, the estimate converges to the exact en-
ergy.
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The Trial Function. The strategy in Variational
Monte Carlo (VMC) is to pick a form for the trial wave
function that incorporates as many properties of the ex-
act many-body wave function as possible, while maintain-
ing enough flexibility to allow for its efficient optimiza-
tion. The pair product trial wave function is the simplest
extension of the Slater determinant of single particle or-
bitals used in mean field treatment of electronic systems:

ΨSJ(~R) = exp



−
∑

i<j

u(rij)



 det[φk(~ri, σi|~R)] (19)

where φk(~r, σ|~R) is the kth spin orbital for a given config-
uration of the protons. The term uij(rij), the (Jastrow)
correlation factor, introduces two-body correlations into
the many body wave function. It is symmetric under par-
ticle exchange; antisymmetry is given by the determinant
only. In the above trial function, we have assumed that
the Jastrow factor u(r) only depends on the distance be-
tween two electrons; more generally it can also depend
on the positions of the nuclei and their spin states. Often
either or both of φk and uij are derived from an approx-
imate theory such as the Random Phase Approximation
(for u) or DFT (for φ).
The spin-orbitals are quite important because they

provide the nodal structure of the trial function crucial
in the fixed node approximation described below. The
choice of orbitals for hydrogen has evolved over the years.
The first QMC calculation of metallic hydrogen (Ceper-
ley and Alder, 1981, 1987a) used plane waves (PW)

θ~k(~r, σ) = exp[ı~k · ~r]. Although they are qualitatively
correct in the metallic phase, since the electron-proton
“cusp” can be taken into account in the correlation fac-
tor u(r), quantitatively accurate results require better
orbitals that include information about the positions of
the ions.
The next step in development came with the work of

Natoli et al., 1993, 1995; Wang et al., 1990, where or-
bitals obtained from a band structure calculations were
employed. Natoli and Ceperley, 1995 established that
energies from plane-waves determinants in metallic hy-
drogen are higher than the values using DFT-LDA or-
bitals by 0.05 eV/atom at the density at which the tran-
sition between molecular and metallic hydrogen is ex-
pected (rs = 1.31).
Turning now to the correlation factors, uij(rij), opti-

mal factors will obey the “cusp” condition at short dis-
tances

duij
dr

∣

∣

∣

∣

0

= −αij , (20)

where αij = 1/2 if i and j have antiparallel spins, oth-
erwise αij = 1/4. Within the Random Phase Approx-
imation (RPA), the correlation factors for the charged
particles have the fourier transforms:

uk = −1

2
+

√

1 +
12rs
k4

(21)

This forms has the exact behavior at both small and
large distances for a metallic system. It is important
to reproduce the correct 1/r behavior at large distances
since that controls the dielectric properties. In prac-
tice, these RPA functions are typically augmented with
flexible forms that preserve the asymptotic behaviors,
e.g. gaussians, but contain free parameters which can
be tuned to improve the trial function.
The first corrections to the pair product trial func-

tion are a three-body correlation term which modifies
the correlation part of the trial function (Jastrow) and
a “backflow” transformation which changes the orbitals
and therefore the nodal structure (or the phase) of the
trial function (Holzmann et al., 2003; Kwon et al., 1993;
Pierleoni et al., 2008). This transformation introduces
correlation effects into the Slater determinant; the energy
and the nodal surfaces of the trial function are improved.
The modified trial function has the form

ΨT (~R,Σ|S) = det[θk(~xi, σi)]e
−U2−U3 (22)

where U2 =
∑

i<j ũ(rij) is the two body correlation fac-

tor discussed before (the˜indicates that it can differ from
the original one, (see Holzmann et al., 2003 for details),
U3 is a three-body term of the form

U3 = −
Ne
∑

i=1





N
∑

j=1

ξij(rij)~rij





2

(23)

and finally the “quasiparticle” coordinates appearing in
the plane wave orbitals are given by

~xi = ~ri +

N
∑

j=1

ηij(rij)~rij ; (i = 1, · · · , Ne) (24)

The RPA approximation has been used (Holzmann
et al., 2003) to provide a general form for the func-
tions ξij(r), ηij(r) in Eqs. (23-24), satisfying the correct
limiting behavior at small and large distances. These
functions can also be augmented with flexible functional
forms and optimized with VMC.
As discussed above, the trial wave function generally

has variational parameters that need to be optimized at
the VMC level. The optimization not only improves the
quality of the final results in projector Monte Carlo meth-
ods, but also improves the efficiency of QMC calcula-
tions, which is directly related to the error of the trial
wave function. Optimization methods in QMC have a
long history (Drummond and Needs, 2005; Toulouse and
Umrigar, 2007; Umrigar et al., 1988), with methods rang-
ing from variance minimization, energy optimization, to
a combination of both. They have received considerable
attention over the last decade leading to the develop-
ment of fairly robust and efficient approaches, like the
linear method of Umrigar et al., 2007, which are capa-
ble not only of optimizing all the parameters in the wave
function, but also of handling extremely flexible wave
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functions with thousands of variational parameters, (At-
taccalite and Sorella, 2008; Clark et al., 2011). Several
forms of trial wave functions beyond the Slater-Jastrow-
backflow from have been explored in recent years with
some success, including pfaffians (Bajdich et al., 2006)
and correlated geminals (Casula et al., 2004).
Projector Monte Carlo. We now describe how to go

beyond VMC by applying a function of the Hamiltonian
to project out the ground state. Because Diffusion Monte
Carlo (DMC) has been extensively reviewed elsewhere,
(e.g. Foulkes et al., 2001), here we discuss a more re-
cent technique, Ground State Path Integral Monte Carlo
(GSPI), also known as Reptation MC. Let us define the
following quantity, formally similar to a partition func-
tion:

Z(t) = 〈ΨT |e−tĤ |ΨT 〉 = 〈ΨT (t/2)|ΨT (t/2)〉. (25)

Here, the projection time t, plays the role of the inverse
temperature. The variational energy of ΨT (t/2) at time
t is the derivative of the logarithm of Z(t):

E(t) = − ∂

∂t
lnZ(t) =

〈Ψ(t/2)|Ĥ|Ψ(t/2)〉
〈Ψ(t/2)|Ψ(t/2)〉 (26)

and the “variance” of ΨT (t/2), given as

σ2
E(t) = − ∂

∂t
E(t) = 〈(Ĥ − E(t))2〉 ≥ 0, (27)

is non-negative implying that the energy decreases mono-
tonically with time. The exact ground state is reached
at large time

lim
t→∞

E(t) = E0 (28)

lim
t→∞

σ2(t) = 0 (29)

as long as the trial wave function has a non-zero overlap
with the ground state wave function. Writing Z(t) in
coordinate space

Z(t) =

∫

d~r1d~r2Ψ
∗
T (~r1)ρ(~r1, ~r2, t)ΨT (~r2) (30)

where ρ(~r1, ~r2, t) = 〈~r1| exp(−tĤ)|~r2〉 is the many-body
thermal density matrix in coordinate space.
Thus, in order to compute any average over the ground

state we need to know the thermal density matrix at large
enough projection time. As we did earlier with Path
Integrals, this is accomplished by breaking the projection
into many small steps exp(−tH) = exp(−τH)n, writing
an explicit form for exp(−τH) and performing the needed
integrals with Monte Carlo. The difference with PIMC
is in the boundary conditions of the paths; instead of
the paths closing on themselves, the paths are open and
projected onto a trial function at both ends. If the trial
wave function ΨT is accurate, GSPI computationally is
a much more efficient way of computing ground state
properties than is PIMC.

As usual, the main difficulty is the fermion sign prob-
lem. For electrons, the trial wavefunction must be anti-
symmetric if two electrons with the same spin are ex-
changed. In general, the trial function is complexed-
valued. Hence the integrand of Eq. (31) is not nec-
essarily positive. One could carry along the phases of
the trial functions at the two ends as part of the cal-
culated average, however, this becomes statistically very
noisy and thus inefficient at large projection time and
for many electrons. This is the ”sign problem” for pro-
jector Monte Carlo. The solution to this problem is the
fixed-node (for real ΨT ) or fixed-phase (for complex ΨT )
approximation: one requires that the unknown solution
have the same phase as the trial function. The result-
ing solutions, although approximate and dependent on
the quality of the nodes of the trial wave function, are
typically very good. The efficiency of the method is also
reasonable for many-particle systems. The approximate
results give an upper bound to the exact energy, the best
upper bound with the assumed phase, and hence, the
exact result if the assumed phase (or nodes) is exact.
The main advantage of GSPI is the fact that observ-

ables other than the energy are readily available from the
simulation, as opposed to other projector methods such
as DMC where further work is needed to obtain most ob-
servables. A crucial aspect of the GSPI method is the way
the paths are sampled; sampling can become extremely
inefficient. An important step forward was made with
the development of the bounce algorithm (Pierleoni and
Ceperley, 2005a,b) which, with respect to the standard
reptation algorithm previously used, allows for the effi-
cient exploration of phase space, and significantly reduces
the probability of obtaining persistent configurations.

2. Coupled Electron-Ion Monte Carlo (CEIMC)

The CEIMC method is based on the BO approxima-
tion. The nuclei are treated at finite temperature, T,
using a Metropolis MC algorithm and the electrons are
treated at zero temperature using a ground state QMC
method. The method can be applied to both classical and
quantum ions in the path integral representation, by sam-
pling the ionic paths from the appropriate distributions
(Pierleoni and Ceperley, 2005b; Pierleoni et al., 2004).
The acceptance probability in the Metropolis method is
given by:

A(~R→ ~R′) = min [1, exp(−β∆EBO)] , (31)

where ~R represent here the set of nuclear coordinates.
For simplicity, we assume a uniform a-priori transition

matrix and ∆EBO = EBO(~R
′) − EBO(~R) is the differ-

ence in BO energy between nuclear states ~R and ~R′ In the
case of quantum ions, ∆EBO is the change in the action
of the associated classical system; see equation (10). In
CEIMC, the estimate of ∆EBO for a given trial function
is computed by QMC and is therefore affected by sta-
tistical noise, which, if ignored, will bias the Metropolis
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random walk. Since the noise in the energy difference de-
creases with the number of Monte Carlo steps as 1/

√
N ,

reducing the noise level by direct simulation to the point
where the bias is negligible is time consuming. To solve
this problem the Penalty Method is used (Ceperley and
Dewing, 1999).
The basic idea of the penalty method is to relax the

requirement of detailed balance for every step in the sim-
ulation and instead require detailed balance to hold only
when we average over the noise distribution. Consider

two ionic states (~R, ~R′) and call δ(~R, ~R′) the “instan-
taneous” energy difference multiplied by β = (kBT )

−1.
Further assume that the average and the variance of

δ(~R, ~R′) over the noise distribution P (δ|~R → ~R′) ex-
ist: Since the noise is normally distributed because of
the Central Limit Theorem (assuming the variance of

δ(~R, ~R′) is finite) (Feller, 1968), it can be shown (Ceper-
ley and Dewing, 1999) that accepting the moves accord-
ing to:

a(δ, χ2, n) = min

[

1,
T (~R′ → ~R)

T (~R→ ~R′)
exp(−δ − uB)

]

, (32)

where uB is a correction because the variance is also es-
timate from the data:

uB =
χ2

2
+

χ4

4(n+ 1)
+

χ6

3(n+ 1)(n+ 3)
+ · · · , (33)

with χ2 = 1
n(n−1)

∑n
i=1(yi− δ)2 being the usual estimate

of the variance of the energy difference directly obtained
by the sample data, and n being the number of statis-

tically uncorrelated estimates of δ(~R, ~R′). Eq.(32) must
be supplemented by the condition χ2/n ≤ 1/4 for the
asymptotic expansion in Eq. (33) to converge.
Eq. (38) is similar to the standard Metropolis ac-

ceptance/rejection rule, with an extra rejection term
uB(> 0) which is related to the level of noise in the elec-
tronic energy difference between the two protonic con-
figuration R,R′. Since we only need to compute energy
difference from QMC, we can use correlated sampling,
a much more efficient method than performing two in-
dependent calculations (Ceperley et al., 2002). The ef-
ficiency of the method is sensitive to the noise level; it
depends on the size of the ionic steps and on the length of
the sampling of the electronic configuration space. If the
noise level is too low (either because we move ions very
little or we run very long electronic calculations) the ex-
tra rejections are significantly reduced but the computer
time required will be very large. On the other hand, if
the noise level is too high, all moves will be rejected from
the penalty term. The optimal noise level depends on
the temperature and is well approximated by χ2 ≈ 1.

One could get the impression that the penalty method
cause a large decrease in the efficiency of CEIMC when
decreasing the temperature, since the noise level in the
energy would need to be at least as low as the tempera-
ture. However, at low temperatures, the nuclei need to

be represented by their own path integrals and the rele-
vant “temperature” is now the inverse of the imaginary
time step τ , rather then the inverse physical temperature
β, and the optimal noise level is τσ = 1 where σ is now
the noise on the energy difference at each time slice of
the nuclear path. For a more detailed discussion on the
implementation of nuclear path integrals in CEIMC see
Pierleoni and Ceperley, 2005b.

We can improve the efficiency of the CEIMC method
by using a multi-level sampling approach. Trial ionic
moves are “screened” by first accepting or rejecting them

using a simple effective potential, Veff (~R):

A1(~R→ ~R′) = min {1, exp[−β∆Veff )]} , (34)

where ∆Veff = (Veff (~R
′) − Veff (~R)). If the move is

accepted, the energy difference is calculated using QMC
and the step accepted or rejected based on:

A2(~R→ ~R′) = min {1, exp[−β(∆EBO −∆Veff )− uB ]} .
(35)

Since the evaluation of the effective potential is orders of
magnitude faster than the evaluation of the QMC energy
difference, the overhead produced by the pre-rejection is
negligible. On the other hand, it can significantly in-
crease the efficiency of the method by eliminating QMC
calculations for “bad” steps, and increasing the effective
acceptance rate.

Another promising approach for QMC-based FP sim-
ulations is that of Attaccalite and Sorella, 2008. In this
approach, Langevin dynamics is used to perform a simu-
lation with forces coming from QMC calculations. Simi-
lar to CEIMC, the forces contain a statistical uncertainty
that will lead to a biased ionic sampling if used in New-
tonian dynamics. Instead, the authors use a modified
Langevin algorithm, robust to noise. They show that it
is possible to add Gaussian correlated noise to the QMC
forces, as long as the covariant matrix of the forces is fi-
nite and known. With this method, they are able to sim-
ulate liquid hydrogen close to the dissociation transition
and predict a stable molecular liquid at room tempera-
ture at 300 GPa. While this calculation used VMC forces
and did not include twist average boundary conditions,
(see discussion on size effects below), the method shows
great promise as a general purpose QMC-based first prin-
ciple method for arbitrary chemical systems. Along with
CEIMC, this method represents one of the frontiers in
the development of next-generation (beyond DFT) first-
principles simulation methods. 4

4 Note that in what is called in the literature, quantum Molecular
Dynamics (QMD), classical dynamics of the ions is performed
with forces computed with density functional theory.
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E. DFT-based First Principles simulations

Almost all first principles simulation methods using a
DFT energy surface are performed with Molecular Dy-
namics (MD), though attempts have been reported using
Monte Carlo (McGrath et al., 2006). There are two gen-
eral ways to use potential energy surfaces from DFT in
a MD simulation: either a fully converged calculation for
the electrons is performed for every nuclear position or
a unified dynamical approach is used to propagate both
electrons and ions simultaneously. Both approaches are
described below. Before describing the solution of the
ionic problem, we make a brief description of DFT meth-
ods, which form the basis of the first-principles Molecular
Dynamics (FPMD) approach. For a more detailed dis-
cussion of DFT and FPMD methods, see (Dykstra, 2005;
Fiolhais et al., 2003; Hafner, 2008; Martin, 2004; Marx
and Hutter, 2009; Mattsson et al., 2005; Parr and Weitao,
1994).

1. Density Functional Theory

Although theories based on functionals of the electron
density have a long history in physics and chemistry, with
the Thomas-Fermi theory as one of the earliest and bet-
ter known examples (Fermi, 1927; Thomas, 1927), the
term Density Functional Theory(Kohanoff, 2006; Mar-
tin, 2004; Parr and Weitao, 1994) refers to the formula-
tion based on Hohenberg–Kohn (HK) theorems (Hohen-
berg and Kohn, 1964) and the Kohn–Sham (KS) ansatz
(Kohn and Sham, 1965)5. The first HK theorem states
that there is a one–to–one correspondence between the
external potential (in this case the potential produced by
the nuclei) and the ground state electronic density. This
means that for every wave function that is the ground
state of some Hamiltonian, the external potential giving
rise to it is unique up to an additive constant. Notice
that while the wave function for the many electron sys-
tem lives in a 3Ne dimensional space, the electron density
is a function of only the 3 spatial coordinates. Thus, in
principle, knowledge of the density implies knowledge of
the wave function and, in turn, of all the properties of
the system. The second HK theorem states that there
exists a universal energy functional of the density, E[n],
defined for any external potential, such that the global
minima of this functional represents the ground state en-
ergy of the system. The density at the minimum gives
the ground state electronic density.

One might hope that the HK theorems could simplify
the description of the many electron problem since it uses
the density rather than the full wave function as the fun-
damental variable, but, in practice, the universal energy

5 We do not describe earlier band theory methods on hydrogen
since those methods have been generally superseded by DFT.

functional is unknown and there is currently no known
accurate way of extracting properties of electronic sys-
tems from the density alone. The approach of Kohn and
Sham (Kohn and Sham, 1965) was to replace the origi-
nal interacting problem by an auxiliary system defined in
terms of non-interacting electrons that is more tractable
and easier to solve. In their formulation of DFT, which
is the implementation commonly used today, the auxil-
iary system is defined such that its ground state electron
density is the same as the density of the interacting sys-
tem. This allows us to write down an explicit form for
the energy functional in terms of the single body orbitals
of the non-interacting system:

EKS [n] = −1

2

N
∑

i=1

|~∇ψi(~r)|2 +
∫

d3~r n(~r) Vext(~r)

+EH [n] + Enn + Exc[n],

EH [n] =
1

2

∫

d3~r d3~r′ n(~r) n(~r′)|~r − ~r′| , (36)

where ψi(~r) are the eigenstates of the non-interacting
Hamiltonian, EH is the Hartree energy (the classi-
cal electrostatic interaction of the density), Enn is the
nuclei-nuclei interaction energy, and Exc accounts for ex-
change and correlation energy. The density of the non-

interacting system is defined by: n(~r) =
∑N

i=1 |ψi(~r)|2.
In the KS formulation all the many body effects are en-

capsulated in the exchange-correlation functional, Exc[n],
which accounts not only for exchange and correlation ef-
fects, but also for many body corrections to the kinetic
energy. Although the existence and uniqueness of this
functional is guaranteed by the HK theorem, its form is
unknown and probably too complicated to be computed
exactly. Nonetheless, it is much easier to find reasonable
approximations for Exc since this term typically repre-
sents a small contribution to the total energy.
The ground state HK theorems were extended to fi-

nite temperature in Mermin, 1965. Although the study
of the finite temperature functional has not received as
much attention over the years, its independent particle
formulation is used frequently in FPMD with a form,
FKS [n] = EKS [n]+TS[n], where EKS [n] is the usual KS
energy functional. The density is a weighted average over
excited states n(~r) =

∑∞
i=1 fi|ψi(~r)|2, fi defines the occu-

pation of state i,(e.g. using the Fermi-Dirac formula) and
the entropy has the form:

S = −
∑

i

fi log fi +
∑

i

(1− fi) log(1− fi). (37)

The free energy functional plays a crucial role in the
study of metals and is the basis of the FEBO method
discussed above. It is found that using a small but fi-
nite temperature often leads to much faster and robust
convergence for certain systems at low temperatures.
The accuracy of DFT depends on the exchange-

correlation functional. The simplest possible form,
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known as the Local Density Approximation (LDA), as-
sumes that the functional is a local function of the den-
sity:

ELDA
xc =

∫

d3~r ǫxc(n(~r)) n(~r), (38)

where ǫxc(n) is the exchange-correlation energy density of
the homogeneous electron gas with density n, calculated
using Quantum Monte Carlo methods by Ceperley and
Alder, 1980 and subsequently parameterized by Perdew
and Zunger, 1981. While the LDA generally produces
reasonable results, in particular for weakly inhomoge-
neous systems, current calculations typically include in-
formation about the density variation, producing better
approximations. In the next level of accuracy, the Gener-
alized Gradient Approximation (GGA), a semi-local ex-
pansion of the exchange-correlation density is used in-
cluding also the density gradient, typically expressed in

terms of the dimensionless combination s = |~∇n|/(2kFn).
There are various implementations of GGA functionals,
e.g. variational forms fitted to reproduce experimental
results in molecular systems and condensed phases, and
implementations based on perturbation treatments. The
Perdew-Burke-Enzerhof (PBE) (Perdew et al., 1996a)
exchange-correlation functional is the most used choice
for dense hydrogen, and, as we will show, produces a
good description at high pressure.
Beyond the GGA approximation, in the

metaGGA formulation (Perdew and Schmidt,
2001) the non-interacting kinetic energy density,

τ(~r) = 1/2
∑

i |~∇ψi(~r)|2, is used in the construction of
the exchange-correlation energy density. In the orbital
dependent formulations(Kümmel and Kronik, 2008),
the Kohn-Sham orbitals are used in the construction
of the exchange-correlation functional. In this case,
a generalized KS formulation must be used because
the resulting potential becomes orbital dependent; this
invalidates the original formulation by HK. Nonetheless,
the use of orbitals still allows for a rigorous formulation
of DFT and, in general, produces a large increase in
accuracy and has become the standard for quantum
chemistry calculations. The best example of orbital
dependent DFT is the hybrid functional approach,
where the exchange-correlation functional includes a
fraction of exact exchange from Hartree-Fock theory
(Becke, 1993). The best known hybrid functionals in the
condensed matter community are PBE0 (Perdew et al.,
1996b), which uses a mixture of 25% of Hartree-Fock
exchange with 75% PBE, and the HSE functional
(Heyd et al., 2003a), which uses a combination of range
separation and the same mixing fractions as in PBE0;
the Hartree-Fock calculation is done only on the short
range part of the potential.
The KS band gap differs from the true one by a dis-

continuity in the derivative of the exchange–correlation
potential ∇xc (Perdew and Levy, 1983) with respect to
density. Since ∇xc = 0 for standard DFs, the width
of the gap at a given density (pressure) as well as the

density at which it actually closes are both underesti-
mated (Johnson and Ashcroft, 2000; Städele and Mar-
tin, 2000). However, the exact exchange method (Städele
et al., 1997, 1999) provides an approximation to ∇xc = 0;
the resulting nonlocality in exchange causes an overesti-
mation of the width of the gap. One can partially can-
cel these errors by mixing a fraction of exact exchange
with a standard DF, such as is done by Heyd-Scuseria-
Ernzerhof (HSE) (Heyd et al., 2003b): relatively accurate
band gaps are obtained (Brothers et al., 2008). Exact ex-
change functionals, e.g. HSE, require significantly more
computational effort compared to a standard DF. An al-
ternative to hybrid functionals are many-body Green’s
function techniques, e.g. the “GW” approximation (Fi-
olhais et al., 2003; Onida et al., 2002), which has been
applied to hydrogen with encouraging results (Chacham
and Louie, 1991; Chacham et al., 1992).
In another problem, most DFs (i.e., those which

treat electron correlations at a local or semilocal level)
cannot describe vdW interactions ( dispersion interac-
tions), giving rise to errors in the application of DFT
to the low-pressure region of the hydrogen phase dia-
gram, where weak vdW interactions between molecules
are very important (Silvera, 1980). Recent progress in
DFT has been made, however, with the advent of so-
called vdW DFs (Dion et al., 2004; Lee et al., 2010)
and semi-empirical density-dependent vdW corrections
(Tkatchenko and Scheffler, 2009).
Once an approximate exchange-correlation functional

is chosen, the DFT energy functional is well defined. For
calculations, we must first choose the representation of
the orbitals, i. e. the basis set. The most common
bases are plane waves and linear combinations of local-
ized functions, e.g. Gaussian functions. For calculations
with periodic boundary conditions, plane waves are nat-
ural since they represent extended, delocalized states and
they do not suffer from superposition errors of localized
bases: the orbitals are written as:

ψi(~r) =
∑

~G

ci~G ei
~G·~r, (39)

where ~G belong to the reciprocal space of the simu-
lation cell and the sum extends over all vectors such
that | ~G|2/2 < Ecut. Ecut is a cutoff parameter that
controls the accuracy of the expansion. The value of
the Ecut needed to achieve a given accuracy depends
on details such as the pseudopotential (see below), and
the nature of the electronic states. While the kinetic
and Coulomb energies are given by sums over ( ~G, the
exchange-correlation energy is most easily evaluated as a
sum over a real space grid. The Fast Fourier Transform
method is used to transform between real and reciprocal
space during the solution.
However, plane waves require a dense grid to repre-

sent localized or highly oscillatory orbitals. This creates
a problem for core states which localized in the core re-
gion. In the majority of systems, core states are chem-
ically inert so we should be able to remove them from
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the calculation without affecting the chemical proper-
ties which are determined by the valence states. Pseu-
dopotentials are renormalized electron-nuclei potentials
for the valence states that include both the Coulomb at-
traction of the nuclei as well as the screening effects re-
sulting from the presence of core electrons. By employing
pseudopotentials, not only do we remove core states from
the calculation, but we also obtain valence states which
are smooth in the core region; this greatly reduces the
computational demands. There are many different types
of pseudopotentials with different levels of transferabil-
ity (the ability to reproduce the properties of the atom
under different environments) and complexity. For addi-
tional details see Martin, 2004.

In DFT calculations, pseudopotentials are used for
both hydrogen and helium even though neither of them
possesses core electrons, but because the Coulomb po-
tential, 1/r, requires a large plane wave cutoff greatly in-
creasing the computational demands of the calculations.
Since the pseudopotentials are built to reproduce the
scattering properties of the atom, valence states should
not be significantly affected outside the core region.

2. Treatment of proton zero point motion

Within the normal framework of DFT, the treatment
of nuclear quantum effects poses challenges. These are
especially important in hydrogen, due to the light pro-
ton mass. Often, the treatment of ZPM is perturbative,
adding corrections to the ground-state DFT results. Per-
haps the simplest approximation is obtained by consider-
ing the ZPM to be harmonic, by neglecting anharmonic
terms. The harmonic approximation gives the zero-point
energy ZPE as an integral over the phonon density of
states F (ω):

EZPE =

∫

dω F (ω)~ω/2 . (40)

While this approximation is widely employed, it has long
been known that this approximation can easily fail for
light elements. For example, early calculations by Straus
and Ashcroft, 1977 showed that the harmonic approxi-
mation can incorrectly predict the relative stabilities of
atomic crystal structures (see Section IV.A.6). In par-
ticular, only by treating coupling between the phonons
self-consistently (i.e., including anharmonicity) are some
structures energetically stabilized. In fact, anharmonic
terms can be roughly equal in magnitude to the harmonic
ones (Natoli et al., 1993). While methods for approxi-
mating anharmonicity in ZPE estimates, such as the self-
consistent ab initio lattice dynamics method (Souvatzis
et al., 2008) exist, these are still approximate, consider-
ing protons as classical particles. Rigorous inclusion of
proton ZPM can be obtained by QMC calculations treat-
ing both the nuclei and electrons quantum mechanically
at T = 0 K (Ceperley and Alder, 1987a; Natoli et al.,

1993) or by using Path Integral methods at a sufficiently
low temperature as discussed elsewhere in this section.

3. Born-Oppenheimer Molecular Dynamics

The simplest, and more computationally time con-
suming way to perform FPMD simulations with DFT
is to evaluate the forces on the nuclei at each MD
step from a fully converged DFT calculation. This ap-
proach is known as Born-Oppenheimer Molecular Dy-
namics (BOMD) (Marx and Hutter, 2009; Payne et al.,
1992). The forces on the ions are calculated by the
Hellman-Feynman theorem (Feynman, 1939; Hellmann,
1937), valid for the orbitals and density that minimize
the KS energy functional:

~Fi = −~∇iE
KS
BO = −~∇imin{φk}EKS [φ]

= −
〈

{φk}
∣

∣

∣

~∇iĤKS

∣

∣

∣ {φk}
〉

. (41)

Since the Hellmann-Feynman theorem is only applica-
ble at the variational minimum of the KS energy func-
tional, the DFT calculation must be well converged. This
makes the approach more expensive than the alternative
method described below. Almost all DFT calculations
employ iterative schemes to minimize the KS energy func-
tional. The number of iterations needed to reach con-
vergence depends crucially on the initial guess for the
orbitals and electronic density. In order to make the
calculations fast enough to make the BOMD approach
practical for large systems, the orbitals at time t+dt are
estimated from the results at times (t, t− dt, t− 2dt, ...),
thus saving large factors of computer time, especially for
systems with many electrons.
In the case of Free Energy Born-Oppenheimer simula-

tions, which includes thermal electronic excitations, the
forces are calculated as the gradients of the electronic free

energy functional, ~Fi = −~∇iF
KS
BO , corresponding to the

approximation described in section II.B .

4. Car-Parrinello Molecular Dynamics

The Car-Parrinello Molecular Dynamics method
(CPMD) (Car and Parrinello, 1985; Vuilleumier, 2006)
gave birth to the field of first-principles simulations; it
represented a major breakthrough in our ability to use
computers to study the properties of materials. The ap-
proach enabled the direct study of the thermodynamic,
optical and transport properties of materials using much
more realistic interatomic forces since the forces were cal-
culated “on the fly” using DFT. CPMD is the main al-
ternative to BOMD, appropriate if there is a gap in the
excitation spectrum of the electrons. In the CPMD ap-
proach, instead of treating the electron and nuclear prob-
lems independently, the dynamics of both the ions and
the electronic KS orbitals are done simultaneously, but
still within the the BO approximation. The Lagrangian,



Glossary 16

used to define the dynamics, depends on the potential
energy surface, regarded as a function, not only of the
nuclear positions, but also of the electronic degrees of

freedom: EKS = EKS(~R, {Ψi}). The orthogonality be-
tween KS orbitals is enforced using Lagrangian multipli-
ers. The resulting Lagrangian is given by:

L =

Ne
∑

i=1

µ

∫

d~r |Ψ̇i(~r)|2 +
Nn
∑

I=1

1

2
MI

~̇R2
I − EKS(Ψ, ~R)

+
∑

i,j

Λij [< Ψi|Ψj > −δij ], (42)

where µ is a fictitious mass assigned to the electrons.
This leads to a set of equations of motion for the orbitals
and nuclear positions:

µΨ̈i(~r, t) = −ĤKSΨi(~r) +
∑

k

ΛikΨk(~r, t),

MI
~̈RI = ~FKS

I = −∂E
KS

∂ ~RI

. (43)

In addition, thermostats and barostats are added to pro-
duce constant temperature or variable cell algorithms
(Hutter et al., 1995; Martyna et al., 1994; Tuckerman
and Parrinello, 1994a,b)

A simulation is begun using orbitals that minimize the
KS energy functional. During the simulation, both nu-
clear positions and electronic orbitals are evolved in time
simultaneously. The fictitious mass is adjusted so that
the electronic sub-system remains sufficiently close to
the Born-Oppenheimer energy surface, while the nuclei
are kept at the physical temperature, T. In a success-
ful application of the method, the electronic degrees of
freedom oscillate around the instantaneous BO energy
surface throughout the entire simulation. This can only
be achieved if the flow of energy between the electronic
and nuclear degrees of freedom is eliminated, or reduced
to a point where long enough simulations are possible
before heating effects of the electronic degrees of free-
dom are seen. For the orbitals to follow the nuclei adi-
abatically and energy transfer not take place, the power
spectra in the frequency domain of the two subsystems
should not overlap (Marx and Hutter, 2000) . This can
be achieved for a system with an electronic gap and for
a careful choice of the (fictitious) mass of the electronic
orbitals. But for metals, the flow of energy between the
two sub-systems is hard to control. In practice, a sepa-
rate thermostat can be applied to the electronic degrees
of freedom to maintain them at low temperature. With
the development of faster and more robust algorithms for
DFT calculations, BOMD simulations have slowly gained
popularity over CPMD, since they are easier to control
and offer smaller chances of failure compared to CPMD.
Nonetheless, CPMD is still a widely used and applicable
method for FPMD simulations.

5. Path Integral Molecular Dynamics

As mentioned in subsection II.B, it is possible to in-
troduce nuclear quantum effects within a BO framework
with Path Integral methods. The ionic quantum problem
at finite temperature is mapped to a classical problem
where each ion is represented by a ring polymer system;
see II.B. If DFT is used to determine the forces arising
from the electrons with either of the methods presented
above, (CPMD or BO), the usual approach is to simulate
ionic degrees of freedom (the ring polymers) also with
molecular dynamics: Path Integral Molecular Dynam-
ics (PIMD). To achieve adequate sampling of the phase
space of the ionic polymers, well designed thermostats
need to be used (Marx and Parrinello, 1996; Tuckerman
et al., 1993). Recent developments by Ceriotti M., et
al. (Ceriotti et al., 2011, 2010) represent a very promis-
ing alternative to thermalize PIMD simulations efficiently
using generalized Langevin equations. Note that much
more computer time is needed to include quantum effects
of the nuclei, typically by one to two orders of magnitude,
depending on the temperature and mass of the nuclei.

F. Size Effects

No discussion of simulation methods is complete with-
out discussing the problem of size effects. Simulation
methods try to reproduce the properties of bulk mate-
rials by studying a finite number of atoms in periodic
boundary conditions. Since the particles interact with
their (artificial) periodic images, the resulting calcula-
tions depend on the number of atoms used in the prim-
itive cell. In principle, the most straight forward way
to eliminate these effects is to study larger systems until
the computed properties are independent of the num-
ber of atoms. While this is possible in simulations with
semi-empirical potentials, first principles simulations are
limited to systems of up to ∼1000 electrons. Hence, great
care must be taken to ensure that results are close to the
thermodynamic limit.
Size effects come in various forms and affect results in

different ways; they can be divided into electronic and
structural origin. Electronic size effects come about be-
cause electronic wavefunctions can be sensitive to the size
and shape of the simulation cell and the coulomb inter-
action between particles that are far apart must be cor-
rectly taken into account. This is particularly important
in metallic systems where electronic states are delocal-
ized over extended regions of the material. In electronic
structure methods based on the single body picture like
DFT, size effects are handled by integrating over the Bril-
louin zone of the unit cell, often called k-point integration
(Martin, 2004). In this case it is possible to remove all
electronic size effects from a unit cell of arbitrary size by
considering sufficiently dense grids in the Brillouin zone;
smaller unit cells require denser grids. In calculations
at the so-called Γ-point Brillouin zone integration is not
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done, and are thus susceptible to finite size errors. For
all many-body methods such as QMC and PIMC there
is, in principle, no way to obtain fully converged results
using small unit cells exclusively; it is always necessary
to consider progressively larger unit cells until results can
be safely extrapolated to the infinite cell limit.
The understanding of size effects in many body systems

has progressed considerably over the last decade. The
first step came with the introduction of twist averages
boundary conditions (TABC) in QMC simulations (Lin
et al., 2001). TABC is the generalization of Brillouin zone
integration to many-body quantum systems and is used
to eliminate shell effects in the kinetic energy of metallic
systems. By twisted boundary conditions, we mean:

Ψθ(~r1, ..., ~rj + ~L, ..., ~rN ) = eiθΨθ(~r1, ..., ~rj , ..., ~rN ). (44)

where Ψθ is the many-body wave function of the system

and ~L is the size of the periodic cell. Observables are
then averaged over the all twist vectors, similar to the
procedure in single-body theories:

〈Â〉 =
∫ π

−π

d~θ

(2π)3
〈Ψθ|Â|Ψθ〉. (45)

In Chiesa et al., 2006 it was shown that most of the re-
maining finite size errors in the energy come from dis-
cretization errors induced by the use of PBC, in par-
ticular in the incorrect treatment of charge-charge in-
teractions at wavelengths greater than the simulation
cell. This work lead to explicit formulae for the finite
size corrections to the energy and the pressure that are
quite accurate in practice (Chiesa et al., 2006; Drum-
mond et al., 2008). The method has been extended to
the Fermi-liquid parameters in the homogeneous electron
gas (Holzmann et al., 2011), and the renormalization fac-
tor of sodium (Huotari et al., 2010).

Size effects can also affect structural properties of the
ions as the following two examples illustrate. For a finite
simulation cell, only density fluctuations smaller than the
length of the simulation are non-zero. This can be impor-
tant near a phase transitions, in particular, near critical
points in the phase diagram, since there fluctuations have
a longer wavelength. Secondly, in simulations of solids,
only structures commensurate with the chosen simulation
cell can be reached in a simulation causing a possible bias
in structural predictions.

G. Other Theoretical Methods

Here we briefly review other theoretical methods ap-
plied to hydrogen and helium at high pressure, focusing
on the type of approximations employed and their ex-
pected range of applicability. With the rapid develop-
ment and widespread use of first-principles methods over
the last two decades, the use of semi-empirical meth-
ods has become less important. Nonetheless, they can

produce reliable and accurate results, and can be com-
bined with first principles methods, for example, by using
FPMD results to determine intermolecular forces (Erco-
lessi and Adams, 1994).

1. One Component and Screened Coulomb Plasma Models

For temperatures and densities where the atoms are
fully ionized, the electrons can be integrated out, and
the proton-proton pair interaction treated using linear
response theory. In the limit of very high density, the
electrons behave as a rigid background and the system
can be modeled as the One Component Plasma. This
model, with classical protons, has been extensively stud-
ied since the early days of simulation (Brush et al., 1966)
to compute thermodynamics, structural and dynamical
properties (Hansen, 1973; Hansen et al., 1975; Pollock
and Hansen, 1973; Vieillefosse and Hansen, 1975). The
effect of quantum zero point motion on the melting line
has also been studied(Jones and Ceperley, 1996) by Path
Integral Monte Carlo.

At lower densities, the electrons cannot be treated as
a uniform, non-responding background. However, if the
density is high enough (rs < 0.6) for the electron-proton
coupling to be a small perturbation to the electron sys-
tem, the electronic screening can be computed by linear
response theory, and the electron-proton system mapped
onto a system of protons interacting through an effec-
tive pair potential; the bare Coulomb potential screened
by the electrons: the Screened Coulomb Plasma model
(Ashcroft and Stroud, 1978; Galam and Hansen, 1976;
Hansen and McDonald, 1981). This model has been stud-
ied in the 1970’s by Monte Carlo and thermodynamic per-
turbation methods in conditions of high temperature (low
coulomb coupling) relevant to stellar interiors (Dharma-
wardana and Perrot, 2002; Hubbard, 1972; Hubbard and
Slattery, 1971; Ichimaru, 1982; Ross and Seale, 1974; Tot-
suji and Tokami, 1984), and, recently, at much lower tem-
perature to compute the melting line (Liberatore et al.,
2011b) of metallic hydrogen and deuterium at ultra-high
pressure. The electronic response function, the property
of the many body electron system that determines the ef-
fective proton’s interaction, has been the subject of many
investigations: many-body techniques, perturbation the-
ory and diagrammatic theory, and numerical work using
DFT and QMC (Giuliani and Vignale, 2005). Note that
these are ab-initio models, however, the range of validity
of the description in terms of an effective interaction is
limited to very high density or pressure. At lower den-
sity, non-linear response theory needs be used and the
interaction between protons is no longer simply a pair
potential, complicating the description as an effective in-
teraction(Nagao et al., 2003).
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2. Semi-empirical Methods and Chemical Models

At low density, hydrogen forms molecules and an accu-
rate description can be obtained by semi-empirical mod-
els. At densities where the bond length of H2 is less
than the distance between molecules, it is accurate to as-
sume thatH2 is a spherical particle interacting with other
molecules through pair potentials, in particular for para-
hydrogen and ortho-deuterium. The effective potential
has been optimized to represent the EOS of solid and
liquid hydrogen at low pressure by Silvera and Goldman
(SG) (Silvera and Goldman, 1978). The SG potential
reproduces the fluid isotherms of hydrogen from 75 to
300 K up to 2.0 GPa and the melting curve to 5.7 GPa,
but can not predict the Hugoniot curves. To remedy this
Ross et al., 1983 proposed a modified effective potential,
the Ross, Ree, and Young (RRY) potential, by softening
the SG potential at short range. Further improvements
to match experimental data at higher pressures and tem-
peratures in the liquid phase have been proposed by Ross,
Ree and Young and by Hemley, and tested in Matsuishi
et al., 2003. Unfortunately, the transferability of effec-
tive potentials (i.e. the ability of a given potential fit in
one set of conditions to adequately represent data for dif-
ferent conditions) is quite limited even when the system
remains in the same thermodynamic phase.

More difficult is to extend the semi-empirical approach
to higher temperatures and/or higher densities under
conditions where hydrogen is changing from molecular, to
atomic and, ultimately, to the plasma state. Both pres-
sure and temperature play roles in the transformation. In
order to model this complex system, free energy models
based on the chemical picture have been developed. One
assumes a fixed set of chemical species, using pair interac-
tions typically taken from empirical data, calculations or
from perturbation theory. The free energy of the system
is typically calculated assuming that the partition func-
tion factorizes into internal (vibrational-rotational and
electronic excitations) and external (interaction between
centers of mass) degrees of freedom. The resulting model
is solved using some form of thermodynamic perturbation
theory, integral equations from the theory of liquids or
classical simulations.

Several chemical models for hydrogen and hydrogen-
helium mixtures have been proposed in the astrophysical
community over the last 40 years (Ebeling and Richert,
1985; Juranek and Redmer, 2000; Juranek et al., 2003;
Ross et al., 1983; Saumon et al., 1995). An elaborate
chemical model, known as the SCVH model, has been
developed in Saumon et al., 1995 by assuming a mixture
of H2, H, e

− and p+ and suitable pair potentials. This
model reproduces most of the experimental data avail-
able, both at low temperature/high pressure (before crys-
tallization) and high temperature/high pressure. The hy-
drogen EOS provided by this model is a standard for the
planetary physics community. Another well known model
for hydrogen was developed in Kerley, 1972, 2003a. Its
latest version produces results in very good agreement

with first-principles simulations after a simple correction
is made (Morales et al., 2012). A similar strategy has
been developed to model high pressure helium and to
predict its EOS in Winisdoerfer and Chabrier, 2005; how-
ever, existing models for H-He mixtures are still based on
the EOS for the two pure systems and the linear mixing
assumption. We show in Section V.B the limitations of
this assumption.

H. Comparison of Simulation Methods

To conclude our discussion of computational meth-
ods for dense hydrogen and helium we briefly summarize
some of the strengths and weaknesses of two most well
developed simulation methods: methods based on DFT
and those based on QMC. Both methods are reliable ab
initio methods and have been made feasible by the com-
puter hardware available today.
Although DFT is, in principle, an exact theory, in prac-

tice only approximations to the density functional (DF)
are known. This results in a number of challenges as-
sociated with the application of DFT to the study of
dense hydrogen and helium. At present, many DFs ex-
ist(Burke, 2012). Moreover, it is not a priori known
which is the most accurate for a given problem with-
out experimental data or explicitly correlated calcula-
tions (e.g., QMC) to compare to. In other words, for
any given problem, there is no internal measure of error
within DFT with respect to the choice of the DF.
DFT in general shows serious deficiencies describing

non-equilibrium geometries, such as reaction barriers and
configurations with competing bonding patterns (Foulkes
et al., 2001; Martin, 2004). The simplest example, also
particularly pertinent to our focus, is the molecular-to-
atomic transition in hydrogen, H2 → 2H as two pro-
tons are pulled apart. The quality of DFT description
of each state (H2 and 2H) is likely not equivalent, and
so the physics associated with molecular dissociation will
be poorly described. A very much related problem, dis-
cussed already in Section II.D.1 is the accurate descrip-
tion of the band gap. Clearly one needs a reliable method
for the band gap to describe well the metal-insulator
transition in hydrogen.
QMC methods, are able to get around some of the

problems that DFT methods have. For hydrogen, per-
haps the biggest advantage is that QMC is able to treat
molecular dissociation rather simply, while DFT meth-
ods have difficulty. In addition, no assumption is made
about the density functional, and QMC does not need
either pseudopotentials or basis sets. Another advan-
tage of QMC methods is their ability to treat the zero
point motion of the protons in the same formalism, i.e.
without making the Born-Oppenheimer approximation:
at zero temperature by using projector methods for both
electrons and nuclei, or using RPIMC for temperatures
at non-zero temperatures.
However, QMC methods typically take more computer
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resources than DFT methods and they come with differ-
ent types of errors, both statistical and systematic. QMC
methods face a difficulty arising from the mass differ-
ence of the proton and electron: since Mp/me ≃ 1836,
the electrons move much faster than the protons in the
DMC dynamics, resulting in a very significant compu-
tational cost. At finite temperature, the mass ratio re-
quires electronic paths to be much longer than nuclear
paths causing difficulty in sampling the path space. The
major conceptual bottleneck in QMC calculations is the
“fermion sign problem”: a direct QMC calculation is
very inefficient; one has to resort to the fixed node or
fixed-phase approximation for calculations of extended
systems, requiring an ansatz for when the wavefunction
or density matrix changes sign. In most cases, fixed-node
QMC methods have proved to be much more accurate
than mean field methods. In contrast to DFT, the varia-
tional principle provides a rigorous way of deciding which
ansatz is superior. RPIMC remains the only method to
test(Militzer and Ceperley, 2001) predictions of chemical
models(Saumon et al., 1995) in the low density region
of the phase diagram (P ≤ 1Gpa) where molecules are
well formed and nuclear motion occurs in the electronic
ground state. In this situation the detailed structure of
the nodes become irrelevant since electrons are paired
in the bonding singlet state inside each molecule while
molecules interact with the dipole-induced-dipole mech-
anism. Conventional DFT methods will be inaccurate
and also very expensive unless localized basis sets are
used.
In the past, QMC simulations have been limited in

their ability to do simulations of sufficiently large sys-
tems. However, because QMC can be more easily
adapted to a highly parallel environment, the computa-
tional limitations have lessened. As we will show below,
DFT and QMC, in fact, are giving similar results in many
cases, providing confidence in their predictions.

III. EXPERIMENTAL METHODS

The two most important experimental methods that
have been used in the last decades to study hydrogen at
high pressures, are dynamic compression methods (Nel-
lis, 2006b) based on shock experiments and static com-
pression methods (Goncharov and Hemley, 2006; Mao
and Hemley, 1994) based on diamond anvil cells. These
two complementary techniques are applicable in differ-
ent pressure and temperature conditions, as discussed in
Section I. In this section, we outline these methods, in
order to understand the results that follow.

A. Dynamical Compression

Dynamical compression techniques apply a very strong
force to a small sample and then measure the properties
of the resulting shockwave and its aftermath with special-

ized techniques. These methods can achieve higher pres-
sures and temperatures than static methods, for example
∼500 GPa in H2 and temperatures of ∼50000 K. How-
ever, the measurements typically have large uncertainties
(e.g., in the resulting pressures and temperatures, or in
the measured properties) since the measurements must
be done very rapidly. In addition, there are limitations
in the accessible values of pressure and temperature, as
discussed below.
Traditional dynamical methods apply one or more

shocks to a system, producing a sharp increase in pres-
sure within a short time (e.g., ∼ 100 GPa over 1 ps).
A number of techniques have been developed to pro-
duce shocks, including gas guns (Nellis et al., 1983a),
laser-driven compression (Collins et al., 1998a,b; Da Silva
et al., 1997; Hicks et al., 2009; Sano et al., 2011b), mag-
netically driven flyers (Knudson and Desjarlais, 2009;
Knudson et al., 2001, 2004), and hemi-spherically con-
verging explosives (Boriskov et al., 2005). Because the
shock process is adiabatic, large increases in temperature
also occur with the increases in pressure.
If the applied force is strong enough, a shock wave

propagates into the sample. One measures the velocity
of the material at the surface of the sample and that of
the resulting shock wave. Assuming the shock is a plane,
the conservation laws of mass, momentum and energy
lead to the Rankine–Hugoniot equations. In principle,
this gives the pressure, energy and density of the post-
shocked material in terms of the measured velocities and
the values of the initial energy, pressure, and density.
The locus of such states reachable from a given initial
state using different amounts of applied force is called
the Hugoniot curve, and satisfies the equation (Zeldovich
and Raizer, 1967):

E − E0 =
p+ p0

2
(v0 − v) (46)

where E, p, v are specific internal energy, pressure and
specific volume, respectively and the subscript 0 refers
to the state of the sample prior to the shock. One can
explore different regions in phase space, by shocking pre-
compressed samples, or measuring properties after the
shock wave reflects from a boundary, the so-called dou-
ble shock. However, shock compression cannot access all
values of temperature and pressure.
Hugoniot states for D2 up to ∼100 GPa achieved by

gas-guns (Nellis et al., 1983a), pulsed laser (Da Silva
et al., 1997), magnetically-driven flyers (Knudson and
Desjarlais, 2009), and hemispherically converging explo-
sives (Boriskov et al., 2005) are shown in Fig. 1. Many
shock measurements have been performed on deuterium
rather than hydrogen, because the initial density of deu-
terium is higher (its larger mass reduces the zero point
motion, the molecular bond length and the spacing be-
tween molecules) and has a lower shock impedance.
Therefore, the same shock applied to hydrogen and deu-
terium will achieve higher pressures in deuterium. The
principle Hugoniot for hydrogen has recently been mea-
sured up to 55 GPa using laser-driven shock compression
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(Sano et al., 2011b). See section IV.B.1 for a detailed
discussion of the measured and calculated Hugoniots of
H2 and D2.
More complex dynamical methods exist to reach off-

Hugoniot states; the simplest is a double-shock compres-
sion (Fortov et al., 2003b; Nellis et al., 1983a). Double-
shock data for D2 (Nellis et al., 1983a) is also shown in
Fig. 1. Other methods include explosive-driven gener-
ators (Fortov et al., 2007), as well as shock reverbera-
tion (Weir et al., 1996) and isentropic compression (Nel-
lis, 2006b). The latter methods are capable of achiev-
ing lower temperatures than in a single shock, as the
compression occurs over much longer timescales. In fact,
dynamic pressures and temperatures can be tuned in-
dependently between states on the Hugoniot and those
obtained by isentropic compression, allowing many (P ,
T ) points to be reached. However, because of their com-
plexity, it is more difficult to assess errors of the mea-
surements.
If the data obtainable from dynamical measurements

were highly accurate, besides being useful for planetary
modeling, they would constitute an excellent test of sim-
ulation methods. However, the shock velocities need to
be measured very precisely and accurately to get reliable
EOS points. Furthermore, there are many assumptions
in analyzing the measurements. For a single shock com-
pression, one assumes that the material in front of the
shock is not preheated, that the material after the shock
passes through is in equilibrium, that the shock remains
one dimensional and parallel to the camera angle, and
that there are no other shock waves reflected from the
boundaries of the sample. Note that the temperature is
not directly measured but is usually estimated by fitting
the spectrum of the emitted radiation to a grey-body for-
mula. Hence, a further assumption is that the radiation
is predominately coming from the material after it has
been shocked and not from other parts of the apparatus.
There are advantages and disadvantages to dynami-

cal compression techniques; while shock compression can
reach relatively high pressures and temperatures, at the
same time, the conditions are transient (the time of the
shock), reaching general (P , T ) is difficult, and there are
large uncertainties in the measured properties.

B. Static Compression

Static compression techniques, produced by diamond
anvil cells can realize extreme (P , T ) conditions (Gon-
charov and Hemley, 2006; Mao and Hemley, 1994). Be-
cause those conditions are static or nearly so, they are
more precise and accurate than the dynamical experi-
ments but the pressures and temperatures are also more
limited. Recent advancements allow pressures near the
limit of mechanical strength of the diamond anvil cells
(DACs), ∼320 GPa in hydrogen (Goncharov et al., 2001;
Loubeyre et al., 2002); temperatures of thousands of K
can also be obtained, for example 1500 K at 140 GPa was

recently obtained in fluid H2 (Subramanian et al., 2011)
by heating of a small portion of the sample. The range
of these conditions is outlined in Fig. 1.

In general, static compression methods are based on
compressing a sample between diamond anvils (used for
their large mechanical strength) and heating it using
external resistive couplers or lasers. Metal gaskets are
placed along the sides of the system to prevent the es-
cape of the sample. Optical measurements, Raman or
x-ray scattering can be used to monitor the sample.

At high pressures, the chemical reactivity of a mate-
rial often greatly increases, and hydrogen is no exception.
This causes challenges, as chemical reactions can occur
with both the gasket material and the diamond anvils.
The reaction with the gasket can contaminate the sam-
ple. Also hydrogen can penetrate into small cracks and
escape, or catalyze the growth of fractures in the dia-
mond. Because hydrogen is so compressible, stresses in
the diamond anvil are more of a problem than with other
samples, and limit achievable pressures to lower values
than in less compressible materials. However, the recent
advancement of using liners, such as gold (Datchi et al.,
2000), have allowed pressures near the limit of mechani-
cal strength of the diamond anvils ∼320 GPa (Goncharov
et al., 2001; Loubeyre et al., 2002).

Creating high temperatures has also been a challenge
for static methods since the diamonds become less sta-
ble. Two types of heating methods exist, external resis-
tive heating and laser heating. External heating provides
uniform temperatures, but limits accessible temperatures
to less than ∼1000 K. Laser heating of a small part of
the sample is capable of producing higher temperatures,
but can result in large thermal gradients. However, re-
cent advancements now allow relatively uniform heating
(Lin et al., 2004); temperatures up to ∼1500 K have been
achieved in H2 (Subramanian et al., 2011).

Measuring the precise pressures and temperatures that
are achieved is challenging. Pressure sensors often rely
on the optical properties of materials, such as the fluo-
rescent properties of small ruby crystals embedded in the
sample. Their signals decrease and broaden with tem-
perature. Both temperature and pressure sensors only
measure local conditions and their gradients may be im-
portant. There are additional challenges associated with
the temperatures affecting pressures, drift of the diamond
anvil cells, etc. However, many of these have been min-
imized to a large extent, as outlined in Goncharov and
Hemley, 2006, allowing relatively precise (P , T ) points
to be studied.

The major advantage of static compression methods
is that they allow long, accurate, and repeatable mea-
surements at precise thermodynamic (P , T ) conditions.
These include optical properties, such as IR and Raman
spectra (Goncharov et al., 2001; Loubeyre et al., 2002),
and structural properties using X-ray diffraction (Aka-
hama et al., 2010) though the low electron density of hy-
drogen makes the signal very weak. These measurements
have been vital for understanding the low-temperature
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properties of hydrogen, as we will discuss in Section IV.

C. Coupling Static and Dynamic Compressions

Recently, very promising techniques that combine
static and dynamic compressions hold promise to explore
the phase diagram of hydrogen and other systems over
a broader range of conditions. Since the Hugoniot is en-
tirely determined by the initial state of the sample, pre-
compression of the sample allows one to explore a range
of final states. The feasibility of these experiments was
demonstrated on hydrogen. Loubeyre et al., 2004, for ex-
ample, used DACs to precompress hydrogen, which was
then shocked using a focused laser. This demonstration
provided consistent results for thermodynamical points
between the principal Hugoniot of cryogenic hydrogen
subjected to a single shock to those generated by a re-
verberating shock wave experiment (Weir et al., 1996).
In another study (Grishechkin et al., 2004b) precom-
pressed gaseous targets were shocked. The same tech-
nique has been further applied to other systems, such
as high pressure helium and water (Eggert et al., 2008a;
Jeanloz et al., 2007).

IV. HYDROGEN UNDER EXTREME CONDITIONS

In this section, we discuss the properties of pure hy-
drogen under extreme conditions. Because experimen-
tal studies under such conditions pose many challenges,
much of our understanding comes from theoretical pre-
dictions and simulations. Theoretical and computational
efforts to understand the low-temperature properties are
first discussed, namely, the solid phases. Properties of
the fluid phase follow, with a particular focus on the
liquid–liquid phase transition. A discussion of some novel
theoretically-predicted phases including superconducting
and low- or zero-temperature liquid states, concludes this
section.

A. Solid Phases

Experimental measurements have revealed the exis-
tence of at least three low-temperature solid phases, with
the possibility of two more at elevated temperatures.
What is currently known about the phase diagram from
experiments and simulations is shown in Fig. 3; we dis-
cuss this below. Theoretical calculations have greatly
contributed to its understanding, predicting the existence
and qualitative properties prior to experimental discov-
ery of several phases. In this subsection, we first dis-
cuss the low-temperature (ground-state) solid phases as
well as those at elevated temperatures that have been
experimentally observed, but where much less is known.
Following this, we discuss theoretical and computational
predictions of the existence of additional phases at pres-
sures beyond those currently experimentally accessible.
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FIG. 3 (Color online) High-pressure phase diagrams of solid
molecular H2 and D2 , adapted from Goncharov et al., 2011.
Open and filled circles are Raman measurements for H2 and
D2 , respectively, and open squares are IR data for H2 .
Brown triangles are recent experimental data on H2 , and
the black dashed lines indicates inferred boundaries for the
recently proposed phase IV at elevated temperatures (Howie
et al., 2012). Green dot-dashed lines indicates boundaries for
high pressure phases obtained by AIRSS and quasi-harmonic
methods (Pickard et al., 2012). Note that the dotted line and
the existence of phase I’ are not certain and are still matters
of debate (Goncharov et al., 2011).

Finally in this section, we consider metallization and
molecular dissociation to an atomic state, effects that
may or may not occur simultaneously.

1. Solid Molecular Hydrogen at Low-temperature

Diamond anvil experiments have made many impor-
tant discoveries concerning the phase diagram of solid
molecular hydrogen at high pressure (Mao and Hemley,
1994). Figure 3 shows the experimental phase diagram of
solid H2 and D2 at high pressure and low temperatures.
The three low-temperature phases firmly established ex-
perimentally are labeled as phases I, II and III in figure
3. Note that in the literature, the latter two phases are
also known as the Broken Symmetry Phase (BSP) and
the hydrogen-A (H-A) phase, respectively.
Starting at low densities, anisotropic intermolecular in-

teractions between hydrogen molecules are weak. Be-
cause of this, the angular momentum of an individual
molecule (J) remains a good quantum number. Further-
more, since there is a large separation of the rotational
energy levels, only the J = 0 (para- or p-H2) or J = 1
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(ortho- or o-H2) states are thermally populated at low
temperatures. At relatively low pressures and tempera-
tures, para-H2 molecules freely rotate about their center
of mass (i.e., they have a spherically symmetric wave-
function, and the molecular bond angles are completely
disordered, even at T = 0 K), while ortho-H2 can align at
very low temperature. Further, at low pressures, the in-
terconversion between ortho- and para- is very slow and
the phase diagram is sensitive to their concentration, be-
cause ortho- and para- molecules interact differently. It
has been found that p-H2 at low pressure crystallizes
into the close-packed hcp structure (Hazen et al., 1987;
Keesom et al., 1930), referred to as Phase I, whereas
molecules in o-H2 orient along the body diagonals of
an fcc structure with Pa3 symmetry (Clouter and Gush,
1965; Mills and Schuch, 1965; Mills et al., 1973; Yarnell
et al., 1974). An extensive review of the low pressure the-
ory and experiment for solid molecular hydrogen is given
in Silvera, 1980.

As the pressure is increased, at temperatures lower
than 140 K, the rotational symmetry of Phase I is bro-
ken, and hydrogen transforms into Phase II (hence the
designation as the BSP). The structure of Phase II is de-
termined by zero point rotational energy of the molecules.
Hence, the phase I-II boundary is sensitive to isotope as
well as temperature; at very low temperatures, the tran-
sition to the Phase II occurs at 27.8 GPa in o-D2 (Silvera
and Wijngaarden, 1981), 70 GPa in HD (Moshary et al.,
1993), and 110 GPa (Lorenzana et al., 1990).

As the pressure is further increased to ∼ 150 GPa,
molecular hydrogen undergoes another transition (Hem-
ley and Mao, 1988; Lorenzana et al., 1989) to Phase III.
The thermodynamic stability range of Phase III has re-
cently been experimentally demonstrated to extend to
pressures over 300 GPa and temperatures up 300 K (Zha
et al., 2012). The transition into Phase III is more robust;
the transition pressure is relatively insensitive to the iso-
tope, hinting that Phase III is determined by the Born-
Oppenheimer energy of interacting static molecules.

Experimental measurements have only been able to
provide limited information about the molecular orien-
tations in phases II and III. The small sample sizes and
low x-ray scattering efficiency (proportional to the atomic
number squared) pose challenges to structural identifica-
tions using x-rays. However, recent measurements up to
183 GPa indicate that the center of each molecule re-
mains close to the Phase I hcp lattice sites (Akahama
et al., 2010) in both phases II and III. The basic hcp
hexagonal symmetry was also seen in neutron scatter-
ing measurements of Phase II (D2) (Goncharenko and
Loubeyre, 2005), also showing evidence for partial orien-
tational ordering.

The other important experimental constraint comes
from Raman spectroscopy. At the Phase II–III transi-
tion, a jump in the intermolecular vibron (Hemley and
Mao, 1988; Lorenzana et al., 1989) and a large increase in
absorbance of the IR-active vibron are observed. Also,
the number of low-frequency Raman-active modes and

possible second Raman vibron indicate that in Phase III,
the primitive cell should contain at least four molecules
(Goncharov et al., 1998). Further, the fact that the
IR and Raman vibrons and phonons have different fre-
quencies implies a center of symmetry. The presence of
Raman-active phonons means that any center of inver-
sion is between molecules. Three IR modes and one Ra-
man mode are observed in Phase II (Cui et al., 1995).
There have been many attempts to identify the struc-

tures of phases II and III, and using various types of sim-
ulation methods. But as is discussed below, a consensus
has not yet been reached.
At relatively low pressures (thus pertinent to both o-

H2 in Phase I and Phase II), an appropriate simplified
model of solid molecular hydrogen has found extensive
use (Freiman et al., 2003); this model consists of quantum
rotors fixed on a lattice and interacting as quadrupoles
(Felsteiner, 1965; Nakamura, 1955):

H =

N
∑

i=1

BL2
i +

∑

i<j

V (Ωi,Ωi;Rij) . (47)

Here B is the rotational constant (the presence of which
highlights expected differences in isotopes), Li is the an-
gular momentum operator of rotor i, Ωi is its orientation,
Rij is the vector between rotors i and j and V the in-
teraction energy between two quadrupoles. Note that
an array of ordered (classical) electric quadrupoles (EQ)
has a lower energy in an fcc lattice than in hcp, explain-
ing the observed structure and ordering observed in o-H2.
While this assumes classical rotors, it was later supported
with an analysis of the quantum mechanical rigid-rotor
model (Raich and James, 1966). Since the observed lat-
tice is hcp, presumably effects not described in the above
Hamiltonian favor the hcp versus fcc structure.
There have been several simulations of extensions of

the quantum rotor model, e.g. the PIMC simulations by
(Runge et al., 1992) to Phase II. These calculations used a
more accurate pairwise intermolecular potential derived
from LDA calculations. They found that o-D2 would
indeed order first into a Pa3 structure, but then trans-
form to an ordered hcp structure, while p-H2 would order
directly into an ordered hcp structure. Unfortunately,
while qualitatively consistent with what one would ex-
pect (e.g., the isotope effect of the transition as well as
finite-temperature effects), a group theoretical analysis
showed that both structures are quantitatively incom-
patible with the observed number of IR (3) and Raman
(1) modes (Cui et al., 1995).
Later calculations expanded on the initial quantum ro-

tor calculations. PIMC calculations by Surh et al., 1997
considered both fcc and hcp lattices of rotors, finding a
structure with P63/m symmetry, a hexagonal structure
where some molecules are in-plane and some perpendic-
ular. Again, the group theoretical analysis by Cui et al.,
1995 also rules out P63/m, due to an insufficient number
of IR vibrons. Although, the PIMC calculations by Cui
et al., 1997 suggested a Pa3-type ordering, similar to that



Glossary 23

in p-H2 and o-D2 at low-pressure and temperature (i.e.,
molecules along the body diagonals), but remaining in a
hcp lattice. Interestingly, this latter prediction has re-
cently been suggested to be qualitatively (but not neces-
sarily quantitatively) consistent with neutron diffraction
of D2 in a P -3 structure (Goncharenko and Loubeyre,
2005). It is clear that while the quantum-rotor model
appears to provide insight into phases I and II, quanti-
tative predictions for Phase II remain lacking, which is
presumably attributable to approximations in the under-
lying potential between rotors.

Other approaches to predict molecular orientations are
based on fully ab initio calculations, including DFT or
QMC. Typically, these have been based on evaluating
BO energies for static lattices, which as will be discussed
below, neglects important contributions to the energet-
ics from proton ZPM and thermal effects. The appli-
cability to Phase II is therefore questionable. An early
QMC simulation (Ceperley and Alder, 1987a), predating
the experimental discovery of phases II and III, and did,
in fact, include ZPM), led to the prediction of a phase
transition at roughly the observed pressure (110 GPa).
However, the trial wavefunctions employed and computer
resources available for those calculations were very lim-
ited compared with those currently available. Nonethe-
less, that calculation importantly demonstrated that the
energies involved in localizing the molecular orientation
were such that the transition should occur at roughly the
observed pressure.

A number of candidate structures have been proposed
for Phase II (and III) such as Cmc21 (Kitamura et al.,
2000), P21/c (Johnson and Ashcroft, 2000; Zhang et al.,
2007), and Pca21 (Kohanoff et al., 1997; Nagao et al.,
1999; Städele and Martin, 2000). The lattices and molec-
ular orderings are shown in Fig. 4. Besides differing
molecular orientations, they structures are all similar,
consisting of orthorhombic primitive cells with lattice
sites close to those of an hcp structure.

Among the structures shown in Fig. 4, Pca21 has per-
haps been the most thoroughly studied, and is consid-
ered a likely candidate for Phase II. Pca21 was first sug-
gested as the ground-state of a classical quadrupolar sys-
tem (Kitaigorodskii and Mirskaya, 1965), and then later
proposed as the ground-state of H2 based on DFT calcu-
lations (Nagara and Nakamura, 1992). DFT calculations
employing an exact-exchange functional further showed
that indeed Pca21 is the most stable static structure
(Städele and Martin, 2000).

However, the correctness of Pca21 is called into ques-
tion by the Raman experiments; a single mode is actu-
ally observed, while there should be four if the structure
is indeed Pca21. An explanation might found in either a
relatively small signal-to-noise ratio or cancelations be-
tween various vibrational modes (Cui et al., 1995; Ko-
hanoff et al., 1997).

Recently, methods to determine the crystal structure
have been proposed (Woodley and Catlow, 2008), and
some have been applied to hydrogen. These methods

FIG. 4 Possible molecular orientations (indicated via arrows)
for dense hydrogen (phases II and III), assuming 4 molecules
per unit-cell (Städele and Martin, 2000). The solid (empty)
arrows represent molecules at c (c/2) lattice points (out of the
plane). Molecules are tilted with respect to the c axis at an
angle α ∼55 °, and δ indicates the distance of each molecular
center of mass from the hcp lattice site.

attempt to find the most stable crystal structure over
a much broader class of lattices. In the ab initio ran-
dom structure searching (AIRSS) method (Pickard and
Needs, 2006), for example, one relaxes a number of ran-
domly chosen unit cells by minimizing the BO-DFT en-
ergy. After a large number of attempts, one assumes that
the correct structure has been found. Such AIRSS cal-
culations have been applied to H2 by Pickard and Needs,
2007, once again finding the Pca21 and P63/m struc-
ture suggested earlier. However, as mentioned above and
which we will further elaborate on below, these searches
do not directly take into account ZPM, and thus even if
the assumed density functional were sufficiently accurate,
would not necessarily correspond to the physical struc-
tures. To date, the searches are based on determining
molecular orderings with classical protons, and adding
an approximate ZPE at a second step. Dynamical lattice
calculations using DFT linear-response theory, (Zhang
et al., 2006) demonstrated that Pca21 remains stable if
ZPE is taken into account in comparison to other ex-
amined structures in the pressure range 110 ≤ P ≤ 150
GPa. Furthermore, even though this approach lacks ro-
tational motion, an examination of the rotational ener-
gies of a set of candidate structures, including the P63/m
structure, suggests that rotational motion in Pca21 is the
least energetic (Moraldi, 2009). Although, recent PIMD
calculations suggests the possibility that the structure of
Phase II is isotope dependent (Geneste et al., 2012), with
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FIG. 5 The most likely candidate for Phase III of hydrogen,
the C2/c structure predicted by Pickard and Needs, 2007. As
indicated in the image and discussed in the text, this structure
consists of rings of three molecules, responsible for the strong
optical activity.

the description of hydrogen in terms of a single classical
structure not possible.

Early on, Barbee III et al., 1989 used DFT to pre-
dict Phase III structures, finding molecular bonds aligned
with the c-axis of hcp lattice. However, later DFT calcu-
lations found more stable structures with molecules ori-
ented in the (a, b) plane (Kaxiras and Broughton, 1992;
Kaxiras et al., 1991). QMC calculations by (Natoli et al.,
1995) agreed with this assessment, finding the orientation
angle to be roughly 60°as shown in Fig. 4 and consistent
with the experimental data . Note that molecular orien-
tation along c will not exhibit IR activity. By considering
larger unit cells Nagara and Nakamura, 1992 found the
hexagonal Pca21 structure, shown in Fig. 4. However,
this structure is inconsistent with phase III (Cui et al.,
1995). Finally, a structure search using 12 molecules close
to distorted hcp lattice (Pickard and Needs, 2007), found
the most stable structure to be C2/c with sites consis-
tent with the limited diffraction data (Akahama et al.,
2010)) (see Fig. 5). This agrees qualitatively well with
the spectroscopic data for phase III, including intense IR
activity, because the molecules in this structure are no
longer symmetric, and have a dipole moment.

As can be seen, the use of computational methods to
predict the structures of phases II and III of hydrogen has
an unexpected complexity. While qualitative insight has
been provided, the results have not been quantitative:
Pca21 and C2/c are plausible candidates for phases II
and III, respectively, but open questions remain.

Although methods to find systematically the lowest en-

ergy structures have made impressive advances recently
(Woodley and Catlow, 2008), albeit at a greatly increased
computational cost, challenges remain. One problem is
to estimate the effect of proton ZPM accurately; we will
return to this issue in Section IV.A.6. By estimating
the ZPE using frozen-phonon calculations, Surh et al.,
1993 suggested that c-oriented molecules in an hcp lattice
were actually more stable than Pca21, contrary to the
initial static-lattice predictions. Of course, more exact
estimates of ZPM could be treated via a PIMD, PIMC,
or QMC (Ceperley and Alder, 1987a) approach, at an in-
creased computational cost. Secondly, structure search-
ing relies on DFT, the accuracy of which depends on
the assumed functional. Many calculations employ local
or semi-local (GGA) exchange DFs which do not ade-
quately describe vdW at low pressure, while at higher
pressure severely underestimate the band gap (Städele
and Martin, 2000). As discussed in Section II.H, recent
advancements have been made to improve DFs so that
one may hope for much more reliable predictions in the
very near future. It is clear that more work needs to be
done both theoretically and experimentally to map out
the molecular phases.

2. Solid Molecular Hydrogen at High-temperature

Experiments and calculations suggest that at least two
additional phases of hydrogen may exist at elevated tem-
peratures.

Goncharov et al., 1995 noticed a change in the slope of
the I–III phase-line of D2 along with a subtle discontinu-
ity of the intramolecular vibron as a function of pressure.
In addition, the observed discontinuity in the vibron fre-
quency across the I-III transition line become vanishingly
small above 254K. It was suggested that there is another
phase, denoted by I′, located at higher temperture than
phase I (T ≥ 170K) and isostructural with phase III
in with a critical (or tricritical) point where the vibron
discontinuity vanishes (see figure 5 of ref. (Goncharov
et al., 1995)). A further support in favor of phase I′was
provided by a PIMC calculations based on the quantum
rotor model (see Section IV.A.1) by Surh et al., 1997.
However, the accuracy of the used effective intermolec-
ular potentials are unknown. Further experimental sup-
port to Phase I′was provided by Baer et al., 2007, 2009
using coherent anti-Stokes Raman spectroscopy on deu-
terium samples. Comparing the pressure dependence of
the Raman shift of the D2 vibron along two isotherms,
at 77K and at 300K, they observed a change of slope in
the difference around 140GPa which they ascribed to the
signature of the phase transition from Phase I to Phase
I′along the 300K isotherm, in agreement with Surh et al.,
1997 and in qualitative agreement with the early picture
of Goncharov et al., 1995. However, to reconcile the two
different experiments, the I-I′phase line would need to
have a negative slope (see fig. 3) and should exhibit a
strong temperature dependence not observed in the early
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FIG. 6 (Color online) Theoretical and experimental predic-
tion for phase IV (Howie et al., 2012; Pickard et al., 2012).
The structure consists of graphene-like layers.

experiments (Goncharov et al., 1995). Recently, Gon-
charov et al., 2011 performed a more refined study and
concluded that the new data and analysis do not support
the existence of phase I′. As can be seen, uncertainties
still remain surrounding the existence and the details of
phase I′and further systematic investigations are neces-
sary.

Recently Raman and visible transmission spectroscopy
measurements at room temperature (T ∼ 300K)
(Eremets and Troyan, 2011; Howie et al., 2012) sug-
gest yet a further phase-transition, an entropically-driven
(and reversible) one to a new Phase IV 6. For example, af-
ter compressing to phase III, Howie et al., 2012 observed
three spectroscopic signals near 220 GPa indicative of a
phase transition: (i) the appearance of the second funda-
mental vibrational mode, (ii) a dramatic softening and
broadening of the first fundamental vibrational mode,
and (iii) the appearance of new low-frequency phonon
excitations.

The Raman spectra suggest that two distinct local
environments exist in Phase IV (Howie et al., 2012);
and by comparing this data to the previously-predicted
ground-state structures of solid hydrogen (Pickard and
Needs, 2007), Howie et al., 2012 suggest that Phase IV
could be a mixture of graphene-like layers and unbound
H2 molecules, such as shown in Fig. 6. Note that the
graphene-like layers are shown with equal distances be-
tween protons in Fig. 6 (corresponding to the Ibam struc-
ture of Pickard and Needs, 2007.) However, experiments
suggest that equal bond distances only occur at higher

6 A transition to a high pressure-high temperature phase was al-
ready reported (Mao and Hemley, 1989) but not characterized

pressure; at lower pressures, H2 dimers undergo pairing
fluctuations (Howie et al., 2012), possibly resulting in
the lower-symmetry Pbcn structure (Pickard and Needs,
2007).
Immediately following the experimental evidence for

Phase IV (Eremets and Troyan, 2011; Howie et al., 2012),
AIRSS was re-applied to the problem of high-pressure
molecular hydrogen (Pickard et al., 2012), using larger
unit cells than previously. A number of consistent mixed
phases, similar to Ibam (Fig. 6) were found, but with
space groups Pc. Particularly interesting about these is
that by estimating the ZPE and its entropic contribution
to the free energy within the quasi-harmonic approxima-
tion, they become thermally stable relative to the pre-
sumed structure for phase III, C2/c (Pickard and Needs,
2007), consistent with experiment (Howie et al., 2012).
One must keep in mind that the errors involved in the
quasi-harmonic approximation and the used density func-
tional can be larger than the differences in energies of the
various proposed structures.
Around the same time of these measurements and cal-

culations, however, Zha et al., 2012 performed IR and
optical absorption measurements using DACs at similar
thermodynamic points that were studied by Eremets and
Troyan, 2011; Howie et al., 2012. Their measurement did
not reveal strong evidence for, or even suggest, a transi-
tion to a new phase, however, such a transition could not
be completely ruled out.

3. Additional Solid Molecular Phases

DAC measurements indicate that the thermodynamic
stability range of Phase III is quite large; the strong
IR absorption of the vibron (Goncharov et al., 1998)
was demonstrated to persist up to at least 320 GPa
at relatively low temperatures (Goncharov et al., 2001;
Loubeyre et al., 2002). More recent measurements (Zha
et al., 2012) have extended this range even further, to
360 GPa at low temperatures as well as up to 300 K at
somewhat lower pressures. Computational predictions
support the large stability range of the molecular phase,
but at the same time suggest that additional solid phases
may exist at elevated pressures.
The recent AIRSS study by Pickard and Needs, 2007

(see Section IV.A.1) predicted not only a plethora of
structures for phases II and III, but also suggested two
further phase transitions. Above 285 GPa, these searches
(Pickard and Needs, 2007) and a more recent analysis
(Pickard et al., 2012) suggest that Phase III will trans-
form to a structure with Cmca symmetry and 12 atoms
in the unit cell, which is thus referred to as Cmca-12, as
shown in Fig. 7. Cmca-12 is rather similar to the (pre-
sumed) structure of Phase III (C2/c, Fig. 5); for example,
consisting of three-molecule rings, except the layering in
Cmca-12 has the form . . .ABA. . . , the molecules lie flat
within each layer, and the distortion of the molecular
centers from hcp packing is larger.
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FIG. 7 (Color online) A single layer of the Cmca-12 structure
(Pickard and Needs, 2007) at 300 GPa (left) and the C2/c(2)
structure (Liu et al., 2012) at 500 GPa (right). Due to the
higher compression, C2/c(2) has been enlarged relative to
Cmca-12. The other predicted high-pressure molecular phase,
Cmca, occurring at pressures intermediate between Cmca-12
and C2/c(2), is shown in Fig. 4.

Considering ZPM in the quasi-harmonic approxima-
tion, the transition from Phase III is predicted to be
mainly pressure driven (i.e., temperature-independent),
occurring at either 240GPa (Pickard and Needs, 2007) or
at ∼285 GPa (Pickard et al., 2012), as indicated in the
phase diagram in Fig. 3. One might wonder why the tran-
sition to Cmca-12 has not been detected in the DAC ex-
periments (Goncharov et al., 2001; Loubeyre et al., 2002;
Zha et al., 2012). However, Pickard et al., 2012 suggest
that the drop in the IR vibron frequency observed be-
tween ∼292 – 330 GPa (Zha et al., 2012) is consistent
with a phase transition to Cmca-12. Of course, it is also
plausible that there are inaccuracies in the calculations
that affect these predictions, such as the DF employed
in the DFT calculations or the perturbative treatment
of proton ZPM, both of which are expected to become
increasingly important with increasing pressure. Further
calculations and experiments will be necessary to assess
the accuracy of these predictions.
The AIRSS study by Pickard and Needs, 2007 also pre-

dicted a further phase transition at 385 GPa, from Cmca-
12 to Cmca originally proposed by (Edwards et al., 1996);
that structure is shown in Fig. 4.
Very recently, an alternative to AIRSS, the particle-

swarm optimization (PSO) method for structure predic-
tion (Wang et al., 2010), was applied to dense hydrogen
(Liu et al., 2012) and found a another stable H2 phase
beyond Cmca in the pressure range 470 – 590 GPa. In-
terestingly, this structure possesses two different nearest-
neighbor proton separations (which can roughly be called
intramolecular bonds), in a space group C2/c(2) [we have
added the designation (2) to distinguish it from the C2/c
structure predicted for Phase III], also shown in Fig. 7.
Furthermore, these bond distances are larger than the
free-space intramolecular separation of the Cmca struc-
ture (∼0.88 Å, compared to 0.74 Å or 0.78 Å, respec-
tively), suggesting a sequence of structures that occur as

the system changes from molecular to atomic hydrogen.
Labet et al., 2012a,b,c,d recently considered the pro-

cess of molecular dissociation in depth, by focusing on the
relationship between and variations of intra- and inter-
molecular bond lengths with pressure: more precisely the
shortest (rH−H (P )) and second-shortest (RH2−H2

) pro-
ton distances. To quantify their results, an equalization
function ξ (P ) at pressure P is defined as,

ξ (P ) = 1− RH2−H2
(P )− rH−H (P )

RH2−H2
(P1 atm)− rH−H (P1 atm)

. (48)

ξ is an order parameter, evolving from ξ = 0 (free-space
molecules) to 1 (an atomic state where all proton dis-
tances are equal) during dissociation. Focusing on the
structures predicted in the AIRSS study by Pickard and
Needs, 2007, Labet et al., 2012a,b,c,d found a discon-
tinuous shift at the transition from Cmca to the atomic
phase, leading them to propose an intermediate phase ex-
ists allowing continuous dissociation. While the proposed
static lattices have a higher energy than Cmca (Edwards
et al., 1996; Pickard and Needs, 2007) and C2/c(2) (Liu
et al., 2012)], those continuous structures could be stabi-
lized by proton ZPM, not included in their calculations.
Nonetheless, the results offer insight into molecular dis-
sociation, and suggest a continuous path that may occur
as the molecular lattice is compressed.

4. Melting curve of the molecular crystal

Significant progress has been made both experimen-
tally and computationally in determining the melting
curve of hydrogen, as recently reviewed in Silvera and
Deemyad, 2009. At ambient pressure, H2 and D2 crystal-
lize into an hcp structure at temperatures of 14 and 19 K,
respectively (Silvera, 1980). Before the development of
DAC techniques, measurements of the melting line of hy-
drogen were limited to pressures below ∼2 GPa (Lieben-
berg et al., 1978). DAC experiments (Diatschenko and
Chu, 1981; Diatschenko et al., 1985) extended the melt-
ing line to pressures above 7 GPa and fit to a modified
Simon equation. With improvements in DAC technology
and heating techniques, Datchi et al., 2000 and Grego-
ryanz et al., 2003 were able, by monitoring the shift in
the Raman-active vibron, to measure the melting line up
to 15 and 44 GPa, respectively, as reported in Fig. 8.
The measurements by Gregoryanz et al., 2003 found a
decrease in the slope of the melting line with respect to
pressure, and suggested a maximum in the curve. This
maximum was, in fact, suggested earlier by Datchi et al.,
2000, on the basis of an extrapolation of the Kechin melt-
ing curve, which has a maximum in the melting line near
128 GPa and 1100 K.
Using constant pressure CPMD simulations with clas-

sical protons, Scandolo, 2003 predicted that the the melt-
ing line at higher pressures will have a negative slope, as
a consequence of a liquid-liquid phase-transition (see Sec-
tion IV.B.2). Following that prediction, two-phase (solid
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FIG. 8 Reentrant melting line of the Phase I. Experimental
data: red crosses (Datchi et al., 2000), green left-triangles
(Gregoryanz et al., 2003), turquoise X’s (Deemyad and Sil-
vera, 2008), violet up-triangles (Eremets and Trojan, 2009)
and purple dashed circles (Subramanian et al., 2011). Theo-
retical predictions: BOMD (orange triangles (Bonev et al.,
2004a)), free-energy calculations (solid black line (Morales
et al., 2010b)). The orange dashed-curve is a fit of the Datchi,
Gregoryanz and Bonev data to a Kechin equation, while the
black dashed curve is a fit to the Morales data using the same
functional form. A stable fluid point predicted by MD us-
ing QMC forces (green star (Attaccalite and Sorella, 2008)).
Shown below the melting curve are the experimental solid
phases (identical to Fig. 3 including recently reported metal-
lic transition (Eremets and Troyan, 2011).

and liquid) CPMD simulations were performed to trace
the melting line to higher pressures (Bonev et al., 2004a).
A maximum in the melting line below 1000 K was found,
as well as a negative slope that extrapolates to 0 K near
400 GPa. Of course, such extrapolations do not take into
account phase changes in the liquid or solid phases at
higher pressures. These calculations were recently cor-
roborated by Morales et al., 2010b up to a pressure of
200 GPa: the melting line of hydrogen was calculated
by comparing the (DFT) Gibbs free-energy of the liq-
uid and solid molecular phases (Phase I, hcp rotation-
ally disordered). Recent measurements using laser heat-
ing of hydrogen in a DAC (Deemyad and Silvera, 2008)
have observed a maximum and subsequent decrease of
the melting temperature with increasing pressure. These
measurements are consistent with those more recently re-
ported by Eremets and Trojan, 2009; Subramanian et al.,
2011. The various measurements and theoretical predic-
tions are shown in Fig. 8.

The comparison of the experimental data to the DFT
predictions of melting for pressures between 10 and 140
GPa is a gratifying confirmation of their accuracy. How-
ever, we note that at pressures when metallization is oc-

curring on the melting line (estimated to be at about
250 GPa and 500 - 600K), one expects local or semi-local
forms of the assumed DFT functional to bias the results
and predictions using these functionals to be much less
accurate. Also, we note that the effect of the quan-
tum motion of the protons on the melting line tends
to cancel out only if the crystal and liquid phase are
both molecular or both atomic. Otherwise, ZPM of the
protons needs to be taken into account in determining
the melting temperature. Despite this expected inaccu-
racy, the Kechin equation (Kechin, 2004a,b) Tm(K) =
14.025(1 + Pm/a)

bexp(−P/c) has been used to extrapo-
late the low pressure data to higher pressures. In Fig.
8, two such extrapolations are reported. The first one,
reported using an orange dashed line, considers experi-
mental points from Datchi et al., 2000 and Gregoryanz
et al., 2003 and FPMD points from Bonev et al., 2004a,
suggesting a = 0.030355, b = 0.59991, c = 137, while the
second one considers only simulation results from free-
energy calculations (Morales et al., 2010b), suggesting
a = 0.1129, b = 0.7155, c = 149. These extrapolations,
suggest that at higher pressure, the molecular crystal
phase might vanish in favor of a low-temperature liquid
phase with very unusual properties (see Section IV.C.2).
However, extrapolations based on the low pressure crys-
tal structures are highly susceptible to error.

5. The Metallization of solid Molecular Hydrogen

Wigner and Huntington, 1935 predicted that hydrogen
would undergo an insulator-to-metal (IM) transition at
sufficiently high pressure. For the general Hamiltonian
in Eq. (1), one can easily show that the potential energy
scales as r−1

s while the kinetic energy as r−2
s . Hence, as

the density and pressure increase (rs → 0), the kinetic
energy will dominate. Since the free particle wavefunc-
tion minimizes the kinetic energy, this implies that any
electronic system will go to an uncorrelated wavefunc-
tion: a simple metal. To determine precisely how and
when hydrogen at low temperature becomes a metal has
been a major question, and, has been termed the “holy
grail” of high-pressure physics.
We note that at non-zero temperature, there is always

some thermal excitation of carriers, and thus some con-
ductivity, so a precise definition of the IM transition is
only possible at zero temperature. In a later section, we
will discuss the shock experimental measurements of the
conductivity of (Nellis et al., 1999; Weir et al., 1996),
where the IM transition was observed at high temper-
ature (∼2600 K) near 140 GPa in the liquid hydrogen
phase. See also recent reviews (Maksimov and Shilov,
1999; Robitaille, 2011).
The early assumption was that the IM transition would

be associated with molecular dissociation to the atomic
state (Abrikosov, 1954; Wigner and Huntington, 1935).
However, Hartree–Fock calculations using the exact ex-
change operator (Ramaker et al., 1975) as well as band-
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structure calculations (Friedli and Ashcroft, 1977) sug-
gested that metallization may instead occur in the molec-
ular phase; as change in density causes the molecular
bands to shift around, there can be a band gap clo-
sure(Mazin and Cohen, 1995), either direct or indirect.
This can occur when the bandwidths of the 1σg and
1σu bands of the molecular orbitals become larger than
their splitting, and thus overlap. Initial predictions sug-
gested molecular metallization near 150 GPa, and so it
was thought that the phase II → III transition could be
the onset of metallization (Hanfland et al., 1993). But
this is not the case, and finding the transition remains an
open problem; both how it occurs and at what pressure.

Metallization of solid molecular hydrogen has been re-
ported in several experiments (Maksimov and Shilov,
1999), most recently in DAC experiments near 300 K and
∼ 265 GPa (Eremets and Troyan, 2011). However, opin-
ions concerning the results have been mixed (Jephcoat,
2011; Nellis et al., 2012). Further, other DAC experi-
ments near the same thermodynamic conditions by Zha
et al., 2012 report a semi-metallic state, rather than a
metal. At lower temperatures, however, the experimental
results agree that insulating molecular hydrogen exists
up to the highest pressure currently achievable, 320 GPa
(Goncharov et al., 2001; Loubeyre et al., 2002). Extrap-
olations of optical measurements of the band-gap provide
an estimate that closure should occur between pressures
of 325 – 450 GPa (Goncharov et al., 2001; Loubeyre et al.,
2002). This of course assumes that there are no further
crystal structure changes above 320GPa, and that gap
closes smoothly as a function of pressure.

If it is difficult for the DAC to achieve metallization,
predicting the (IM) transition also remains challenging.
The first problem arises from the ignorance of the high
pressure crystal structure, as discussed earlier. Since
each crystal structure has a much different arrangement
of bands, without the knowledge of the crystal structures,
one cannot say much about the metallization(Barbee III
et al., 1989). Transition pressure predictions have thus
varied greatly, ranging, for example, from 200 – 450
GPa. Since the most recent predictions have converged
on the Cmca phase Fig. 4) as the most likely candi-
date for high-pressure molecular hydrogen (Johnson and
Ashcroft, 2000; McMahon and Ceperley, 2011a; Pickard
and Needs, 2007), its electronic structure repeatedly ex-
amined.

In addition to this challenges, there are also difficul-
ties in calculating the effects of the electron correlation
and zero point motion of the protons. Most calcula-
tions have used the local or semi-local DFT functional
which are known to underestimate band gaps (Perdew
and Levy, 1983; Sham and Schlüter, 1983) implying that
the IM transition density will be underestimated (Oliva
and Ashcroft, 1981a,b). See Fig. 9 where this effect
has been calculated in molecular hydrogen. The error
in the band gap is related to lack of the derivative dis-
continuity of the exchange-correlation energy, as well as
the self-interaction error and can be reduced by using

FIG. 9 Electronic band gaps for molecular hydrogen in a hcp
lattice with molecules oriented along the c axis (Städele and
Martin, 2000). No zero point motion was included.

the much more computationally expensive quasiparticle
methods (Chacham and Louie, 1991), methods that in-
clude exact-exchange (Städele and Martin, 2000), and
calculations based on the many-body GW method (John-
son and Ashcroft, 2000). These calculations have shown
that the band gaps in hydrogen are indeed underesti-
mated by ∼ 1–2 eV in molecular hydrogen, as can be
seen in Fig. 9, for molecular hydrogen in an hcp lattice.
Note that exact-exchange calculations slightly underesti-
mate the gap (Jones and Gunnarsson, 1989). With such
increased gaps, the IM transition is predicted to occur
near pressures of at least 400 GPa (∼0.4 mol/cm3), in
agreement with experimental extrapolations (Goncharov
et al., 2001; Loubeyre et al., 2002).

Another issue which has received much less attention
is the effect of zero point motion of the protons. If
one can assume that the molecular phase has the pro-
tons confined near lattice sites, then we can treat the
ZPM as an effect of electron–phonon coupling. It is
known that this can affect both the magnitude of the
band gap, and its dependence on density and temper-
ature (Allen and Cardona, 1981a,b). It is reasonable
to expect that the influence of this should be especially
important in molecular hydrogen, where the electron–
phonon coupling is particularly strong (Cudazzo et al.,
2008, 2010a,b) (see also Section IV.C.1). However, treat-
ing this self-consistently within the framework of DFT
calculations,i.e., non-perturbatively, including its effect
on band gaps and energetics is currently not straight-
forward. One can, however, envision the possibility of
such calculations using fully ab initio QMC calculations
(Ceperley and Alder, 1987b; Natoli et al., 1995), which
also would not suffer the band gap problems discussed
above.
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6. Atomic crystal phases

In a landmark publication, Wigner and Huntington,
1935 suggested that molecular hydrogen would dissoci-
ate to an atomic state at high pressure, and further that
any Bravais lattice of such a state would be metallic.
Their predictions were that the atomic phase would be-
come energetically favorable at ∼25 GPa. Of course, this
prediction was long before the availability of numerical
methods or experimental techniques to create such pres-
sures. Ever since this prediction, the pressure required
to form this state has been pushed ever upwards, but the
transition to the atomic lattice is yet to be observed. The
most recent predictions (Liu et al., 2012; McMahon and
Ceperley, 2011a; Pickard and Needs, 2007) suggest that
at least ∼500 GPa will be required.

The most fundamental property, for which the pre-
dictions of other properties rely on, is the crystal struc-
ture. Naively, one might expect hydrogen to assume a
relatively simple crystal structure because at high pres-
sures, as we discussed in the previous section, the system
will become a free-electron metal (Ashcroft and Mermin,
1976). At sufficiently high density, the lattice of pro-
tons will interact with the bare, unscreened Coulomb-
potential; and, as is well-known, the structure minimizing
the Coulomb potential is the bcc lattice, which was thus
the primary structure considered in Wigner and Hunt-
ington, 1935.

However, it has turned out that the alkali metals, such
as lithium and sodium, that are free-electron like at am-
bient conditions and should become moreso under pres-
sure, exhibit rather exotic and complex pressure-induced
structural transitions (Rousseau et al., 2011). The sim-
ple scaling argument fails because even a small amount
of electronic screening of the proton–proton interaction
is enough to destabilize the bcc lattice. It is plausible
that atomic hydrogen will instead undergo an analogous
sequence of transitions as a function of temperature and
pressure.

Some of the early work proposed anisotropic struc-
tures, such as layered ones (Brovman et al., 1972a; Ka-
gan et al., 1977) reminiscent of the graphite-type struc-
ture [also considered by Wigner and Huntington, 1935],
as well as filamentary structures (Ebina and Miyagi,
1989; Nagara, 1989). Anisotropic structures were also
considered by Barbee III et al., 1989 and Barbee III
and Cohen, 1991, the latter study drawing a structural
analogy with the 9R ground-state structure of ambient-
pressure lithium (Overhauser, 1984). Other studies, how-
ever, predicted isotropic structures (Ceperley and Alder,
1987a; Nagao et al., 1997; Natoli et al., 1993; Straus and
Ashcroft, 1977).

A central challenge to modeling hydrogen and these
predictions is the accurate treatment of proton ZPM, as
discussed in Section II.E.2. While the simple harmonic
approximation, Eq. (40), continues to be used (Liu et al.,
2012; McMahon and Ceperley, 2011a; Pickard and Needs,
2007), Straus and Ashcroft, 1977 demonstrated that the

FIG. 10 (Color online) Predicted ground-state structures of
atomic metallic hydrogen: (left) I41/amd at 500 GPa (McMa-
hon and Ceperley, 2011a; Nagao et al., 1997; Pickard and
Needs, 2007); (middle) Cmcm at 2.5 TPa (Liu et al., 2012);
(right) I-43d at 3.5 TPa (Liu et al., 2012). Bonds are drawn
between nearest neighbors.

simple harmonic approximation can fail, using a family
of face-centered tetragonal structures (similar, in fact,
to those considered again in later studies (Nagao et al.,
1997)). Only by including anharmonicity, for example,
were some structures found to be energetically stabilized,
in this case the isotropic fcc structure. Later calculations
Natoli et al., 1993 confirmed these findings via T = 0 K
QMC calculations, demonstrating that ZPM indeed fa-
vors isotropic structures. Since the ZPE of the protons
can be larger than the difference in energy between var-
ious candidate structures, it is important to realize that
structure searching, even including an approximate ZPE
should be approached with caution.

Following more recent advancements in structure pre-
diction methods (Woodley and Catlow, 2008), as dis-
cussed in prior sections, McMahon and Ceperley, 2011a
considered atomic hydrogen, predicting a large number
of previously unidentified structures. Their work sug-
gested that after molecular dissociation, hydrogen should
adopt a structure similar to Phase IV of cesium, a body-
centered tetragonal structure with space group I41/amd
and a c/a ratio greater than unity, consistent with earlier
predictions (Nagao et al., 1997; Pickard and Needs, 2007).
This structure was found to be stable at least up to ∼1
TPa, including a harmonic estimation of ZPE. More re-
cently, Liu et al., 2012 applied the PSO method also
to the atomic phase of hydrogen, predicting two novel
structures at ultrahigh-pressures (i.e., beyond the stabil-
ity range of I41/amd). Above 2.1 TPa, atomic hydrogen
adopts a structure with space group Cmcm, consisting of
planar H3 clusters, as shown in Fig. 10. The Cmcm struc-
tures is in fact analogous to the enthalpically-favored
static-lattice structure R3m predicted by McMahon and
Ceperley, 2011a at such pressures, but with a more effi-
cient packing. Liu et al., 2012 also suggested that above
3.5 TPa, a structure with space-group I-43d, also shown
in Fig. 10, would become stable with the inclusion of
ZPE (albeit again treated within the harmonic approxi-
mation).

At very high density and relatively low temperature, it
is expected that atomic hydrogen should adopt a close-
packed lattice, such as fcc or hcp (Kohanoff and Hansen,
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1996). In this regime, one can “integrate out” the elec-
trons and use a screened pair potential between the pro-
tons, as discussed in Section II.G.1. The limit of va-
lidity of this Screened Coulomb Plasma (SCP) model
(rs ≤ 0.6, P ≥ 20 TPa) was established by compar-
ing against CPMD predictions (Kohanoff and Hansen,
1996), expected to be accurate at high density, and fur-
ther verified against more accurate CEIMC calculations
(Liberatore et al., 2011b; Pierleoni et al., 2008). Free en-
ergy calculations of the SCP at 24TPa give an estimated
melting temperature of 1670K. As mentioned in Section
IV.C.2), if the melting temperature is low enough, a very
interesting quantum fluid could be stable. However, more
investigations are needed to determine the stable crystal
structures at lower pressures and their melting tempera-
tures.

B. The Normal Fluid Phases

While an understanding of the low-temperature re-
gion of the phase diagram of hydrogen is certainly im-
portant for fundamental reasons, the major fraction of
hydrogen in the universe is in the fluid phase at higher
temperatures. What is of particular importance under
these conditions is an accurate EOS that can be used
for planetary models, and to validate the computational
assumptions and experimental procedures of the dynam-
ical shock experiments. Theoretical and computational
methods have progressed to the point where sufficient ac-
curacy can now be obtained to resolve some of their past
difficulties. In this subsection, we discuss first-principles
calculations applied to the fluid phase of hydrogen, with
particular focus on predicting the principal Hugoniot of
deuterium and hydrogen and the liquid-liquid phase tran-
sition (LLT).

1. The Equation of State and Principal Hugoniot of Hydrogen

The EOS of hydrogen in the fluid phase is particu-
larly relevant for planetary and ICF physics (see Fig. 1).
As discussed in Section III, experimental information for
the liquid phase of hydrogen comes mainly from dynamic
compression experiments, with the exception of the low
temperature liquid near the melting line which can be
studied using static compression techniques. Particularly
useful properties such as the electrical conductivity or
reflectance, can be measured during the experiment and
are difficult to compute with simulations. However, dy-
namic compression methods have large uncertainties in
determining the pressure, and, particularly, the tempera-
ture of the sample after the shock, and, therefore, obtain-
ing precise thermodynamic data. Also, since the experi-
ments are difficult and rather expensive, the reached set
of temperature-density points is rather sparse. Because
of this, first-principles simulation methods are very useful
to complement the experimental data.

Early shock wave experiments on hydrogen and deu-
terium samples were done with a gas-gun compression
method (van Thiel and Alder, 1966; van Thiel M. et al.,
1973) up to pressure of 20 GPa in the first shock and 90
GPa in the reflected shock, and by laser-driven compres-
sion methods (van Kessel and Sigel, 1974) up to pressures
of ∼ 200 GPa in a single shock experiment. Soon after,
the first measurements of electrical conductivity in isen-
tropically compressed hydrogen in a magnetic-flux com-
pression device appeared (Hawke et al., 1978) which re-
ported a measured drop of electrical resistivity below 1.0
Ωcm at a density of 1.06 g/cm3 and an estimated pres-
sure of 200 GPa. Continuous progress in the experimen-
tal techniques provided better data for the first (single-
shock) Hugoniot up to 20 GPa and the second (reflected-
shock) Hugoniot (Nellis et al., 1983a,b) up to 76 GPa, see
figure 11. However, the temperature was not measured;
the estimated temperature was based on a phenomeno-
logical chemical model of fluid hydrogen(Kerley, 1972;
Ross et al., 1983). By measuring the electrical conduc-
tivity in the deuterium and hydrogen shocked samples,
(Nellis et al., 1992) it was inferred that, below 20 GPa,
shocked fluid deuterium behaves as a hot semiconductor
with a band gap of ∼ 12eV .

After the introduction of FPMD methods (Car and
Parrinello, 1985) for studying s-p bond materials, ap-
plication to high pressure hydrogen with an orbital-free
method was made by Zerah et al., 1992 and by a ground
state DFT-LDA Car-Parrinello calculation(Hohl et al.,
1993). This was subsequently followed by several studies
including thermal effects on the electrons using the Mer-
min functional (Alavi et al., 1994; Collins et al., 1995;
Kohanoff and Hansen, 1995, 1996; Kwon et al., 1995,
1994a,b) and an inclusion of excited states within the
TDDFT-LDA framework by Theilhaber, 1992. These
calculations were plagued by systematic errors due to
limitations of the LDA energy functional and of small
system sizes, in particular in the metallic phase. Al-
most in parallel, the first RPIMC calculations of the
EOS and the liquid-liquid phase transition (see next sec-
tion) in high pressure hydrogen appeared (Magro et al.,
1996; Pierleoni et al., 1994, 1996). While FPMD stud-
ies concentrated on a density range above the density of
the principal Hugoniot, RPIMC results, limited to tem-
perature above 5000K, also probed the region of phase
space of the principal Hugoniot. RPIMC found a non-
monotonous behavior of the pressure vs density along
the Hugoniot which was interpreted as the signature of a
first-order phase transition between a molecular fluid and
an atomic fluid. Unfortunately, in this first implementa-
tion of RPIMC, systematic effects due to system size and
imaginary time step errors limited the accuracy of the re-
sults. Wave-Packet MD was also applied to high pressure
hydrogen (Klakow et al., 1994a,b). In this method, elec-
trons are represented by single-electron Gaussian wave
packets; Ehrenfest dynamics is used to simulate the elec-
tronic dynamics and to extract the forces acting on the
protons. The approach is, however, limited to the semi-
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FIG. 11 (Color online) Comparison between the measured
and calculated principal Hugoniot for deuterium. The experi-
mental data are plotted as symbols with error bars: Z machine
(triangles)(Knudson et al., 2004), gas gun (crosses)(Nellis
et al., 1983b)), explosives (green squares) (Belov et al., 2002),
(large circles)(Boriskov et al., 2003), (diamonds)(Grishechkin
et al., 2004a), and laser (open circles) (Hicks et al., 2009),
(filled small circles) (Knudson and Desjarlais, 2009), and
(gray squares)(Collins et al., 1998a; DaSilva et al., 1997). The
red line is the Hugoniot from (Caillabet et al., 2011) Predic-
tions of various chemical models are reported as dashed lines:
Kerley (Kerley, 2003b), Ross(Ross, 1998), Saumon-Chabrier-
van Horn(Saumon et al., 1995) and FVT (Juranek and Red-
mer, 2000). From Caillabet et al., 2011.

classical regime since Fermi statistics is only accounted
for approximately and its applicability to the phenom-
ena of molecular dissociation and metallization is only
qualitative.

Nellis et al., 1996 and Holmes et al., 1995 directly mea-
sured the temperature along the Hugoiniot by fitting the
radiance of the light emitted from the shocked sample to
a grey-body Plank spectrum; see fig. 13. They found
temperatures substantially lower than predicted by the
employed chemical model, with an increasing discrepancy
with increasing pressure. This was interpreted as an in-
dication of a substantial molecular dissociation above 20
GPa.

Principal Hugoniot pressures up to ∼ 340 GPa were
later achieved with a pulsed laser-produced shock com-
pression (Celliers et al., 2000; Collins et al., 1998a;
DaSilva et al., 1997); see fig. 11. Those experiments
reported a much higher compressibility, and therefore,
higher shock density, up to a 6-fold compression, (ρ/ρ0 ∼
6); higher than expected by the standard EOS ((Ker-
ley, 1972)) which does not include molecular dissocia-
tion. Such a high compression would have a dramatic

effect on the efficiency of Inertial Confined Fusion. The
unexpected compression was not incompatible with some
existing theoretical predictions and models which allowed
for molecular dissociation. Note that at sufficiently high
pressure, the compression on the principal Hugoniot must
attain the ideal gas value of 4 (Nellis, 2006a). Along the
Hugoniot the system was observed, by optical reflectivity
measurements (Celliers et al., 2000), to undergo a contin-
uous insulator to metal transition in the region between
17 GPa to 50 GPa as inferred by a continuous increase
in the reflectance signal (from 10% to 50%) and a satu-
ration at higher pressures. Temperature was determined
by pyrometric measurements (Collins et al., 2001a) and
was found to increase from 0.47 eV to 4.4 eV (5000–50000
K) in the pressure range from 31 GPa to 230 GPa (see
fig. 13). This temperature is smaller than the Fermi tem-
perature of the metallic fluid (∼ 16 eV), the samples are
a degenerate metal. Improvement in compression (up
to ∼ 12-fold) has been reported in reflected-shock ex-
periments where the second shock occurs at ∼ 100GPa
along the primary Hugoniot line(Mostovych et al., 2001,
2000). Pressures up to 600 GPa were reported. However,
the temperature was not measured during these experi-
ments. The results are again in much closer agreement
with phenomenological models including molecular dis-
sociation.

These exciting experimental results stimulated new
first-principle simulation studies. Attempts to compute
the electrical conductivity to have a direct compari-
son with experiments appeared (Pfaffenzeller and Hohl,
1997). This study found a more pronounced metallic-
ity and atomic character than reported in the experi-
ments probably attributable to the use of LDA. Further
tight-binding MD found a principal Hugoniot in sub-
stantial agreement with the gas-gun data below 20 GPa
but could not reproduce the laser-driven data at higher
pressure(Lenosky et al., 1997a,b,c, 1999). Two indepen-
dent ab-initio MD studies using DFT with Gradient cor-
rected exchange-correlation functional (GGA) were per-
formed(Collins et al., 2001b; Galli et al., 2000; Lenosky
et al., 2000). A further study which exploited the LSDA
in the AIMD was also performed(Bagnier et al., 2000).
The results of the three studies were all in agreement
and support a maximum compression of ∼ 4.4 in the re-
gion of 50 GPa, with a limiting compression for higher
pressure around 4 in substantial disagreement with the
laser-driven Hugoniot. On the other hand the computed
optical reflectivity was in good agreement with the mea-
surements performed during the laser-driven runs up to
70 GPa(Collins et al., 2001b). The system was found
to smoothly dissociate along the Hugoniot reaching a
value of the electrical conductivity of 4000(Ωcm)−1 at
maximum compression. Improved RPIMC simulation
was also performed with smaller time step and finte-
size errors and a better nodal restriction taking into ac-
count bound states (Militzer and Ceperley, 2000). As
can be seen in figure 12, this calculation provided an al-
most vertical Hugoniot with maximum compression of
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FIG. 12 (Color Online) Comparison among various theo-
retical methods of computations of the principal Hugoniot
for deuterium. RPIMC (black circles)(Militzer and Ceper-
ley, 2000), (orange circles)(Khairallah et al., 2011) and direct
PIMC (cyan down-triangles) (Filinov et al., 2005). FPMD
ground state electrons (red dot-dashed line) (Lenosky et al.,
2000), (blue squares) (Bonev et al., 2004b) and thermal
electrons (continuous violet) (Desjarlais, 2003), (dot-dashed
brown)(Holst et al., 2008), (continuous purple) (Caillabet
et al., 2011) and (green up-triangles)(Morales et al., 2012).
WPMD (gray right-triangle) (Knaup et al., 2003)

4.3 ± 0.1 also in disagreement with laser-driven shock
experiments. In a subsequent study combining RPIMC
(T>105K) and first-principles MD (T<105K) simulation
techniques (Militzer et al., 2001), the secondary Hugoniot
was investigated and results compared with the experi-
mental data of Mostovych et al.(Mostovych et al., 2001,
2000). Even in this case it was found that RPIMC and
AIMD were in essential agreement but both at variance
with the secondary Hugoniot from laser-driven experi-
ments.

Magnetic implosions at the Z pinch were then used to
create shock waves in much larger samples of liquid deu-
terium(Knudson et al., 2001). Pressures of ∼ 70 GPa
were achieved with a 4.0-4.5-fold compression, in con-
trast to the 6-fold compression observed in the laser-
driven experiments, see fig. 11. This data is in much
closer agreement with the first-principle predictions of
RPIMC and FPMD. Finally, a new technique based on
spherically converging shock waves generated by explo-
sives(Belov et al., 2002) (data reported in figure 11) also
produce lower compressibilities.

A subsequent refinement of the detection technique of
the magnetic pressure apparatus (Knudson et al., 2003)
and further experiments (Knudson et al., 2004) mea-
sured the principal Hugoniot up to 100 GPa confirming
a maximum compression of ∼4.3 (see fig. 11) and pro-
vided data along the second shock Hugoniot up to 400
GPa and final density of deuterium of 1.34g/cm3. In
those experiments, temperature was not measured but
later experiments using reflectivity and emissivity, to in-
fer the temperature(Bailey et al., 2008) are shown in fig-
ure 13, and found to be in good agreement with previous
data. Also, second-shock data up to 900 GPa has been
measured with laser-driven shocks at OMEGA laser in
Rochester (Boehly et al., 2004). These data are consis-
tent with a stiff EOS with 4.3 to 4.4-fold maximum com-
pression along the principal Hugoniot. A further exper-
imental confirmation of a stiff EOS along the principal
Hugoniot came from converging explosive driven shock
waves(Boriskov et al., 2005; Grishechkin et al., 2004a)
(see fig. 11).

Recently, new laser-driven experiments using
impedance matching to an aluminum standard have
been performed (Hicks et al., 2009). At variance with
previous experiments, they found 4.2-fold compres-
sion for pressures near 100 GPa, in agreement with
other experiments based on the impedance matching
method. However, just above 100 GPa and up to the
highest reached pressure (220 GPa), a sudden jump to
higher compression (∼ 5) was observed, but soon after
(Knudson and Desjarlais, 2009), it was shown that this
behavior was caused by an erroneous calibration of the
quartz impedance matching standard used to infer the
principal Hugoniot above 100 GPa. At present, after 20
years of efforts, a consensus is emerging on the principal
Hugoniot of deuterium obtained by several different
experimental methods and teams.

While most previous experimental work has been on
deuterium samples, a recent experiment using laser-
driven shock waves(Sano et al., 2011a) measured shocked
hydrogen in the pressure range between 25 GPa and 55
GPa. The lower pressure data are in agreement with pre-
vious experiments (Dick and Kerley, 1980; Nellis et al.,
1983a) and at higher pressures they show a compression
of ∼ 5, which suggest that hydrogen is more compressible
than deuterium. However, the measured temperature is
higher in hydrogen by a factor of ∼1.3.

In parallel with advances in experimental methods
and results, first-principle methods also have been im-
proved and extended. At the turn of the century, two
FPMD studies investigated some of the systematic errors:
the first used Born-Oppenheimer dynamics with thermal
electrons (Desjarlais, 2003) while the second used Car-
Parrinello dynamics with ground state electrons(Bonev
et al., 2004b). As seen in figure 12 consistent results
were obtained. The computed Hugoniot was slightly
stiffer than in a previous work (Lenosky et al., 2000)
but still had a maximum compression of about 4.5 at
∼40 GPa, and in agreement with the gas gun Z-pinch
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experiment up to 20 GPa (Knudson et al., 2001). Above
this pressure, the new theoretical Hugoniot was slightly
stiffer than the experimental data. Also, the predicted
temperature along the Hugoniot for P ≤ 20GPa was
found to be in very good agreement with the experimen-
tal gas-gun data (see fig. 13). In contrast, previous first-
principle studies predicted temperatures smaller by as
much as 30% (Lenosky et al., 2000). Several later BOMD
simulations using DFT-GGA confirmed these results:
Vorberger et al., 2007b was limited to lower tempera-
tures, used ground state electrons, and investigated the
hydrogen-helium mixture (see Section V), Holst et al.,
2008 used thermal electrons and computed optical prop-
erties such as reflectivity and conductivity (see below).

We should also mention a number of theoretical in-
vestigations which predicted a soft principal Hugoniot.
The first study was performed by Wave-Packet Molecu-
lar Dynamics (Knaup et al., 2003) and reported a prin-
cipal Hugoniot with a maximum compression of ∼ 6 in
agreement with the Nova laser data (see fig. 12). The ac-
curacy of the WPMD is however limited to the semiclas-
sical regime and should not be applied at these tempera-
tures. Also, the predicted temperature was considerably
lower than in the experiments and in the first-principle
methods. The second study employed the so-called Di-
rect Path Integral Monte Carlo (DPIMC) method (Fil-
inov et al., 2005) and reported a maximum compres-
sion of ∼ 5 at P = 111GPa, providing a softer EOS
with respect to the RPIMC predictions of Militzer and
Ceperley, 2000, see fig. 12. Also in this method, the
temperature along the Hugoniot was substantially lower
than in experiments and in other first-principle methods
(see fig. 13). Finally, we mention a recent investigation
of the principal Hugoniot by the antinodal-slice RPIMC
method (Khairallah et al., 2011) (see section II.C). They
obtain good agreement with the previous RPIMC Hugo-
niot at high pressure (P ≥ 200GPa) and a stiffer Hugo-
niot at lower pressure, but still compatible with the ex-
perimental data within their large uncertainty (see fig.
12). However, these results do not agree well with the
low pressure gas-gun data. Also, as seen in fig. 13, the
predicted temperature along the Hugoniot is somewhat
higher than the experimental measurements, and the pre-
dictions from RPIMC and FPMD.

As can be seen in Fig. 11, the uncertainty on the ex-
perimental data is large, which makes it difficult to dis-
criminate between different calculations. On the other
hand, the most recent FPMD calculations of the princi-
pal Hugoniot give similar results and are in agreement
with the experimental data, reinforcing the consensus on
the experimental Hugoniot.

Validation of the FPMD predictions can be obtained
either by comparing with experimental data or by com-
paring to results from a more fundamental method such
as CEIMC. The two methods solve the electronic prob-
lem in very different ways and with different approxima-
tions: CEIMC is based on the variational principle (with
respect to the nodes of the trial wave function), can be
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FIG. 13 (Color Online) Pressure vs temperature along the
Hugoniot. Comparison among experimental data and vari-
ous theoretical predictions. Experiments: gas-gun (red circles
(Holmes et al., 1995)), Nova-laser (cyan diamonds (Collins
et al., 2001a)), Z-pinch (blues squares (Bailey et al., 2008)).
Theory: RPIMC (black circles (Militzer and Ceperley, 2000),
orange circles (Khairallah et al., 2011)), BOMD (green left-
triangle (Desjarlais, 2003), magenta up-triangle (Bonev et al.,
2004b), red line (Caillabet et al., 2011)), direct PIMC (pur-
ple down-triangle (Filinov et al., 2005)) and WPMD (brown
right-triangle (Knaup et al., 2003)).

systematically improved. CEIMC is a relatively recent
method, rather more demanding than FPMD, therefore
its applications have been limited so far. Moreover, ear-
lier implementations were plagued by insufficient accu-
racy of the trial wave function and gave results in dis-
agreement with CPMD (LDA) predictions at higher den-
sity around the melting transition of the atomic metallic
crystal (0.8 ≤ rs ≤ 1.2, 500K≤ T ≤10000K) (Pierleoni
et al., 2004). Recent methodological progress, in par-
ticular the implementation of LDA-Kohn-Sham orbitals
in the Slater determinant of the trial wave function, im-
proves considerably the accuracy and the flexibility of the
method (Pierleoni et al., 2008) and provides results for
the hydrogen EOS which are in good agreement with the
predictions of FPMD (Morales et al., 2010a; Pierleoni
et al., 2008). Morales et al., 2010a compared the EOS
from both methods in the region 2000K≤ T ≤10000K
and 0.724 g/cm3 ≤ ρ ≤ 2.329 g/cm3 (1.55 ≥ rs ≥ 1.05),
corresponding to 100 GPa≤ P ≤2000 GPa, a small re-
gion slightly to the right of the first Hugoniot (see Fig. 1)
and relevant in modeling the Jovian planets. The pres-
sure difference between the two methods was at most
5% at the lowest density (approaching the molecular dis-
sociation regime) and decreases with increasing density.
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The difference in the internal energy (∼ 0.8%) appears
to be uniform with density. Also, predictions for the
local structure of the proton fluid are in very good agree-
ment. As we will see in the next section, this agree-
ment is not observed at the metal-insulator transition
underlying again the non-trivial character of this finding.
Our present understanding is that DFT-based FPMD is
quite accurate in comparison to CEIMC, both at high
pressure and at low pressure in regions away from the
metal-insulator transition. In the region where the sys-
tem become metallic the local and semi-local functionals
have a well known problem of underestimating the band
gap and FPMD provides wrong predictions: see below.

Most of the theoretical studies discussed so far con-
centrated on computing the first and second Hugoniots.
Very recently, first-principle calculations have been per-
formed over a much wider region in thermodynamic space
(Caillabet et al., 2011; Hu et al., 2011; Morales et al.,
2012) to build a thermodynamically consistent EOS for
conditions appropriate to planetary models and ICF ap-
plications. Morales et al., 2012 used both FPMD and
CEIMC to study the EOS in the range 10GPa ≤ P ≤
1000GPa, 3000K ≤ T ≤ 35000K. It was found that
the Kerley2003 EOS works well after a pressure depen-
dent, but temperature independent, correction is applied.
Hu et al., 2011 employed RPIMC to map the EOS in the
range 0.002g/cm3 ≤ ρ ≤ 1596g/cm3, 104K ≤ T ≤ 108K.
Again the RPIMC-based EOS is in good agreement with
the Kerley2003 table. We note that an earlier PIMC
calculation of the low density phase diagram of hydro-
gen (Militzer and Ceperley, 2001) reported a substan-
tial agreement between PIMC data for the EOS and the
Saumon-Chabrier chemical model predictions. On the
other hand, in the higher pressure range investigated in
Ref. Morales et al., 2010a (100GPa ≤ p ≤ 2000GPa) the
modified SCVH EOS (Saumon et al., 1995) was found to
deviate from the CEIMC data by as much as ∼ 25% at
the edge of the dissociation region, the region in which
chemical models are essentially based on interpolations.
Because planetary models are sensitive to details in this
regime and at lower pressures during dissociation, a de-
viation from SCVH will produce a much larger change
– e.g., it is found using a less compressible EOS that
Jupiter has a core mass of 14-18 earth masses, much
larger than SCVH value of 0-7 earth masses (Guillot,
2005; Militzer et al., 2008). However, consensus on the
interior model for Jupiter and the EOS is yet to be
reached.

2. Liquid-Liquid Phase Transition

Fluid hydrogen at low pressure is H2; molecular dis-
sociation will occur both with increasing temperature
or with pressure. At moderate pressures (∼ 102 − 104

bar), molecular dissociation happens when the tempera-
ture is approximately equal to the molecular bonding en-
ergy (∼ 4.5eV ). The dissociation temperature depends

mildly on pressure since internal degrees of freedom (ei-
ther molecular or atomic) are largely independent of pres-
sure as shown in fig. 2 . This prediction is based on
chemical models which are expected to be accurate at low
density (Hu et al., 2011; Saumon et al., 1995). On the
other hand, with increasing pressure at moderate tem-
perature (T ∼ 1000K), the physics becomes more com-
plex because the separation between internal degrees of
freedom and many particle interactions disappears; the
internal states of the molecules are strongly influenced
by molecule-molecule interactions, and, for high enough
pressure, molecules dissociate and the system becomes
metallic.

Whether dissociation and metallization occur at the
same time and whether the processes are continuous are
open questions with recent experimental and theoreti-
cal findings. The occurrence of metallization induced by
pressure was discussed by Wigner and Huntington, 1935
for atomic hydrogen at T=0K, by Landau and Zeldovich,
1943 for liquid mercury as a first order phase transition,
and by Norman and Starostin, 1970 for a dense atomic
plasma. In high pressure fluid hydrogen, molecular dis-
sociation and ionization was discussed by Ebeling et al.
(Ebeling and Richert, 1985; Ebeling and W., 1985) and
later by other authors (Beule et al., 1999; Edwards et al.,
2010; Fortov et al., 2003a; Kitamura and Ichimaru, 1998;
Marley and Hubbard, 1988; Redmer and Holst, 2010;
Saumon and Chabrier, 1989, 1991, 1992) at several lev-
els of sophistication in the framework of chemical models.
These models exhibit a clear first-order liquid-liquid tran-
sition (LLT) that persists for temperatures well above
10,000 K. However, approaches with separate free energy
functionals in different regions of phase space have great
difficulty in having a continuous crossover from one be-
havior to another. The presence of a first-order phase
transition in the chemical models is now recognized to
be an artifact of the method(Chabrier et al., 2007). Re-
cent EOS tables now smooth the pressure in the transi-
tion region to ensure positive compressibility (Saumon,
2007).

Nellis et al., 1996 and Weir et al., 1996 (see also (Nellis
et al., 1999)), using reverberating shocks to achieve quasi-
isoentropic compression up to 180 GPa, found that the
resistivity decreased by almost 4 orders of magnitude in
a continuous manner(Nellis et al., 1998) between 93 GPa
to 140 GPa, and then saturated to roughly 500 µΩ cm
between 140 GPa and 180 GPa, a typical resistivity value
for liquid metals. They estimated the temperature from
a model at 140 GPa to be ∼ 3000K as shown in fig. 14.
They estimated the molecular dissociation to be ∼ 5%:
the system is still largely molecular.

More recently, Fortov et al., 2007 using reverberat-
ing shocks, ramp compressed hydrogen with high explo-
sives, and found a discontinuous behavior at the metal-
insulator transition. Using highly resolved flash x-ray di-
agnostics, they were able to measure the compressibility
of the liquid and found a 20% increase in density in the
regime where the conductivity increases by ∼5 orders of
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FIG. 14 Liquid-liquid transition line and pressure dissocia-
tion region. Experimental data for metallic hydrogen: (cyan
diamond (Nellis et al., 1996; Weir, 1998), red diamonds (For-
tov et al., 2007), brown diamonds (Loubeyre et al., 2004)).
Theoretical predictions for the LLPT: (blue triangle BOMD)
(Morales et al., 2010b) and (brown squares CEIMC (Libera-
tore et al., 2011a; Morales et al., 2010b)) The blue and brown
lines are a guide to the eye through BOMD and CEIMC simu-
lation data respectively. (blue circle (Scandolo, 2003), dashed
blue line (Lorenzen et al., 2010)). Molecular dissociation
region according to BOMD: red-shaded area (Tamblyn and
Bonev, 2010a). Primary Hugoniot: thick green line. QMC
prediction of stable fluid state: green star (Attaccalite and
Sorella, 2008). Melting curve of the molecular solid (phase-I)
is represented by two possible curves as discussed in section
IV.A.4: solid (dashed) black line (Morales et al., 2010b), or-
ange dashed line (Bonev et al., 2004a). The expected bound-
ary between phase I and phase IV is also reported (Howie
et al., 2012).

magnitude. The temperature was not measured directly
but inferred from a chemical model EOS to be in the
range of 3000 K to 8000 K. The two data points around
the density discontinuity (using the EOS from a recent
FPMD study(Tamblyn and Bonev, 2010a)) are shown in
figure 14. However, the measurements from this experi-
ment were sparse in density and a rapid, yet continuous,
change in conductivity with increasing pressure could not
be ruled out from the data.
The first ab initio evidence of a first order phase tran-

sition came from a Restricted PIMC calculations (with
free particle trial nodes) showing an abrupt pressure
change along isotherms(Magro et al., 1996) with a critical
point at Tc ≃ 11000K,Pc ≃ 48GPa in qualitative agree-
ment with prediction by chemical models. However, the
RPIMC method has major problems with convergence
at temperatures below 10000 K and that calculation was

plagued by finite imaginary time step errors.

The next step towards the present understanding of
liquid-liquid phase transition in hydrogen came from a
CPMD (using DFT-GGA energy functional) and clas-
sical protons(Scandolo, 2003) in the constant pressure
ensemble. A first order phase transition was signalled
by large density fluctuations at T = 1500K and P =
125GPa with a 6% change of specific volume. At the
transition, a rapid molecular dissociation was observed
and the system became metallic with the gap at the Fermi
level closing, both molecular dissociation and metalliza-
tion of hydrogen occurring together with a first order
phase transition. This result is not in contradiction with
the dynamical compression experiments of Weir et al.
(Nellis et al., 1996; Weir et al., 1996) but requires the ex-
istence of a critical temperature between 1500 K and 3000
K. Note that the temperature in the shock experiments
was estimated by an indirect method. Also, the transi-
tion pressure of first-principle DFT-GGA simulations is
somehow lower than measured in the experiments; see fig.
14. Evidence of a first order liquid-liquid phase transition
was also found by Bonev et al., 2004a,b using the CPMD
method with the GGA functional in the NVT ensemble
at pressures of 200 GPa and temperatures between 900
K and 1000 K. But a smooth dissociation process under
pressure was found in a subsequent BOMD investigations
(Holst et al., 2008; Vorberger et al., 2007a,b). A region
with (∂P/∂T )ρ < 0 along isochores inside the dissocia-

tion region (P ≃ 200GPa, 1000K ≤ T ≤ 4000K) was
reported without a density discontinuity but a continu-
ous crossover from an insulating to state.

Similarly, a CEIMC simulation (Delaney et al., 2006)
reported no evidence for a first order phase transition at
T=1500 K and T=2000 K in the pressure range from
135 GPa to 290 GPa. In this work, the trial wave func-
tion had a Slater determinant using the orbitals from a
band-structure solution with an effective electron-proton
potential. Employing VMC energies along the isotherm
at T=2000 K, a jump in the molecular fraction was ob-
served when increasing density around 220 GPa with an
hysteresis when releasing the density. However, when
using RQMC energies at the same conditions, the molec-
ular fraction presented a much smoother behavior with
density, suggesting a continuous dissociation process.

Finally, a convincing demonstration of the first or-
der liquid-liquid phase transition was found by Libera-
tore et al., 2011a; Morales et al., 2010b exploiting both
BOMD and CEIMC (see fig. 14). The signature of the
first order character of the transition is a plateau in P
vs. ρ along isotherms for temperature below ≈ 2000 K.
Both methods saw a density discontinuity at the tran-
sition of ≈ 2%, sufficiently small that a quick scan of
this region, as was done in previous simulations and ex-
periments, could miss the discontinuity. However, the
determined transition pressures with BOMD are ≈ 20%
smaller than with CEIMC because to the band gap prob-
lem of local or semilocal density functionals. Inclusions
of quantum proton effects within the DFT-GGA method,
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as obtained by PIMD, produce a further 25% decrease of
the transition pressure at the same temperature, because
of the importance of nuclear zero point motion at the
transition; the kinetic energy of the protons is higher in
the molecular-rich phase than in the atomic-rich phase
causing a shift in the transition pressure.

The DC electrical conductivity, as computed by the
Kubo-Greenwood within DFT, undergoes a discontinu-
ous jump across the transition, showing that it is an
insulator-metal transition. Using the computed DC con-
ductivity as order parameter, a critical point was esti-
mated at Tc = 2000K. The transition corresponds to
a sharp change from semiconducting to metallic behav-
ior caused by the sudden collapse of the molecular state.
Even though strong short range correlations persist after
the transition is crossed, the resulting atomic liquid is
metallic.

In figure 14 we show the LLPT from BOMD and
CEIMC together with two different Kechin fits to the
melting line data from BOMD for Phase I (see section
IV.A.4). At low temperatures, the predicted LLT is
expected to meet the melting line at 700 K and 220
GPa (using the BOMD estimates) and should result in
a liquid-liquid-solid multiphase coexistence point. This
point could be either a triple point if the two liquid
phases coexist with a single solid phase, or a quadru-
ple point if the metal-insulator transition extends below
freezing. Unfortunately, the use of DFT to extend the
melting curve to higher pressures has difficulties in the
neighborhood of the insulator-metal transition. More-
over beyond 200 GPa the stable crystal phase at melt-
ing is expected to be Phase IV, rather than Phase I; a
study of the melting line for Phase IV has not been done.
Also note that CEIMC simulations along the isotherm at
T=600K in the pressure interval 220 GPa ≤ P ≤330 GPa
did not show any tendency to freeze, but finite size ef-
fects have biased the result. Further evidence in favor of a
lower melting temperature at P ≃ 300GPa was given by
an alternative QMC based ab-initio method (Attaccalite
and Sorella, 2008) which observed a disordered state at
≈ 400K, shown in figure 14 as green star.

An independent determination(Lorenzen et al., 2010)
of the LLPT line by FT-DFT-MD, shown in 14, gives
general agreement, although the exact location of the
LLPT line and critical point vary. The existence of the
transition (continuous or first order) is sensitive to size
effects since small systems at the Γ point do not ex-
hibit a discontinuous behavior. Morales et al., 2010b em-
ployed ground state DFT-GGA with 432 atoms at the Γ
point. Lorenzen et al., 2010 considered finite tempera-
ture DFT-GGA and systems of 512 atoms computed at
the Baldereschi point in the Brillouin zone. These sys-
tem sizes are comparable to the one used in (Scandolo,
2003) and (Bonev et al., 2004a) with CPMD, and con-
siderably larger than the one used in (Vorberger et al.,
2007b) and (Holst et al., 2008) with BOMD. Note that
in CEIMC, a system of 54 atoms is used but with twist
averaged boundary conditions; the many-body analog of

the Brillouin zone integration.
In Bonev et al., 2004a the reentrant nature of the melt-

ing of the insulating molecular phase I reported in figure
14 was ascribed to an increased softening of the repul-
sive intermolecular interactions with pressure, more pro-
nounced in the liquid than in the solid phase due to the
presence of the disorder. The nature of the insulating
molecular liquid near the melting line has been further in-
vestigated in Tamblyn and Bonev, 2010a,b. It was found
that the liquid develops a short-range orientational order
for pressures beyond the maximum of the melting line,
and, in general, in the region between the melting and
the LLPT lines. The orientational order is preserved, al-
though changing its nature, when molecules dissociate.
Using a criterium of survival time, the region of disso-
ciation (from 67% to 33% molecular fraction), reported
in figure 14 as a red-shaded area, has been traced up to
T=4000K, close to the primary Hugoniot. Since pres-
sure dissociation and metallization are seen to occur at
the same time, the red shaded region also indicates met-
allization. This simulation is in agreement with some
estimates of metallization obtained by laser-shocking a
pre-compressed sample(Loubeyre et al., 2004) as shown
in figure 14.

3. Optical and Transport Properties

Along with EOS studies, first-principles simulation
methods have been used extensively to study the opti-
cal and transport properties of hydrogen at high pres-
sure, particularly in the liquid state, (Collins et al., 1998c,
2001b; Holst et al., 2011, 2008; Lambert et al., 2011; Lin
et al., 2009; Pfaffenzeller et al., 1995). Optical prop-
erties are most often calculated using Kubo-Greenwood
formula within linear response theory (Greenwood, 1958;
Kubo, 1957) and DFT. Diffusion, viscosity, and other
transport properties can be calculated from the dynam-
ical correlation functions of the ionic trajectories. The
thermal conductivity in the liquid atomic regime is typ-
ically calculated with the Wiedemann-Franz law (Franz
and Wiedemann, 1853). A detailed description of the for-
mulation is given in Holst et al., 2011 along with its appli-
cation to dense hydrogen, in particular the electrical and
thermal conductivity, thermopower, and Lorentz number
as a function of density for temperatures between 10,000
K and 50,000 K. Figure 15 shows the electrical conduc-
tivity, for various densities, as a function of temperature.
These calculations were extended(Lambert et al., 2011)
using Orbital-Free Molecular Dynamics as well as DFT
to densities up to 160 g/cm3 and temperatures up to
800 eV (≈ 10,000,000 K); well within the plasma phase.
They compare their results with plasma models and dis-
cuss the implications of their results for the simulation of
capsule implosions for Inertial Confinement Fusion (ICF)
experiments.
As discussed previously semi-local functionals in DFT

underestimate the band-gap, and, as a consequence over-
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FIG. 15 Electrical conductivity of hydrogen as a function of
temperature and density(Holst et al., 2011).

estimate the conductivity, particularly near the metal-
insulator transition, i.e. close to the predicted liquid-
liquid phase transition or to the continuous dissociation
region at higher temperatures. See (Kowalski et al.,
2007) for a discussion of this error in dense helium. Cal-
culations of the conductivity near dissociation have been
performed (Lin et al., 2009) with QMC methods, us-
ing CEIMC simulations to sample ionic configurations at
finite temperature, combined with correlation function
quantum Monte Carlo calculations (Bernu et al., 1990;
Ceperley and Bernu, 1988) to calculate the low energy
many-body excitation spectrum of the liquid. Combin-
ing the excitation energies with the Green-Kubo formula,
the authors calculated the electrical conductivity of hy-
drogen based entirely on QMC; these calculations do not
suffer from self-interaction errors but suffer from other
limitations, notably the numerical difficulty in obtaining
accurate properties of excited states because of the QMC
sign problem, and large finite cell size effects. However,
good agreement with the limited data from shock exper-
iments measurements was obtained (Weir et al., 1996).

C. Quantum Phases of High Pressure Hydrogen

Because of the light proton mass, it is possible that
dense hydrogen could exhibit coherent quantum protonic
phases at low temperature. Two interesting possibilities
that have been theoretically predicted are superconduc-
tivity and superfluidity.

1. Superconductivity in Solid Hydrogen

Ashcroft, 1968 predicted that high-pressure hydrogen
would be a high temperature superconductor. Within
the framework of Bardeen–Cooper–Schrieffer (BCS) the-
ory (Bardeen et al., 1957), three key arguments support
this prediction: (i) the light proton mass causes the vi-

brational energy scale of the phonons to be remarkably
high , e.g. kB〈ω〉 ≈ 2100K near 500 GPa, where 〈ω〉
is the average phonon frequency. The prefactor in the
expression for the critical temperature Tc (see below) is
also large; (ii) since the electron–ion interaction is due to
the bare Coulomb attraction, the electron–phonon cou-
pling should be strong; and (iii) at high pressures, the
electronic density of states at the Fermi surface should
be large and the Coulomb repulsion between electrons
should be relatively low, typical features of a high-density
system.
Ever since this prediction of high-Tc superconductiv-

ity, there have been several efforts to predict Tc. How-
ever, since Tc is sensitive to the assumed crystal struc-
ture(Whitmore et al., 1979), the predictions have varied
widely. We limit the discussion to the most recently pro-
posed structures for the molecular and atomic phases,
as discussed in Sections IV.A.1 and IV.A.6, the Cmca,
I41/amd, and R-3m structures; for a discussion of the
older predictions, the reader is referred to the introduc-
tion of McMahon and Ceperley, 2011b.
This essential ideas from Ashcroft, 1968 are elucidated

in McMillan’s estimate for Tc (McMillan, 1968), which
including the correction by Dynes (Dynes, 1972) can be
written as

kBTc =
〈ω〉
1.2

exp

[

− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]

, (49)

where λ is the electron–phonon-induced interaction, and
µ∗ is the renormalized Coulomb repulsion. It is easy to
see that if 〈ω〉 and λ are high while µ∗ is low, then Tc
will be high as well. Within standard ab initio methods,
such as DFT, one can calculate 〈ω〉 and λ (Savrasov and
Savrasov, 1996), and we can approximate µ∗ ∼ 0.1 in
the atomic phase of high-pressure hydrogen (Richardson
and Ashcroft, 1997). Note that this latter approximation
does not work within the molecular phase – see below.
Important corrections to Eq. (49) need to be included
(Carbotte, 1990) for strong-coupling superconductors us-
ing the Allen–Dynes equation (Allen and Dynes, 1975);
see a recent re-parameterization for hydrogen (Szczȩs̀niak
and Jarosik, 2009).
Recently, McMahon and Ceperley, 2011b, 2012 inves-

tigated superconductivity in the atomic I41/amd and R-
3m structures from 500 GPa to 3.5 TPa. Calculated
values of Tc from this work are shown in Fig. 16.
As can be seen, the Tc are indeed remarkably high,

consistent with the original predictions (Ashcroft, 1968).
Near the molecular-to-atomic transition, i.e. 500 GPa,
the critical superconducting temperature Tc ∼ 311K.
With increasing pressure, λ increases, and is responsi-
ble along with the increase in the phonon frequencies for
the increase in Tc to ∼360 K near 0.8 – 1 TPa. After
the first atomic–atomic structural phase transformation
(i.e., I41/amd → R-3m), a large jump in λ occurs due
to the high phonon density of states at low frequencies,
resulting in Tc’s larger than 400 K.
In the molecular metallic phase, the situation becomes
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FIG. 16 (Color online) Values of Tc for atomic metallic hydro-
gen calculated using various formulas McMahon and Ceper-
ley, 2012, as discussed in the texts McMahon and Ceperley,
2011b, 2012.

especially interesting (but also more complex), as de-
scribed by Richardson and Ashcroft, 1997. For example,
the assumption that µ∗ adopts a fixed value is invalid.
Lüders et al., 2005 developed a multi-component DFT
method for a superconducting state, termed SCDFT,
which involves solving a set of Kohn–Sham equations for
wave functions that represent particle and hole ampli-
tudes, ϕi(r), as well as protonic amplitudes, Φl(R) ,

[

−∇2

2
+ ves [n, χ,Γ](r)− µ

]

ϕi(r) = ǫiϕi(r) (50)

[

−
∑

α

∇2
α

2M
+ vns (R)

]

Φl(R) = εlΦl(R) (51)

where n is the electronic density, χ is an “anomalous”
density representing the order parameter characterizing
a singlet superconducting state, Γ is the diagonal part
of the N -particle density matrix, ves (r) and vns (R) are
Kohn-Sham potentials for the electrons and nuclei, and
µ is the chemical potential. Following the development
of this method, Cudazzo et al., 2008, 2010a,b modeled
the high-pressure metallic molecular phase Cmca. Cal-
culated Tc values are shown in Fig. 17, where it can be
seen that, much like in the atomic phases, they are re-
markably high, increasing up to 242 K near 450 GPa.

Thus, consistent with the original predictions
(Ashcroft, 1968), Tc values in hydrogen are remarkably
high in both the molecular and atomic phases. The high
values of Tc combined with the low values of Tm (Section
IV.A.4) suggest the possibility that solid atomic hydro-
gen is always superconducting. There have also been
predictions (Jaffe and Ashcroft, 1981) that liquid metal-
lic hydrogen will also be superconducting above the melt-
ing temperature. From these results, and the discussion
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FIG. 17 (Color online) Values of Tc for molecular hydrogen
(the Cmca phase) calculated using SCDFT (Cudazzo et al.,
2010b).

that is to follow in the next Section IV.C.2), it can be
seen that superconductivity in hydrogen is a rich area of
exploration awaiting experimental confirmation.

2. A Quantum Fluid?

Brovman et al., 1972b noted that there are many
metallic hydrogen structures with similar energies includ-
ing anistropic layered structures. This suggests that the
transition from the molecular state to the metallic state
might also involve a transition from the solid phase to
a low temperature liquid. There are two effects favoring
the liquid metallic state. First, the bare proton-proton
interaction is screened by the electrons, causing the ef-
fective interaction near rs ∼1.3 to be weak and short-
ranged. 7 Friedel oscillations in the effective interaction
can frustrate many crystal structures. Second, the large
zero point motion of the protons favors a liquid protonic
state versus an atomic crystal. In (Hohl et al., 1993) the
kinetic energy of the protons in various crystal structures
at zero temperature and at the lowest density of metallic
hydrogen was estimated to be as large as 7000 K/atom.
An analogous physical system is liquid 3He, which has a
liquid ground state for pressures less than 34.4 bar.
Note that at sufficiently high density, it is almost cer-

tain that hydrogen will be in a liquid state at zero temper-
ature. At very high density, we can ignore the electrons
since they become uncorrelated with the protons. Hence,
the proton system becomes the quantum one component
plasma (OCP) i.e. jellium. Extensive QMC calculations
(Ceperley and Alder, 1980) of the QOCP have estab-

7 At a certain density, electrons become bound to the protons and
the interaction becomes one between neutral atoms.



Glossary 39

lished that the Wigner crystal melts to a Fermi liquid at
rs = 106 using the electron mass or rs = 0.058 using the
proton mass. This high pressure transition is indicated
on Figure 2 at the extremely high pressure of 1013 GPa.
However, it is unlikely that there are conditions anywhere
where hydrogen is both this dense and this cold.

Simulations of the melting line of atomic hydrogen in-
dicate that at somewhat lower densities (Kohanoff and
Hansen, 1995, 1996; Xu et al., 1994) the atomic hydro-
gen lattice melts at surprisingly low temperatures. But
note that these simulations were for classical protons in
the bcc structure. More recent calculations by Liberatore
et al., 2011b demonstrated that while the ZPE in atomic
hydrogen is large, it has similar values in the solid and
liquid phases because of similarities in local structures,
and, thus, the overall impact of the proton motion on
melting is not large.

The complete absence of an atomic solid phase was
suggested by Kechin, 2004a,b (see again Section IV.A.4)
due to the large atomic ZPM. However, many approxima-
tions were made in these calculations, in addition, to the
assumption of the fcc structure and the use of the Lin-
demann criterion for melting. Furthermore, the results
do not appear consistent with ab initio calculations (Ko-
hanoff and Hansen, 1995, 1996; Liberatore et al., 2011b;
Xu et al., 1994).

Going now back to the molecular phase, we saw in
Section IV.A.4 that the molecular melting temperature
reaches a maximum at a pressure of 100 GPa and then
decreases. Extrapolations of the atomic melting line from
higher to lower pressures, combined with the decreasing
melting line of molecular hydrogen (Bonev et al., 2004a),
indicate the possibility of an intermediate range where
a zero temperature liquid phase could exist (Ashcroft,
2000, 2003).

There was an early QMC calculation (Mon et al.,
1980, 1983) of the energy difference between the liquid
and crystal phases. These calculations used an effec-
tive screened Coulomb interaction and found that the
crystal state has lower energy than the liquid state for
densities appropriate to the metallic hydrogen 0.8 ≤
rs ≤ 1.36 , partially based on the VMC calculations
of (Ceperley et al., 1978) for the Yukawa phase dia-
gram. Another DMC calculation(Ceperley, 1988) using
the screened Coulomb interaction found crystal phases
more stable for rs ≤ 1.6. Even if the crystal structures
in these calculations were incorrect, the results seem to
rule out the existence of an atomic ground state liq-
uid. However, by far, the most serious approximation
is the use of an effective proton interaction. Earlier work
(Chakravarty and Ashcroft, 1978), showed that the as-
sumption of a pair proton interaction in this range of
density is likely to cause much greater errors than the
difference between the liquid and crystal phase.

Turning now to direct simulation involving electrons
and protons with the proper masses, Ceperley, 1988 using
a diffusion Monte Carlo calculation of e-p system found
stable fcc and bcc phases for densities above rs = 1.6,

in the range of atomic hydrogen. Use of the more recent
crystal structures (such as I41/amd) would further sta-
bilize the crystal. However, since the fixed-node approxi-
mation and the time scale separation issue favor the crys-
tal phase, the atomic liquid is still feasible. Supporting
perturbation estimates(Chakravarty and Ashcroft, 1978),
this DMC calculation found crystal-liquid energy differ-
ences with the bare interaction five times larger than with
the screened coulomb interaction.
There was a recent classical MD simulation of hydro-

gen (Attaccalite and Sorella, 2008) of the physical system
using forces computed from VMC with a RVB trial func-
tion. They found that a molecular liquid is more stable
than a simple hexagonal or bcc atomic solid, both of
which melted, at 400K and 300GPA. Using this method,
one needs to explore more stable crystal structures, differ-
ent trial functions, put in quantum effects of the protons
and a better treatment of finite size effects.
Liquid state effects combined with the predicted high

superconducting critical temperatures in metallic hydro-
gen (Ashcroft, 1968) discussed above, led to a prediction
(Jaffe and Ashcroft, 1981) that hydrogen could become a
new state of matter altogether, a superconducting super-
fluid. Soon following, Jaffe and Ashcroft, 1983 analyzed
the properties of such a state, and demonstrated that
it would pass from a type-II to a type-I superconductor
with decreasing temperature. Furthermore, at low tem-
peratures, Ashcroft, 2000; Moulopoulos and Ashcroft,
1999 demonstrated that not only should electrons form
Cooper pairs, but Cooper pairs of protons could also
form. A topological analysis of this two-component sys-
tem (Babaev et al., 2004)revealed that because of these
features, in the presence of a magnetic field, hydrogen
may exhibit several novel ordered states, ranging from
metallic superfluids to superconducting-superfluids.
The predictions of a low-temperature liquid metallic

state and its properties represent intriguing possibilities.
Of course, the existence of such a state hinges crucially
on the relative stabilities of the solid phases near the
molecular-to-atomic transition, and given the recent pre-
dictions of crystal structures (see Sections IV.A.1 and
IV.A.6), this is still an open question. Further experi-
ments and AIMD, PIMD and CEIMC calculations are
needed to settle this issue.

V. HELIUM AND HYDROGEN-HELIUM MIXTURES

Thermodynamic properties of hydrogen-helium mix-
tures have a special significance in the modeling of gi-
ant planets, particularly for Jupiter and Saturn. These
planets, generally believed to have been formed approxi-
mately at the same time as the sun, are essentially made
of hydrogen and helium, with a helium mass fraction at
the surface of Y = 0.234 ±0.005 for Jupiter (von Zahn
et al., 1998) and Y = 0.18-0.25 for Saturn (Conrath and
Gautier, 2000). The estimated protosolar helium mass
fraction is Y ∼ 0.27 (Bahcall et al., 1995). Possible inte-
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FIG. 18 (color online) Standard three layer model of
Jupiter(Stevenson, 2008).

rior models for these planets, which define the composi-
tion of the planet as a function of depth, are constrained
by experimental observations such as the total mass, ra-
dius, rotational rate, gravitational moments, surface tem-
peratures, among others.

Most models built so far are based on a 3 layer struc-
ture with a solid core made of heavy elements and ices, an
intermediate layer made up mostly of metallic hydrogen
and helium, and an upper layer rich in molecular hy-
drogen, helium and small traces of other molecules like
methane, water, and ammonia. See Fig. 18. The models
typically assume solid body rotation, hydrostatic equi-
librium, a fully convective and isentropic interior, and
a homogeneous and constant mixture of helium in the
metallic and molecular layers. These assumptions lead to
a set of hydrostatic equations for the pressure, density,
and entropy as a function of the planet’s radius (Steven-
son, 1982). In order to close the set of equations, the
equation of state of the mixture is needed, specifically
P = P (ρ, T, xi) where xi indicate the molar fractions of
the mixture. Most current models of Jupiter and Saturn
are based on the SCVH equations of state (Guillot, 1999;
Guillot et al., 1994a,b, 1997), although recently, mod-
els for Jupiter have used equations of state derived from
first-principles simulations (Militzer et al., 2008; Nettel-
mann et al., 2008). Currently, the largest uncertainty
in the models comes from the limited knowledge of the
equation of state of hydrogen-helium mixtures at high
pressures and the uncertainty associated with possible
transitions in the dense liquid: the Liquid-Liquid Phase
Transition discussed above and the immiscibility of he-
lium in metallic hydrogen (Fortney, 2004; Guillot, 2005)
discussed below.

In this section, we review the current understanding
of helium and hydrogen-helium mixtures based on first-
principle calculations. In section V.A we review work on
pure helium with emphasis on the phase diagram, the
equation of state and optical properties at high pressure.
In section V.B we discuss recent work on mixtures with

emphasis on the calculation of the equation of state and
the solubility of helium in metallic hydrogen.

A. Helium

At ambient conditions helium is an inert gas with a
large band gap. Due to its low mass and weak inter-
atomic interactions, it has fascinating properties at low
temperatures and displays a wide array of exotic phe-
nomena such as superfluidity. In this review, we focus
only on the high pressure properties of the isotope 4He

1. Equilibrium Properties: Equation of State and Structure

At pressures above 25 bars (2.5MPa) at zero temper-
ature, 4He crystallizes into the hcp phase. Thermody-
namic measurements show the existence of an hcp-fcc
phase transition at P∼1.1 GPa, with a hcp-fcc-liquid
triple point located approximately at 0.1 GPa and 15
K (Dugdale and Simon, 1953). Early melting experi-
ments using DAC techniques by Loubeyre et al., 1982,
showed the existence of a cusp in the melting line at
11.65 GPa and 299 K, suggesting the existence of a new
phase at higher pressures. Single-crystal x-ray diffraction
measurements at 300 K with DACs and synchrotron ra-
diation showed that solid helium forms an hcp phase in
the pressure range 15.6 to 23.3 GPa (Mao et al., 1988);
the stability of the hcp phase up to 58 GPa was subse-
quently confirmed (Loubeyre et al., 1993). The melting
line has been measured experimentally to pressures of 24
GPa by Vos et al., 1990, and up to 41 GPa by Datchi
et al., 2000 with a resistively heated DAC. Recent mea-
surements using laser-heated DACs extended the melting
line to pressures up to 80 GPa (Santamaria-Perez et al.,
2010). There is good agreement in the measured melting
lines up to 20 GPa, but the measurements of Santamaria-
Perez et al., 2010 are in disagreement with an extrapola-
tion of the measurements of Datchi et al., 2000 to higher
pressures. On the other hand, the extrapolation of the
melting line of Vos et al., 1990 is in reasonable agree-
ment with that of Santamaria-Perez et al., 2010. This
disagreement has lead to some controversy regarding the
high pressure phase diagram of helium. Classical MD
simulations using empirical potentials have suggested the
existence of a fcc-bcc phase transition above 12 GPa (Koi
et al., 2007), providing an alternative explanation to the
measured cusp in the melting line. But since these results
strongly depend on the empirical interatomic potential
used to describe He, they do not resolve the discrepancy.
Various first-principles studies of the metallization

transition in helium have been reported. The most recent
calculations by Khairallah and Militzer, 2008 predict a
zero temperature band gap closure at 25.7 TPa, using
both QMC and GW methods. As expected, DFT calcu-
lations using semi-local functionals predict a transition
pressure that is 40% smaller. On the other hand, perfect



Glossary 41

agreement is found between GW and QMC predictions.
First-principles calculations of the elastic properties of
solid helium were reported by (Nabi et al., 2005), showing
a good agreement with experimental results (Zha et al.,
2004).
Liquid helium at high pressures and temperatures

has been the subject of numerous studies. The princi-
pal Hugoniot was measured using a two-stage light-gas
gun,liquid helium at 4.3 K and 1 bar was shocked to 16
GPa and 12,000 K and double shocked to pressures of 56
GPa and 21,000 K (Nellis et al., 1984). The Hugoniot was
recently extended to pressures over 100 GPa by combin-
ing DACs and laser-driven shock wave techniques (Eg-
gert et al., 2008b). Several pre-compressed states were
shocked, enabling the exploration of an enlarged region
of phase space.
Several chemical models for helium have been devel-

oped (Chen et al., 2007; Juranek et al., 2003; Saumon
et al., 1995; Winisdoerfer and Chabrier, 2005), most of
them built from perturbative expansions of the free en-
ergy using theoretical helium interatomic potentials, such
as the Aziz potential (Aziz and Slaman, 1991) or the
Ceperley-Partridge potential (Ceperley and Partridge,
1986). These models, e.g. SCVH, have been extensively
used in planetary models of Jovian planets. At low pres-
sures, a good agreement is found between experiments
and these models. As pressure increases, electronic and
thermal effects become very important and perturbative
treatments become less accurate. Available experimental
input is very limited.

FIG. 19 (color online) Measurements of the principal he-
lium Hugoniots for various initial densities. Symbols indicate
the measured data, with open and closed symbols indicating
whether the shocked state is reflecting or opaque, respectively.
The solid line is the SCVH model (Saumon et al., 1995) and
the dashed-line, ab initio calculations (Militzer, 2006). Figure
taken from (Eggert et al., 2008b).

There are several first-principles studies of the thermo-

dynamic properties of liquid helium (Kietzmann et al.,
2007; Kowalski et al., 2007; Lorenzen et al., 2009; Mil-
itzer, 2005, 2006, 2009; Morales et al., 2009; Vorberger
et al., 2007b), most of them using DFT-based MD with
a semi-local functional, e.g. the PBE functional. Figure
19 shows a comparison of several Hugoniots of helium
as measured and predicted by chemical models or first-
principles simulations (Eggert et al., 2008b).
A recent study compared the EOS of helium be-

tween DFT-based BOMD and R-PIMC methods (Mil-
itzer, 2009); R-PIMC was used for temperatures above
60,000 K and DFT-MD for temperatures between 500 K
and 125,000 K, in the density range 0.38-5.35 g/cm3.
This work is particularly interesting because it estab-
lishes the importance of the electronic temperature in
DFT-MD calculations and, in addition, compared pre-
dictions of both simulation methods for temperatures
around 100,000 K, where both methods should be appli-
cable and accurate. Good agreement between the meth-
ods was found for temperatures above 80,000 K, as long
as the thermal occupation of the electrons is taken into
account in DFT. These results suggest that the Born-
Oppenheimer approximation is very good for calculating
the equilibrium properties at temperatures below 100,000
K. Its influence on dynamical properties at such high
temperatures, is still not well established.
At intermediate temperatures and pressures between

160 GPa and 1600 GPa, the EOS has been studied in
detail using the CEIMC method (Morales, 2009). Figure
20 shows the pressure of helium as a function of den-
sity as given by several chemical models: DFT-based
BOMD and QMC-based CEIMC simulations. Good
agreement exists between DFT and QMC-based sim-
ulation methods with these conditions. The chemi-
cal model, SCVH(Saumon et al., 1995), agrees reason-
ably well with first-principles simulation results, how-
ever, the WC model(Winisdoerfer and Chabrier, 2005)
shows marked differences in magnitude and overall den-
sity dependence. This comparison is further evidence
that DFT and QMC simulation methods agree well and
thus make robust predictions of the equilibrium thermo-
dynamic properties of helium at high pressure.

2. Dynamic Properties: Optical and Transport Properties

Advances over the last decade in the field of dynamic
compression, particularly in their diagnostic tools, have
enabled the direct measurement of optical properties of
helium at pressures above 100 GPa and temperatures
up to 60,000 K (Celliers et al., 2010; Ternovoi et al.,
2002). Figure 21 shows the measured reflectivity of he-
lium as a function of temperature and density along sev-
eral Hugoniots with different initial densities. The ex-
periments suggest that helium undergoes an insulator-
to-metal transition as either density or temperature are
increased. The exact nature of the transition is still not
clear, especially at low temperatures in the liquid.
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FIG. 20 (color inline)Comparison of the pressure of liquid he-
lium as a function of density, along an isotherm at T=6000
K, between CEIMC (Morales, 2009), DFT-based BOMD
(Morales et al., 2009), and the SCVH (Saumon et al., 1995)
and WC (Winisdoerfer and Chabrier, 2005) chemical models.

FIG. 21 (color online) Reflectivity measurements of helium
using laser driven dynamic compression (Celliers et al., 2010).
Solid diamonds show the observed reflectivity as a function
of temperature and final density indicated by the color scale.
Curves show the reflectivity obtained from a fit to the data
using the semiconductor Drude model for three final state
densities: 0.8, 1.1, and 1.4 g/cm3. Gray triangles are cal-
culated reflectivities by (Kowalski et al., 2007) near 1 g/cm3

with a +3 eV gap correction. Figure and caption taken from
(Celliers et al., 2010).

There have been various first-principles studies of
the optical properties of liquid helium at high pressure
(Hamel et al., 2011; Kietzmann et al., 2007; Kowalski
et al., 2007; Lorenzen et al., 2011; Stixrude and Jeanloz,
2008). Using linear response theory within the Kubo-
Greenwood formulation and DFT, Kowalski et al., 2007
calculated the band gap, conductivity, reflectivity, index
of refraction, and absorption coefficient as a function of
density and temperature. They studied the influence of
the DFT exchange-correlation potential on the band gap
of the liquid, clearly demonstrating the strong reduction

in the gap due to self-interaction errors in semi-local func-
tionals such as PBE. Using the GW method and hybrid-
DFT calculations, they were able to devise a simple cor-
rection to the optical properties obtained from semi-local
functionals, improving the agreement with experiment.
They also showed that the self-interaction errors decrease
with increasing temperature. Stixrude and Jeanloz, 2008
also calculated the band gap and the conductivity of liq-
uid helium, extending to temperatures up to 50,000 K
and densities up to 6 g/cm3. Their work showed the gap
closure occurs at much lower pressures in the liquid com-
pared to the solid and depends strongly on temperature.
The first detailed study of the optical properties of

hydrogen-helium mixtures using first-principles simula-
tions came with the recent work of Hamel et al., 2011,
where the conductivity and reflectivity of the mixture
were calculated as a function of pressure, temperature
and composition at pressures above 300 GPa and tem-
peratures above 4,000 K. This corresponds to the region
of pressure and temperature where helium becomes im-
miscible in metallic hydrogen (Morales et al., 2009). The
authors use the frequency dependence of the reflectivity
for both a mixed and a phase separated sample to pre-
dict a possible signature of phase separation in dynamic
compression experiments. The conductivity and miscibil-
ity of hydrogen-helium mixtures across the dissociation
regime has also been studied by Lorenzen et al., 2011
using first-principles methods.

B. Phase separation of H and He

The EOS of hydrogen-helium mixtures is a key ingre-
dient for the interior models of Jupiter, Saturn and other
hydrogen-rich planets. In fact, the solubility of helium in
hydrogen at high pressure plays a crucial role in the cor-
rect description of these planets. The giant planets typ-
ically radiate more energy than they take in from their
sun. The current luminosity of Jupiter is well described
with an evolution model for a convective homogeneous
planet radiating energy left over from its formation 4.55
billion years ago. But a similar model for Saturn se-
riously underestimates its current luminosity (Hubbard
et al., 1999). Although solar heating prolongs the cool-
ing time of Saturn, its influence is not enough to reconcile
its age with the expected time of formation. Hence, an
additional energy source playing a more important role
in Saturn than in Jupiter needs to be found.
Helium condensation has been proposed as a possible

explanation for the excess luminosity in Saturn and the
helium depletion in the atmosphere of both giant planets
(Smoluchowski, 1967; Stevenson, 1975, 1979; Stevenson
and Salpeter, 1977a,b). Let us suppose that there is a
region in the planet’s interior where helium is insoluble;
helium droplets will form and thereby act as a source
of energy, both through the release of latent heat, and
by descending deeper into the center of the planet. Fig-
ure 22 shows a schematic representation of three differ-



Glossary 43

FIG. 22 (color online) Three views of the interior of Saturn.
Orange represents the protosolar He/H ratio.A yellower or-
ange indicates less He, and a redder orange more He. Brown
is the ice/rock core. The hashed regions indicate molecular
hydrogen, while the unhashed regions atomic metallic hydro-
gen. (1) Saturn at an age of 1.5 billion years, before the onset
of He phase separation. (2) The current Saturn according to a
previously proposed H-He phase diagram (Stevenson, 1975).
(3) The current Saturn according to a phase diagram derived
from new evolutionary models (2). Figure and caption taken
from (Fortney, 2004).

ent scenarios for the interior structure of Saturn based
on possible mixing properties of helium in metallic hy-
drogen. Because Jupiter and Saturn have different total
masses, the thermodynamic conditions in the planetary
interiors could be such that this condensation process
is more prevalent in Saturn than in Jupiter. Although
this mechanism could explain most of the experimental
observations in Saturn, an accurate understanding of the
miscibility properties of helium on metallic hydrogen was
only recently obtained using first-principles simulations.

This problem of helium solubility in metallic hydro-
gen has received great attention over the past 30 years.
Before the development of first-principles simulations,
calculations used perturbative treatments(Hansen et al.,
1977; Hubbard and DeWitt, 1985; Pollock and Alder,
1977; Stevenson, 1979; Stevenson and Salpeter, 1977a,b;
Straus et al., 1977) of the mixture free energy with as-
sumed interactions between chemical species (e.g. He,
He+, H, H+, H2, etc.). Almost all calculations assumed
a fully pressure-ionized mixture in order to facilitate the
perturbative treatment. For the temperature and pres-
sures relevant to planetary modeling, the assumption of
complete ionization is now believed to be inaccurate, lim-
iting the reliability of those calculations. Although the
details of each calculation varied in terms of approach
and complexity, most calculations found that the critical
temperature for immiscibility decreased with increasing
pressure and was generally too low to explain the ob-
served discrepancy in the luminosity of Saturn (Fortney

and Hubbard, 2004).

The first application of first-principles methods
(Klepeis et al., 1991) used DFT calculations based on the
local density approximation (LDA) to calculate the en-
thalpy of mixing of alloys of hydrogen and helium at zero
temperature as a function of composition. Using the ideal
mixing approximation, they obtained a demixing temper-
ature of 15,000 K for xHe = 0.07, suggesting that there
should be phase separation in both Jupiter and Saturn.
However, their work neglected both the relaxation of the
ionic crystal after the introduction of helium, and the
disorder characteristic of a fluid. Using first-principles
molecular dynamics (FPMD) simulations with the Car-
Parrinello technique Pfaffenzeller et al., 1995 estimated
the free energies of a mixture by a reweighting technique
from the pure hydrogen liquid. They found a negligi-
ble temperature effect on the mixing free energy up to
temperatures of 3,000 K, disregarded thermal effects in
the enthalpy of mixing, using instead the ideal mixing en-
tropy. They obtained immiscibility temperatures too low
to allow for differentiation in either Jupiter or Saturn.

The first proper ab-initio treatment of the problem
came recently with the work of Morales et al., 2009. Us-
ing a combination of DFT-based BOMD calculations and
thermodynamic integration, they calculated the Gibbs
free energy of mixing as a function of pressure, tempera-
ture and composition without resorting to the ideal mix-
ing approximation. Independent DFT-based BOMD cal-
culations, by (Lorenzen et al., 2009), of the Gibbs free
energy with the ideal mixing approximation for the en-
tropy were also done. The two calculations agree very
well in the regime where ideal mixing is valid.

To determine when the H-He system is mixed, one
needs the Gibbs free energy as a function of pressure,
temperature and composition. The free energy is im-
portant, not only to calculate the critical concentrations,
but also to produce accurate equations of state for plan-
etary modeling. In the case of H-He mixtures, the ideal
mixing approximation significantly affects the resulting
properties of planets and needs to be removed by direct
calculation of the free energy.

Simulation methods such as Monte Carlo and Molec-
ular Dynamics calculate ensemble averages of properties
such as energy, pressure, density, etc. Free energies, or
any property that directly involves the entropy, must be
calculated by integrating along a thermodynamic path-
way from a many-body system with known free energy
(Frenkel and Smit, 2002). Until recently, this extra inte-
gration, in combination with the high computational cost
of first-principles simulations, has prevented the evalua-
tion of the Gibbs free energy of H-He mixtures. Morales
et al., 2009 used a Coupling Constant Integration (CCI)
to determine the free energy difference between a DFT
description of the mixtures and that of a pair poten-
tial model tuned to produce a reasonable description of
the DFT model. The pair potential simulation is many
orders of magnitude faster than that of the the first-
principle model and its free energy can be calculated by
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FIG. 23 The Gibbs free energy of mixing as a function of com-
position, at a pressure of 400 GPa, for several temperatures:
5000 K (black), 6000 K (orange), 8000 K (red) and 10000 K
(blue). The solid lines represent full free energy calculations
from Morales et al., 2009. The dashed lines represent results
using the ideal mixing approximation for the entropy from
Lorenzen et al., 2009.

integrating from the limit of zero density8

Using energies and pressures from ab-initio BOMD
simulations on a grid of temperatures and densities
Morales et al., 2009, calculated free energies for pressures
between 300 GPa and 1800 GPa, and temperatures be-
tween 4000 K and 10000 K. In figure 23, the Gibbs free
energy of mixing is shown as a function of composition,
as calculated by Lorenzen et al., 2009, and Morales et al.,
2009, at a pressure of 400 GPa. The strong temperature
dependence of the immiscibility properties of the mix-
ture are apparent from these results. A weak pressure
dependence on the mixing free energies at low helium
compositions is found. This leads to a weak dependence
of critical mixing temperatures for compositions relevant
to planetary interiors. Note how the Gibbs free ener-
gies reported by the different calculations agree well at
low helium fractions, but disagree as the helium fraction
increases.
As shown in Morales et al., 2009, the structure of hy-

drogen is strongly influenced by the helium concentra-
tion. The inert character of a helium atom makes it in-
sensitive to changes in the local environment, however, a
proton is very sensitive. While at low xHe, hydrogen is in
the mono-atomic fully ionized state, an effective proton-
proton attraction reminiscent of the molecular bonding
develops upon increasing xHe, even at very high pressures
and temperatures. Figure 24 shows the proton-proton ra-
dial distribution functions for mixtures with various he-
lium concentrations, at 8000 K for the density rs = 1.05.

8 Care must be taken to ensure that first order phase transitions
are not crossed during the integration.
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FIG. 24 The effect of increasing concentrations of helium on
the proton-proton radial distribution function(Morales et al.,
2009) for various compositions at a temperature of 8000 K
and an electronic density given by rs = 1.05: xHe=0.9 - black,
xHe=0.8 - green, xHe=0.6 - blue, and xHe=0.0 - red. . Inset:
Excess entropic contribution of the Gibbs free energy of mix-
ing, in mHa/atom, for several temperatures at a pressure of
800 GPa: T = 6,000 K - red, T = 8,000 K - green, and T =
10,000 K - blue.

A molecular-like peak builds up smoothly as xHe → 1.
The inert helium inhibits the delocalization of the hydro-
genic electrons, enhancing the formation of weak molec-
ular bonds with short lifetimes. A similar stabilization of
molecular hydrogen by helium, but at much lower tem-
perature and density, has been previously reported close
to the dissociation regime in pure hydrogen by Vorberger
et al., 2007b.

The change in the chemical properties of hydrogen pro-
duced by helium induces non-linear effects in the mix-
ing functions. Figure 24 shows the excess non-ideal en-
tropic contribution to the Helmholtz free energy, defined
as: Sexcess(x) = S(x) + [xln(x) + (1 − x)ln(1 − x)], at
a pressure of 800 GPa. It is zero up to a helium frac-
tion of xHe ≈ 0.2, and increases after this point. As
long as the fraction of helium is not large enough to in-
duce the pseudo-molecular state in hydrogen, the ideal
mixing approximation for the entropy is good. Once the
pseudo-molecular state emerges, non-linear corrections to
the mixing entropy appear and the full mixing free en-
ergy is needed to obtain an accurate description of the
immiscibility process. The non-linear mixing entropy is
roughly 3 mHa/atom at high helium fraction, comparable
to the mixing Gibbs free energy. Calculations ignoring
the excess will produce accurate results for xHe < 0.2,
but non-physical stable mixtures for xHe > 0.5; compare
Fig. 23 with the inset in Fig. 24. The difference between
results of Lorenzen et al., 2009 and Morales et al., 2009
is well explained by the presence of a minimum in Loren-
zen’s mixing Gibbs free energies at xHe ∼ 0.8 leading to
demixing temperatures about 700 K higher. Otherwise
the agreement between the calculations is excellent.
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FIG. 25 (color online) Demixing temperatures as a function
of the helium number fraction, for several pressures: 400 GPa
(red), 800 GPa (black), 1000 GPa (blue). Symbols represent
results from Morales et al., 2009, solid lines are results from
Lorenzen et al., 2009, dashed lines are results from Pfaffen-
zeller et al., 1995, and the green solid line is from Klepeis
et al., 1991 at 1,050 GPa.

Figure 25 shows a comparison of demixing tempera-
tures as a function of composition for several calcula-
tions described above. A prominent feature of the recent
first-principles calculations is that pressure has only a
moderate effect on the immiscibility process. For a fixed
helium fraction, the demixing temperature changes by
approximately 500 K in a pressure range of 800 GPa for
the relevant concentrations of He (5% to 10%). Immis-
cibility occurs at temperatures well below those required
to produce ionization in helium (Stevenson, 2008); mod-
els with fully ionized He atoms are not appropriate for
describing the pressure dependence of the demixing tem-
perature. At pressures much higher than those discussed
here, metallization of helium will play an important role
and should produce significant changes to the pressure
dependence of the immiscibility temperature presented
here.
Recent estimates of the demixing temperature have im-

portant implications for the study of the interior struc-
ture of hydrogen-rich planets, especially Saturn. First-
principles results support the scenario that He becomes
partially miscible in the intermediate layers of the planet,
with the excess helium falling towards the core through
gravitational differentiation. Whether the immiscible re-
gion is large enough to account for all the observed prop-
erties of Saturn is yet to be determined, but it is clear
that planetary models should include phase separation.
In general, the new DFT-based EOS could make a sig-
nificant modification to interior models calculated with
the SCVH EOS (Saumon et al., 1995). While models of
Jupiter based on first principles EOS are beginning to
appear (Militzer et al., 2008; Nettelmann et al., 2011),
there is not yet a clear consensus on some of the details
of the models. Nonetheless, the use of the new EOS is an

important step forward which should help obtain more
accurate models of planetary interiors.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have summarized the current under-
standing of hydrogen and helium under extreme condi-
tions. The last two decades have witnessed an enormous
progress, both in experimental methodologies, and in
simulation techniques for systems under extreme condi-
tions. The synergy has greatly improved our understand-
ing of high pressure hydrogen, helium and their mixtures.
This review has focused on what has been learned from
numerical simulation methods, much of which has only
occurred very recently, now that such methods, computa-
tional techniques and computer hardware have advanced
to the level of accuracy where important questions can
be reliably answered.
The uncertainties in experimental findings are still too

large; the experimentally achievable pressures and tem-
peratures are still too limited. Experiments does not yet
provide enough definitive information about dense hydro-
gen and helium. For example, DAC experiments at low
temperatures have not been able to reach pressures where
hydrogen conclusively becomes an atomic metal. Even
though the recent experiment by Eremets and Troyan,
2011 claims to have achieved such a state, this inter-
pretation is controversial (Jephcoat, 2011; Nellis et al.,
2012), and the measurements are inconsistent with the
semi-metallic behavior reported by Howie et al., 2012;
Zha et al., 2012 under similar thermodynamic conditions.
Although impressive advancements have been made and
will come from new laser shock facilities, the results will
continue to have large uncertainties. We nonetheless
strongly encourage experiments to utilize such advances
to verify the predictions that have already been made
concerning the LLT and H–He demixing (see Sections
IV.B.2 and V.B, respectively). Going forward, however,
first principle simulations will continue to play a domi-
nant and crucial role understanding and modeling mate-
rials at high pressure.
Some of the recent successes of simulations have been:

a) the prediction of the reentrant nature of the melt-
ing line of the molecular hydrogen crystal, validated by
several experimental measurements and theoretical con-
firmations; b) the prediction of a maximum compression
of 4-4.5 along the principal Hugoniot of cryogenic D2, at
variance with the first laser-induced shock experiments,
but later confirmed by several other shock measurements;
c) the prediction of a first-order phase transition line in
the liquid phase of hydrogen, using both CEIMC and
FPMD which has received some experimental support
(see fig. 14) but still requires a systematic experimental
validation; and d) the prediction of the demixing tem-
perature in H-He mixtures which can account for the
differences between the planets Jupiter and Saturn. A
number of other predictions have been made but require
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experimental verification such as the crystal structures
and superconductivity in solid atomic hydrogen.

As we have illustrated, away from the metallization
and molecular dissociation region, FPMD methods are
very accurate when compared to experiments and to
more fundamental methods such as CEIMC and RPIMC.
There are programs underway to make a complete sur-
vey of the phase diagram for all values of pressure tem-
perature and composition (i.e., of hydrogen to helium)
using both FPMD and RPIMC. The metallization re-
gion is of great relevance for planetary modeling, for ICF
applications at high temperature and for fundamental
physics understanding at low temperature,. For applica-
tions, quantitative details matter. Current FPMD, based
on the GGA functional within the DFT, has errors as
a result of the limitations of the GGA in treating ex-
cited states and band gaps. Quantitative predictions in
this region require more accurate description of electronic
correlation such as QMC or the use of more appropriate
functionals in DFT. While application of QMC descrip-
tion of correlation in the CEIMC method has been ap-
plied, the improved functionals in FPMD have not been
widely used in dense hydrogen and helium.

An important issue concerns the effects of the zero
point motion of the nuclei. Quantum effects are likely to
be important on the metallization transition below 1000
K, in particular, since it occurs together with molecular
dissociation. Zero point effects become more and more
relevant at lower temperature, in particular in the molec-
ular solid. The inclusion of these effects can change the
relative stability of crystal phases (Natoli et al., 1993),
are badly described by self-consistent harmonic approxi-
mations, but fully described using Path Integral methods.
To achieve definitive calculations of superconductivity in
dense hydrogen will likely require a complete treatment
of the quantum mechanics of both the electrons and pro-
tons.

One of the major problems in past simulations has been
lack of convergence: convergence in the number of par-
ticles, size of basis sets, number of reciprocal lattice vec-
tors, length of time of dynamics, to mention the major
issues. While it is true that the phases of hydrogen are
very sensitive to the convergence issues, the systematic
growth in power of the algorithms and computational
power, means that the capability now exists to eliminate
routinely such errors.

The fundamental bottleneck of QMC methods today is
the “fermion sign problem” that was briefly discussed in
section II.C.1. If the sign problem were solved, Quantum
Monte Carlo methods could compute completely reliable
solutions to the many-body quantum equations but, to-
day, the exact methods are either severely limited in the
number of electrons, or only give an upper bound to
the internal energy. However progress can be made even
without solving the sign problem. First, the sign problem
is a scaling issue; it is possible to calculate exact prop-
erties of smaller systems (say dozens of atoms) and this
number can be expected to increase in the future. These

smaller system can act as benchmarks for the fixed-node
QMC methods that scale to much larger sizes. Second,
the variational fixed-node principle gives us an absolute
signal when we have improved the trial function; sub-
stantial progress has been made in finding better trial
functions in the past decade using this principle. Such
an upper bound principle is lacking in DFT methods;
instead they must rely on comparison with experiment
or other methods. Third, the accumulated experience is
that the fixed-node errors using existing trial functions
are quite small for hydrogen and helium systems at high
pressure, at least in the normal liquid and solid phases.
Despite a number of successes of simulation and exper-

iment, many properties of hydrogen remain unresolved.
Some of the most basic general questions that need an-
swering concern the behavior of hydrogen at low temper-
ature and increasing pressure. For example, a number
of structures have been suggested for molecular phases II
and III, and very recently for IV, but the agreement with
experiment is not perfect. Furthermore, are there molec-
ular phases at pressures beyond phases III and IV, and
are they, in fact, those already predicted? At higher pres-
sure, how does metallization occur, and what is the pro-
cess of the molecular-to-atomic transition? Are these two
effects related, or does metallization occur in the molecu-
lar phase via a band overlap? Are the recently proposed
atomic structures via studies using the harmonic approx-
imation for zero point motion correct? If not, how does
the accurate treatment of proton ZPM affect their sta-
bilities? Does it destabilize the lattice, giving a ground
state quantum liquid? If not, at what pressure does the
melting line reach a minimum, and at what temperature?
The use of the first principle simulation tools, in par-

ticular PIMD based on DFT, RPIMC and CEIMC will
play pivotal roles in answering these questions. Most of
the problems that held back progress can now be solved
with known algorithms and existing computers. Simula-
tions should be able to calculate the EOS to the accuracy
needed for planetary modeling. Already EOS tables ac-
curate to a few percent are available in certain regions
of phase space. We anticipate in the next few years the
computation and testing of these tables will be completed
and accurate equilibrium properties for arbitrary H-He
mixtures will be available. Following that, advances in
correlated methods are critically needed to compute more
accurately properties such as electrical and thermal con-
ductivity, viscosity, and opacity since these properties are
also vital ingredients in planetary models and for other
applications of matter in extreme conditions.
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Kümmel, S., and L. Kronik, 2008, Rev. Mod. Phys. 80, 3, .
Kwon, I., L. Collins, J. Kress, and N. Troullier, 1995, EPL

(Europhysics Letters) 29, 537.
Kwon, I., L. Collins, J. Kress, N. Troullier, and D. Lynch,

1994a, Physical Review E 49(6), 4771.
Kwon, I., J. Kress, and L. Collins, 1994b, Physical Review B

50(13), 9118.
Kwon, Y., D. M. Ceperley, and R. M. Martin, 1993, Phys.

Rev. B. 48, 12037.
Labet, V., P. Gonzalez-Morelos, R. Hoffmann, and N. W.

Ashcroft, 2012a, The Journal of Chemical Physics 136(7),
074501 (pages 14), .

Labet, V., R. Hoffmann, and N. W. Ashcroft, 2012b, The
Journal of Chemical Physics 136(7), 074502 (pages 10), .

Labet, V., R. Hoffmann, and N. W. Ashcroft, 2012c, The
Journal of Chemical Physics 136(7), 074503 (pages 10), .

Labet, V., R. Hoffmann, and N. W. Ashcroft, 2012d, The
Journal of Chemical Physics 136(7), 074504 (pages 10), .

Lambert, F., V. Recoules, A. Decoster, J. Clerouin, and
M. Desjarlais, 2011, Physics of Plasmas 18(5), 056306
(pages 9), .

Landau, L., and G. Zeldovich, 1943, Acta Phys. Chim. USSR
18, 194.

Lee, K., E. D. Murray, L. Kong, B. I. Lundqvist, and D. C.
Langreth, 2010, Phys. Rev. B 82, 081101, .

Lenosky, T., S. Bickham, J. Kress, and L. Collins, 2000, Phys-
ical Review B 61(1), 1.

Lenosky, T., J. Kress, and L. Collins, 1997a, Physical Review
B 56(9), 5164.

Lenosky, T., J. Kress, L. Collins, and I. Kwon, 1997b, Physical
Review B 55(18), 11907.

Lenosky, T., J. Kress, L. Collins, and I. Kwon, 1997c, Journal
of Quantitative Spectroscopy and Radiative Transfer 58(4),
743.

Lenosky, T., J. Kress, L. Collins, R. Redmer, and H. Juranek,
1999, Physical Review E 60(2), 1665.

Liberatore, E., M. A. Morales, D. M. Ceperley, and C. Pier-



Glossary 51

leoni, 2011a, Molecular Physics , 1.
Liberatore, E., C. Pierleoni, and D. M. Ceperley, 2011b, J.

Chem. Phys. 134(18), 184505.
Liebenberg, D. H., R. L. Mills, and J. C. Bronson, 1978, Phys.

Rev. B 18, 4526, .
Lin, C., F.-H. Zong, and D. M. Ceperley, 2001, Phys. Rev. E

64, 016702.
Lin, F., M. A. Morales, K. T. Delaney, C. Pierleoni, R. M.

Martin, and D. M. Ceperley, 2009, Phys. Rev. Lett.
103(25), 256401.

Lin, J.-F., M. Santoro, V. V. Struzhkin, H.-k. Mao, and R. J.
Hemley, 2004, Rev. Sci. Instrum. 75, 3302.

Lindl, J. D., P. Amendt, R. L. Berger, S. G. Glendinning,
S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen,
and L. J. Suter, 2004, Physics of Plasmas 11(2), 339, .

Liu, H., H. Wang, and Y. Ma, 2012, .
Lorenzana, H. E., I. F. Silvera, and K. A. Goettel, 1989, Phys.

Rev. Lett. 63, 2080.
Lorenzana, H. E., I. F. Silvera, and K. A. Goettel, 1990, Phys.

Rev. Lett. 64, 1939.
Lorenzen, W., B. Holst, and R. Redmer, 2009, Phys. Rev.

Lett. 102, 115701.
Lorenzen, W., B. Holst, and R. Redmer, 2010, Physical Re-

view B 82(19), 195107.
Lorenzen, W., B. Holst, and R. Redmer, 2011, Phys. Rev. B

84, 235109, .
Loubeyre, P., J. M. Besson, J. P. Pinceaux, and J. P. Hansen,

1982, Phys. Rev. Lett. 49, 1172, .
Loubeyre, P., P. Celliers, D. Hicks, E. Henry, A. Dewaele,

J. Pasley, J. Eggert, M. Koenig, F. Occelli, and K. Lee,
2004, High Pressure Research 24(1), 25.

Loubeyre, P., R. LeToullec, J. P. Pinceaux, H. K. Mao, J. Hu,
and R. J. Hemley, 1993, Phys. Rev. Lett. 71, 2272, .

Loubeyre, P., F. Occelli, and R. LeToullec, 2002, Nature 416,
613.
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