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Axisymmetric solitonic states (chiral skyrmions) have been predicted theoretically more than two
decades ago. However, until recently they have been observed in a form of skyrmionic condensates
(hexagonal lattices and other mesophases). In this paper we report experimental and theoretical
investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago (Science
341 , 636 (2013)). The results of spin-polarized scanning tunneling microscopy analyzed within
the continuum and discrete models provide a consistent description of isolated skyrmions in thin
layers. The existence region of chiral skyrmions is restricted by strip-out instabilities at low fields
and a collapse at high fields. We demonstrate that the same equations describe axisymmetric
localized states in all condensed matter systems with broken mirror symmetry, and thus our findings
establish basic properties of isolated skyrmions common for chiral liquid crystals, different classes
of noncentrosymmetric magnets, ferroelectrics, and multiferroics.

PACS numbers: 12.39.Dc; 68.37.Ef; 75.70.Ak; 75.70.-i

I. INTRODUCTION

Long-period homochiral magnetization modulations
(helical phases)1 and axisymmetric solitonic patterns
(vortices or skyrmions)2–4 are two types of unconven-
tional magnetic states attributed solely to magnetic
compounds with broken inversion symmetry and distin-
guish them from common (achiral) magnetic materials
(Figs. 1, 2). Both, extended chiral modulated phases
and localized skyrmionic states are stabilized by specific
Dzyaloshinskii-Moriya (DM) interactions arising in chiral
magnets owing to their crystallographic handedness1. In
the micromagnetic energy functionals of noncentrosym-
metric ferromagnets these interactions are described by
energy contributions linear in the first spatial derivatives
of the magnetization M (Lifshitz invariants)1

Mi

∂Mj

∂xk
−Mj

∂Mi

∂xk
. (1)

Axisymmetric localized structures (Fig. 1) are re-
lated to multidimensional topological solitons with non-
singular internal structure and finite energy5. These
particle-like objects are of special interest in fundamen-
tal physics and mathematics6–8. In most nonlinear phys-
ical systems, multidimensional solitons (skyrmions) can
exist only as dynamic excitations while static solutions
are unstable and collapse spontaneously into topological
singularities9.
In nonlinear field theory, the existence and stability of

skyrmion solutions is provided by special terms in the
energy functionals. More than five decades ago T. H.
Skyrme introduced into the nonlinear field model an in-
teraction term with higher order spatial derivatives that
stabilize two- and three-dimensional topological nonsin-

FIG. 1. (color online). Axisymmetric isolated skyrmions:
(a) in cubic helimagnets and uniaxial ferromagnets with Dn

symmetry; (b) in uniaxial ferromagnets with Cnv symmetry2.

gular solitons (now commonly addressed as skyrmions)10.
Since that time, field theorists have been intensively in-
vestigating this family of solitons (skyrmions) within the
Faddeev-Skyrme and kindred models6,10,11.
Lifshitz invariants of type (1) provide the only known

alternative to the Skyrme mechanism that yield regular
solutions for axisymmetric skyrmions3,12,13. These in-
variants arising in noncentrosymmetric condensed matter
systems (including chiral magnets, liquid crystals, multi-
ferroics, and nanolayers of magnetic metals with interface
induced Dzyaloshinskii-Moriya interactions) introduce a
unique class of materials where mesoscopic skyrmions can
be induced and manipulated.
In a broad range of applied magnetic fields and tem-

peratures isolated skyrmions condense into hexagonal
lattices3,14,15 or other types of two-dimensional modu-
lated states16,17. During the last years, intensive ex-
perimental efforts have been undertaken to find indica-
tions of hexagonal skyrmion lattices in different groups
of chiral ferromagnets (see e.g18–27 and bibliography
in15). Particularly, direct observations of skyrmion lat-
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tices have been reported in free standing nanolayers of
cubic helimagnets in21 (and the following papers of this
group22,28). These results reveal axial symmetry and ho-
mochirality of the embedded skyrmions, and observed
properties of skyrmion lattices were found to be in close
correspondence with theoretical results. To date the
LTEM studies of confined cubic helimagnets have focused
on the skyrmion condensates (skyrmion lattices and
clusters)21,22,27,28. Spin-polarized scanning tunneling mi-
croscopy (SP-STM) has been able to identify isolated
skyrmions in the saturated states of PdFe/Ir(111) films29,
and subsequently resolve their internal structure30.
In this paper we present detailed experimental

and theoretical investigations of axisymmetric isolated
skyrmions in thin magnetic films.
In the theoretical part we develop a consistent theory

of chiral skyrmions in thin magnetic layers (Sec. IIA).
In Sec. IIB we apply the qualitative theory of differen-
tial equations to expound main features of isolated chiral
skyrmions and elucidate their physical nature, investigate
the conditions of the elliptical instability at low fields and
calculate within the discrete model the skyrmion collapse
field. In Sec. IIC we construct the phase diagram of the
solutions for isolated skyrmions.
In the experimental part we present the detailed evolu-

tion of isolated skyrmions in PdFe/Ir(111) bilayers from
the strip-out at low fields to the collapse at high fields.

II. THEORY

A phenomenological theory of chiral modulations in
noncentrosymmetric magnetic crystals has been devel-
oped by I. Dzyaloshinskii in 19641. These papers also
include analytical solutions for one-dimensional chiral
modulations (helicoids and cycloids). Theory of isolated
skymions and skyrmion lattices in bulk noncentrosym-
metric ferromagnets has been developed in3,31. Theo-
retical investigations of chiral modulations in bulk and
confined noncentrosymmetric ferro- and antiferromag-
nets have been carried out in many of the papers dis-
cussed in Ref.15.

A. The micromagnetics of chiral modulations

1. Energy functional and symmetry

In this paper we investigate isolated skyrmions in a
thin layer of a noncentrosymmetric ferromagnet. As a
model we consider a thin plate infinite along the x− and
y− axes and of thickness L along the z− axis. In the
following sections we specify the model and discuss its
limitations. For a film of a noncentrosymmetric uniaxial
ferromagnet in the applied magnetic fieldH(e) perpendic-
ular to the film surface, the micromagnetic energy den-
sity written within terms quadratic in the components of
the magnetization vector M has the following standard

FIG. 2. (color online). Basic modulated phases in chiral fer-
romagnets: one-dimensional helicoids (a) and cycloids (b) and
two-dimensional skyrmion lattices (c,d). Bloch-type modula-
tions (a,c) arise in cubic helimagnets and ferromagnets with
Dn symmetries; Néel-type modulations (b,d) are attributed
to uniaxial ferromagnets with Cnv symmetries2.

form1:

w = A(gradm)2 + wD(m)−K(m · n)2

− µ0MH(e)m · n− 1

2
µ0Mm ·H(d), (2)

where A is the exchange stiffness constant, K is the
uniaxial anisotropy constant, H(d) is the demagnetizing
field,

m = M/|M| = (sin θ cosψ, sin θ sinψ, cos θ) (3)

is the reduced magnetization, n is the unity vector di-
rected perpendicular to the film surface.

The Dzyaloshinskii-Moriya energy density wD is com-
posed of Lifshitz invariants (1):

L(k)
ij = mi

∂mj

∂xk
−mj

∂mi

∂xk
. (4)

The functional forms of energy density wD are deter-
mined by crystallographic symmetry of a noncentrosym-
metric magnetic crystal and are listed in Eqs. (A.1),
(A.2). Lifshitz invariants (4) favour spatial modulations
with a fixed rotation sense along the xk directions1. A
competition between the chiral energy wD and other en-
ergy contributions leads to the formation of isolated chi-
ral states2,3 and spatially modulated magnetic phases1,3.

The Euler equations for energy functional (2) together
with Maxwell’s equations,

rotH(d) = 0, div
[
H(d) + µ0M

]
= 0, (5)

yield solutions for different types of chiral modulations
(Figs. 1, 2, 12).
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2. Demagnetization effects

Generally the equilibrium modulated patterns m(r) in
a chiral magnet are derived by numerically solving the
above set of nonlinear differential equations including
non-local stray field calculations3,32. Contrary to soft
magnetic materials where demagnetization fields suffi-
ciently influence the equilibrium magnetic states33, in
chiral magnetic materials the DM interactions strongly
suppress these effects32. As a result in many practi-
cal cases a magnetostatic problem is reduced to analyti-
cal solutions3,32,34, and the stray-field energy can be ex-
pressed as local energy contributions in energy functional
(2)3,32.
It was also found that for one-dimensional modulations

and two-dimensional axisymmetric structures, the inter-
nal stray-field energy has a local character3,33. Particu-
larly, for ferromagnets with Cnv symmetry the internal
stray-field energy can be taken into account by the fol-
lowing redefinition of the anisotropy constant,

K → K +Kd, Kd = µ0M
2/2. (6)

3. The equations for axisymmetic skyrmions

We introduce cylindrical coordinates for the spatial
variable r = (r cosϕ, r sinϕ, z) and consider magnetic
patterns homogeneous along the z-axis with the magneti-
zation antiparallel to the applied field in the center (θ = π
for r = 0) and approaching the parallel orientation when
the distance from the center approaches infinity (θ → 0
for r → ∞). For θ(ρ, ϕ), ψ(ρ, ϕ) the energy functional
(2) is reduced to the following form:

w = A

[
θ2r +

1

r2
θ2ϕ + sin2 θ

(
ψ2
r +

1

r2
ψ2
ϕ

)]
+ wD

− K cos2 θ − µ0MH(e) cos θ − µ0Mm ·H(d), (7)

and the Dzyaloshinskii-Moriya energy functionals
wD(θ, ψ, r, ϕ) are listed in Eqs. (A.1), (A.2).
The equations minimizing energy (7) include rotation-

ally symmetric solutions,

θ = θ(ρ), ψ = ψ(ϕ), H(d) = H(d)(ρ). (8)

Analytical solutions ψ = ψ(ϕ) for uniaxial noncen-
trosymmetric ferromagnets2 and cubic helimagnets (Figs.
1, 2) are listed in Eq. (A.7).
To date, only two types of skyrmionic states from this

list have been identified in chiral ferromagnets by di-
rect experimental observations: skyrmionic patterns with
Bloch-type modulations (Fig. 1 a)

m = ~eϕ sin θ(ρ) + ~ez cos θ(ρ) (9)

have been observed in free standing nanolayers of cubic
helimagnets (see e.g.21,22,28), and skyrmion lattices with
Néel-type modulations (Fig. 1 b)

m = ~eρ sin θ(ρ) + ~ez cos θ(ρ) (10)

have been observed in Fe/Ir(111) and PdFe/Ir(111)
nanolayers25,29,30,35 and in the rhombohedral ferromag-
net GaV4O8 with C3v symmetry26.
The first direct observations of isolated skyrmions have

been reported in PdFe/Ir(111) nanolayers29. These chi-
ral solitonic structures have been investigated in a broad
range of applied fields29,30.
After integration with respect to ϕ, the total energy F

for an isolated skyrmion of Bloch- and Néel-type in an
applied magnetic field perpendicular to the film surface
can be reduced to the following form:

F = 2π
∫∞

0
f(θ, r)rdr. (11)

Here f(θ, r) = w(θ, r) − w(0) is the difference between
the skyrmion energy density and that of the saturated
state, w(0) = −K − µ0MH :

f(θ, r) = A

(
θ2r +

1

r2
sin2 θ

)
−D

(
θr +

1

r
sin θ cos θ

)

+ K sin2 θ + µ0H (1− cos θ) . (12)

In Eq. (12) H ≡ Hz is the perpendicular component of
the internal magnetic field that differs from the applied
external field (H(e)) due demagnetization field of the film
surface33. For rather thick films (d ≥ rs) H = H(e) −
µ0M and for ultrathin films H ≈ H(e).
The Euler equation for energy functional (12),

A

(
θrr +

1

r
θr −

1

r2
sin θ cos θ

)
+
D

r
sin2 θ

−K sin θ cos θ − µ0MH sin θ = 0, (13)

with boundary conditions

θ(0) = π, θ(∞) = 0, (14)

yields the equilibrium structure of isolated axisymmet-
ric skyrmions2,3. Note that for Néel-type skyrmions K
includes the stray energy contribution (6).
Dimensionless variables

ρ = 2πr/LD, h = H/HD, k = K/K0, (15)

are commonly used in recent papers to describe mod-
ulated states in uniaxial chiral ferromagnets and cubic
helimagnets (see e.g.15,24,30,36). Here we use the charac-
teristic parameters of a uniaxial chiral ferromagnet3,36:

LD =
4πA

|D| , µ0HD =
D2

2AM
, K0 =

D2

4A
. (16)

LD is the period of a helix at zero field and zero
anisotropy, HD is the saturated field and K0 is the criti-
cal anisotropy (A.13).
With variables (15), the equation for axisymmetric

skyrmions (13) is reduced to the following form:

θρρ +
θρ
ρ

− 1

ρ2
sin θ cos θ +

2 sin2 θ

ρ

− k sin θ cos θ − h sin θ = 0, (17)

with boundary conditions (14).
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FIG. 3. (color online). (a) Typical localized solutions of the boundary value problem with magnetization profile θ(ρ). The
first three excitation modes ζi(ρ) with positive eigenvalues λi (b) for the solution for K/K0 = 2.8. “Shooting trajectories θ(ρ)
of the Cauchy problem (c) and corresponding phase trajectories θρ(θ) (d).

B. Solutions for axisymmetric skyrmions

The equilibrium skyrmion profiles θ(ρ) are derived by
solving the boundary value problem (13) and (14) with a
finite-difference method3. Typical solutions of Eq. (13)
are plotted in Fig. 3, and the existence areas for isolated
skyrmions are indicated in the phase diagram of the so-
lutions (Fig. 4).
The solutions θ(ρ) are linear near the skyrmion axis

((π − θ) ∝ ρ for ρ ≪ 1) and decay exponentially
at high distances from the center (ρ ≫ 1) θ ∝
exp

(
−ρ

√
k + h

)
/
√
ρ.

Usually the functions θ(ρ) have arrow-like shape with
the steepest slope at the center of the skyrmion (r =
0). They transform into bell-shape profiles only near the
critical line Hel . In micromagnetism, the characteristic
size of a localized magnetization profile θ(ρ) is defined
as33

rs = r0 − θ0 (dθ/dr)
−1
r=r0

, (18)

where (r0, θ0) is the inflection point of the profile θ(r)
(Fig. 3 a).
The basic properties of the solutions for Eq. (13)

have been investigated in3,31. Theories of static chi-
ral skyrmions in different classes of bulk and confined
chiral magnets have been developed in a number of
studies (e.g.,15,36–39). Numerical solutions for isolated
skyrmions in nanodots and other confined chiral mag-
nets have been derived in a large number of recent
works (e.g.,17,40–42). Also, dynamical properties includ-
ing current-induced movement of skyrmions have been
intensively investigated by numerical simulations of the
Landau-Lifshitz-Gilbert equation (e.g., Refs.40,43,44 and
the bibliography in a review paper45). The results of
these numerical simulations demonstrate a rich spectrum
of magnetic states characteristic for chiral skyrmions and
various scenarios of their evolution under the influence
of applied fields40,43,44. Particularly, in confined uniaxial

helimagnets the applied field induces modulated textures
with different number of skyrmions, elongated, and half
skyrmions17.
The results of numerical simulations for stationary

and moving skyrmions, however, still require substan-
tial analytical analysis and physical comprehension. The
qualitative theory of nonlinear differential equations to-
gether with other analytical methods provide effective
tools to gain important insight into the physics of chiral
skyrmions and establish mathematical relations between
them and other types of magnetic solitons.

1. Visualization of solutions on the (θ, θr) phase plane

Solutions θ(r) of the boundary value problem (14) can
be derived by solving the auxiliary Cauchy initial value
problem for equation (13),

θ(0) = π, θr(0) = −a. (19)

For illustration we consider the Cauchy problem given by
(13) and (19) for H = 0 and κ = πD/(4

√
AK) = 0.8

(A.16). The calculated profiles θ(r, a) and the corre-
sponding curves θr(θ) in the interval [0.4 < a < 4.0]
are plotted in Fig. 3 (c),(d). Most of curves θ(r, a)
oscillate near lines θ1,2 = ±π/2, the maximum values

of wa = K sin2 θ, and the corresponding profiles θr(θ)
spiral around the attractors, points (±π/2, 0). Among
these curves there is a singular line (with a = 1.62471)
which ends in the saddle point (0, 0) and, thus, repre-
sents a solution of the boundary value problem for iso-
lated skyrmions.
The visual representation of the solutions for the aux-

iliary Cauchy problem (13), (19) as parametrized profiles
θ(r, a) (Fig. 3 (c)) and θr(θ) curves in (θ, θr) phase plane
(Fig. 3 (d)) reveal mathematical regularities in the for-
mation of the localized states.
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FIG. 4. (color online). In the phase diagram in variables k
and h the existence area of metastable isolated skyrmions is
restricted by the strip-out critical line hel(k). The inset shows
the regions of global stability of the modulated (helicoidal and
skyrmion lattice) and the spatially homogeneous saturated
phases (for details see15).

To demonstrate a crucial role of the DM interactions
in the stabilization of chiral skyrmions, in the following
we compare the phase portrait in Fig. 3 (d) with special
cases of model (12) with D = 0.

Isotropic ferromagnets (D = K = H = 0). The Eu-
ler equations for energy functional of an isotropic ferro-
magnet w = A(gradm)2 yield rigorous analytical solu-
tions for axisymmetric skyrmions θ(r), ψ(ϕ) derived by
Belavin and Polyakov46

ψ = Nϕ+ α, tan (θ/2) = (δ/r)N , (20)

where α and δ > 0 are arbitrary values andN are positive
integers. The energy (11) for solutions (20) F0 = 8πAN ,
does not depend on values δ and α46. For N = 1 a set
of magnetization profiles θ(r/δ) (20) and phase portrait
trajectories θr(θ)

θ = 2arctan(δ/r), δθr = −2 sin2(θ/2), (21)

are plotted in Fig. 5. For δ > 0, the curves θr(θ) start
in points (π,−2/δ) and end in the saddle point (0, 0).
However, any anisotropy or magnetic field will destabilize
this solution.

Uniaxial centrosymmetric ferromagnets (D = 0). In
this case Eq. (13) has no stable solutions for isolated
skyrmions. For H > 0 all phase trajectories θr(θ) spiral
around attractor (−π/2, 0). For H < 0 Eq. (13) has ra-
dially unstable solutions for isolated skyrmions as proved
by Derrick-Hobart theorem (For details see3,9).

FIG. 5. (color online). Magnetization profiles for Belavin-
Polyakov instantons (a) and the corresponding phase por-
traits of the solutions (b).

2. Derrick scaling identities and a virial theorem for chiral
skyrmions

Analysis of skyrmion energy F (11) under scaling
transformations offers further important insight into the
physics of chiral skyrmions. We consider a family of func-
tions ϑ(r) = ϑ(r/η) obeying the boundary conditions
(14). Here η > 0 is an arbitrary constant describing uni-
form compressions (0 < η < 1) or expansions (η > 1) of
profile ϑ(r). For rescaled functions ϑ(r) = ϑ(r/η), the

skyrmion energy F̃ (11) can be expressed as a function
of η:

F̃(η) = Ee − EDη + E0η2. (22)

The values of the exchange (Ee), Dzyaloshinskii-Moriya
(ED), and potential (E0) energy contributions for profile
ϑ(r) (11) are given as follows:

Ee = 2πA
∫∞

0

(
ϑ2ξ +

1
ξ2

sin2 ϑ
)
ξdξ ≡ Aα1,

ED = 2π|D|
∫∞

0

(
ϑξ +

1
ξ
sinϑ cosϑ

)
ξdξ ≡ |D|α2,

E0 = 2π
∫∞

0

[
K sin2 ϑ+ µ0MH (1− cosϑ)

]
ξdξ (23)

or E0 = Kα3 + µ0MHα4, where αi are the numerical
coefficients given by the values of the integrals in Eqs.
(23).
Eq. (22) shows that the DM energy plays a crucial

role in stabilizing skyrmions2,12. In centrosymmetric fer-
romagnets (ED = 0) isolated skyrmions are unstable with
respect to compression and collapse into a singular line
(η → 0) (Derrick-Hobard theorem9). Skyrmion solutions
that minimize the free energy (22) only occur for nonzero
Dzyaloshinskii-Moriya energy contributions.

Ansatz solutions. Potential F̃(η) (22) has a convenient
form for analysis of skyrmion solutions with trial func-
tions of type ϑ = ϑ(ρ/η) that obey the boundary condi-
tions (14). Particularly, a linear ansatz

ϑ = π[1− (r/η)] (r < η), ϑ = 0 (r > η), (24)
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has been used in Ref.2 to introduce the phenomenon of
chiral skyrmions. The ansatz,

ϑ(r/η) = 4 arctan [exp (−r/η)] , (25)

based on solutions for isolated 360◦ Bloch walls33 pro-
vides a good fit to the solutions of Eq. (13). In Ref.30,
magnetization profiles for isolated skyrmions have been
fitted by a combination of functions of type (25). For the
trial function ϑ(r/η) in Eq. (25), the total energy (22)
can be written as
F(η)/(2π) = 4.31A+(1.59K+1.39µ0MH)η2−3.02Dη.

For zero anisotropy (k = 0) this ansatz yields the transi-
tion field into the skyrmion lattice hs = Hs/HD = 0.760
(cf. with the rigorous value hs = 0.801 and hs = 0.675
for the linear ansatz (24)2).

For F̃(η) (22) the equilibrium skyrmion size is

η0 =
LD

2π

α2

α3k + 2α4h
, (26)

expressed as a ratio of the Dzyaloshinskii-Moriya to the
potential energy contributions for the trial function.
The virial theorem for isolated axisymmetric

skyrmions is derived by integration of the Euler
equation (13). Partial integration leads to the following
virial relation between the equilibrium values of the
potential and DM energies31 Ē0 = 2ĒD where Ē0, ĒD
are the integrals (23) calculated for the solutions of Eq.
(13), ϑ = θ(ρ).

3. Radial stability and collapse at high field (discrete model)

The stability of the solutions θ(ρ) of the boundary
value problem (13), (14) under small radial distortions
ξ(ρ) (ξ(0) = ξ(∞) = 0) has been investigated in3. This
problem is reduced to the spectral problem for the per-
turbation energy functional3. By numerically solving the
eigenvalue problem for this functional, the radial stabil-
ity of isolated skyrmions has been established in a broad
range of the control parameters (k, h)3. Contrary to
magnetic bubbles, which collapse with finite radii at cer-
tain critical fields33, the solutions of the boundary value
problem (13) and (14) (Fig. 3) exist at arbitrary high
fields. In increasing fields their sizes gradually decrease
and asymptotically approach zero.
The continuum model (2), however, becomes invalid

for localized solutions with sizes of few lattice con-
stants. In this region we investigate solutions for chi-
ral skyrmions within the discrete models. We consider
classical spins, Si, of unit length on a two-dimensional
square lattice with the following energy functional41 E =
E0 + ED where

E0 = −J
∑

<i,j>

(Si · Sj)−
∑

i

[H · Si +K(Si · n)2],(27)

and the Dzyaloshinskii-Moriya energy equals

FIG. 6. (color online). Micromagnetic energies of an iso-
lated skyrmion (a) and a bubble domain (b) as function of
their sizes for selected values of the applied magnetic fields3,33.
Isolated bubbles collapse at critical field Hbc with finite radius
rbc. Isolated chiral skyrmions exist at very high fields with-
out collapse. The equilibrium skyrmion sizes p as functions
of the applied field calculated for different values of p0 (30)
indicate the collapse of chiral skyrmions (c) (p is defined here
as a diameter of a circle encompassing a skyrmion core area
with mz ≤ 0.995).

ED = −D
∑

i

(Si × Si+x̂ · x̂+ Si × Si+ŷ · ŷ) (28)

for Bloch-type modulations, and

ED = −D
∑

i

(Si × Si+x̂ · ŷ − Si × Si+ŷ · x̂) (29)

for Néel-type modulations (< i, j > denotes pairs of
nearest-neighbor spins).
For a helix Si = (cos θi, sin θi, 0) propagating along the

x-axis at field and anisotropy (H = K = 0), model (27)
is reduced to

E =
∑

i

[−J cos(θi − θi+x̂)−D sin(θi − θi+x̂)] , (30)

and yields the equilibrium period p0 = 2π/ arctan(D/J)
(p0 is the number of magnetic ions corresponding to ∆θ =
2π).
The calculated equilibrium skyrmion diameter p as a

function of the applied field indicates the collapse of the
skyrmion core at certain finite fields hc(p0) (Fig. 6 (a)).
The critical field hc(p0) increases without limit with in-
creasing p0 (Fig. 6 (b)) and, thus, signifies a transition
from the discrete model to the continuous model.

4. Elliptic instability (strip-out) at low fields

Isolated skyrmions exist as metastable states above the
critical field hs(k) (Fig. 4 (a), (b)). Below this line the



7

h 
=

 H
/H

D

p0
10 20 300.4

1.0

1.6

2.2
collapse field, Hc

strip-out field, Hel

 Hs

tan (2p/p )=D/J0 
(a)

(  )c

(b)

mz1

-1

0

FIG. 7. (color online). Collapse (Hc) and strip-out or elliptic
instability (Hel) critical fields calculated within the discrete
model (27) for k = 0 and different values of p0 (30). At
the dashed line Hs(p0) the isolated skyrmion energy F equals
zero, and below this line skyrmions can condense into the
hexagonal lattice (a). Calculated distributions of the magne-
tization of the skyrmion core for k = 1.315, p0 = 24 and for
h = 0.42 (b) and h = 1.27 (c).

energy F (11) becomes negative and skyrmions tend to
condense into a hexagonal lattice3. However, if the for-
mation of skyrmion lattices is suppressed (as in PdFe/Ir
(111) films30) isolated skyrmions continue to exist be-
low the critical line hs(k) (with the skyrmion core en-
ergy density lower than that of the surrounding satu-
rated state). At the same time isolated skyrmions have a
tendency to elongate and expand into a band with heli-
coidal or cycloidal modulations and eventually to fill the
whole space, since the spiral state represents the mini-
mum with lower energy as compared to the local minima
with the metastable isolated skyrmions. These (ellip-
tic) instabilities are similar to ”strip-out” instabilities of
isolated magnetic bubbles at a certain critical field47 ob-
served in common “bubble-domain” films33 and in mag-
netic nanolayers with perpendicular anisotropy48. For
chiral skyrmions, the elliptic instability fields Hel are cal-
culated from the stability analysis of the skyrmion energy
(11) with respect to (elliptic) perturbations of type31

ρ̃ = ρ+ εη(ρ) cos 2ϕ, ψ̃ = ψ + ζ(ρ, ϕ), (31)

(ε ≪ 1). For isolated Bloch-type skyrmions the calcu-
lated critical line hel(k) ( 0 < k < ka ) is plotted in Fig.
4. These results are close to earlier calculations for stray-
field free elliptical distortions (31) with ansatz functions
η(ρ) = sin θ/(1 + a sin θ) optimized with respect to the
parameter a31.

Within the discrete model (27) the critical field hel
has been calculated for zero anisotropy (k = 0) and for
6 < p0 < 30. Fig. 7 (a) shows that the strip-out field hel
essentially decreases with the decreased size of skyrmions
what can be beneficial for possible application of such
skyrmions. However, the existence region of these iso-
lated skyrmions is restricted by the lower field of collapse
hc.

FIG. 8. (color online). Magnetization profile θ(r) for an
isolated skyrmion (1) (Inset) derived from SP-STM data for
the applied field µ0H = 1.11 T. The solid line is the solution
of Eq. (17) for k = 1.315 and h = 0.321, rs is the skyrmion
core radius defined by Eq. (18).

5. The k - h phase diagrams

In this section we consider the existence area for iso-
lated skyrmions in the magnetic phase diagram (Fig. 4).
The energy functional for uniaxial chiral ferromagnets
(2) depends on the two independent control parameters,
the reduced values of the applied field, h and uniaxial
anisotropy, k (15). The magnetic phase diagram in vari-
ables k and h collects all possible solutions for model (2).
The calculated phase diagram in the inset of Fig. 4 shows
the existence areas of the cycloids and skyrmion lattices
and the transition lines between these modulated phases
and the saturated state. The phase diagram indicates
the critical fields at zero anisotropy, the bicritical point
B (1.90, 0.10), and the critical point A (2.67, 0)3 (for
a detailed description of this phase diagram see Ref.15).
Fig. 4 shows critical lines for isolated skyrmions (results
of the continuum model (2)). Isolated skyrmions con-
dense into a skyrmion lattice when the applied magnetic
field decreases to the critical value hs(k). However, iso-
lated skyrmions can exist as localized objects below the
critical line hs(k) and strip-out into helicoids at the crit-
ical line hel.

III. EXPERIMENT: ISOLATED SKYRMIONS
IN PDFE/IR(111) NANOLAYERS

Sample preparation and spin-polarized (SP)- STM ex-
periments were performed in a multi-chamber UHV sys-
tem at a base pressure of 5e-11 mbar. Details of the
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FIG. 9. (color online). The extension of elliptic deformations in isolated skyrmions in decreasing applied magnetic fields (a-f)
is terminated by the formation of cycloid patterns (g,h).

sample preparation can be found in Ref.29. We use an-
tiferromagnetic bulk Cr tips to minimize magnetostatic
interactions between tip and sample. The SP-STM mea-
surements were performed at T=4.2 K in perpendicular
magnetic fields of -3 to +3 Tesla. We repeatedly scanned
the same sample area while continuously sweeping the
magnetic field at a speed of 12.8 mT/min, resulting in
a series of images with a field difference of ∆B=87 mT.
Constant current images and maps of differential conduc-
tance (dI/dU) were measured simultaneously by a lock-in
technique. We used small bias voltages (U = 20 mV) and
moderate currents (I = 3nA) to minimize the influence
of the tunnel process on the field-dependent magnetic
evolution within the PdFe bilayer29.

PdFe/Ir(111) bilayers have a uniaxial anisotropy of
“easy-axis” type and exhibit chiral modulations of Néel-
type29,30. It was also established by SP-STM observa-
tions that a cycloid (Fig. 2 (b)) is the ground state of
PdFe/Ir(111) films29. The material parameters of model
(2) for PdFe/Ir(111) at T = 4.2 K determined in30,49

yield the following values for the characteristic param-
eters (16): LD = 6.44 = 23.85a0 nm i.e. p0 = 24
(a0 = 0.27 nm is the lattice constant ), µ0HD = 3.46 T,
K0 = 1.9× 106 J/m3, Kd = µ0M

2/2 = 0.76× 106 J/m3

(“shape anisotropy”). The sufficiently strong values of
“easy-axis” anisotropy (k = K/K0 = 1.315) ensures the
stability of chiral modulations in PdFe/Ir(111) films with
respect to stray-field effects32,33 and make them conve-
nient objects for investigations of chiral skyrmions29,30.

The calculated magnetic phase diagram of easy-axis
chiral ferromagnets includes the existence areas of one-
dimensional modulations and skyrmion lattices (Fig. 4,
Inset)3,15. These chiral modulations and transitions
between them have been directly observed by Lorentz
transmission electron microscopy (LTEM) in free stand-
ing nanolayers of cubic helimagnets21,22,27,28 and in
PdFe/Ir(111) films by SP-STM29.

Isolated skyrmions and their internal structure

have been investigated by SP-STM in PdFe/Ir(111)
bilayers29,30. Following Ref.30 we reconstruct the mag-
netization profile θ(r) for one of the isolated skyrmions
in the film at the applied field µ0H = 1.11 T (Fig. 8).
These experimental results are in a close agreement with
the solution of Eq. (17) for k = 1.315 and h = 0.321 (or
µ0H = 1.11 T. In free-standing films of magnetically soft
cubic helimagnets, chiral skyrmions readily condense into
hexagonal lattices below hs(k) (Fig. 4, inset)21,22,28,29.
At low temperatures, however, an enhanced coercitiv-
ity of PdFe/Ir (111) bilayers prevents the formation of
skyrmion lattices below hs(k) (see the results of Ref.30

for T = 4.2 K). This offers a unique opportunity to inves-
tigate isolated skyrmions in a broad range of the applied
fields.

Figure 9 shows selected frames from the whole SP-STM
data set where the evolution from isolated skyrmions
at high fields to spin spirals at zero fields can be ob-
served. The two-lobe appearance of skyrmions is due to a
predominantly in-plane magnetization of the Cr tip29,30.
The strip-out of skyrmions starts in Fig. 9 (c) where
a skyrmion, labeled (1), has jumped to a different po-
sition and a skyrmion (2) has developed an elongated
shape. In Fig. 9 (f) more skyrmions have adopted elon-
gated shapes, a process that seems to be influenced and
assisted by defects, see skyrmion (3), and the repulsive
interactions with other skyrmions and chiral modulations
along the sample edges (so called surface twists)50,51.
The strip-out process can be quantified more accurately
in an area with only one strongly pinning defect, see de-
tailed view in Fig. 10. In Fig. 9 (c) the skyrmion shape
starts to deviate from rotational symmetry at µ0H 1.10
T and becomes more and more elongated through Fig. 9
(d) and (e). Other skyrmions retain axial symmetry even
at much lower fields. The calculated value of the strip-out
field for k = 1.315 equals µ0Hel = 0.65 T. The images in
Figs. 9 (see also video materials in Ref.30) show that the
elliptical instability field has different values for different
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FIG. 10. (color online). Isolated skyrmion core gradually in-
creases with decreasing field above the critical strip-out value
Hel (a,b) and stretches into a spiral domain for H < Hel (c-f).

skyrmions and strongly depends on skyrmion-skyrmion
interactions, interactions with sample edges and defects.
Similar effects are characteristic for strip-out instabilities
of isolated bubble domains (see e.g.48).

To determine the skyrmion collapse field with reason-
able statistical accuracy, we have monitored the repeated
creation and annihilation of a skyrmion at higher tunnel
bias and current as a function of applied field. With the
tip positioned above the pinning defect, we monitored the
telegraph noise in the spin-resolved dI/dU signal and ex-
tracted the average lifetime of the skyrmion as a function
of applied field (see insets in Fig. 11). The skyrmion life-
time decreases roughly exponentially52 down to a value
of 5 ms at 4.5 T. Minimization of functional (27) with
p0 = 24 and k = 1.315 yields the collapse field 4.4 T
(cf. with collapse field of 7.1 Tesla calculated for zero
anisotropy (27)).

IV. CONCLUSIONS

Detailed SP-STM investigations of magnetic states in
PdFe/Ir (111) thin films and a comprehensive theoretical
analysis within the standard model (2) enable to describe
the basic magnetic properties of isolated chiral skyrmions
and describe their evolution in a broad range of applied
magnetic fields.
The equilibrium states of isolated axisymmetric

skyrmions are described by differential equation (17)
common for different groups of chiral magnets2,3. More-
over, similar equations describe axisymmetric solitonic
states in other condensed matter systems with broken in-
version symmetry13,53–55. This implies a universal char-
acter of chiral skyrmion properties and allows to con-
sider the investigations in PdFe/Ir films as representative
of the entire phenomenon. These investigations include
general features of the chiral skyrmion evolution in the
applied magnetic fields terminated at lower fields by the

FIG. 11. Skyrmion lifetime as a function of external magnetic
field. SP-STM tip is held stationary above a skyrmion posi-
tion while tunneling with U = +600 mV, I = 100 nA. This
induces a continuous, stochastic switching of the magnetic
state under the tip between skyrmion state (1) and ferromag-
netic state (0) (see resulting telegraph noise in insets). Data
points show the average lifetime of the skyrmion state as de-
rived from the telegraph noise signal. At 4.5 T, the lifetime
approaches the time resolution limit of the STM while still
detectable. Therefore the skyrmion state is still metastable
and the collapse field must be higher than 4.5 T. (T = 4.2 K)

formation of skyrmion condensates or by elliptic insta-
bilities of individual skyrmions and the collapse of the
skyrmion core at high fields.

In this paper we have investigated magnetic proper-
ties of solitary skyrmions only and neglected their inter-
actions with other skyrmions, with chiral modulations
arising at the sample edges50, and different types of de-
fects. We also have considered skyrmions magnetically
homogeneous along their axis. This assumption is justi-
fied by the structure of PdFe/Ir (111) bilayers that ex-
clude magnetic modulations along the film thickness2.
In thicker cubic helimagnets and uniaxial ferromagnets
with Dn and Cn symmetry, however, such modulations
are physically admissible and influence magnetic proper-
ties of these systems50,51.
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Appendix

1. Skyrmion structure in different classes of
uniaxial helimagnets

Functional forms of wD energy contributions are deter-
mined by crystallographic symmetry of a noncentrosym-
metric magnetic crystal1,2,56.

w
(±)
1 = L(x)

zx ± L(y)
zy , w

(±)
2 = L(y)

zx ± L(x)
zy , (A.1)

Cnv : [w
(+)
1 ], D2d : [w

(−)
1 ], Dn : [w

(−)
2 ,L(z)

xy ],

S4 : [w
(−)
1 , w

(−)
2 ], Cn : [w

(+)
1 , w

(+)
2 ,L(z)

xy ]. (A.2)

For θ(ρ, ϕ), ψ(ρ, ϕ)

w
(+)
1 = cos(ψ − ϕ)θρ − sin θ cos θ sin(ψ − ϕ)ψρ

−1

ρ
sin(ψ − ϕ)θϕ +

1

ρ
sin θ cos θ cos(ψ − ϕ)ψϕ (A.3)

w
(−)
1 = cos(ψ + ϕ)θρ − sin θ cos θ sin(ψ + ϕ)ψρ

−1

ρ
sin(ψ + ϕ)θϕ − 1

ρ
sin θ cos θ cos(ψ + ϕ)ψϕ (A.4)

w
(+)
2 = sin(ψ − ϕ)θρ − sin θ cos θ cos(ψ − ϕ)ψρ

+
1

ρ
cos(ψ − ϕ)θϕ − 1

ρ
sin θ cos θ sin(ψ − ϕ)ψϕ (A.5)

w
(−)
2 = sin(ψ + ϕ)θρ − sin θ cos θ cos(ψ + ϕ)ψρ

+
1

ρ
cos(ψ + ϕ)θϕ − 1

ρ
sin θ cos θ cos(ψ + ϕ)ψϕ (A.6)

The solutions ψ(φ) are determined by crystal classes
of the system2.

Cnv : ψ = ϕ, D2d : ψ = −ϕ+ π/2, Dn : ψ = ϕ+ π/2,

S4 : ψ = −ϕ+ ψ1, Cn : ψ = ϕ+ ψ1. (A.7)

For ferromagnets belonging to S4 and Cn classes en-

ergy functionals wD include two terms: wD = D1w
(−)
1 +

D2w
(−)
2 for S4 and wD = D1w

(+)
1 +D2w

(+)
2 for Cn. An-

gles ψ1 = arctan(D2/D1) and the effective values of the

DM constant are D =
√
D2

1 +D2
2.

For noncentrosymmetric cubic ferromagnets belonging
to T and O crystallographic classes the energy functional
wD has the following form56

wD = L(z)
yx + L(y)

xz + L(x)
zy = m · rotm, (A.8)

and stabilizes solutions with ψ = π/2 + ϕ.
The skyrmion energy densities for all these structures

can be reduced to a common functional form3.

2. Solutions for one-dimensional modulations

For one-dimensional modulations propagating along
the ξ− axis the energy functional (2) can be written as

w=A(θ2ξ+sin2 θψ2
ξ )+wD−Kcos2θ−µ0MHcosθ. (A.9)

In the DM energy contribution wD (A.9) Lifshitz in-

variants of type L(x)
ij , L(y)

ij induce modulations propagat-

ing in the xy plane (e.g. helicoids and cycloids in Fig.

2 (a), (b)), and invariants L(z)
xy favour modulations along

the z-axis (cones).
Helicoids and cycloids. To be specific, we consider

in-plane modulations propagating along the x− axis.
Depending on the magnetic crystal symmetry, different
types of modulations are stabilized by the wD energy
functional2. Particularly, in cubic helimagnets and uni-
axial ferromagnets of Dn crystallographic classes, M ro-
tates as a Bloch-type domain wall (helicoids), and in uni-
axial ferromagnets with Cnv symmetry the magnetization
rotates along the propagation direction like a Néel-type
domain wall (cycloids) (Fig. 2 (a), (b)):

m = ~ey sin θ (x) + ~ez cos θ (x) (helicoids),

m = ~ey sin θ (x) + ~ez cos θ (x) (cycloids).(A.10)

The Euler equation for the functional

wh(θ) = Aθ2x −Dθx − µ0MH cos θ −K cos2 θ (A.11)

yields magnetization profiles θ(x) for helicoids and
cycloids1. Analytical solutions for θ(x) describe heli-
cal modulations distorted by the applied field and uni-
axial anisotropy1. These helicoids (cycloids) gradually
unwind into a set of isolated domain walls at critical line
Hh(K)1,3,15.
Cones. In cubic helimagnets and uniaxial ferromagnets

with Cn and Dn symmetries, the DM energy functional

wD includes Lifshitz invariants L(z)
xy (A.2, A.8) favour-

ing chiral modulations (cone phases) along the z− axis.
Minimization of the energy functional

wh(θ) = Aθ2z −Dθz − µ0MH cos θ −K cos2 θ (A.12)

yields the solutions for single-harmonic modulations de-
scribing the cone phase36,56:

cos θ =
H

HD

(
1− K

K0

)−1

, ψ = z/LD. (A.13)

These equations include the characteristic parameters of
a uniaxial chiral ferromagnet (16).

3. Characteristic lengths and critical parameters

In uniaxial noncentrosymmetric ferromagnets, chiral
modulations arise as a result of a competition between
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FIG. 12. Projections of m onto the basal plane in the core of chiral skyrmions for noncentrosymmetric uniaxial ferromagnets2.

the DM interactions favouring a rotation of the magne-
tization, the exchange coupling and the “potential” en-
ergy f(θ) = −µ0MH cos θ − K cos2 θ tending to sup-
press such modulations. The balance between the chi-
ral energy wD(θ, θρ) and the potential energy contribu-
tions f(θ) determine the equilibrium spin configurations
in chiral magnets. At zero field and for zero anisotropy
single harmonic modulations θ = q0x (q0 = D/(2A))
minimize the functional (A.9). In the opposite limit of
strong anisotropy (K > π2D2/(16A)) these modulations
transform into a set of isolated 180◦ domain walls sepa-
rating the homogeneous states with θ1 = 0, θ2 = π.
The width of an isolated Bloch domain wall LB , its

energy, γB , and anisotropy field Ha are as follows:

LB = π

√
A

K
, γB = 4

√
AK. Ha =

K

µ0M0
(A.14)

These are the fundamental parameters describing mag-
netic states in a common (centrosymmetric) uniaxial
ferromagnet33. To demonstrate a competing character
of the magnetic interactions in chiral uniaxial ferromag-
nets, we consider an isolated domain wall at zero field
that separates the homogeneous states with θ1 = 0 and
θ2 = π. The equilibrium states of this domain wall are
derived by minimization of functional (A.9) for H = 033.
The standard calculation of the wall energy33 γw =∫∞

0
[wh(θ)− wh(0)] dx yields the following result3,57

γw = 4
√
AK − π|D| = 4πA

(
1

LB

− π

LD

)
. (A.15)

The first (positive) term in (A.15) is the wall energy of
a uniaxial ferromagnet33 arising as a common effect of
the uniaxial anisotropy pinning the magnetization vector
along the easy-axis and the exchange stiffness suppress-
ing deviations of M from these directions. The negative

energy contribution in γw (A.15) is due to the DM inter-
actions favouring modulations of the magnetization with
a specific rotation sense. The strength of this “wind-
ing force” is characterized by 1/LD: the larger the DM
coupling, the smaller the period of the modulations. For
LD < πLB the wall energy becomes negative manifesting
the instability of the homogeneous states with respect to
chiral modulations.

The dimensionless parameter κ introduced as3,57

γw = 4
√
AK (1− κ) , κ =

π

4

|D|√
AK

=
πLB

LD

, (A.16)

provides the criterion for the existence of chiral modu-
lated states. For κ > 1, the DM interactions overcome
a pinning of the magnetization along easy-axis direction
and stabilize modulated states. For 0 < κ < 1 chiral
modulated phases are totally suppressed, and chiral pat-
terns exist as metastable localized states in a form of
isolated skyrmions and domain walls (kinks).

Parameter κ (A.16) is similar to the Ginzburg-Landau
parameter κGL = λ/ξ in the theory of Abrikosov vortices
(the mixed state) in superconductors58. The parameter
κGL is a ratio of two characteristic lengths, the coherence
length ξ and the penetration depth λ. Abrikosov vortices
exist in superconductors with κGL > 1/

√
2 (type-II su-

perconductors)58,59. Physical analogies between super-
conductor’s mixed states and chiral magnetic modula-
tions are discussed in3,57. The characteristic lengths LD

and LB provide different ways to introduce reduced vari-
ables into model (12).

The reduced energy functional based on the charac-
teristic length LB with control parameters h̃ = H/Ha

and κ (A.16) and the reduced magnetic field (where Ha

define in Eq. (A.14) is convenient for investigations of
isolated skyrmions in helimagnets with a strong uniaxial
anisotropy (0 < κ < 1)31,32.
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