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Understanding the present and future distribution of soil-borne plant pathogens is critical 

for supporting food and fibre production in a warmer world. Using data from a global field 40 

survey and a nine-year field experiment, we show that warmer temperatures increase the 

relative abundance of soil-borne potential fungal plant pathogens. Moreover, we provide a 

global atlas of these organisms along with future distribution projections under different 

climate change and land use scenarios. These projections show an overall increase in the 

relative abundance of potential plant pathogens worldwide. This work advances 45 

understanding of the global distribution of potential fungal plant pathogens and their 

sensitivity to ongoing climate and land-use changes, which is fundamental to reduce their 

incidence and impacts on terrestrial ecosystems globally. 

 

Around 15% of the global crop production is lost to biological threats1-5, a percentage that is 50 

expected to increase with ongoing global warming and the associated intensification of pest 

incidence1. This will jeopardize food security and reduce the productivity and health of terrestrial 

plant communities worldwide4. Many of the most aggressive plant pathogens are soil-borne fungi 

(e.g., Alternaria alternata or Fusarium oxysporum)6-8 that threaten food security as the chemical 

fungicides currently used against them are mostly ineffective6-8. In recent years, information on 55 

the distribution of plant diseases has increasingly become available at the local and regional scale 

(e.g., via PlantWise, https://www.plantwise.org). Moreover, the fundamental study in ref.9, 

provided important insights on the distribution of global fungi. Yet, global atlases of the current 

and future distribution of plant pathogens under contrasting global change scenarios, and based on 

multiple contrasting climates and vegetation types, are still lacking. 60 

Soils from natural ecosystems provide an array of potential reservoirs for fungal pathogens 

surrounding croplands worldwide, challenging their productivity6-8. Moreover, natural 

ecosystems, which provide essential services (e.g. timber and livestock production)10-11 to billions 

of people, are also highly sensitive to the incidence of fungal pests1-6,10. Understanding the current 

and future distribution of plant pathogens in natural ecosystems and the environmental factors 65 

influencing them is critical for forecasting their impact on human well-being and ecosystem 

sustainability under projected climate and land-use change scenarios. This could readily be seen 

as temperatures continue to rise along this century3,12, which might have an impact upon the 

proportion of potential plant pathogens worldwide. Temperature is known to determine the 

distribution of soil microbial communities9,13 as well as to influence the distributions of fast-70 

growing opportunistic fungal and animal pests14. Even so, the potential role of warming in the 

relative abundance of fungal plant pathogens in the soil reservoir remains largely unexplored.  

 Here, we used a global field survey15 conducted across 235 natural ecosystems from six 

continents (Supplementary Fig. 1) and a nine-year warming field experiment16 to evaluate how 

temperature17 regulates the relative abundance of soil-borne potential fungal plant pathogens 75 

(potential plant pathogens hereafter). This global survey was previously used to identify the top 

dominant fungal phylotypes in soils across the globe15. Here, we generated global atlases for the 

current and future distribution of potential plant pathogens under contrasting global change 

scenarios, and explored causal relationships between their relative abundance and warming. Our 

global field survey (Methods) included a wide variety of vegetation, climates and soil types, and 80 

covered ~73% of the environmental conditions found on Earth (Supplementary Appendix 1).  

Using amplicon sequencing for the ITS gene, we identified 2,735 fungal phylotypes 

classified as potential plant pathogens out of the 23,399 fungal phylotypes found in our global 

survey (Supplementary Data 1)6. Together, potential pathogenic phylotypes represented between 

https://www.plantwise.org/
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0.5 and 46.5% (with the average at 14.4%) of all ITS sequences at a given site (Fig. 1A), and 85 

included multiple potential plant pathogens with single (plant pathogens only, 37.1% of all 

pathogenic phylotypes; e.g., Venturia spp.) and mixed (plant pathogen and endophyte and/or 

saprotrophic fungi, 62.8% of all pathogenic phylotypes; e.g., Fusarium spp.) trophic modes 

(Supplementary Fig. 2; Supplementary Data 1). Our results thus indicate that soil-borne potential 

plant pathogens can be relatively abundant in soils from natural ecosystems worldwide. This was 90 

particularly the case in tropical and dry forests, but not in boreal and cold forests (Fig. 1B). On 

average, surveyed soils were dominated by a few genera of potential plant pathogens, including 

Alternaria, Fusarium, Venturia and Phoma (Fig. 1C; Supplementary Data 1 for a complete list), 

which together accounted for almost half (43.0%) of the retrieved ITS sequences classified as 

potential plant pathogens. Many of these soil-borne fungal taxa include economically important 95 

potential pathogens, as they are likely to affect the health and productivity of many important crops 

(e.g., wheat, sunflowers, cabbages, tomatoes, and potatoes), gardening and cosmetic/medicinal 

plants (e.g., Hibiscus, Aloe vera), and wild species that are an important food source for livestock6-

8,18-19.  

 We then used Structural Equation Modelling (SEM; Supplementary Figs. 3-5; 100 

Supplementary Tables 1-8) to identify the direct and indirect (e.g., via changes in soil properties 

and vegetation) associations between temperature and the relative abundance of potential plant 

pathogens across the globe. We found that mean annual temperature (MAT) had the largest 

positive and significant direct association with the relative abundance of soil pathogens globally 

(Fig. 1D; see all considered associations in Supplementary Fig. 3 and Supplementary Table 2). We 105 

also detected multiple indirect effects of MAT on the relative abundance of soil-borne potential 

plant pathogens via changes in vegetation types (forests and grasslands; Fig. 1D). Similar results 

were observed when calculating the relative abundance of potential plant pathogens from rarefied 

abundance (Supplementary Tables 3 and 8), when considering the relative abundance of potential 

plant pathogens with single and mixed trophic modes (Supplementary Tables 4-5 and 8), and when 110 

focusing on probable and highly probable pathogens only (Supplementary Tables 6-8). Our 

analyses further indicated that MAT was the most important factor influencing the relative 

abundance of soil-borne potential plant pathogens globally when considering both direct and 

indirect effects simultaneously (total standardised effects; Fig. 1E and Supplementary Fig. 4). We 

also found that MAT had a total positive effect on the relative abundance of fungal pathogens 115 

when focusing on the most abundant potential pathogen genera (Alternaria, Fusarium, Venturia 

and Phoma; Supplementary Fig. 5). Additional correlation analyses suggested that MAT is 

positively associated with the relative abundance of multiple genera classified as potential plant 

pathogens, which were found to be ubiquitous in soils across the globe (>50% of all locations) 

(Fig. 2; Supplementary Data 1). Likewise, ecosystem type (e.g. forests and grasslands) and plant 120 

cover were significantly associated with the relative abundance of plant pathogens. These findings 

suggest that changes in land use –as those predicted with global change20– might also alter the 

relative abundance of soil-borne potential pathogens globally. Other predominant environmental 

factors associated with specific pathogen genera include precipitation and soil pH (Fig. 2).  

Together, findings from our observational survey15 suggest that increasing temperature 125 

may cause increases in the presence of potential fungal plant pathogens in soils, which might act 

as reservoirs of infection. Natural areas are often surrounded by croplands across the globe, and 

there is significant “spill over” of soil microbes between them21. Given the high dispersal abilities 

of fungi22-23, our results suggest that warming-induced increases in the relative abundance of 

potential plant pathogens in soils from natural ecosystems will increase the risk of infection by 130 
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these fungi in adjacent croplands24-26. These impacts are likely to have implications for sustaining 

a growing human population, which is predicted to reach 9.8 billion people in 205027. Furthermore, 

it can create significant constraints for livelihood in least developed countries, where the majority 

of people rely to a large degree on livestock and natural products supported by natural 

ecosystems10.  135 

 To experimentally corroborate the observed global patterns, we used a nine-year field 

warming experiment located at the centre of the Iberian Peninsula16, where natural ecosystems are 

expected to be markedly affected by global warming if emissions are not significantly controlled17. 

Note that these data were not included in our global survey and were analysed independently. This 

experiment evaluates the effects of warming (~2ºC; Supplementary Fig. 6) on key ecosystem 140 

attributes in a semiarid grassland with well-developed biocrusts (soil surface communities 

dominated by lichens, mosses, fungi, and cyanobacteria)16. Warming almost tripled the relative 

abundance of potential plant pathogens in soil (Fig. 3), providing additional experimental evidence 

of the positive effect of temperature on the relative abundance of these organisms. Additionally, 

warming increased the relative (measured via amplicon-sequencing) and total (measured via 145 

quantitative PCR) abundance of Alternaria, the most common pathogenic fungal genus found in 

our global survey (Fig. 1) by sevenfold and twofold, respectively (Fig. 3). Warming also increased 

the relative abundance of the globally dominant Fusarium genus (Fig. 1) by almost five times 

(Supplementary Fig. 7), and also affected other common pathogens such as Cladosporium spp., 

where relative abundance increased by 20-fold (see Supplementary Fig. 7 for more examples).  150 

Global atlases, similar to those that have been available for plants and animals for centuries, 

now exist for some bacterial28 and fungal (e.g., mycorrhizal fungi)15,29 taxa. However, although 

regional and local information on plant diseases is starting to be increasingly available 

(https://www.plantwise.org), global atlases for the current and future distribution of potential plant 

pathogens under contrasting global change scenarios are lacking. Based on the consistent results 155 

from the global survey and experiment, we generated a global atlas depicting the current 

distribution of potential plant pathogens globally (Figs. 4A and Supplementary Figs. 8-9; see 

Supplementary Appendix 2 for a cross-validation on this map using an independent database9). 

We also generated a similar map for the relative abundance of potential pathogens with single 

tropic mode (plant pathogens only) (Supplementary Fig. 9); this map is highly correlated to that 160 

including all potential plant pathogens together (Fig. 4A; Pearson´s r = 0.83; P < 0.0001). These 

atlases show that the highest relative abundance of these pathogens can be found in warm areas 

such as dryland and tropical ecosystems (Fig. 4A; Supplementary Fig. 9; Supplementary 

Appendixes 1-2). Analyses conducted for dominant potential plant pathogens revealed that while 

Venturia has a more homogeneous spread across the globe, with especial relevance across the 165 

Northern Hemisphere, fungi from the genera Fusarium, Phoma, and Alternaria are more prevalent 

in tropical forests and drylands (Supplementary Fig. 10). These results are consistent with findings 

from croplands, where disease severity associated with these fungi is often more significant in 

warmer climates7,30.  

To provide new insights on other potential locations on Earth that might be more vulnerable 170 

to these organisms in the future, we forecasted the relative abundance of potential plant pathogens 

under global change scenarios (RCP2.6-SSP1, RCP6.0-SSP4, RCP8.5-SSP5 up to 2050; Fig. 4B 

and Supplementary Fig. 10). These analyses show an increase of the relative abundance of 

potential plant pathogens in most regions of the world regardless of the climate and land-use 

scenarios considered (Fig. 4B). Such an increase is supported by our experimental results showing 175 

a positive correlation of the abundance of these pathogens with warming effects like those expected 
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by global climate models. Although caution should be taken regarding the local accuracy of our 

model (see Supplementary Appendix 1), the impacts of warming are particularly evident in soils 

across the Northern Hemisphere, towards the Arctic, as well as in South Africa, where all scenarios 

show a systematic temperature rise (Fig. 4). Land use was especially important for some potential 180 

pathogenic genera such as Fusarium, which were found to be negatively correlated with plant 

cover (Fig. 2), and thus might increase with forecasted increases in aridity11. Together, our 

analyses show those locations of Earth where potential plant pathogens are expected to become 

more common in the near future. However, we would also like to stress here that we have not 

measured pathogen infection or disease of hosts, and that the importance of pathogens in 185 

determining vegetation structure might differ in warm vs. cold ecosystems, which might limit the 

implications of our results in boreal and artic ecosystems. In addition, our study has a global focus 

and does not provide high resolution information on the fine-scale (e.g. at the scale of meters or 

centimeters) distributions of fungal pathogens, which are affected by factors not included in our 

analyses such as microclimatic variations. Therefore, future work needs to be done to identify the 190 

fine-scale distribution of plant pathogens in specific localities. 

Our results, based on a global survey and a nine-year field experiment, highlight the 

significance of soils from natural ecosystems as an important reservoir for potential fungal plant 

pathogens, and underscore temperature as a major environmental factor driving their global 

distribution. They indicate that the proportion of potential plant pathogens will likely increase in 195 

most regions of the world regardless of the climate and land use scenarios considered. Our findings 

advance our understanding of the distribution and sensitivities to climate and land-use change of 

potential fungal plant pathogens in a warmer and human-dominated world. They can also be used 

to make better predictions on how ongoing global environmental change will affect their 

distribution and impact on food production and human livelihoods worldwide.   200 

 

References 

1. Barford E. Crop pests advancing with global warming. Nature doi:10.1038/nature.2013.13644 

(2013). 

2. Newbery F. et al. Modelling impacts of climate change on arable crop diseases: progress, 205 

challenges and applications. Current Opinion in Plant Biology 32, 101-109 (2016). 

3. Tollefson J. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 

562, 172-173 (2018)  

4. Chakraborty S. Newton A.C. Climate change, plant diseases and food security. Plant 

Pathology 60, 2-14 (2011). 210 

6. Nguyen, N.H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets 

by ecological guild. Fungal Ecology 20, 241-248 (2016). 

7. Parry D.W. et al. Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology 

44, 207-238 (1993). 

8. Qiu Z. et al. New frontiers in agriculture productivity: Optimised microbial inoculants 215 

and in situ microbiome engineering. Biotechnology Advance (2019).  

9. Tedersoo L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).  

10. Asner G.P. et al. Grazing systems, ecosystem responses, and 

global change. Annual Review of Environment and Resources 29, 261-299 (2004). 

11. Maestre F.T. et al. Structure and functioning of dryland ecosystems in a changing world. 220 

Annual Review of Environment and Resources 47, 215-237 (2016).  



6 

 

12. IPCC: Climate Change 2013: The Physical Science Basis (Cambridge University Press, 

Cambridge, NY, USA, 2013). 

13. Oliverio A.M. et al. Identifying the microbial taxa that consistently respond to soil warming 

across time and space. Global Change Biology 23, 2117-2129 (2017).  225 

14. Bebber D.P. et al. The global spread of crop pests and pathogens. Global Ecology and 

Biogeography 23, 1398-1407 (2013).  

15. Egidi E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nature 

Communications 10, 2369 (2019).  

16. De Guevara M.L. et al. The ‘PhenoBox’, a flexible, automated, open‐source plant phenotyping 230 

solution. New Phytologist 10.1111/nph.15000 (2018).  

17. Guiot J., Wolfgang Cramer W. Mediterranean warming fast, deserts may spread in Europe: 

scientific paper. Science 354, 465-468 (2016). 

18. Dean R. et al. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant 

Pathology 13, 414-30 (2012).  235 

19. Agrios, G.N. Plant Pathology (St. Louis, MO: Academic Press, Cambridge, USA, 2005).  

20. IPCC Special Reports: Land Use, Land-Use Change and Forestry (Cambridge University 

Press, Cambridge, NY, USA, 2000). 

21. Bell, T. Tylianakis J.M. Microbes in the Anthropocene: spillover of agriculturally selected 

bacteria and their impact on natural ecosystems. Proc Biol Sci. 283, 20160896 (2016). 240 

22. Caliz J et al.A long-term survey unveils strong seasonal patterns in the airborne microbiome 

coupled to general and regional atmospheric circulations. Proc Natl Acad Sci U S A. 115, 

12229-12234 (2018). 

23. Barberan A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc 

Natl Acad Sci U S A. 112, 5756-5761 (2015).   245 

24. Sugden A.M. Warming, crops, and insect pests. Science 361, 888–889 (2018). 

25. Borrelli P. et al.An assessment of the global impact of 21st century land use change on soil 

erosion. Nature Communications 8, 2013 (2017). 

26. Panagos P. et al. The new assessment of soil loss by water erosion in Europe. Environmental 

Science and Policy 54, 438 (2015). 250 

27. World Population Prospects 2019: Ten Key Findings (United Nations, Department of 

Economic and Social Affairs, Population Division, NY, USA, 2019). 

28. Delgado-Baquerizo M. et al. A global atlas of the dominant bacteria found in soil. Science 325, 

320–325 (2018). 

29. Steidinger BS et al. Climatic controls of decomposition drive the global biogeography of 255 

forest-tree symbioses. Nature 569, 404-408 (2019).  

30. Köhl J. et al. Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae 

in organic seed production of cauliflower. Plant Pathology 59, 358–367 (2010). 

 

Methods 260 

Global survey 

Study sites and soil sampling 

We used data from a global field survey15 to identify the ecological drivers and the current and 

future distribution of potential soil-borne plant pathogens in soils worldwide. Briefly, bulk soils 

(top 7.5cm) were collected from 235 ecosystems located in 18 countries from six continents 265 

(Supplementary Fig. 1) and covering nine biomes (temperate, tropical and dry forests, cold, 

temperate, tropical and arid grasslands, shrubland, boreal) between 2003 and 2015. Locations were 
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selected to provide a solid representation for most environmental conditions (e.g., climate, soil and 

vegetation types) found on Earth (Supplementary Appendix 1). For example, mean annual 

precipitation and temperature in these locations ranged from 67 to 3085mm and from -11.4º to 270 

26.5ºC, respectively. Given the global distribution of croplands, most natural ecosystems are 

surrounded to certain level by agricultural fields. Soil samples were sieved upon arrival to the 

laboratory (2mm mesh). Then, a portion of soil was immediately frozen at -20 ºC for molecular 

analyses, while the rest of the soil was air-dried, and stored for a month, before physicochemical 

analyses. 275 

 

Environmental factors 

Our field global survey15 included 12 environmental variables, which were obtained either in the 

field or from satellites/databases. Elevation and climatic variables, including mean annual 

temperature (MAT), mean annual precipitation (MAP) and temperature and precipitation 280 

seasonality, were collected from the Worldclim database (https://www.worldclim.org; (~1km 

resolution)31. Note that air and soil (https://neo.sci.gsfc.nasa.gov/) temperature are highly 

correlated at the global scale (Pearson r = 0.81, P = 0.0011) and that we used air temperature 

because current and future global models for this variable are more robust. Plant cover (2001-

2015) was obtained using remote sensing data from the Moderate Resolution Imaging 285 

Spectroradiometer (MODIS) at ~1km resolution32. Soil properties (texture [% of clay + silt], pH 

and total organic C) were determined from topsoil (top 7.5cm) samples collected from each 

location using standardized protocols33. To avoid biases associated with having multiple 

laboratories analyzing soils from different sites, all samples were analyzed at the Universidad Rey 

Juan Carlos (Spain). Soil pH was measured with a pH meter, in a 1: 2.5 mass: volume soil and 290 

water suspension. Soil texture (% of fine fractions: clay + silt) was determined as detailed in ref.33. 

The concentration of soil total organic carbon (C) was determined using a wet chemistry method34. 

Statistical analyses 

Structural Equation Modelling 

We used Structural Equation Modelling (SEM)35 to identify the direct and indirect effects of 295 

climate, vegetation and soil properties as drivers of the relative abundance potential plant 

pathogens (see our a priori model in Supplementary Fig. 3). The most common vegetation types 

in our database (forests and grasslands) were included in our SEM as categorical variables with 

two levels: 1 (a given ecosystem type) and 0 (remaining ecosystem types). Since some of the 

variables introduced were not normally distributed, the probability that a path coefficient differs 300 

from zero was tested using bootstrap tests36. Bootstrapping is preferred to the classical maximum-

likelihood estimation in these cases, because in bootstrapping, probability assessments are not 

based on an assumption that the data match a particular theoretical distribution. Thus, data are 

randomly sampled with replacement in order to arrive at estimates of standard errors that are 

empirically associated with the distribution of the data in the sample. We conducted models for 305 

the relative abundance (%) of all soil-borne fungal plant pathogens (un-rarefied and rarefied, 4500 

reads/sample; see the Molecular analyses section below), plant pathogens with single (plant 

pathogens only) and mixed trophic mode (plant pathogen and endophyte and/or saprotrophic 

fungi) and plant pathogens classified as probable and highly probable plant pathogens (excluding 

possible pathogens)6. Moreover, we conducted models for the most abundant pathogen genera 310 

(Alternaria, Fusarium, Venturia, and Phoma). Environmental data included in our model 

(Supplementary Table 1) did not suffer from multicollinearity (Pearson´s r < 0.7 in all cases; 

Supplementary Table 10).  

https://www.worldclim.org/
https://neo.sci.gsfc.nasa.gov/
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We then tested the goodness of fit of our model. To do so, we used the Chi-square test (χ2; 

the model has a good fit when 0 ≤ χ2 ≤ 2 and 0.05 < p ≤ 1.00) and the root mean square error of 315 

approximation (RMSEA; the model has a good fit when RMSEA 0 ≤ RMSEA ≤ 0.05 and 0.10 < 

p ≤ 1.0036. Finally, we confirmed the fit of the model using the Bollen-Stine bootstrap test (the 

model has a good fit when 0.10 < bootstrap p ≤ 1.00). Our model showed a solid goodness-of-fit, 

and therefore, a satisfactory fit to our data (Fig. 1D). SEM models were conducted with the 

software AMOS 20 (IBM SPSS Inc, Chicago, IL, USA). 320 

 

Correlation analyses 

We conducted Spearman correlation analyses to further evaluate the associations between climate, 

vegetation, soil properties and the relative abundance of the most ubiquitous putative fungal plant 

pathogens (i.e. those genera found in >50% of all locations surveyed). Spearman rank correlations 325 

measure the strength and direction of association between two ranked variables. They do not 

require normality of data, and linearity is not a strict assumption of these analyses. We used a False 

Discovery Rate approach to determine adjusted p-values for all correlations to control for spurious 

(false positives) correlations. We used the R package “fdrtool”37 to conduct these analyses.  

 330 

Global mapping and predictions 

We used the sampled dataset to generate global maps of likely distributions of these pathogens. In 

particular, we conducted ordinary least square models to project each map for current and future 

states of soil pathogens across the world. The implementation of these models was preceded by 

exploratory correlation analyses to identify the most important factors associated with the 335 

distributions of potential plant pathogens. These included: climate (DMAT: mean annual 

temperature; DMAP: mean annual precipitation), vegetation type (Dforest: forest; Dgrassland: 

grassland), elevation (Selev) and soil variables (Stext: soil texture; Scarbon: soil carbon; SpH: soil 

pH). ‘S’ and ‘D’ indicate the variables that were either kept constant for current and future 

conditions (S) or those that changed in future scenarios (D). Climatic seasonality data was not 340 

included in these analyses given the current levels of projection uncertainty associated with this 

type of data under contrasting global change scenarios38. 

For future projections of the relative abundance of potential plant pathogens, we used 

precipitation, temperature and land-use datasets from the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP)39, and the land-use Model Intercomparison Project (LUMIP)40 345 

activities from the Intergovernmental Panel for Climate Change (IPCC). This selection followed 

the protocol laid out in ref41. 

In terms of climate datasets, we used the bias-corrected historical and future ISMIP2a 

dataset39,42 spanning the timeframe from 1951 to 2099. We considered three Representative 

Concentration Pathways: RCP2.6 (+0.4 to 1.6ºC by 2050), RCP6.0 (+0.8 to 1.8ºC by 2050), and 350 

RCP8.5 (+1.4 to 2.6ºC by 2050). The monthly means of daily temperatures and daily total 

precipitation greater than 1mm were calculated for the available period of these data. For the 

purpose of this study, we selected two projection steps: 2010 and 2050. To avoid outliers, we 

calculated 20-year climatologies using an analysis window centered in each year-step. The dataset 

created was used as a climate input for all model runs. For each SSPxRCP combination, we used 355 

two different general circulation models (GCM) (i.e., gfdl-esm2m, noresm1-m)42. 

For the land-use projections, we built on the dataset provided by the land-use Harmonized 

v2.0 project (http://luh.umd.edu/)43. This dataset was produced in the context of the World Climate 

Research Program Coupled Model Intercomparison Project 6 (CMIP6)44-45, and contains a 

http://luh.umd.edu/
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harmonized set of land-use scenarios that are consistent between historical reconstructions and 360 

future projections. It reproduces annual land-use reconstructions for historical land-use forcing 

(covering the period 850-2015) and for different integrated assessment models (IAMs) and shared 

socioeconomic pathways (SSP, from 2015 to 2100) at 0.25 degree resolution. These pathways 

represent a range of plausible future scenarios based on different socioeconomic challenges for 

climate change mitigation (low in SSP1 [sustainability] and SSP 4 [Regional inequality]; high in 365 

SSP5 [Fossil-fuelled development]), and potential challenges for adaptation (low in SSP1 and 

SSP5; high in SSP4). A full description of each scenario is given in ref.44. Each SSP corresponds 

to a specific RCP; here we selected the combinations SSP1xRCP2.6, SSP4xRCP6.0, and 

SSP5xRCP8.5. For the static datasets, we resampled all soil data coming from soil grids39 to 0.25 

degree resolution to match the resolution of the non-static datasets. The same procedure was done 370 

with the elevation dataset46.  

Using an exploratory analysis, which loops through all potential variable combinations to 

maximize the predicted power of each equation, we obtained different equations for each of the 

analysis: 

 375 

𝑃𝑃𝑎𝑡ℎ𝑜𝑔𝑒𝑛𝑠 = 0.905 + (0.014 × 𝐷𝑀𝐴𝑇) + (−< 0.0011 × 𝐷𝑀𝐴𝑃) + (0.194 × 𝐷𝑓𝑜𝑟𝑒𝑠𝑡)

+ (0.119 × 𝐷𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑) + (0.035 × 𝑆𝑡𝑒𝑥𝑡) + (−0.295 × 𝑆𝑐𝑎𝑟𝑏𝑜𝑛) + (

< 0.0011 × 𝑆𝑒𝑙𝑒𝑣) 

𝑃𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑟𝑖𝑎 = −0.194 + (0.012 × 𝐷𝑀𝐴𝑇) + (−0.052 × 𝐷𝑓𝑜𝑟𝑒𝑠𝑡) + (0.010 × 𝐷𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑)

+ (−0.113 × 𝑆𝑡𝑒𝑥𝑡) + (0.913 × 𝑆𝑝𝐻) + (−0.313 × 𝑆𝑐𝑎𝑟𝑏𝑜𝑛)380 

+ (< 0.0011× 𝑆𝑒𝑙𝑒𝑣) 
𝑃𝐹𝑢𝑠𝑎𝑟𝑖𝑢𝑚 = −0.013 + (< 0.0012 × 𝐷𝑀𝐴𝑃) + (0.117 × 𝐷𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑) + (0.409 × 𝑆𝑝𝐻)

+ (−0.310 × 𝑆𝑐𝑎𝑟𝑏𝑜𝑛) + (< 0.0011× 𝑆𝑒𝑙𝑒𝑣) 

𝑃𝑃ℎ𝑜𝑚𝑎 = −0.483 + (0.009× 𝐷𝑀𝐴𝑇) + (−< 0.0011 × 𝐷𝑀𝐴𝑃) + (0.175 × 𝐷𝑓𝑜𝑟𝑒𝑠𝑡)

+ (0.014 × 𝐷𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑) + (0.699 × 𝑆𝑝𝐻) + (−0.029 × 𝑆𝑡𝑒𝑥𝑡) + (−385 

< 0.00104 × 𝑆𝑒𝑙𝑒𝑣) 

𝑃𝑉𝑒𝑛𝑡𝑢𝑟𝑖𝑎 = 0.400 + (0.008 × 𝐷𝑀𝐴𝑇) + (−< 0.0012 × 𝐷𝑀𝐴𝑃) + (0.162 × 𝐷𝑓𝑜𝑟𝑒𝑠𝑡)

+ (0.041 × 𝑆𝑡𝑒𝑥𝑡) + (−0.585 × 𝑆𝑝𝐻) + (0.173 × 𝑆𝑐𝑎𝑟𝑏𝑜𝑛) 
 

The equations mentioned above translate to different fit parameters: i) all potential plant 390 

pathogens (PPathogens): R2=0.16, P<0.001; ii) Alternaria (PAlternaria): R2=0.27, P<0.001; iii) 

Fusarium (PFusarium): R2=0.18, P<0.001; iv) Phoma (PPhoma): R2=0.37, P<0.001; and vi) 

Venturia (PVenturia): R2=0.26, P<0.05. A map of the extrapolation uncertainty for our global 

database (235 locations) is available in Supplementary Fig. 8 (see also Supplementary Appendix 

1). In addition, we further cross-validated our main map using an independent global database as 395 

explained in Supplementary Appendix 2 below.  

 

Field experiment  

Study site and soil sampling  

We used a nine-year manipulative field experiment to provide further experimental evidence for a 400 

causal link between warming and the relative abundance of soil-borne fungal potential plant 

pathogens. This experiment is being conducted on a dryland ecosystem located in the center of the 

Iberian Peninsula (40°01'55.7"N 3°32'48.3"W; 590 m.a.s.l.). Mean annual temperature and rainfall 

are 15 ºC and 349 mm, respectively and the soil is classified as Gypsiric Leptosol (IUSS Working 
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Group WRB, 2006). Perennial plant cover is lower than 40%, and is dominated by the perennial 405 

grass Stipa tenacissima L. Open areas between plant patches contain a well-developed biocrust 

community dominated by lichens such as Diploschistes diacapsis, Squamarina lentigera and 

Psora decipiens. Biocrust communities have been proposed as a system-model to test the effects 

of global change on ecosystem functioning under global change scenarios47-50. The experiment, 

described in ref.16, was established in the study area in July 200850, and includes two levels of 410 

warming (ambient [control] vs. ~2ºC increase [warming])16,50.  

To achieve a temperature increase within the forecasts of climate change models for the 

study area51, we built open top chambers (OTCs) of hexagonal design with sloping sides of 40 cm 

× 50 cm × 32 cm in 1.2 x 1.2 m plots (Supplementary Fig. 6). We used methacrylate to build our 

OTCs because this material does not substantially alter the characteristics of the light spectrum. 415 

Our warming treatment promoted an average increase of air and surface soil (0-2 cm) temperature 

of 1.94ºC and 2.55ºC, respectively. Warming effects were highest during the summer (June-

September).  

Soil samples (top 0-1 cm depth) were collected nine years after the beginning of the 

experiment from ten plots per combination of treatments. Three soil samples per plot were sampled 420 

with a 5 cm diameter core, which were then bulked to obtain a unique sample per plot. Soil was 

sieved (2 mm mesh) and separated into two fractions. A portion of soil was immediately frozen at 

-20 ºC for molecular analyses. Given the different soil sampling depth between our experimental 

and observational study, caution should potentially be applied when directly comparing the two 

datasets.  425 

We used non-parametric PERMANOVA (Anderson 2001) to test for significant effects of 

warming on the (ITS amplicon sequencing and qPCR analyses) abundance of fungal plant 

pathogens (see the Molecular analyses section below). These analyses are robust to lack of 

normality in our data. Warming was considered a fixed factor in these analyses (n = 10). Non-

metric PERMANOVA analyses were carried out using PRIMER v 6113 and PERMANOVA+ 430 

(PRIMER-E, Plymouth, UK). 

 

Molecular analyses 

Amplicon sequencing 

Amplicon sequencing analyses were used to determine the fungal communities in soils from the 435 

global survey and warming experiment. The extracted DNA samples were frozen and shipped to 

the Next Generation Genome Sequencing Facility of the University of Western Sydney (Australia). 

Fungal communities were determined by sequencing the Internal Transcribed Spacer (ITS) region 

2 with primers FITS7 (GTGARTCATCGAATCTTTG) /ITS4 (TCCTCCGCTTATTGATATGC) 

on a Illumina MiSeq platform (2x300 PE). Bioinformatic processing was performed using a 440 

combination of USEARCH52 and UNOISE353. Operational taxonomic units or OTUs (phylotypes) 

were defined at 100% similarity thresholds using UNOISE353. Phylotype identification was 

obtained against the UNITE fungal database (V7.2)54. The relative abundance (%) of each 

phylotype was calculated from the resulting OTU (phylotype) table. Plant pathogenic lifestyles for 

fungal communities were determined using the FUNGuild database 445 

(http://www.stbates.org/guilds/app.php; retrieved at September 2019)6. A complete list of the 

potential soil-borne fungal plant pathogens included in this study can be found at Supplementary 

Data 1 (supplementary Excel file). We obtained 12086669 (global survey; n = 235) and 787142 

(field experiment; n = 20) ITS reads across the studied samples, being 14.4% and 21.6% of all the 

retrieved ITS reads classified as putative fungal plant pathogens in the global survey and field 450 

http://www.stbates.org/guilds/app.php
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experiment, respectively. The relative abundance of all soil-borne fungal plant pathogens (both 

exclusively pathogenic or with mixed life styles) was calculated in both cases using un-rarefied 

ITS OTU tables, as the sum of the relative abundance (%) of all ITS sequences classified as fungal 

plant pathogens (i.e., sum of all ITS reads classified as pathogens / all ITS reads x 100 at each soil 

sample). The total relative abundance of potential plant pathogens was highly correlated with the 455 

same variable calculated using a rarefied OTU table for the global field survey (4500 reads/sample; 

r = 0.998; P < <0.0011) and the field experiment (4500 reads/sample; r = 0.999; P < <0.0011), so 

the choice of not rarefying our data did not affect our conclusions. All Gibberella reads were 

considered as Fusarium in this study for consistency with the most recent classifications55.  

 460 

Additional taxonomic assignment analyses  

To further confirm the robustness of the taxonomic assignments, for each phylotype identified as 

a putative plant pathogen, we performed a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

against the fungal ITS sequences from type material, and representative fungal genomes available 

in GenBank (https://www.ncbi.nlm.nih.gov/genbank/). We then selected the top 10 hits for each 465 

phylotype, and then re-parsed those matching species with FUNGuild. A total of 1574 and 586 

OTUs matched, at a 97% identity cut-off, with ITS ex-type sequences and representative genomes, 

respectively (Supplementary Data 1), having pathogenic trophic modes (both exclusively 

pathogenic and mixed modes). The relative abundance of all plant pathogens identified using the 

UNITE fungal database (V7.2)54 was highly correlated to the one calculated using GenBank from 470 

ITS ex-type (r = 0.96; P < <0.0011; 97% cut-off) and representative genomes (r = 0.71; P < 

<0.0011; 97% cut-off) (Supplementary Data 1). These analyses provide further support of our data. 

 

qPCR analyses 

qPCR analyses were done to further confirm results from our warming experiment. The absolute 475 

abundance of Alternaria –the most predominant fungal plant pathogen in our surveys– was 

estimated by a real-time quantitative polymerase chain reaction (qPCR) using primers Dir1ITSAlt 

(TGTCTTTTGCGTACTTCTTGTTTCCT) and Inv1ITSAlt (CGACTTGTGCTGCGCTC), which 

are commonly used to quantify pathogenic plant-associated Alternaria spp56. Mastermix reactions 

were prepared in a volume of 10 μl containing a 1.5 ng DNA template, 5 μl 2 × SensiFast SYBR 480 

Hi-ROX kit (Bioline, Australia), 2 μl water and 1 μl (5μmol/ μl) of each primer, respectively. 

Amplifications were performed in 96-well reaction plates using a Bio-RAD CFX96 real-time PCR 

system (Bio-Rad, Australia). Each plate included duplicate reactions per DNA sample, standards 

and a negative control sample (without DNA). Standard curves were generated using tenfold serial 

dilution of PCR-amplicons containing the Alternaria target region. The amplification program 485 

consisted of 1 cycle of 94°C for 4 min, followed by 35 cycles of 94°C for 30 s, 62°C for 25 s and 

72°C for 20 s, and a final elongation step of 72 °C for 2 min. To determine the reaction specificity 

a melting curve analysis was subsequently performed by incubating the samples at 95°C for 2 min, 

annealing at 65°C for 5 s, followed by heating them slowly at 0.5°C/sec up to 95°C, while 

continuously monitoring the fluorescence signal.  490 
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Figure captions 

 

Figure 1 | Relative abundance, identity and ecological preferences of potential plant 635 

pathogens worldwide. Panel A represents the distribution of the relative abundance of total fungal 

pathogens across the 235 ecosystems surveyed. Panel B includes mean values (± SE) for the 

relative abundance (%) of potential plant pathogens across continents/biomes. Panel C shows the 

most common soil fungal pathogens identified (mean values ± SE). Panel D includes a structural 

equation model assessing the direct and indirect effects of environmental factors on the relative 640 

abundance of potential plant pathogens. We grouped the different categories of predictors (climate, 

soil properties, vegetation and spatial influence) in the same box for graphical simplicity (these 

boxes do not represent latent variables). Variable within these boxes are allowed to covary. 

Numbers adjacent to arrows are indicative of the effect size of the relationship. Only significant 

effects (P < 0.05) are plotted. Information on environmental factors included in our SEM, and on 645 

direct effects for other SEM arrows can be found in Supplementary Fig. 3 and Supplementary 

Tables 1-2. Supplementary Table 2 offers a complete view of our full SEM. The degree of freedom 

in this SEM came from the lack of relationship between PSEA and clay+silt (%). R2 for other 

endogenous variables in Supplementary Table 8. Panel E represents the total standardised effects 

on SEM (sum of direct and indirect effects; STE; ± bootstrap CI 95%) on the relative abundance 650 

of potential plant pathogens. In panels A and C-E, n = 235 locations. n associated with panel B are 

shown in parentheses. F = Forests; G = Grasslands. MAT = mean annual temperature. MAP = 

mean annual precipitation. PSEA = precipitation seasonality. TSEA = temperature seasonality.  
 

Figure 2 | Temperature is positively associated with the relative abundance of potential plant 655 

pathogens at the genus level. Spearman correlations between environmental factors and the 

relative abundance of ubiquitous fungal plant pathogens at the genus level (n = 235). Information 

on environmental factors included in this analysis can be found in Supplementary Table 1. MAT 

= mean annual temperature. MAP = mean annual precipitation. PSEA = precipitation seasonality. 

TSEA = temperature seasonality. Correlations with False Discovery Rate adjusted P > 0.05 are 660 

excluded (plotted in white). 

 

Figure 3 | Experimental evidence that warming increases the relative and total abundance of 

potential plant pathogens. Warming effects on the relative (%) and absolute (gene copies g-1 soil) 

abundance of fungal pathogens in a nine-year field warming experiment. The solid lines show 665 

mean values (n = 10). P values as follows: ***P < 0.001; *P < 0.05. #log10-transformed. See 

Supplementary Table 9 for further statistical details.  

 

Figure 4 | Current relative abundance (A) and temporal projections (2050; B-C) of potential 

plant pathogens across the globe. A cross-validation of the map shown in A using an independent 670 

global survey is available in Supplementary Appendix 2. Panel B shows the agreement across the 

different scenarios considered (gain reflects areas where gain is predicted, loss reflects areas where 

loss is predicted, and mixed reflects areas where different scenarios predict gain or loss). Panel C 

shows the relative change for potential plant pathogens and that of the most abundant genera 

(Alternaria, Fusarium, Venturia, and Phoma) assessed for scenarios SSP1 (sustainability), SSP4 675 

(Regional inequality), and SSP5 (Fossil-fueled development). The bars and barplots indicate the 

interquartile interval and median value for each scenario, respectively. A map of the extrapolation 

uncertainty for our global database (235 locations) is available in Supplementary Fig. 8 (see also 
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Supplementary Appendix 1). See also Supplementary Figs. 9-10 for an alternative panel (A), and 

for maps of individual pathogen-associated genera. 680 
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