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By noting the connection with k-sample U-statistics, we find a simple
decomposition of the variance of the cross-match estimate, which can be
regarded as a generalization of Efron and Stein. We apply the decomposi-
tion in assessing efficiencies of several plans of using the weighted sam-
ples from an importance scheme. The applications of the formula to
multiple imputations lead to a method of crossing jointly imputed data to
gain more accuracy.

1. Introduction. This paper introduces the cross-match estimate and
studies its properties with respect to a Monte Carlo simulation scheme called
split sampling. Let z be a random vector and of interest is the expectation

m s E c zŽ .p

Ž . Ž .for some distribution p z and some function c z . A standard Monte Carlo
procedure for estimating m is to draw iid samples z , . . . , z from some1 m

Ž .distribution f z , f not necessarily equal to p. This is referred to as the
joint-sampling scheme. An importance sampling estimate of m using renor-
malized weights is

Ým w j c zŽ . Ž .js1 j
1.1 m s ,Ž . ˜ mÝ w jŽ .js1

Ž . Ž . Ž . Ž . Ž .where w j s p z rf z . If f z is not equal to p z , possible reasons arej j
Ž . Ž . Ž .a variance reduction, b it is difficult to sample from p directly, c samples

Ž .are originally drawn from f z , but the current interest is in expectations
taken under p. The results in this paper are more relevant for the latter two
cases.

Ž .Let z s z , . . . , z be a decomposition where each component z can1 k i
Ž .either be a vector or a scalar. Let f z , i s 1, . . . , k, be the marginali i

Ž .distribution of z with respect to f z . With split sampling, m iid draws arei i
taken from each of these k marginals independently. The draws are denoted
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Ž .by z , i s 1, . . . , k, j s 1, . . . , m . We will use f * z to denote the producti j i
Ž . Ž .measure f z ??? f z . The cross-match estimate of m using renormalized1 1 k k

importance sampling weights is defined as

Ý w j , . . . , j c z , . . . , zŽ . Ž .j , . . . , j 1 k 1 j k j1 k 1 km1.2 m s ,Ž . ˆ
Ý w j , . . . , jŽ .j , . . . , j 1 k1 k

where

p z , . . . , z p z , . . . , zŽ . Ž .1 j k j 1 j k j1 k 1 k1.3 w j , . . . , j s sŽ . Ž .1 k f z ??? f z f * z , . . . , zŽ . Ž . Ž .1 1 j k k j 1 j k j1 k 1 k

is the importance sampling weight. The purpose of this paper is to investigate
the behavior of mm relative to m. The results are then qualitatively extrapo-ˆ ˜
lated to another cross-match estimate that is constructed with respect to joint
sampling.

It is emphasized that the material in this paper is developed under the
premise that it is very expensive to draw samples from p, f or f *. Hence it is
desirable to get the most out of the samples generated. A special situation
that will be treated in Section 6 is the analysis of multiply imputed complete

w Ž .xdata sets Rubin 1987 . Quite often the imputations were created by the
Census Bureau and it is impossible for a user to draw additional samples.

Another application which motivated our research is genetic linkage analy-
sis. Here investigators collect data from k independent pedigrees and zi
corresponds to a statistic which can be computed from the data on pedigree i.
The null hypothesis to be tested is that a disease gene is not on a certain
chromosome. In parametric analysis, z is a log-likelihood ratio, and ini
nonparametric analysis, z is a ‘‘Z-score.’’ For calculations of exact p-valuesi

Žand power, one is interested in tail probabilities of the form P z q z q1 2
. w Ž .x Ž .??? qz G t , which can be written as E c z where c z is the indicatork

function I . Depending on the pedigree structures and the missing� z q ? ? ? qz G t41 k

data patterns, the simulation of the pedigree data and the calculation of zi
from the simulated data can be extremely computationally intensive. Hence
one can typically afford to simulate only a few values of z for each i. Thei
importance sampling aspect is also relevant here. For example, f may
correspond to the distribution of z under some specific alternative hypothesis,
while p can be the distribution of z under the null hypothesis or some other
alternative hypothesis. Both f and p are product measures. A single simula-
tion can be used for p-value calculation and power calculation under many
different alternatives. Interestingly, the cross-matching idea has been used in
practice frequently with an additional twist. For example, for power calcula-

Ž .tions, Mahtani et al. 1996 simulated m s 10 samples each from their
k s 26 diabetic families. So formally the cross-match estimate involved 1026

terms, making its computation infeasible. Instead they used a resampling
scheme which draws randomly from the 1026 possible combinations and got a

m Ž .Monte Carlo estimate of m . Following Terwilliger and Ott 1992 , they calledˆ
this resampling scheme ‘‘bootstrap,’’ which deviates somewhat from the
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standard usage of this term in the statistics literature. More about applica-
tions of cross-matching and importance sampling in linkage problems can be

Ž .found in Kong 1992 . More details on tail probability estimation and resam-
pling are given respectively in Example 3.2 and Section 7.

Consider the following three cases which are listed in order of increasing
generality.

Ž . Ž . Ž .CASE I. Independent sampling: p z s f z s f * z .

Ž . Ž . Ž .CASE II. Independent importance sampling: f z s f * z , but p z not
Ž .necessarily equal to f z .

Ž .CASE III. The general case no independence and importance sampling .

Note that with Cases I and II, if m s m s ??? s m s m, split sampling1 2 k
is identical to joint-sampling. Hence both m and and mm can be computed˜ ˆ
from the same sample. The difference is that mm uses all mk combinations ofˆ
the component samples. With Case I,

m m1 1
1.4 m s c z s c z , . . . , zŽ . Ž . Ž .˜ Ý Ýj 1 j k jm mjs1 js1

and

1
m1.5 m s c z , . . . , zŽ . Ž .ˆ Ý 1 j k jk 1 km j , . . . , j1 k

as all the weights are 1. Here both estimates are obviously unbiased. Noting
m wthat m is a special case of k-sample U-statistics a terminology used byˆ

Ž .Koroljuk and Borovskich 1994 ; also called generalized U-statistics in Ser-
Ž .x mfling 1980 , we explain in Section 2 that the variance of m is alwaysˆ

smaller than that of m. For Case II, we obtain the weaker result that,˜
Ž . masymptotically m ª ` , m has smaller mean-squared error than m.ˆ ˜

Case I is studied in detail in Section 2. We derive a simple expression for
the variance decomposition of mm, which is different from the one in Koroljukˆ

Ž .and Borovskich 1994, Section 1.2 but is a generalization of Efron and Stein
Ž . m1981 . As a consequence, the relative efficiency of m over m is obtained. Twoˆ ˜
examples are discussed in Section 3. Cases II and III are studied in Section 4.
By applying the results developed in Section 2 in combination with the delta
method, we obtain an expression for the asymptotic variance of mm. From aˆ
design perspective, this expression is useful for deciding how to decompose z
to reduce the variance of the estimate. The results also suggest how the
variance of mm can be estimated empirically when m is large for all i.ˆ i
Section 5 introduces a cross-match estimate that is constructed based on the
joint-sampling scheme instead of the split sampling scheme. Properties of this
estimate are discussed. Section 6 explores the potential application of the
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cross-match estimate in analyzing multiply imputed complete data sets.
Section 7 discusses how the cross-match estimate can be approximated if it
cannot be computed exactly.

Throughout the paper, we will use subscripts to distinguish expectations
and variances taken under different probability distributions. But we will
omit the subscripts whenever the meanings are clear from the context.

2. A formula for variance decomposition. Decomposition of variance
plays an important role in both applied and theoretical statistics. With the

Ž . � Ž .4 � Ž .4simplest form being var y s var E y N x q E var y N x , generalizations of
Ž . Ž .the formula have been made by, say, Hoeffding 1948 , Serfling 1980 , Efron

Ž . Ž . Ž .and Stein 1981 , Rubin and Vitale 1980 and Karlin and Rinott 1982 , just
to start a list. In this section, we assume that z , . . . , z are k independent1 k

Ž . Ž .random variables vectors with the joint distribution f * z , . . . , z s1 k
Ž . Ž . Ž .f z f z ??? f z . A major tool for the development in this section is the1 1 2 2 k k

Ž .orthogonal representation of any regular function g ? of z , . . . , z , first1 k
noticed by Hoeffding in the form

k

2.1 g z , . . . , z s H q H z q H z , zŽ . Ž . Ž . Ž .Ý Ý1 k 0 i i i i i i1 2 1 2
is1 i -i1 2

q ??? q H z , . . . , z q ??? ,Ž .Ý i ? ? ? i i i1 l 1 l
i - ??? -i1 l

Ž . Ž .so that there occur k one-variable functions H z , k k y 1 r2 two-variablei i
Ž . Žfunctions H z , z , and so on. In this section and the next section, gi i i i1 2 1 2

.corresponds to c , but will play the role of other functions of c in Section 4.
Ž .Orthogonality in this context means that all summands in 2.1 are mutually

uncorrelated. As a consequence, the following general formula for variance
decomposition holds.

k

2.2 var g z , . . . , z s var H q var H q ??? .� 4Ž . Ž . Ž . Ž .Ý Ý1 k i i i1 2
is1 i -i1 2

Ž .Efron and Stein 1981 specified all the orthogonal terms in the decomposi-
tion as

H s E g ,Ž .0

H z s E g N z y E g ,Ž . Ž . Ž .i i i2.3Ž .
H z , z s E g N z , z y E g N z y E g N z q E g ,Ž . Ž .Ž . Ž . Ž .i i i i i i i i1 2 1 2 1 2 1 2

etc., and then used them to show that Tukey’s jackknife estimate of variance
tends to be biased upwards. The proof of the decomposition identity uses all

Ž .the conditional expectations E g N z , . . . , z as primary ‘‘basis’’ and theni i1 l

goes through a Gram]Schmidt-type orthogonalization procedure. From here
on, the H ’s always indicate the orthogonal terms of the Efron]Stein decom-
position instead of the more general Hoeffding decomposition. To simplify
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Ž .notation, 2.1 is rewritten as

2.4 g z , . . . , z s H z ,Ž . Ž . Ž .Ý1 k C C
C

� 4where the summation is over all subsets C of the index set 1, . . . , k , and
Ž . Ž Ž ..z s z ; i g C . So H s H , H s H , etc. Let h s var H z , so thatC i B 0 �i4 i C C C

Ž .2.2 becomes

2.5 var g z , . . . , z s h .� 4Ž . Ž . Ý1 k C
C/B

An important property of the Efron]Stein decomposition is that

E g N z , . . . , z s H z ,Ž .Ž . Ýi i C C1 l
� 4C: i , . . . , i1 l

that is, the decomposition of a conditional expectation of the function of
interest has the same expression as that for the original function.

PROPOSITION 2.1. For i s 1, . . . , k, let z , j s 1, . . . , m , be independenti j i
Ž . Ž .draws from the distribution f z . Let g ? be an arbitrary function of the ki i
� Ž .4random variables such that var g z , . . . , z is finite and is decomposed as1 k

Ž .in 2.2 . Let

1
mm s g z , . . . , z ;Ž .ˆ Ý 1 j k j1 km ??? m1 k j , . . . , j1 k

then

k var Hvar HŽ . Ž .i ii 1 2mvar m s qŽ .ˆ Ý Ým m mi i i iis1 i -i 1 21 2

var HŽ .i i i1 2 3q q ???Ý m m mi i ii -i -i 1 2 31 2 3

2.6Ž .

hCs .Ý Ł mig C iC/B

PROOF. By definition, we have

m m1 k1
m2.7 var m s var ??? g z , . . . , z .Ž . Ž .Ž .ˆ Ý Ý 1 j k j2 1 k½ 5m ??? mŽ . j s1 j s11 k 1 k

In the expansion of the variance term on the right-hand side, each term is of
the form

cov g z , . . . , z , g z X , . . . , z X .Ž . Ž .� 41 j k j 1 j k j1 k 1 k
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When j / jX for all i, the covariance is zero because of the independence ofi i
X � Ž .4the z . If j s j for all i s 1, . . . , k, the above is reduced to var g z , . . . , z .i j i i 1 k

� X4In general, if S s i; j s j , theni i

cov g z , . . . , z , g z X , . . . , z XŽ . Ž .� 41 j k j 1 j k j1 k 1 k

s var E g z , . . . , z N z s h .� 4Ž .Ž . Ý1 k S C
S=C/B

2.8Ž .

c � 4 � 4Let C s 1, . . . , k y C. For any C ; 1, . . . , k , there are

2m mŁ Łi i
cigC igC

Ž .number of ways of choosing an ordered pair of index vectors j , . . . , j and1 k
Ž X X .j , . . . , j such that S = C. Hence1 k

1
m 22.9 var m s m m hŽ . Ž .ˆ Ý Ł Łi i C2 em ??? m igC igCŽ . C/B1 k

hCs . IÝ Ł mig C iC/B

Ž .REMARK 2.1. Koroljuk and Borovskich 1994, Section 1.2 gave a variance
� Ž .4decomposition, expressed in terms of var E g N z , . . . , z , for a generali i1 l

Ž .k-sample U-statistic. Their formula 1.2.11 can be used to derive Proposition
2.1 but provides little insight. We feel that our proof is more concise and can
be generalized in a straightforward fashion to derive a similar variance
decomposition for any k-sample U-statistic.

Ž .REMARK 2.2. When m s ??? s m s m, 2.6 simplifies to1 k

u u u1 2 km2.10 var m s q q ??? q ,Ž . Ž .ˆ 2 km m m

where u s Ý h . From the orthogonal decomposition, it is immediatet <C <st C
Ž . Ž . Ž m.that var g s u q ??? qu . Therefore, with m as defined in 1.4 , var m F˜ ˆ1 k

Ž . Ž . Ž .var g rm s var m . Asymptotically m ª ` , the relative efficiency between˜
m Ž . mm and m is var g ru . This indicates that the gain of using m over m canˆ ˜ ˆ ˜1

Ž .be small if u is the dominating term of var g . For example, if g is an1
Ž . Ž . Ž . madditive function of the z , that is, g z s g z q ??? qg z , then m s mˆ ˜i 1 1 k k

Ž .and var g s u .1

Ž .REMARK 2.3. Expression 2.6 is useful in deciding the allocation of
sample sizes m , . . . , m . For example, if sampling cost is proportional to1 k
m q ??? qm s M, then, for a fixed cost, having m A h minimizes the1 k i �i4
first-order term.
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3. Some examples.

Ž . Ž .EXAMPLE 3.1 Estimating the moment generating function . Let L t si
Ž Ž .. Ž . Ž . Ž . Ž .E exp tz s H exp tz dF z s H exp tz f z dz , for i s 1, . . . , k, be thei i i i i i i i

corresponding moment generating functions of the ith distribution, and
Ž . k Ž . kM t s Ł L t be the moment generating function of Ý z . Using crossis1 i is1 i

Ž .samples to estimate M t ends up with
k1

mˆ ˆM t s exp t z q ??? qz s L t ,Ž . Ž . Ž .Ý Ł1 j k j i1 km ??? m is11 k j , . . . , j1 k

ˆ m iŽ . Ž . Ž .where L t s 1rm Ý exp tz . An easy calculation reveals thati i js1 i j

k 1 L 2 tŽ .im 2ˆ3.1 var M t s M t 1 q y 1 y 1 .Ž . Ž . Ž .Ž . Ł 2½ 5ž /m L tŽ .is1 i i

Ž .Equation 2.6 of the previous section implies a decomposition:
k hh �i , i 4�i4 1 2mˆvar M t s q q ??? ,Ž .Ž . Ý Ým m mi i iis1 i -i 1 21 2

where the current h’s can be obtained from algebraic manipulation of terms.
For example,

L 2 tŽ .i2h s var E exp t z q ??? qz N z s M t y 1 ,Ž . Ž .� 4Ž .�i4 1 k i 2ž /L tŽ .i

h s var E exp t z q ??? qz N z , z y h y hŽ .Ž .½ 5�i , i 4 1 k i i �i 4 �i 41 2 1 2 1 2

L 2 t L 2 tŽ . Ž .i i1 22s M t y 1 y 1 ,Ž . 2 2ž / ž /L t L tŽ . Ž .i i1 2

and so on. Not surprisingly, it turns out that h is exactly the term�i , . . . , i 41 l
Ž . Ž .corresponding to 1r m ??? m in the expansion of the product in 3.1 .i i1 l

Ž .EXAMPLE 3.2 Estimating tail probabilities . Suppose z , . . . , z are inde-1 k
pendent scalars and, for some fixed value of t, we are interested in

m s P z q ??? qz G t s E g z ,Ž . Ž .1 k

Ž .where g z is the indicator function I . Suppose, for each z , m� z q ? ? ? qz G t4 i1 k
�independent samples are simulated and denoted by z , i s 1, . . . , k, j si j

41, . . . , m . We now investigate how much improvement we can expect by using
the cross-match estimate mm instead of the simpler estimate m, both asˆ ˜

Ž . Ž . � 4 Ž .defined in 1.4 and 1.5 . For any set C ; 1, . . . , k , we let G ? be thew C x
cumulative distribution of Ý z ; then, in the current setting,ig C i

h s var P z q ??? qz G t N z� 4Ž .�i4 1 k i

s var 1 y G c t y z s var G c t y z ,Ž . Ž .� 4 � 4w� i4 x i w�i4 x i

h s var G c t y z y z y h y h ,� 4Ž .�i , i 4 w�i , i 4 x i i �i 4 �i 41 2 1 2 1 2 1 2

.. ..
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Ž .cWhen no one cdf G dominates the others, the convolution G t y ? will�i4 w�i4 x
be very smooth compared with the distribution F . We observe thati

Ž . Ž . 2 � Žvar I s m 1 y m s m y m , while h f E P z q ??? z G t N� z q ? ? ? qz G t4 �14 1 k1 k
.42 2z is of the magnitude of m . Typically, we are interested in the tail1

probability, that is, the case of small m. In this case, u , which is the term1
Ž .corresponding to 1rm in 2.10 , is much smaller than the total variance

2 Ž .m y m . Hence, according to formula 2.6 , the variance of the cross-match
estimate mm is much smaller than that of the naive estimate m.ˆ ˜

To see how the above argument works, we take the normal distributions
2 k 2 2 2 2 Ž . Ž .for example. Let S s Ý s , S s S y s and let F x and f x beis1 i i i

respectively the cdf and density of a standard normal random variable. For a
fixed number t ) 0, it is obvious that

P z q ??? qz G t s 1 y F trS ,Ž . Ž .1 k

and for a given z ,1

t y z1
P z q ??? qz G t N z s 1 y F .Ž .1 k 1 ž /S1

The following heuristic is helpful and can be proved rigorously:

2t y z t y z t1 1
h s var F s E F y F�14 ž /ž / ž /S S S1 1

2 2 2 2t t y z t t s t s1 1 12f E f y s f 1 q .2 2ž / ž / 2ž /S S S S S S S q SŽ .1 1 1

When all the s ’s are assumed to be 1, some algebraic manipulations show
that

1 t 2 1 t 2 4t 2

exp y - h F exp y 1 q .�14 2ž / ž / ž /4p k q 1 k q 1 p k k q 1 kŽ .
' ' 'Ž . Ž . Ž .On the other hand, var I f 1 y F tr k f k f tr k rt,� z q ? ? ? qz G t41 k

Ž 2 .which is a factor of exp t r2k times larger than the upper bound of h . A�14

w 2 Ž .x� Ž 2similar computation provides that h F exp yt r k q 3 1 q 4 t q�1, 24
. 241 rk rkp , which is of the same magnitude as h .�14

Ž .Binomial distributions can be treated similarly. Let z , . . . , z ; Bin n, p ,1 k
Ž .and the tail probability P z q ??? qz G t be the quantity of interest. Define1 k

Ž . Ž . 'a k, t s t y nkp r nkpq ; then by using the normal approximation toˆ
binomial probabilities, we obtain that

f 2 a k , t a 2 k , tŽ . Ž .Ž .ˆ ˆ2
h fE F a k , t yF a ky1, tyz f 1 q .� 4 � 4Ž . Ž .ˆ ˆ�14 1 ž /k y 1 4k

Ž . Ž Ž .. Ž .Again, it is much smaller than var I f f a k, t ra k, t .ˆ ˆ� z q ? ? ? qz G t41 k

The above discussion gives us some insight into the planning of genetic
linkage studies. In the ideal situation in such studies, there is a binomial
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Ž . �observation y ; Bin n , u from each family i, which yields z s y log uri i i i
Ž .4 Ž . Ž .1 y u q n log 2 y 2u as the log-likelihood ratio LLR between a linkagei

1parameter value u and the unlinked case u s . In practice, y is not directlyi2

observable, but the LLR can still be computed from the incomplete observa-
tions. In the planning of such studies, one may be interested in the power for
detecting a nonnull value u using k families of roughly equal sizes. Such
power considerations essentially require knowledge of tail probabilities of the
LLR, which must be obtained by simulations.

4. The importance sampling case. In this section, the samples z s
Ž .z , . . . , z are drawn either from the product measure f * or from f , depend-1 k
ing on whether it is split sampling or joint-sampling. Unless otherwise stated,
the components z , . . . , z are not assumed to be independent with respect to1 k
Ž . Ž .p ? or f ? , where p and f are not assumed equal either. The expectations

and variances without any subscripts are those taken with respect to f *.
Ž .Rewrite 1.2 as

1rm ??? m Ý w j , . . . , j c z , . . . , zŽ . Ž . Ž .1 k j , . . . , j 1 k 1, j k , j1 k 1 kmm sˆ
1rm ??? m Ý w j , . . . , jŽ . Ž .1 k j , . . . , j 1 k1 k4.1Ž .

Adef
s .

B

Here A is an importance sampling estimate of m without renormalizing the
weights. Note that A is an unbiased estimate, but it is not invariant under
linear transformation of c because the average of the weights, which has
expectation 1, will in general not be equal to 1. By contrast, mm is anˆ

Ž .y1invariant estimate. It is a ratio estimate which has a bias of order m ,˘
w xwhere m s min m . Apart from invariance considerations, another reason˘ i i

for using mm instead of A is that mm can be computed even if the importanceˆ ˆ
sampling weights can only be evaluated up to a constant. The latter is often
the case in missing data problems where z corresponds to missing data and
Ž . Ž .p z is the conditional distribution given the observed data see Section 6 .

DEFINITION 4.1. We define the following functions that will be used
throughout this section:

p z p zŽ . Ž .y y yc z s c z y m ; f z s c z ; w z s c z .Ž . Ž . Ž . Ž . Ž . Ž .
f * z f zŽ . Ž .

We then have

1rm ??? m Ý w j , . . . , j cy z , . . . , zŽ . Ž . Ž .1 k j , . . . , j 1 k 1, j k , j1 k 1 kmm y m sˆ
1rm ??? m Ý w j , . . . , jŽ . Ž .1 k j , . . . , j 1 k1 k

Ay
def
s .

B
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w yx w xBy applying the delta method and noting that E A s 0, E B s 1,

var mm s var mmy mˆ ˆŽ . Ž .
Ay

s var ž /B
2 w yx 2 w x y w y x w yx w xvar B E A rE B q var A y 2 Cov A , B E A rE BŽ . Ž . Ž .Ž .

f 2 w xE B

s var Ay .Ž .

Ž .y2The error in the approximation is of order m .˘

Ž .Let H , i s 0, 1, . . . , k, and H , i - i , . . . , etc., be defined as in 2.3 ,i i i 1 21 2

Ž . Ž . Ž .but with their g z replaced by f z . Similarly, let h s var H . Byi ? ? ? i i ? ? ? i1 l 1 l
y Ž . Ž .applying Proposition 2.1 to A , with g ? replaced by f ? , we have the

following result.

THEOREM 4.1. We have

k h hh i i i i ii 1 2 1 2 3y4.2 var A s q q q ??? .Ž . Ž . Ý Ý Ým m m m m mi i i i i iis1 i -i i -i -i1 2 1 2 31 2 1 2 3

It follows that

k him y y2 y2var m s var A q O m s q O m .Ž . Ž . Ž .Ž .ˆ ˘ ˘Ý miis1

w Ž . xLEMMA 4.1. The conditional expectations H s E f z N z can be rewrit-i i
w Ž . xten as E w z N z . It follows thatf i

k var E w z N zŽ .Ž .f f iim y24.3 var m s q O m .Ž . Ž .Ž .ˆ ˘Ý miis1

Ž .PROOF. Note that, with z denoting z , . . . , z , z , . . . , z ,Žyi. 1 iy1 iq1 k

p zŽ .yH z s E f z N z s E c z zŽ . Ž . Ž .i i i if * zŽ .
p z p zŽ . Ž .y ys c z f * z N z dz s c z dzŽ . Ž .Ž .H HŽy1. i Žyi. Žyi.f * z f zŽ . Ž .i i

p zŽ .ys c z f z N z dz s E w z N z .Ž . Ž .Ž .H Žyi. i Žyi. f if zŽ .

Ž .The lemma then follows from Theorem 4.1 and the fact that h s var H si i
Ž .var H . If ii
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Ž .LEMMA 4.2. Suppose m s m, i s 1, . . . , k. For general f z ,i

mvar mŽ .ˆ
4.4 lim F k .Ž .

var mmª` Ž .˜f

Ž . Ž .If f z s f * z , then
mvar mŽ .ˆ

4.5 lim F 1.Ž .
var mmª` Ž .˜

The same results apply to the mean-squared errors.

PROOF. By considering m as a special case of mm with k s 1 components,˜ ˆ
Lemma 4.1 gives

1
y2var m s var E w z N z q O mŽ . Ž . Ž .˜ Ž .f f fm

4.6Ž .
1

y2s var w z q O m .Ž . Ž .Ž .fm
Applying Lemma 4.1 to mm, we haveˆ

k1
m y24.7 var m s var E w z N z q O m .Ž . Ž . Ž .Ž .ˆ Ž .Ý f f iim is1

Ž . Ž w Ž . x. Ž Ž .. Ž .For general f z , var E w z N z F var w z for each i. Hence 4.4 fol-f f i fi
Ž . Ž . Ž . k Ž w Ž .lows from 4.6 and 4.7 . When f z is a product measure, Ý var E w z Nis1 f fix. Ž Ž .. Ž .z F var w z because 2.2 applies with f and w substituting for f * andi f

Ž .g, and 4.5 follows. The same results apply to the mean-squared errors
because both mm and m have bias of order my1. Iˆ ˜

REMARK 4.1. Both bounds in Lemma 4.2 are tight. To see that, it is
Ž . Ž .adequate to consider the simpler situation where p z s f z . For the case

Ž .with general f z , suppose the z are discrete and under f , z s ??? s zi 1 k
Ž w Ž . x. Ž w Ž . x. Ž Ž ..with probability 1. Then var E w z N z s var E w z N z s var w z .f f i f f fiw Ž .The same example can also be used to illustrate that the bound 4.4 is

xindeed asymptotic and the ratio can be bigger than k for small m. For the
Ž . Ž .case where f z s f * z , if p s f , the situation reduces to that studied in

Ž . Ž . Ž . Ž .Section 2. When c z is additive in the z , that is, c z s c z q ??? qc z ,i 1 1 k k
m Ž .then m s m . However, Barnard 1995 showed that in the setting of multiple˜ ˆ

imputation, even for additive functions, the cross-match idea can lead to a
superior approximation of the variances of the multiple imputation estimates.

Ž . Ž . Ž .REMARK 4.2. When f z is a product measure Case II in Section 1 , 4.5
in Lemma 4.2 establishes that using the cross-matches will in general lead to
a superior estimate asymptotically. While a proof is not available at this
moment, we will not be surprised if more careful calculations demonstrate
that mm always has smaller mean-squared error than m for any finite m.ˆ ˜

Ž . Ž .Indeed, when f z is quite different from p z and m is only of moderate size,
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we believe that mm can have significantly smaller bias than m. We also noteˆ ˜
that a corresponding nonasymptotic result can be easily obtained for the

Ž . Ž . Ž .unbiased cross-match estimate A defined in 4.1 . Specifically, if f z s f * z
Ž .and m s m for all i, then from Proposition 2.1 and 2.10 , we geti

1 p zŽ .
var A F var c zŽ . Ž .ž /m f zŽ .

Ž . Ž . Ž . Ž .by substituting p z c z rf z for their function g z .

Ž . mREMARK 4.3. From Lemma 4.1 and 4.6 , we see that m is asymptoticallyˆ
more efficient than m if˜

k

4.8 var E w z N z F var w z .Ž . Ž . Ž .Ž .Ž .Ý f f i fi
is1

Ž .The condition that f z factors is sufficient, but by no means necessary, for
Ž .the inequality to hold. Indeed, if w z is highly nonlinear and the z are onlyi

weakly dependent under f , we can expect mm to have substantially smallerˆ
mean-squared error than m. This is very important for the type of applica-˜
tions studied in Section 6.

Ž .EXAMPLE 4.1. Suppose the z are 0]1 binary variables andi

G a q b G a q Ýk z G b q k y Ýk zŽ . Ž . Ž .is1 i is1 i
4.9 p z s f z s ,Ž . Ž . Ž .

G a G b G a q b q kŽ . Ž . Ž .

Ž . Ž .where G ? is the gamma function, and a , b ) 0. Note that 4.9 is the joint
distribution of the first k steps of a binary Polya sequence and can be
constructed from assuming that the z are Bernoulli trials given a probabilityi

Ž .parameter v, but v is unknown and is assumed to have a Beta a , b
Ž .distribution. For this example, suppose a s b so that 4.9 reduces to

G 2a G a q Ýk z G a q k y Ýk zŽ . Ž . Ž .is1 i is1 i
4.10 p z s f z s .Ž . Ž . Ž . 2G a G 2a q kŽ . Ž .

From the construction, it is obvious that the z are always positively corre-i
lated, the correlation is weak if a is large and the correlation is strong if a is
close to zero. First, consider the case with k s 2. The joint distribution of z1

Ž . Ž . Ž .Ž . Ž . Ž . Ž .and z is p 1, 1 s p 0, 0 s 1r2 1 q a r 1 q 2a and p 1, 0 s p 0, 1 s2
Ž .Ž . Ž . Ž .1r2 a r 1 q 2a . Suppose c z s z q z , then simple calculations show1 2
that

1 1 q a
4.11 var m sŽ . Ž .˜f ž /m 1 q 2a
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and

1
m y2var m s var E w z N z q var E w z N z q O mŽ . Ž . Ž .Ž .ˆ Ž . Ž .Ž .f 1 f 2m

21 1 q a
y2s 2 q O m .Ž .ž /m 1 q 2a

4.12Ž .

Hence
mvar m 1 q aŽ .ˆ

4.13 lim s 2 ) 1,Ž . ž /var m 1 q 2amª` Ž .˜f

which approaches 1 if a ª ` and approaches 2 if a ª 0. Now suppose we
Ž .change c z to z y z . Similar calculations show that1 2

21 a 1 a
m y2var m s , var m s 2 q O m ,Ž . Ž .Ž .˜ ˆf ž / ž /m 1 q 2a m 1 q 2a

and
mvar m aŽ .ˆ

lim s 2 - 1,ž /var m 1 q 2amª` Ž .˜f

which approaches 1 if a ª ` and approaches 0 if a ª 0! So mm can some-ˆ
times do better than m even if c is linear and f s p does not factor. Consider˜

Ž . know that c z s Ł z , which is nonlinear, for general k. Hereis1 i

P c z s 1 s P c z s 1 s P z s ??? s z s 1Ž . Ž . Ž .Ž . Ž .p f f 1 k

G 2a G a q k G a G 2a G a q kŽ . Ž . Ž . Ž . Ž .
s s s m ,2 G a G 2a q kG a G 2a q k Ž . Ž .Ž . Ž .

and

var E w z N z s var E c z y m N zŽ . Ž .Ž . Ž .f f i f f ii i

2 2s var c z s var z 2m s 2m var z s m .Ž . Ž . Ž . Ž .Ž . Ž .f f i f ii i i

Hence
m 2var m km kmŽ .ˆ

lim s s .
var m m 1 y m 1 y mmª` Ž . Ž .˜f

Ž .It is clear that m is a decreasing function of a . When a s 1, m s 1r k q 1
and the above limit is equal to 1. Hence mm is aymptotically more efficientˆ
than m if and only if a ) 1. It is interesting that this cutoff does not depend˜
on k. However, if a ) 1, then the ratio of the asymptotic variances goes to 0

wŽ .Ž .xas k ª `. For example, if a s 2, then m s 6r k q 3 k q 2 .
Ž .Up to this point, the role of p z , specifically the effect of the difference

Ž . Ž . Ž .between p z and f z , has been suppressed; it simply got absorbed into f z



CROSS-MATCH AND SPLIT SAMPLING 2423

Ž . Ž . Ž .or w z and the examples used so far assume p z s f z . The next two
lemmas change that by reexpressing the expectations and variances so that
they are taken under p.

DEFINITION 4.2. For i s 1, . . . , k, we define

p z p zŽ . Ž .i i i i2s s var s E y 1,i f pi if z f zŽ . Ž .i i i i

and
p z p zŽ . Ž .

2s s var s E y 1.f pf z f zŽ . Ž .

LEMMA 4.3. For i s 1, . . . , k,
2h s var H z s var H z s 1 q s var G z q R ,Ž . Ž . Ž .Ž .i i i f i i i p i i ii i

Ž . w Ž . x Ž . w Ž . xwhere H z s E f z N z , G z s E c z N z andi i f * i i i p i

p zŽ .i i 2
R s Cov , G z y m .Ž .Ž .i p i ii f zŽ .i i

Ž .PROOF. Note that, with z denoting z , . . . , z , z , . . . , z ,Žyi. 1 iy1 iq1 k

p zŽ .yH z s E f z N z s E c z zŽ . Ž . Ž .i i f * i f * if * zŽ .

p z N z p zŽ .Ž .Žyi. i i iys c z f * z N z dzŽ . Ž .H Žyi. i Žyi.f z ??? f zŽ . Ž .1 1 k k

p z p zŽ . Ž .i i i iy ys c z p z N z dz s E c z N z .Ž . Ž .Ž .H Žyi. i Žyi. p if z f zŽ . Ž .i i i i

So

p zŽ .i i yE H z s E c z N z f z dzŽ . Ž . Ž .Hf i i p i i i ii f zŽ .i i

y ys p z E c z N z dz s E c z s 0.Ž . Ž . Ž .H i i p i i p

Hence

var H zŽ .f i ii

2
p zŽ .i i 2 ys E E c z N zŽ .f p ii ž /f zŽ .i i

p zŽ .i i 2 ys E E c z N zŽ .p p ii f zŽ .i i
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p zŽ . 2i is E E c z N z y mŽ .Ž .p p ii f zŽ .i i

p zŽ .i i 2s E G z y mŽ .Ž .p i ii f zŽ .i i

p z p zŽ . Ž .i i i i2 2s E E G z y m q Cov , G z y mŽ . Ž .Ž . Ž .p p i i p i ii i if z f zŽ . Ž .i i i i

p zŽ .i i 22s 1 q s var G z q Cov , G z y m .Ž . Ž .Ž .Ž .i p i i p i ii i f zŽ .i i

w Ž .xThe last equality follows from the fact that E G z s m. The lemmap i ii

follows. I

LEMMA 4.4. In general,

4.14 s 2 F s 2Ž . i

Ž . Ž .for all i. If f z s f * z , then
k

2 24.15 s F s .Ž . Ý i
is1

Ž . Ž . Ž . Ž . Ž .If f z s f * z and p z s p z ??? p z , then1 1 k k

k
2 24.16 1 q s s 1 q s .Ž . Ž .Ł i

is1

PROOF. First note that

p z p zŽ . Ž .
E z s f z N z dzŽ .Hf i Žyi. i Žyi.f z f zŽ . Ž .

p z f zŽ . Ž .
s dzH Žyi.f z f zŽ . Ž .i i

p zŽ .i is p z N z dzŽ .H Žyi. i Žyi.f zŽ .i i

p zŽ .i is .
f zŽ .i i

Hence

p z p z p zŽ . Ž . Ž .
2s s var s var E z q E var zf f f i f f if z f z f zŽ . Ž . Ž .

p z p zŽ . Ž .i i 2G var E z s var s s .f f i f iif z f zŽ . Ž .i i
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Ž . Ž . Ž . Ž . w Ž . Ž .xIf f z s f * z , which factors, then by applying 2.2 with g z s p z rf z ,

p z p z p zŽ . Ž . Ž .i i2 2s s var G var E z s var s s .Ý Ý Ýf f f i f iif z f z f zŽ . Ž . Ž .i ii i i

If both p and f are product measures, then

p z p zŽ . Ž .
2 21 q s s E q varf ff z f zŽ . Ž .

2 22p z p z p zŽ . Ž . Ž .i is E s E s EŁ Łf f f iž / ž / ž /f z f z f zŽ . Ž . Ž .i ii i

s 1 q s 2 . IŽ .Ł i
i

Assuming that m s ??? s m s m, Theorem 4.1 and Lemma 4.3 give1 k

2Ý R q Ý 1 q s var G zŽ .Ž .i i i i p i iim y24.17 var m s q O m .Ž . Ž .ˆ
m

By regarding m as a special version of mm with k s 1, we get˜ ˆ
2R q 1 q s var c zŽ . Ž .p y2w x4.18 var m s q O m ,Ž . Ž .˜
m

where

p zŽ . 2R s Cov , c z y m .Ž .Ž .p f zŽ .

Note that s 2 and s 2 depend only on p and f and not on c . They arei
sometimes referred to as chi-squared distances and measure how much the

w Ž .xcorresponding pair of distributions differ. The terms var G z andp i iiw Ž .xvar c z depend on p and c , but not on f. While the G is similar to the Hp i i
Ž . Ž .in 2.3 , p is not assumed to be a product measure here and hence 2.2 may

w Ž .xnot necessarily apply. So, while var G z is always smaller thanp i iiw Ž .x k w Ž .x w Ž .xvar c z , it is not necessary that Ý var G z F var c z . The re-p is1 p i i pi

mainder terms R and R depend on p, f and c , which makes them morei
difficult to interpret. Note that both R and R can be positive or negative,i
and are not necessarily small since they do not depend on m. In situations

Ž .where f z is deliberately chosen for a specific c for the purpose of variance
reduction, R and R will likely be negative and can, in absolute value, be ai

Ž 2 . w Ž .xlarge function of 1 q s var G z . However, as mentioned in Section 1,i p i ii
Ž .we are more interested in situations where f z just happens to be a conve-

nient distribution to sample from and is not deliberately chosen for a specific
Ž .c . Indeed, for many applications see Section 6, e.g. , there are many c of

interest simultaneously. In these instances, we feel that it is often useful to
gain an intuitive feeling of what is going on by ignoring the remainder terms.
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Ž . Ž . Ž . w Ž .x w Ž .xFor example, if p z s p z ??? p z , then Ý var G z F var c z .1 1 k k i p i i pi

Since Lemma 4.4 states that s 2 F s 2 for all i, ignoring the remainder termsi
R and R we geti

k1
m 2var m f 1 q s var G zŽ .ˆ Ž .Ý i p i iim is1

2 k 21 q s 1 q s
w x w xF var H z F var c f var m ,Ž . ˜Ý p i i pim mis1

which means that we may expect mm to be more efficient than m. When both fˆ ˜
and p are product measures of the components, which is the case with the

Ž . Ž .genetics application discussed in the Introduction, 4.18 and 4.17 together
Ž .with 4.16 in Lemma 4.4 suggest that drastic reduction of variance can be

obtained by using mm instead of m when s 2 is large.ˆ ˜

Ž . Ž . Ž . Ž .EXAMPLE 4.1 Continued . Suppose p z is 4.10 , and f is 4.9 with the
same a value as p, but b may be different from a . With k s 2 and
Ž . Ž . Ž . Ž .c z s z q z , 4.11 , 4.12 and 4.13 generalize to1 2

1 1 q a 1 a q b 1 q a q bŽ . Ž .
var m sŽ .˜f ž / ž /m 1 q 2a 2 2a 1 q 2aŽ .

a 1 q aŽ . y2= 1 q q O m ,Ž .ž /b 1 q bŽ .
221 1 q a a q bŽ .m y2var m s q O mŽ .Ž .ˆ ž /m 1 q 2a 2ab

and
mvar m 2 1 q a 1 q b a q bŽ . Ž . Ž .Ž .ˆ

4.19 lim s .Ž .
var m a 1 q a q b 1 q b 1 q a q bmª` Ž . Ž . Ž . Ž .˜f

Ž . Ž .Unlike 4.13 , 4.19 is not always bigger than 1. For example, for a s 5,
Ž . Ž . Ž .b s 15, 4.19 is 0.677. In general, for a fixed a , if b ª 0, 4.19 ª 2r 1 q a ,

Ž . Ž .which is smaller than 1 if a ) 1, and if b ª `, 4.19 ª 2 1 q a rb ª 0.
We end this section by pointing out that Theorem 4.1 suggests how the

variance of mm can be estimated from the samples when m is large for all i.ˆ i
w Ž . xFor i s 1, . . . , k, j s 1, . . . , m , E f z N z s z can be estimated byi i i i ji

Ý w j , . . . , j c z , . . . , z ymmŽ . Ž . ˆŽ .j , . . . , j , j , . . . , j 1 k 1 j k j1 iy1 iq1 k 1 kÊ f z N z sz s .Ž . i i ji m m ??? m m ??? m1 2 iy1 iq1 k

w � Ž . 4xFor each i, h s var E f z N z can be approximated by the sample variancei i
Ž̂ Ž . xof E f z N z s z , j s 1, . . . , m .i i j i ii

5. The cross-match estimate with joint sampling. In this section, we
want to point out that even if the component samples are drawn jointly
instead of independently, a cross-match estimate can still be constructed. For
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simplicity, consider the situation with k s 2 components. Paired samples
Ž . Ž .z s z , z , j s 1, . . . , m, are drawn from the joint distribution f z . Aj 1 j 2 j

generalization of mm isˆ

Ý w j, l c z , zŽ . Ž .j , l 1 j 2 lm5.1 m sŽ . ˜
Ý w j, lŽ .j , l

1rm2 Ý w j, l c z , z A†Ž . Ž .Ž . defj , l 1 j 2 ls s ,†2 B1rm Ý w j, lŽ .Ž . j , l

where

p z , zŽ .1 j 2 l
5.2 w j, l s .Ž . Ž .

1rm f z , z q m y 1 rm f z f zŽ . Ž . Ž . Ž . Ž .1 j 2 l 1 1 j 2 2 l

The idea is that we can pretend that the pairing information is somehow lost
Ž .so that each pair z , z can be considered as having the mixture distribu-1 j 2 l

Ž . Ž . wŽ . x Ž . Ž .tion 1rm f z , z q m y 1 rm f z f z . This is because, if the in-1 j 2 l 1 1 j 2 2 l
dexes of the z and z samples have been randomly shuffled, then there is1 2
1rm chance that z and z are actually drawn jointly. It is easy to see that1 j 2 l
Ž †. Ž †. m Ž .E A s m and E B s 1, and m is asymptotically m ª ` unbiased. Also,ˇ

note that mm can be generalized in a natural way to accommodate situationsˇ
where z is decomposed into more than two components. In cases of joint
sampling, the marginals are often not available. A method for estimating
such marginals is discussed in the next section.

As the samples are not drawn independently, the Efron]Stein orthogonal
decomposition does not apply. As a consequence, it is rather difficult to get
clean and general results for the variance of mm. However, if z and z are˜ 1 2
not too highly dependent with respect to f , it seems reasonable to believe
that mm and mm will behave very similarly for large m. Indeed, by qualita-ˇ ˆ

Ž . Ž .tively extrapolating from 4.17 and 4.18 , one may use

2w xvar m 1 q s var c zŽ . Ž .˜ p
5.3 fŽ . m 2var m Ý 1 q s var G zŽ .ˇ Ž .i i p i ii

as a guideline. The beauty of mm is that the choice of the decomposition canˇ
be made after the generation of the samples. Also, with the same set of
samples, different decompositions can be chosen for different c . In choosing a

Ž .decomposition to improve on m, by referring to 5.3 , one can either make the˜
2 2 w Ž .x w Ž .xs small relative to s or make var G z small relative to var c z . Toi p i i pi

do the former, in light of Lemma 4.4, one wants a decomposition so that the
components are approximately independent with respect to f , and it is even
better if the components are also approximately independent with respect to

Ž .p. This strategy also makes approximation 5.3 more reliable. Another
advantage is that it will work for all c .
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We end this section by noting that, apart from mm, there are other ways ofˇ
utilizing the cross-matches. One natural estimate is

Ý w j, l c z , zŽ . Ž .j/ l 1 j 2 l
5.4 sm q 1 y s ,Ž . Ž .˜

Ý w j, lŽ .j/ l

Ž . Ž . Ž Ž . Ž ..where w j, l s p z , z r f z f z and s is some number between 01 j 2 l 1 1 j 2 2 l
and 1. Unlike mm, this estimate treats the actual pairs and the cross-matchesˇ
differently. It has the advantage that, for any decomposition, with an opti-
mally chosen s, it is at least as good as m. The difficulty is in how to choose s.˜
If the components are not highly dependent with respect to f , then the
optimal value of s is probably quite small for large m and the mean-squared

Ž . merror of 5.4 will probably be not too different from that of m . By the sameˇ
argument as in Section 4, we can approximate m by its numerator m s˜ ˜c

m Ž . Ž . mÝ w j c z and approximate the latter estimate by m s Ýˆjs1 j c j/ l
Ž . Ž .w j, l c z , z . Hence the covariance between the two terms is approxi-1 j 2 l

Ž m.mately cov m , m , which is˜ ˆc c

m1
mcov m , m s cov w j c z , w i , j c z , zŽ . Ž . Ž . Ž .�˜ ˆŽ . Ý Ýc c j 1 i 2 j2m m y 1Ž . js1 i/j

qw j, i c z , zŽ . Ž . 41 j 2 i

1 p z p zŽ . Ž .1 1 2 22 2s E G z q G z ,Ž . Ž .p 1 1 2 2½ 5m y 1 f z f zŽ . Ž .1 1 2 2

Ž .assuming that E c s 0. By some tedious manipulations, one can alsop
Ž m. 2approximate var m , accurate up to order 1rm , byˆc

1 p z p zŽ . Ž .1 1 2 2m 2 2var m f E G z q G zŽ . Ž .ˆŽ .c p 1 1 2 2½ 5m y 1 f z f zŽ . Ž .1 1 2 2

p z p zŽ . Ž .1 1 2 2q2 cov G z , G z .Ž . Ž .f 1 1 2 2½ 5f z f zŽ . Ž .1 1 2 2

The implication here is that, if the last covariance term is negative, one
should choose the combination parameter s as zero. Otherwise, one can solve
for an optimal s.

6. The cross-match estimate and multiply imputed data sets. One
application that motivated our research is the analysis of multiply imputed

w Ž .xcomplete data sets Rubin 1987 . Following standard terminology for
Bayesian missing data problems, let y be observed data, let z be missing data

qŽ . qŽ .and let u be the unknown parameter vector. Let p y, z, u and f y, z, u
denote two possibly different joint distributions of y, z and u . For example,
pq and fq may be different because they correspond to different prior
distributions for u , or more extremely, they correspond to two different
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w Ž .xstatistical models for the data Meng 1994 . Treating y as fixed, define
def defq qf z s f z N y , p z s p z N y .Ž . Ž . Ž . Ž .

Let
qc z s E l u N y, zŽ . Ž .p

Ž .be the complete data posterior mean of some functional l u with respect to
pq. Then

w xq q qm s E c z s E E l N y, z N y s E l N yŽ . Ž .p p p p

is the actual posterior mean of l under pq. Assume m is of interest and that
Ž .z , j s 1, . . . , m, are independent samples of z drawn from f z . We canj

Ž .estimate m by m as in 1.1 . For comparison, suppose multiple samples of z˜
Ž .are drawn directly from p z ; then the natural estimate of m is c , which has

variance
var c zŽ .p

var c s .
sample size

Ž .Hence, by applying 4.18 and ignoring the remainder term, we may regard

var c z var c z mŽ . Ž .p pf m f2 2w xvar m 1 q s var c z 1 q sŽ . Ž . Ž .˜ p

Žas the effective sample size associated with m. Note that the approximation˜
. Ž 2 .y1does not depend on c . The factor 1 q s reflects the loss of efficiency

Ž .from sampling from f instead of p. If z is high-dimensional, then even if f z
Ž . 2and p z are only moderately different, s can be very large and the

corresponding effective sample size of m can be quite small even for large m.˜
Here is where the cross-match estimate mm can offer very substantial im-ˇ
provement. By decomposing z in an appropriate fashion, the marginal chi-
squared distances s 2 can be a great deal smaller than s 2. It then followsi

Ž . mfrom 5.3 that the variance of m can be much smaller than that of m. Itˇ ˜
should be pointed out that the best decomposition of z may require

Ž .reparametrizing it. For example, if z has approximately a multivariate
normal distribution under f, then a linear transformation can be applied to

Ž .make all the scalar components approximately independent.
Instead of constructing the cross-match estimate to reduce variance, a

Ž .natural and simpler alternative is to draw new samples directly from p z s
qŽ .p z N y . However, that can be expensive. In the extreme, consider a situa-

tion where the creator of the multiply imputed data sets, for example, the
Ž .Census Bureau, is not the same as the user. Suppose y s y , y , and, maybe1 2

for confidentiality reasons, y is not available to the user. If it is true that2

pq u N y, z s pq u N y , z and fq u N y, z s fq u N y , z ,Ž . Ž . Ž . Ž .1 1

Ž .that is, y and u are conditionally independent given y , z , then the user2 1
can use the provided imputed data sets to estimate m, but will be unable to
create new imputed data sets on his own.
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Ž .Barnard 1995 applied the cross-match method to the multiple imputa-
tions and systematically explored the potentials of the use of mm in variousˆ
applications. His simulation studies for both artificial and realistic data sets
showed that the cross-match estimate mm displays consistent gains over theˆ
standard multiple imputation estimate m in terms of both accuracies of˜
frequency coverages and average lengths of the resulting confidence intervals.
He also identified situations when the split-sampling can be approximately

Ž .achieved i.e., p s f s f * so that one can avoid the complications of having to
Ž .compute the importance weights w as in 5.2 . When such a complication is

neither avoidable nor straightforward, we propose the following approach.
Again for simplicity, suppose k s 2 and rewrite the importance sampling

Ž .weights 5.2 as

w j, lŽ .
pq z , z N yŽ .1 j 2 ls q q q1rm f z , z N y q m y 1 rm f z N y f z N yŽ . Ž . Ž .Ž . Ž .1 j 2 l 1 j 2 l6.1Ž .

fq y pq z , z , yŽ . Ž .1 j 2 ls .q q qqp y 1rm f z , z , y q m y 1 rm f z N y f z , yŽ . Ž . Ž . Ž . Ž .Ž .1 j 2 l 1 j 2 l

qŽ . qŽ .Since we only need the weights up to a constant, the factor f y rp y can
qŽ . qŽ .be ignored. Assuming that both p u and f u are conjugate priors to

Ž . qŽ .y, z , then the complete data predictive probabilities p z , z , y and1 j 2 lqŽ . w Ž .f z , z , y can be easily computed Besag 1989 , Kong, Liu and Wong1 j 2 l
Ž .x qŽ . qŽ .1994 . The difficulty is in computing f z N y f z , y . If z and z are1 j 2 l 1 2
conditionally independent given y with respect to fq, then there is no

qŽ . qŽ . qŽ .problem since f z N y f z , y s f z , z , y . If not, write1 j 2 l 1 j 2 l

fq z N y s fq z N z , y fq z N y dz .Ž .Ž . Ž .H1, j 1, j 2 2 2

qŽ .Since z , l s 1, . . . , m, are samples drawn from f z N y , we have the2, l 2
Monte Carlo approximation

m m q1 1 f z , z , yŽ .1, j 2, lq q6.2 f z N y f f z N z , y sŽ . Ž . Ž .Ý Ý q1, j 1, j 2, lm m f z , yŽ .2, lls1 ls1

qŽ .for j s 1, . . . , m. As mentioned earlier, it is assumed that f z , z , y can1, j 2, lqŽ .all be evaluated. However, f z , y cannot be directly computed. Using an2, l
argument similar to that above, we obtain the Monte Carlo approximation

m q1 f z , z , yŽ .1, j 2, lq q qf z , y s f z N y f y f f yŽ . Ž . Ž . Ž .Ý q2, l 2, l m f z , yŽ .1, jjs1

m q1 f z , z , yŽ .1, j 2, ls Ý qm f z N yŽ .1, jjs1

6.3Ž .
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Ž . Ž .for l s 1, . . . , m. Combining 6.2 and 6.3 , and changing ‘‘f ’’ into ‘‘s ,’’ we
get a total of 2m equations with 2m unknowns. Closer inspection reveals
that there are actually only 2m y 1 free equations and the 2m unknowns can
only be solved up to a constant. More specifically, consider any solution of

qŽ . qŽ .f z N y and f z , y , j s 1, . . . , m, l s 1, . . . , m. If we multiply the1, j 2, lqŽ .solution values of f z N y , j s 1, . . . , m, by some constant c and multiply1, jqŽ .the solutions of f z , y , l s 1, . . . , m, by 1rc, then the results will still be2, l
a solution to the equations. This implies that we can get estimates of the

qŽ . qŽ . qŽ . qŽ . qŽ .ratios f z N y rf z N y and f z , y rf z , y s f z N y r1, j 1, j9 2, l 2, l9 2, lqŽ .f z N y . Most importantly, this is also sufficient for getting estimates of2, l9 qŽ . qŽ .the products f z N y f z , y , which are what we need.1, j 2, l
� qŽ .4If we let F s f z , z , y be the complete data matrix, and write1, i 2, j m=m

Ž qŽ . . Ž .F s f z N y , j s 1, . . . , m as a row vector, then the two equations 6.21 1, j
Ž .and 6.3 can be summarized as one fixed-point equation

y1y1 TF s F F F ,Ž .1 1

Ž . y1 Ž y1 y1.where, for a vector v s v , . . . , v , we define v s v , . . . , v . The1 m 1 m
solution can be obtained by successive substitutions. The cross products,

qŽ . qŽ .f z N y f z , y , can be expressed, in the matrix form, as1, j 2 l

�Ž y1 .y14T Ž y1 .F F F F F rm.1 1
It is noted that this procedure can be extended to estimate the importance

sampling weights for situations where k ) 2. Having to approximate the
importance sampling weights produces extra variation for the cross-match
estimate. Although some preliminary simulations showed that the method
worked accurately, the effect is not well understood and more work in this
direction, both empirical and theoretical, is needed.

7. Approximating the cross-match estimate by resampling. Since
the cross-match estimate, either mm or mm, involves Ł k m combinations ofˆ ˇ 1 i
the data, it may not be feasible to compute it exactly. One solution is to
approximate it by resampling. Based on the samples, construct a finite

k � 4product space V s Ł V , where V s z , . . . , z . On V, consider theis1 i i i, 1 i, m i

probability measure

P z s z , . . . , z A w j , . . . , j ,Ž . Ž .1 j k j 1 k1 k

Ž . Ž . Ž .where w j , . . . , j is either 1.3 or 5.2 . It is easy to see that the cross-match1 k
w Ž .xestimate is equal to E c z . Hence the cross-match estimate can be approx-P

imate if we can sample from V with respect to P.
With mm, if p factors with respect to the components of the decomposition,ˆ

then P is a product measure and hence trivial to sample from. In the
Ž .simplest case when m s ??? s m and w j , . . . , j ' 1, a resample of size1 k 1 k

Ž . ŽN will result in a variance of u rm q var g rN ignoring higher order1
. m Ž . w Ž .xterms for estimated m compared with var h rm for m see 2.10 . Thisˆ ˜

helps one to determine how expensive the Monte Carlo samples have to be for
using the cross-match estimate. With mm, f also has to factor for P to be aˇ
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product measure. Otherwise, depending on the circumstances, methods such
as Gibbs sampling, the Metropolis]Hastings algorithm or sequential imputa-
tion can be applied to sample from P.
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