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THE PROPULSION OF SEA-URCHIN SPERMATOZOA
By ]. GRAY* anp G. J. HANCOCK+
(Recetved 20 May 1955)

The movement of any short length of the tail of a spermatozoon of Psammechinus
miliaris and the characteristic changes which it undergoes during each cycle of its
displacement through the water can be described in terms of the form and speed of
propagation of the bending waves which travel along the tail (Gray, 1953, 1955);
the form of the wave depends on the maximum extent of bending reached by each
element and on the difference in phase between adjacent elements. The object of
this paper is to consider the forces exerted on the tail as it moves relative to the
surrounding medium and to relate the propulsive speed of the whole sperma-
tozoon to the form and speed of propagation of the bending waves generated by the
tail. The mathematical theory of the propulsive properties of thin undulating
filaments has recently been considered by Taylor (1951, 1952) and by Hancock
(1953); the present study utilizes and extends their findings but approaches the
problem from a somewhat different angle.

I. GENERAL THEORY

As in all self-propelling undulatory systems, the propulsion of a spermatozoon
depends on the fact that the retarding effect of all the tangential forces acting along
the body is compensated by propulsive components of forces acting normally to the
surface of the body (Gray, 1953). Any region of the body eliciting from the water
a reaction normal to its surface must have a component of motion normal to this
surface, and—if this reaction is to have a forward propulsive component along the
axis of translation of the whole cell—the region or element concerned must have an
appropriate orientation to this axis (Gray, 1953). To apply this principle to the tail
of a spermatozoon it is convenient to consider the forces exerted on a short element
(0s) by virtue of the transverse displacement (¥]) impressed on it during the passage
of a wave. As explained elsewhere (Gray, 1953), the orientation (¢) of an element
to the axis of propulsion (xx,) depends on the form of the wave and on the element’s
position on the wave; the element’s transverse velocity (¥) depends on the form of
the waves and on their speed of propagation (V). An element of this type is shown
in Fig. 1A; its velocity along the axis yy’ is ¥, and its surface is inclined to the axis
(xx") of propulsion by an angle 6. The transverse displacement (¥]) has two com-
ponents: (i) a tangential displacement (¥ sin#), and (ii) a displacement (¥ cos8)
normal to the surface of the element; to both these displacements the water offers
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resistance, and consequently the transverse displacement (¥) elicits reactions
tangential and normal to the surface of the element. The latter force (6/V,) has a
component (8N, sin §) acting forward along the axis (xx’) of propulsion; it is this
component which counteracts the retarding effect of all the forces acting tangentially
to the surface.
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Fig. 1. A. Diagram illustrating the forces impressed on an element 8s when moving transversely
across the axis of progression (xx,) at velocity V,, the resultant propulsive thrust (3F,) being
8N, 8in 0 —8L, cos 6, where 8N, and 3L, are the reactions from the water acting normally and
tangentially to the surface of the element, and 6 is the angle of inclination of the element to the
axis xx,. For values of N, and L, sce text. B. Diagram illustrating the forces impressed on an
element when displaced along the xx, axis at velocity V,, the resultant drag (8F,) being
3N, sin 0 + 3L, cos 8. The net propulsive thrust (8F) due to simultaneous transverse and forward
movement is obtained by combining A and B.

As the dimensions of an element are extremely small and the speed of displacement
very low, the reactions elicited from the water can (by analogy with those operating
on a sphere) be regarded as directly proportional to the velocity of displacement
and to the viscosity of the medium. If the velocity of displacement tangential to the
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body is ¥, sin 6, the tangential drag (4L,) can be expressed as C ¥, sin 68s, and the
force (8N,) acting normally to the surface as Cy ¥V, cos 635, where Cy, and Cy are
the coefficients of resistance to the surface of the element for a medium of known
viscosity; the resultant forward thrust (8F,) along the axis (xx') of propulsion is
(Cny—Cr) ¥, sinf cos6ds. In other words, the transverse displacement of the
element will produce a forward thrust along the axis of propulsion provided the
coefficient of resistance to displacement, normal to the surface of the element, is
greater than that to displacement along the surface.

In an actively moving spermatozoon, each element is not only moving trans-
versely across the axis of propulsion, it is also moving along the latter axis at a speed
(V) which depends upon the speed at which the whole spermatozoon is progressing
through the water (Fig. 1B). This forward displacement being equivalent to a
tangential displacement ¥_cosf# and a normal displacement ¥ sin6, the corre-
sponding forces acting tangentially (6L,) and normally (8V,) to the surface are
CrV.cos68s and Cy V¥, sin6ds respectively. The total forces (8N and L), acting
normally and tangentially to the surface owing to the element’s transverse and
forward displacements, are

SN =C\V, cos~¥,sinb)ds,
8L=CyV, sinf+ ¥, cos0)ds. }

The propulsive components of 6N and 3L along the axis of propulsion (xx') being
8N sin 6 and 8L cos @ respectively, the resultant forward thrust (6F) is

8Nsinf —8L cosl:
8F =[(Cy—Cr) ¥,sind cos 6 — V(Cysin®6 + Cy, cos? §)] 8s

- — 20
[(CrmCotent G i, o

(i)

Equation (i) shows the element can only exert a positive forward thrust if
V,>V,tan0.*

Equation (ii) shows that a positive forward thrust only develops if Cy> C;.
During steady motion the resultant thrust (0F) from an element, when integrated
over a complete cycle, is zero; it is now possible to express the propulsive speed
in terms of the wave speed, if the values of Cy, Cr, and & are known and if
the propulsive speed remains constant during the whole cycle of the element’s

motion.

* If V,=V, tan 8 the element has no component of motion normal to its surface; motion of this
type could only ensue if the element were exerting its effort against a rigid medium—and were
equivalent to a snake gliding through a rigid close-fitting tube.
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II. PROPULSIVE EFFECT OF WAVES OF SMALL AMPLITUDE
The possibility of applying the above principles to an undulating flagellum was
first pointed out to one of us (J. G.) in 1933 by the late Dr R. C. Howland. If the
transverse velocity of an element be dy/dt and the tangent of its angle of inclination
be dy/dx, equation (ii) becomes

2
(CN—CL)d_yd_y— Ve|CL+Cy 2 ]
dt dx dx
dF= = ds, (iii)
@
+()
the total thrust (F) exerted by the flagellum over one wave-length o<x <A is

A
F =f dF. (iv)

0

To proceed further Howland restricted attention to cases in which the angle of
inclination of an element was sufficiently small to eliminate terms containing
(dy/dx)? and to regard the length of the flagellum constituting one wave-length as
approximately equal to the wave-length. Equation (iii) then reduces to

dF dyd:

T-(Cv-CFE-cuh. v)
If the form of the waves generated by the tail conforms to that of a sine curve

y=bsm27”(x+ V8,

where b=amplitude, A =wave-length, ¥, =velocity of wave relatively to the head.
2mbV,,
A

tangent of the angle of inclination (dy/dx) of the element is

The transverse velocity (dy/dt) of the element is

cos%r(x+ V,t) and the

2mb

2m
;) cosi—(x-f- V,t)

dF _dF Y, am
o7 =(Cn—C) ot T (e V1) - C, T,
A 2mbRl(Cy—C .
F=f0dF= R A i)

Equation (vi) gives the forward thrust exerted by each complete wave.
When an undulating organism (without a head) is propelling itself forward at a

steady speed (1), F=o0 Y, an (sz— CL)
= o, )
or since V,=fA (where f is the frequency of the waves)

AR
2 _
v, =2 ’;”2 (9NC—LCL) (viii)

(vii)
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The active tail of a spermatozoon exerts its effort against the drag of an inert
head, and consequently
nF=D, (ix)
where 7 is the number of waves exhibited simultaneously by the tail and D is the
drag of the head. The drag of the head can be denoted by hC,aV,, where AC, is
the drag coefficient and a is a linear dimension of the head. From equations (vi)
and (ix)

252
T (Cy Cr) = Co Vind+ha)=o,
V. _2n%® (CN — CL) I (%)
o X Cr (I+E),
nA
_2fm? (Cy—Cy, 1 .
or V.= ;) ( o )( ha) (xi)
I+~
na

Howland thus reached the conclusion that an organism comparable with a sperma-
tozoon should propel itself through the water at a speed which depended on six
factors: (1) the frequency of the waves; (2) the square of the amplitude of the waves
and (3) their wave-length; (4) the difference between the coefficients of normal and
tangential resistance; (5) the drag coefficient and size of the head; (6) the length
of the tail.

Until recently, Howland’s results appeared to have only limited significance from
an experimental point of view, for, apart from the limitation to waves of small
amplitude, there seemed no means of determining the values of Cy, C and h and
no observational data on the amplitude, wave-length and frequency of the waves.
It is now known, however (Hancock, 1953), that for very thin filaments (such as
the tail of a spermatozoon) Cy is effectively twice C;. Tt is also known that the
waves passing down the tail of a spermatozoon of Psammechinus sometimes conform
closely to sine waves of amplitude 4% and wave-length 244, and that their frequency
is about 30—40 per sec. (Gray, 1955).

It will be noted that if C=2C} equation (vii) becomes

2
% = ij{f— . (xii)
Equation (vii) is thus identical with that derived by Taylor (1952) and by Hancock
(1953) for waves of small amplitude. Howland’s argument has been set out in some
detail in view of the fact that its underlying physical principles can readily be
visualized from a biological point of view.
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III. PROPULSIVE THRUST FROM WAVES OF RELATIVELY
LARGE AMPLITUDE

If a filament is deformed into a single complete sine curve of relatively large ampli-
tude, the length (s) of the filament is considerably greater than the wave-length (A),
and the length (8s) of the filament intercepted by a short distance (dx) along the axis
of propulsion varies with the phase of transverse motion. Consequently each point
on a non-extensible filament executes a figure of eight movement relative to the
head of the filament. The motion of each element relative to fixed axes is therefore
a figure of eight superimposed upon a forward propulsive velocity (¥,) defined by
the velocity of forward propulsion when averaged over a complete cycle of activity.

The length of filament (Js) intercepted by a small fraction (8x) of a wave-length

is given by equation (xiii)
(8s)" = (0x)2 + (dy)?

8s= [x + (Zx) ] 8x. (xii)

Equation (iii) now becomes equation (xiv)

{(cA CL)jfz V[CL+CN(%)2]}dx

dF= ” ( % ] (xiv)
dx
_ _ 2
N
dF = > dx (xv)
+(2)]
dt
. dy 2mb 27
For a sine wave = ST (x+¥,1),
d b,
d_{=2ﬂ)t © osz%T(x+ V,t).
Substituting in equation (xv) and denoting dy/dx as A
C[V, A2 — V(1 +24%)] .
dF= TEvo] dx. (xvi)
A
The forward thrust (F) from one complete wave is J i dF,
0
A4 = (A 14+24° .
N TN i)
. A4 1+24%
Putting fo ot Az)*dx I and J a +A2)*a’x =],

F=V,I-V.]. (xviii)
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If F=0 V. I )
=7 (xix)

L]

s‘l

1

cosﬂ ;) (x+ V,t)
where I= f 77 a%
[ cos2 (x+ V;,t)] J

322777(::+ V,t)

If cos? 27<_r (x+ V1) is replaced by the equivalent expression 2[1 +cos &2 (x+ |4 t)]

the contribution to the integrals I and J of the term cos 4~ (x+ V,,t) will be smaller

than the remaining terms; if this term is neglected I/] approxunates (over all the
range of values of 277b/A) to

2mh? ;2
A (I + 47/’\2172) ’
= 1
V, 2m®b? z
hence A ( i+ 47/; 2b”) , (xx)
ape [ — L __
or 7==2f7;b2 (1 +4n2b2). (xxi)
/\2

It will be noted that equation (xx) is identical with that already obtained from a
different line of approach (Hancock, 1952, p. 106) and yields the same result as
equation (xii) for waves of small amplitude.

IV. UNDULATING FILAMENT PROPELLING AN INERT HEAD
In the case of a filament propelling an inert head

A —
nJ. dF-CgxV,=o, (xxii)
0

where n=number of waves exhibited by the whole tail and Cy =drag coefficient
of the head. Assuming the head to be spherical Cy =6mau, where a is the radius
of the head and u the viscosity of the medium.

From equations (xvii) and (xxii)

C
A 2 A5 N 43
nV,C, A e V[ ch CLA

o (1+A2) ° GT AN dx+67ra,u,].
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If Cy=2Cy
L & - A 14242
ﬂI{DCL 0(I+—‘42)*dx—yz[ﬂCL O(I_|_—Aa)‘dx+67m/t], (XX.LU.)
2mb 27
where A= S (x+1,0).

To utilize equation (xxiii) it is necessary to know the absolute value of C;. This
can be derived from equation (77) of a previous paper (Hancock, 1953, p. 102),
which gives the fluid velocity ¥ in the vicinity of an element of length ds moving
with a velocity V] tangentially to itself in a fluid which is at rest:

r
(lOg 2—/1) + i‘
d b
(log 2—/\) + %
where V is the velocity of the fluid parallel to the element surface, 4= the radius of

the filament, r = the distance from the filament surface, 277/k = A = the wave-length.
The tangential drag force dF on the element is therefore

V=¥

dF = 2mpl,.ds ,
lo ﬁ) +3
E2X
27 .
C,= ———d"'—. (xxiv)
Substituting this value for Cy, in (xxiii) and using the integrals already defined
v, 1
Voo 71-3(100 %) 13|
o (oe:3) +4)
reducing approximately, by a similar argument as before, to
Y, _2n®? 1
Ko— A2 { +47sz2 2772h%\ ¢ 3a ; _‘i %]}’ (xxv)
T UM ) Bt
_ 2fn?h® I .
or V.= p) { 47 2%\ 3a | d } . (xxvi)
e ) w8t

V. APPLICATION OF THEORETICAL ANALYSIS TO
OBSERVATIONAL DATA

The calculated propulsive speed of the spermatozoa of P. miliaris can be derived
from equation (xxvi) by utilizing the data provided in a previous paper (Gray, 1955),
bearing in mind the uncertainty of some of the values involved.
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As a general test of agreement between the calculated and observed speeds, the
following values will be used:

Amplitude of waves ) 44
Length of waves (A) 24 1
No. of simultaneous waves  (n) 13
Frequency of waves H 35 per sec.
Radius of head (a) o5 K
Radius of tail (d) oz p
. . = I
From equation (xxvi) V=462 TFrito;
_462_ IQI 4t per secC
4 914 P .

The average observed speed (as derived from 89 cells) was 191-4 g per sec. for an
average frequency of 34-5 per sec. For thirty-three of these cells the speed of pro-
pulsion was determined photographically, whilst the frequency was measured
stroboscopically; for 56 cells both speed and frequency were measured photo-
graphically. The significance of the very remarkable agreement between the
calculated and observed results must not be over-emphasized. Quite apart from
the theoretical considerations referred to below, it must be borne in mind that the
values used for the effective radius of the head and tail are necessarily approximate,

Table 1
Average Speed of Speed of propulsion .=
No. of freq. wave (i per sec.) Ratio (Vo/ Vo)
cells per sec (1 per sec)
(Ve=24f) Calc. Obs. Cale. Obs.
33 369 ! 886 201 208 023 020025
56 33 | 792 180 181 023 0°20-0°25

and that most of the other values represent the arithmetic mean of populations
showing considerable variation between individuals; thus in a population of 29 cells
the frequency of the waves varies between 25 and 46 per sec., and in the population
of 89 cells referred to above, the propulsive speed varied from 100 to 290 4 per sec.
Probably the safest estimate of agreement between observed and calculated values
is provided by the ratio V,/¥, since this eliminates any error in an estimate of wave
frequency; the calculated value of 0-23 indicates that the passage of each wave of
24 p wave-length over the tail should propel the spermatozoon through a distance
of 5°524; a very large number of records show that the observed distance lies
between 5 and 6 .
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VI. DISCUSSION

The theoretical analysis involves at least three assumptions which differ from the
observed facts:

(i) The form of the wave—both in amplitude and wave-length—only conforms
to a sine curve during part of its propagation along the tail; the movements executed
by elements of the tail at the two ends are different from those situated more cen-
trally. The values given for amplitude and wave-length are, therefore, average
values not only for a number of cells but also averages over one complete cycle.
As shown in the Appendix, however, this limitation is not likely to be serious as
far as variations in amplitude are concerned.

(ii) In order that the form of the tail should conform to that of a sine wave the
changes in curvature and rate of transverse displacement about the axis of progres-
sion must be symmetrical. In many instances this is not the case (Gray, 1955).

(iii) The formula assumes that the head travels along the axis of progression
without oscillating from side to side. In fact, the head always oscillates during each
cycle for a distance comparable with its forward displacement. It may be noted,
however, that on theoretical grounds the effect of the head on the rate of forward
propulsion is likely to be small. Equation (xxvi) indicates that the presence of the
head of the sperm of P. miliaris only reduces the speed of propulsion by about
15 %. In the absence of the head, the last term in the denominator becomes zero,
and the calculated speed of progression at 35 waves per sec. rises to about
220 4 per sec. In other words, the propulsive component of the forces acting
normally to the surface of the tail largely operates against the tangential drag of the
tail—and only to a minor extent against the drag of the head.

Finally, it must be remembered that all the data on speeds of translation are
derived from spermatozoa which are moving in close proximity to a glass or air
surface, and the assumption is made that these figures also apply to spermatozoa
moving freely in a bulk of fluid.

Bearing in mind the above limitations it seems, nevertheless, remarkable that the
forward speed of propulsion of a spermatozoon can be calculated (well within the
limits of experimental error) in terms of the form and frequency of the bending
waves generated by the tail, on the basis that the coefficient of resistance of displace-
ment of the tail normal to its surface is twice that of its displacement tangential to
this surface and that all regions of the tail contribute equally towards the necessary
propulsive thrust.

53 Exp. Biol 32, 4
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APPENDIX
Effect of variation in amplitude of waves
In many undulatory organisms the amplitude of the waves tends to increase as the

waves pass posteriorly along the body (Gray, 1953). This feature can be incorporated
into the theoretical analysis by assuming that the wave form is described by

y=>b(x)sin k(x + V1),

where the amplitude function b(x) depends on x, and k=27/A.
The increment of force dF acting in the x direction may be defined by a similar
argument as before:

dF _V(Cy—Cyp)[b*F*cos®k(x + F,t) + 4bb'ksin 2k(x + ¥, 1)]
dx {1+ [bkcos k(x+ V 1)+ b sink(x+ V t)]2}
_ V{Cy[bkcosk(x+ V1) +b'sink(x + V, )]*+ Cp} (i)
{1 +[bkcosk(x+ V,t)+ b sink(x+ V)]’

where the dash denotes differentiation with respect to x. The velocity of propulsion
V, can be obtained from equation (ia) by taking the integral [dF =0 as before. A
number of applications are now developed:

(i) Consider a semi-infinite filament (o < x <o) with steadily decreasing ampli-
tude as x increases, assuming that

b(x)=be k=,
then b= ——abk e~kla,

where a is the parameter defining the rate at which the amplitude changes and in
particular the ratio of any two amplitudes distance one wave-length apart is e-tna,
a=o00 gives the case of constant wave-length. This wave form is shown below in
Fig. 2. Hence from equation (ia), using the fact that for extremely thin filaments
Cy=2Cy,

s‘§|;§‘l

1
-7

22
[b”k2 cos?k(x+ V1) — % sin2k(x+ ¥, t)] e—2kaia

where I=fw dx, (na)

Y
0 {I+b2kze—2k::/a[cosk(x+ I{Dt)+£sink(x+ V;,t)]}

2
o I+ 2e72kza bzkz[cos k(x+V,t)+ % sin k(x + I{,,t)]
—— dx

and ]=JO . T Y
{1 + b2k? e—z"“/a[cos k(x+ V1) +;sin k(x+ I{Dt)] }

Hence V.=o, (i1 a)
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since / is finite and J is infinite. This result is to be expected in this hypothetical
case since the propulsive elements at the rear of the filament (in the neighbourhood
of finite x) cannot propel the non-propulsive elements of filament at x = infinity.
(i1) Consider a finite filament of n wave-lengths (o < x < 277n/k), the upper limit
of the integrals I and [ is 277n/k instead of infinity. This formula is complicated for
all values of bk, but if the assumption is made that bk is small (so that 543 can be
neglected), then a formula is given which can be compared with that given by the
theory of constant amplitude which is valid over the same set of values of bk.

Y Direction of propagation of waves (velocity V)
e

Propulsive velocity (V‘)

N oA

y-be™sin k (x+V,2)

74
Fig. 2.

Equation (ii @), on the basis of this assumption, reduces to

V. a . 2kV,t .
/A $62RE(1 — e4mm/a) (——47"1 —sin pr ) . (iva)
V 2
This equation becomes % = %

for no variation of amplitude (this follows by expanding the function e=4*™a and
letting a - c0) which is the standard formula for this case. Equation (iv a) also tends
to zero as n, the number of wave-lengths, tend to infinity, which agrees with
equation (iii @).

(iii) Taking the special case a=47 then a table of the mean values of V,/V,
depending on 7 the number of wave-lengths can be determined. Note that in this
case the ratio of successive amplitudes between each wave-length is 0-6. For a=4ar

n VeV,

1 0'32b%%,
2 o22b%3,
3 o' 1652

It is interesting to note how the above values compare with the formula

Ve 1rs
V"%g kzr

w
53-2
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where b is the mean amplitude of the motion, defined by

F—

1 a=n

bas

1+ng-0
where b, are the successive amplitudes after each wave-length, then
b b [1 —o-6"+1]
T1+n| o4

in the special case considered here. This approximation is equivalent to regarding
the motion with varying amplitude as equivalent to that with the constant amplitude
equal to the mean amplitude of the original motion. For a=4n

Vel Vio=15%F2,

0-32b%k%,

o-22b%k?

3 o-15h%k?

3

N o

o o.

It is seen that the correspondence between these two sets of results is very good,
and gives an easy approximate method for obtaining the velocity of propulsion.
This agreement is only valid for small values of bk, but it will be assumed that the
same approximation of taking the mean amplitude will give reasonable results for

all the larger values of bk.
SUMMARY

1. The general theory of flagellar propulsion is discussed and an expression
obtained whereby the propulsive speed of a spermatozoon can be expressed in
terms of the amplitude, wave-length and frequency of the waves passing down the
tail of a spermatozoon of Psammechinus miliaris.

2. The expression obtained is applicable to waves of relatively large amplitude,
and allowance is made for the presence of an inert head.

3. The calculated propulsive speed is almost identical with that derived from
observational data. Unless the head of a spermatozoon is very much larger than that
of Psammechinus, its presence makes relatively little difference to the propulsive speed.
Most of the energy of the cell is used up in overcoming the tangential drag of the tail.

4. Although the amplitude may change as a wave passes along the tail, the
propulsive properties of the latter may be expected to be closely similar to those of
a tail generating waves of the same average amplitude.
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