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Abstract

The Proscriptive Principle and Logics of Analytic Implication

by

Thomas Macaulay Ferguson

Adviser: Professor Graham Priest

The analogy between inference and mereological containment goes at least back to Aristotle,

whose discussion in the Prior Analytics motivates the validity of the syllogism by way of

talk of parts and wholes. On this picture, the application of syllogistic is merely the anal-

ysis of concepts, a term that presupposes—through the root ἀνά + λύω —a mereological

background.

In the 1930s, such considerations led William T. Parry to attempt to codify this notion

of logical containment in his system of analytic implication AI. Parry’s system AI was later

expanded to the system PAI. The hallmark of Parry’s systems—and of what may be thought

of as containment logics or Parry systems in general—is a strong relevance property called

the ‘Proscriptive Principle’ (PP) described by Parry as the thesis that:

No formula with analytic implication as main relation holds universally if it has

a free variable occurring in the consequent but not the antecedent.

This type of proscription is on its face justified, as the presence of a novel parameter in the

consequent corresponds to the introduction of new subject matter. The plausibility of the

thesis that the content of a statement is related to its subject matter thus appears also to

support the validity of the formal principle.

Primarily due to the perception that Parry’s formal systems were intended to accurately

model Kant’s notion of an analytic judgment, Parry’s deductive systems—and the suitability
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of the Proscriptive Principle in general—were met with severe criticism. While Anderson and

Belnap argued that Parry’s criterion failed to account for a number of prima facie analytic

judgments, others—such as Sylvan and Brady—argued that the utility of the criterion was

impeded by its reliance on a ‘syntactical’ device.

But these arguments are restricted to Parry’s work qua exegesis of Kant and fail to take

into account the breadth of applications in which the Proscriptive Principle emerges. It is the

goal of the present work to explore themes related to deductive systems satisfying one form

of the Proscriptive Principle or other, with a special emphasis placed on the rehabilitation

of their study to some degree. The structure of the dissertation is as follows:

∗ In Chapter 2 we identify and develop the relationship between Parry-type deductive sys-

tems and the field of ‘logics of nonsense.’ Of particular importance is Dmitri Bochvar’s

‘internal’ nonsense logic Σ0, and we observe that two ⊢-Parry subsystems of Σ0—Harry

Deutsch’s Sfde and Frederick Johnson’s RC—can be considered to be the products of partic-

ular ‘strategies’ of eliminating problematic inferences from Bochvar’s system.

∗ The material of Chapter 3 considers Kit Fine’s program of state space semantics in the

context of Parry logics. Fine—who had already provided the first intuitive semantics for

Parry’s PAI—has offered a formal model of truthmaking (and falsemaking) that provides

one of the first natural semantics for Richard B. Angell’s logic of analytic containment AC,

itself a ⊢-Parry system. After discussing the relationship between state space semantics and

nonsense, we observe that Fabrice Correia’s weaker framework—introduced as a semantics

for a containment logic weaker than AC—tacitly endorses an implausible feature of allowing

hypernonsensical statements. By modelling Correia’s containment logic within the stronger

setting of Fine’s semantics, we are able to retain Correia’s intuitions about factual equivalence

without such a commitment. As a further application, we observe that Fine’s setting can

resolve some ambiguities in Greg Restall’s own truthmaker semantics.
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∗ Chapter 4 we consider interpretations of disjunction that accord with the characteristic

failure of Addition in which the evaluation of a disjunction A ∨̇ B requires not only the

truth of one disjunct, but also that both disjuncts satisfy some further property. In the

setting of computation, such an analysis requires the existence of some procedure tasked

with ensuring the satisfaction of this property by both disjuncts. This observation leads to

a computational analysis of the relationship between Parry logics and logics of nonsense in

which the semantic category of ‘nonsense’ is associated with catastrophic faults in computer

programs. In this spirit, we examine semantics for several ⊢-Parry logics in terms of the

successful execution of certain types of programs and the consequences of extending this

analysis to dynamic logic and constructive logic.

∗ Chapter 5 considers these faults in the particular case in which Nuel Belnap’s ‘artificial

reasoner’ is unable to retrieve the value assigned to a variable. This leads not only to a natural

interpretation of Graham Priest’s semantics for the ⊢-Parry system S⋆
fde

but also a novel,

many-valued semantics for Angell’s AC, completeness of which is proven by establishing a

correspondence with Correia’s semantics for AC. These many-valued semantics have the

additional benefit of allowing us to apply the material in Chapter 2 to the case of AC to

define intensional extensions of AC in the spirit of Parry’s PAI.

∗ One particular instance of the type of disjunction central to Chapter 4 is Melvin Fitting’s

cut-down disjunction. Chapter 6 examines cut-down operations in more detail and provides

bilattice and trilattice semantics for the ⊢-Parry systems Sfde and AC in the style of Ofer

Arieli and Arnon Avron’s logical bilattices. The elegant connection between these systems

and logical multilattices supports the fundamentality and naturalness of these logics and,

additionally, allows us to extend epistemic interpretation of bilattices in the tradition of

artificial intelligence to these systems.

∗ Finally, the correspondence between the present many-valued semantics for AC and those
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of Correia is revisited in Chapter 7. The technique that plays an essential role in Chapter 4 is

used to characterize a wide class of first-degree calculi intermediate between AC and classical

logic in Correia’s setting. This correspondence allows the correction of an incorrect charac-

terization of classical logic made by Correia and leads to the question of how to characterize

hybrid systems extending Angell’s AC∗. Finally, we consider whether this correspondence

aids in providing an interpretation to Correia’s first semantics for AC.
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Chapter 1

Introduction: The Proscriptive

Principle

1.1 The Proscriptive Principle and Its Rivals

The analogy between inference and mereological containment goes at least back to Aristotle,

whose discussion in the Prior Analytics motivates the validity of the syllogism by way of

talk of parts and wholes.

When three terms are so related to one another that the last is wholly contained

in the middle and the middle is wholly contained in or excluded from the first, the

extremes must admit of perfect syllogism. By ‘middle term’ I mean that which

both is contained in another and contains another in itself... and by ‘extremes’ (a)

that which is contained in another and (b) that in which another is contained.(15,

p. 209)

On this picture, the application of syllogistic is merely the analysis of concepts, a term that

presupposes—through the root ἀνά + λύω —a mereological background.

1



CHAPTER 1. INTRODUCTION 2

Considering the backdrop of class logic that figures so heavily in extensional syllogistic,

such an analogy is perhaps inevitable. But the more general mereological analogy that logical

inference in general is a process that breaks up a statement into its constituent parts finds

expression in many discussions of inferences between propositions. For example, as reported

by William and Martha Kneale, one of the four competing interpretations of the conditional

described by Sextus Empiricus is a relation of containment:

And those who judge by implication say that a true conditional is one whose

consequent is contained potentially in its antecedent.(123, p. 129)

One of the most explicit articulations of this analogy is found in Immanuel Kant’s character-

ization of an ‘analytic’ judgment. Certainly—as will be reflected in the sequel—Kant’s name

is uniformly the first to be invoked when this subject is taken up. Kant, recall, determines

that a judgment ‘A is B’ is analytic precisely in those cases in which:

the predicate B belongs to the subject A as something that is (covertly) contained

in this concept A.(118, p. 130)

In more dynamic—and colorful—terms, Kant goes on to characterize the analyticity of a

judgment in terms of an activity, or an operation carried out on concepts:

One could also call [analytic judgments] judgments of clarification... since through

the predicate the former do not add anything to the concept of the subject, but

only break it up by means of analysis into its component concepts, which were

already thought in it (though confusedly).(118, p. 130)

In its identification of a particular species of inference with the containment of concepts,

Kant’s criterion is essentially the assertion that there exists a correspondence between the

behavior of logical inference and background assumptions concerning not only an underlying

class theory but also a mereology of concepts or meanings.
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To investigate this analogy with further rigor, of course, demands that the nature of

relata of this containment relation—concepts, semantic content, meanings—be made more

precise. Considering the sheer diversity of competing interpretations of Kant’s project, it is

hardly surprising that analyses of this relationship between inference and content are just as

diverse.

The relationship between inference and the content or meaning of a sentence was taken

up frequently during the early development of modern analytic philosophy. As Ken Gemes

identifies in (93), Rudolph Carnap considers the class of logical consequences of a sentence A

(modulo classical logic) to be the essential ingredient in determining its content. He writes:

the class of non-valid consequences of a given sentence is called the content of

this sentence.(40, p. 42)

In other words, the content of a sentence A is given by the the statements that follow from

it in a non-vacuous manner.

Like Carnap, Karl Popper’s characterization of a statement’s content—also related by

Gemes in (93)—places an emphasis on the role of classical inference and is similar in its

character.

By logical content (or the consequence class of [A]) we mean the class of all

statements that follow from [A].(153, p. 385)

Although both recognize a relationship between some notion of content and logical inference,

the nature of Carnap and Popper’s analyses diverge from Kant in an important way. Because

Kant characterizes analyticity of an inference in terms of the structure and relationships

between the concepts involved, the semantic notion is clearly taken as the primitive notion.

In contrast, both Carnap and Popper’s analyses (considered by Gemes in (93) to be the

‘traditional’ notion) treat content as a class of statements whose extension is determined—

at least, in part—by the more fundamental notion of classical logic.
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After Gemes himself outlined a novel theory of content in (93) and (94), Gemes argued

that the earlier theories of Carnap and Popper were too generous with respect to their

respective notions of content for their endorsement of the following property:

where content is identified with consequence class, for any A and B, as long as

¬A does not entail B, there will always be a content part of A that ‘includes’ B,

namely, [the content of] A ∨̇ B.(93, p. 600)

Gemes cites as an unfortunate consequence of this ‘traditional view’ that

not only do Relativity theory and Newtonian mechanics share common con-

tent but also so do Relativity theory and your favorite crackpot theory, say,

Dianetics.(93, p. 597)

Gemes outlines a number of further pathologies that result from this type of definition. For

example, on both Carnap and Popper’s accounts any satisfiable statement A contains both

A ∨̇ B and A ∨̇ ¬B for an arbitrary B and—since B is either true or false—will thereby

contain a true statement as part of its content. Hence, if the ‘partial truth’ of a statement

is understood as the property that some content part of that statement is true, then every

contingently false statement is partially true, contrary to our natural expectations.

While not motivated as analyses of meaning containment per se, each of these theories

of content is rich enough to indirectly support a corresponding characterization of infer-

ences that are analytic in a Kantian sense, that is, those inferences valid in virtue of the

consequent’s content being part of the antecedent’s content. Although somewhat circular,

Popper’s account entails that classical consequence is a logic of meaning containment.

Ross Brady more directly attacks the problem in his description of weak relevant logics

that can be thought of as logics of containment of meaning. Brady’s ‘containment logic’ DJ—

described in (36)—builds off of considerations articulated in his (35) and, most recently, has

borne fruit in his analysis of relevant arithmetic in (37).
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Brady’s work argues that meaning containment is part of the correct analysis of logical

entailment, defining the content of a statement A as:

the set of all sentences which can be analytically established from [A], using the

properties of relations and terms of [A]... taken in [its] proper context... Thus,

the content [c(A)] is an analytic closure.(36, p. 161)

We may note that Brady’s definition is, like Carnap and Popper’s before it, a class of formulae

and shares with them the property that any two contingent statements will share a content

part.

We won’t go into these particular accounts in any further detail, motivating our leaving

them aside due to a common feature. All of the foregoing notions of content are indifferent

with respect to the notion of subject matter. Where p and q are atomic formulae, each of these

definitions demand that the content of the formula p contains the content of the complex

formula p ∧̇ (p ∨̇ q). If we consider interpretations in which p and q are heterogeneous in

their subject matter—say that one is a statement about arithmetic while the other a line

from The Wind in the Willows—it might seem far-fetched to suggest that the analysis of

the one should include any mention of the other.

In the present case, we will restrict our attention to formalizations of the contain-

ment/entailment analogy in which attention is given to subject matter, and will take as

the archetypal case the systems in the family of analytic implication described by William

T. Parry.

1.1.1 Parry’s Proscriptive Principle

In the 1930s, such considerations led William T. Parry to attempt to codify this notion of

logical containment in his system of analytic implication AI. Parry was a product of the

logical school at Harvard led by C. I. Lewis, Henry Sheffer, and Alfred North Whitehead.



CHAPTER 1. INTRODUCTION 6

Along with Parry, this group that produced many other logicians during the tumultuous

early years of non-classical logic, such as Everett Nelson (known for early work on connexive

logic) and Arnold Emch (who produced early work on modal logic). Parry had a profound

influence on the development of modal logic proper, with many of the proofs and material

in Lewis and Langford’s (127) attributed to him.

Parry’s system AI was introduced in (143) and expanded to the system PAI in (144).

The matter of the axiomatization of Parry’s intuitions is somewhat complicated. Although

Parry’s dissertation (142) included a primitive rule of adjunction, the rule was omitted in the

first published axiomatization in (143). For a number of reasons, we will prefer to consider

the expanded system. Although semantics for PAI were provided by Kit Fine in (81), there is

no known semantics with respect to which the first system is complete. Furthermore, Parry’s

(147) states that the expanded system PAI was always his intent, and was first formalized in

an unpublished paper from 1957.

The hallmark of Parry’s systems—and of what may be thought of as containment logics

or Parry systems in general—is a strong relevance property called the ‘Proscriptive Principle’

(PP) described in (144, p. 151) as the thesis that:

No formula with analytic implication as main relation holds universally if it has

a free variable occurring in the consequent but not the antecedent.

This type of proscription is on its face justified, as the presence of a novel variable in the

consequent corresponds to the introduction of new subject matter. The plausibility of the

thesis that the content of a statement is related to its subject matter thus appears also to

support the validity of the formal principle.

A colorful example of the sort of entailment that Parry intends to rule out as valid is

explained as follows:

If a system contains the assertion that two points determine a straight line, does
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the theorem necessarily follow that either two points determine a straight line

or the moon is made of green cheese? No, for the system may contain no terms

from which ‘moon,’ etc., can be defined. (144, p. 151)

To the layperson, the deduction of facts nominally about green cheese—at least in part—from

the axioms of geometry seems unusual.

Despite its a priori plausibility, it should be clear that the Proscriptive Principle is

not universally accepted as a constraint on the containment relation between meanings or

semantic content. Such a criterion is obviously not respected by Carnap and Popper’s

proposals; because any classical consequence of p ∨̇ q is a fortiori a classical consequence of

p, under both definitions, the content of p ∨̇ q is contained in the content of p yet flagrantly

violates the PP.

Despite Gemes’ rejection of the ‘traditional’ definitions, the picture of content inclusion

outlined in his (93) and (94) itself contradicts Parry’s Proscriptive Principle. His own theory

entails that whenever B is a part of the content of A, then B must also be a part of the content

of any A′ logically equivalent to A. Formally, the divergence between Parry’s assumptions

and those of Gemes is easy to identify. For example, despite the logical equivalence (modulo

classical logic) between the complex formula A ∧̇ (A ∨̇ B) and A, Parry asserts that the

classes of formulae that are analytically entailed by the two are distinct in general (that

is, some atom appearing in B does not appear in A). According to Parry, the formula

A ∧̇ (A ∨̇ B) → analytically entails the formula A ∧̇ (A ∨̇ B) although (the classically

equivalent) formula A fails to analytically entail A ∨̇ B.

Gemes argues that a notion of content with respect to which classically equivalent state-

ments may differ in content cannot be reconciled with his aims:

[E]mbracing a notion of content that entails an abandonment of classical equiv-

alence would make that notion of content difficult to use for many projects in
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the philosophy of science which carry a commitment to classical equivalence.(93,

p. 600)

Furthermore, this property immediately reveals the incompatibility between Parry’s project

and Brady’s formal analysis of entailment as containment of meaning. The axiomatization

in (36) of Brady’s preferred containment logic DJ—a system designed as a characterization

of entailments induced by meaning containment—includes axioms such as A→ A ∨̇ B. The

validity of such entailments immediately conflicts with Parry’s formal property.

In Parry’s own system, the PP is a property of theorems of AI; this property may be

called the PP→—Proscriptive Principle for theorems. Now, consider a language L+ that

defined with a negation, conjunction, and disjunction connectives, as well as an intensional

implication connective →, i.e., an implication connective distinct from the material condi-

tional:

Definition 1.1.1. Let At = {p0, p1, ...} be a denumerable set of atomic formulae. Then the

propositional language L+ is defined in Backus-Naur form with p ∈ At:

A ::= p| ¬̇A|A ∧̇ A|A ∨̇ A|A→ A

Note that the languages in which we will be working are propositional, lacking predicates,

quantifiers, and so forth. The matter of interpreting such notions in logics of analytic impli-

cation is interesting, but one that will be set aside for future work.

We will in the sequel also refer to a set of literals Lit, defined as At∪{¬̇ p | p ∈ At}. For

an arbitrary formula A, let ‘At(A)’ represent the set of atoms in At that appear in A. Then

for a language such as L+, the PP→ may be succinctly described as the following constraint

on a deductive system:

PP→ If ⊢ A→ B, then At(B) ⊆ At(A)
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However, we will frequently describe deductive systems within a zeroth degree language that

includes negation, conjunction, and disjunction as its sole logical constants, such as Lzdf:

Definition 1.1.2. Where At is a denumerable set of atomic formulae, Lzdf is defined in

Backus-Naur form with p ∈ At:

A ::= p| ¬̇A|A ∧̇ A|A ∨̇ A

Because deductive systems defined over Lzdf lack an intensional implication connective (al-

though they admit a definable material conditional connective ⊃ ), the PP→ will not be

well-defined in these cases. Let the notation f [X ] represent the image of a set X under a

function f ; in particular, for a collection of formulae Γ, At[Γ] will be the collection of all

atoms appearing in some formula in Γ. Then to carry over Parry’s intuitions to a first-

degree logic, a system will be taken to be a containment logic or a Parry logic if it obeys the

condition:

PP⊢ If Γ ⊢ B, then At(B) ⊆ At[Γ]

Note that Parry’s own system fails to obey the PP⊢.1

An immediate consequence of PP→ and PP⊢ is that each is incompatible with the

respective form of the principle of Addition. This principle may be characterized either

as ranging over formulae of the form A → (A ∨̇ B) or ranging over inferences A ⊢ A ∨̇ B,

depending on the type of system considered. For example:

Addition1 ⊢ A→ (A ∨̇ B)

Addition2 If Γ ⊢ A then Γ ⊢ A ∨̇ B.

1The criticism leveled against Parry by Charles Kielkopf in (120) hinged on this fact; Kielkopf suggested
that the inference A �AI B ∨̇ ¬̇B reveals a fatal flaw in AI as B ∨̇ ¬̇B is not ‘analytically contained’ in A

in Parry’s sense. Kielkopf failed to notice, however, that in Parry’s system, the double turnstile is read as
a truth-theoretic relation, whereas analytic implication—the meaning-theoretic relation—is represented by
the connective →.
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While either species of Addition is classically acceptable—indeed, each is acceptable by

the lights of almost any deductive system in the literature—Parry justifies the proscription

against the validity of Addition by claiming that B may ‘introduce new content.’

As some languages contain a conditional connective and others do not, if the spirit of the

Proscriptive Principle is to be preserved in the systems in language L , the property must

be made more precise in such contexts. Indeed, the Proscriptive Principle appears in two

different forms in the literature; Parry’s principle can be formulated with respect to logical

consequence or with respect to the implication connective. With respect to a set of formulae

Γ, recall that At[Γ] denotes the set of all atoms appearing in some B ∈ Γ. Then we can

distinguish these systems formally by writing:

Definition 1.1.3. A formal logical system L is →-Parry if it enjoys the property that

⊢L A→ B only if At(B) ⊆ At(A)

Definition 1.1.4. A formal logical system L is ⊢-Parry if it enjoys the property that

Γ ⊢L A only if At(A) ⊆ At[Γ]

It should be observed that no system can non-vacuously enjoy both these properties. If a

system L is ⊢-Parry, that every formula in L + contains atoms ensures that for no formula

A→ B ∈ L + does �L A→ B. 2

A further consequence of this view, of course, is that the scope of deduction theorems

must be very constrained in their scope with respect to Parry-type systems. For example,

if a system L is ⊢-Parry, one cannot infer that ⊢L A → B from A �L B, as theoremhood

of A → B (i.e., consequence from an empty set of premises) will violate the Proscriptive

2Richard Epstein’s system PD of paraconsistent dependence logic introduced in (72) nearly exhibits both
properties in that Γ �PD A behaves as a ⊢-Parry system when Γ is nonempty and as a→-Parry system when
Γ = ∅. The price for this, however, is that PD’s consequence relation violates the familiar Tarskian axioms
for such relations.
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Principle with respect to the consequence relation. Likewise, if a formula A is logically false

in a →-Parry system L, although A �L B for an arbitrary formula B, it cannot thereby be

inferred that �L A→ B, as B may contain propositional variables not found in A.

The two versions of the Proscriptive Principle entail can be identified as special cases of

more general conditions corresponding to the selection and placement of atoms in formulae.

In particular, whenever a formula A → B is a theorem of a →-Parry logic, it follows that

the antecedent A and consequent B share some variable p, i.e., theoremhood of A → B

entails that At(A)∩At(B). This condition can be recognized as the famous variable-sharing

property that is characteristic of propositional relevant logics. This weaker property is that

it is a necessary condition on valid inferences that the hypothesis and conclusion have some

propositional variable in common.

VSP If ⊢ A→ B, then At(A) ∩At(B) 6= ∅

Consequently, Parry-type systems can be thought of as a subspecies of relevant logics. In-

deed, many such systems have been introduced with an emphasis placed on their exhibiting

the variable-sharing property rather than the Proscriptive Principle. Harry Deutsch’s work

in (58) and (60) squarely identifies his own systems as relevant, as does the work of Frederick

Johnson in (116) and (117).

Just as Parry’s Proscriptive Principle admits two formulations, satisfaction of the variable-

sharing property can be similarly formulated in two ways.3

Definition 1.1.5. A formal logical system L is ⊢-relevant if

Γ ⊢L A only if At(A) ∩At[Γ] 6= ∅

Definition 1.1.6. A formal logical system L is →-relevant if

3Note that this is sometimes known as ‘weak relevance’ due to a stronger property of ‘depth relevance’
described by Ross Brady in (34).
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⊢L A→ B only if At(A) ∩At(B) 6= ∅

Clearly, systems that are ⊢-Parry or →-Parry enjoy their respective version of the variable-

sharing property.

Observation 1.1.1. If a system L is →-Parry then L is →-relevant.

Observation 1.1.2. If a system L is ⊢-Parry then L is ⊢-relevant.

Some authors, like Deutsch or Johnson, suggest that Parry-type systems, from a semantical

viewpoint, more naturally capture matters of relevance than the standard relevant logics

like R or E. (In some contexts—such as the matter of the frame problem mentioned in

Richard Sylvan’s paper published in various configurations as (186), (184), and (183)—the

conjunction of these two characterizations of ‘relevance’ is viewed as attractive.4)

Deductive systems that are ⊢-Parry are also instances of a more general class of propo-

sitional logics: paraconsistent logics. In Section 1.1.2, it was noted that both relevant and

Parry-style logics can be thought of as arising from distinct strategies against Lewis’ proof of

ECQ. In general, paraconsistent logics are defined as deductive systems whose consequence

relations fail to obey ECQ.

Definition 1.1.7. A logical system L is paraconsistent if there exist formulae A and B such

that

A, ¬̇A 2L B

Both the relevant and Parry-type strategies are successful in this regard.

In particular, it is clear that a system’s being ⊢-Parry entails that it is paraconsistent as

well. For any ⊢-Parry system L and distinct propositional variables p and q, the Proscriptive

Principle entails that p, ¬̇ p 2L q because q /∈ At[{p, ¬̇ p}].

4Explicitly, Sylvan writes: ‘Evidently the best of both, relevant and containment logics without the de-
fects, can be had by combining the two, essentially product-wise. So result relevant containment logics.’(184,
p. 170)
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Being able to introduce versions of the Proscriptive Principle and variable-sharing prop-

erty formulated with respect to both consequence and the conditional connective is useful

in that it enables us to study the first-degree fragments of systems with intensional condi-

tional connectives in isolation. For our purposes, we can define a first-degree fragment of a

deductive system as follows:

Definition 1.1.8. With respect to systems L in language L + and L′ in L , L′ is the first-

degree fragment of L—symbolized by L′ = Lfde—if for all A,B ∈ L :

A �L′ B iff �L A→ B

This carries the consequence that L is →-Parry only if Lfde is ⊢-Parry.

This distinction is especially useful in analyzing the intensional Parry systems, as in many

cases their first-degree fragments have appeared independently in the literature.

1.1.2 Proscription as ‘Conceptivism’

Conceptivism—a name originated by Richard Sylvan—is a name for a loose confederation

of deductive systems, joined in common resistance to the Principle of Explosion or Ex Con-

tradictione Quodlibet (ECQ), i.e., that from a contradiction A ∧̇ ¬̇A, one may infer an

arbitrary formula B. (166) provides a taxonomy of such renegade logics, distinguished by

the manner in which they resist C. I. Lewis’ demonstration of ECQ in (127). Parry himself

considers the distinctions between analytic implication and its rivals through this lens in

(147) and (146).

For example, relevant logics—the most widely known family of such systems—reject the

inference of Disjunctive Syllogism, i.e., that from A and ¬̇A ∨̇ B one may infer B. Sylvan

identifies the position preempting the Lewis proof by rejecting the Principle of Addition,

i.e., A entails A ∨̇ B, as conceptivism.

Conceptivism is described at (166, p. 96) in the following terms.
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[William] Parry’s position—for which we have coined the ugly term conceptivism—

is that no implication A→ B is correct where B contains concepts which do not

occur in A. Plainly this makes A→ A ∨̇ B [the principle of Addition] incorrect

since B may well, in an obvious sense, ‘contain concepts’ not in A.

The hallmark, according to Sylvan, of conceptivist logics is the rejection of the Principle of

Addition.

Relevant logics and other members of this confederation have received the lion’s share of

attention in the literature. Apart, however, from a handful of technical papers, conceptivism

has been severely neglected in the wake of some particularly sharp criticism of the notion of

‘analytic implication.’ The semantics for PAI and related systems which eventually emerged

made it easy to dismiss conceptivist systems as merely imposing a syntactic filter atop

other, independently motivated systems, without any independent and robust interpretation

of their own.

What we wish to show is that there are clear means of motivating a conceptivist logic

that are not subject to the criticism leveled against the field by Sylvan. We will examine a

number of trends in logic and linguistics that are suggestive of these systems before providing

a robust interpretation supporting the failure of Addition. First, let us survey several of the

objections raised against conceptivism.

Much of the criticism of conceptivism stems from questioning whether Parry’s system

and others in its neighborhood employ a robust notion of ‘concept’ and, in turn, correctly

characterize Kant’s notion of analytic judgment. J. Michael Dunn, for example, introduces

Parry’s work by writing that

Parry’s system is intended to be in step with Kant’s notion of analyticity. (65,

p. 195)

Alan Ross Anderson and Nuel Belnap, Jr. legitimately question whether PAI is successful
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with respect to this goal, suggesting at (7, p. 432) that Addition is required for many

entailments that should be thought of as analytic in the Kantian sense, i.e., true by definition.

E.g., the classic example of ‘all bachelors are unmarried’ is commonly thought to be analytic

due to the validity of Conjunctive Simplification. The story goes that the predicate ‘x is a

bachelor’ is identical to ‘x is a male and x is unmarried’ and so by Conjunctive Simplification,

we may infer that

If x is a male and x is unmarried, then x is unmarried.

Anderson and Belnap suggest that it is just as natural to maintain that the predicate ‘x is

a sibling’ is defined as ‘either x is a sister or x is a brother.’ At (6, p. 23), they write that

there is surely a sense in which A ∨̇ B is ‘contained’ in A; viz., the sense in

which the concept Sibling (which is most naturally defined as Brother-or-Sister)

is contained in the concept Brother. Certainly ‘All brothers are siblings’ would

have been regarded as analytic by Kant.

Essentially, Anderson and Belnap attack the ‘analyticity’ of Parry’s system by describing an

example of a Kantian analytic judgment whose validity is not reflected in PAI. The argument

requires both that we identify the logical form of the judgment ‘All brothers are siblings’

with that of an entailment A→ A ∨̇ B, and that we consider the judgment ‘A brother is a

sibling’ to be a textbook instance of an analytic judgment in the Kantian sense. Given these

assumptions, Anderson and Belnap suggest that PAI—and, indeed, any →-Parry logic—is

inadequately ‘analytic.’

We will not take up the question of whether these two cases really stand or fall together

but merely note that Anderson and Belnaps’s example serves, at best, as a critique of PAI

qua exegesis of Kant.

A further critique of PAI and its neighbors has its origins in a conjecture of Kurt Gödel.

In (143), Parry quotes Gödel as remarking that
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perhaps ‘p analytically implies q’ can be interpreted as ‘q is derivable from p and

the logical axioms and does not include any other concepts than p’

This falls under the heading of what Sylvan calls a ‘double-barrelled’ analysis in (185, p. 166),

where double-barrelled analyses of implicational relations are those that may be reduced to

imposing ‘sieves or strainers, which capture a tighter connection through controlled cases

(“sieving”) of a slacker one.’ Gödel’s conjecture that theoremhood in Parry’s system amounts

to the conjunction of two theses—that A → B is a theorem of some other, independently

motivated system L and that At(B) is a subset of At(A)—‘strains out’ certain cases of

implication in L and is thus such a sieve.

In the 1970s, Dunn and Alasdair Urquhart gave semantical analyses of systems related

to PAI in the papers (65) and (188), respectively, but the Gödel conjecture was ultimately

confirmed by Kit Fine in the paper (81).5 Fine’s semantics amounts to an S4 Kripke model

equipped with additional machinery that essentially tracks when, for any two formula A,B,

At(B) ⊆ At(A). The truth conditions for analytic implication are clearly double-barrelled

in Sylvan’s sense; letting γu denote a map from At to a set C of ‘concepts,’ the account is:

w  A→ B iff for all u such that wRu,















if u  A then u  B, and

γu[At(B)] ⊆ γu[At(A)]

This reveals the analytic implication of Parry as essentially S4 strict implication with an

additional filter.

Part of why this conclusion came across as destructive to conceptivism seems to be that

whereas (supposing L to be sound and complete) a conditional A→ B can in general receive

a semantical characterization, the condition that At(B) ⊆ At(A) is frequently described

as irreducibly syntactical in nature. In general, providing a semantical interpretation for

some feature of a system is essential for showing the intuitions underlying that system to be

5Although note that Dunn, too, proves in (65) that a similar property holds for his demodalized DAI
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natural. Compare, for example, this to Grzegorczyk’s formal interpretation of intuitionistic

logic in (102): his reading of intuitionistic logic as a logic of ‘scientific investigation’ against

classical logic as ‘the logic of ontological thought’ is reinforced by the semantical picture of

(102) and (124) in a way that the axioms alone cannot provide.

Although Fine’s device to track when At(B) ⊆ At(A) is, strictly speaking, semantical,

some have argued that its appeal to syntax fails to provide any deep semantical insight into

the notions of ‘concept’ or ‘analysis.’ Brady, for example, appeals to precisely this feature

in dismissing such a characterization:

[B]eing essentially a syntactic containment, [Fine’s ‘constitutive content’] is not

meaning containment in the sense that we are arguing for.(36, p. 160)

Whether or not Fine’s semantics provides any profound insight into psychology or phe-

nomenology, Sylvan and other critics have suggested that the interpretation of the term

‘concept’ presupposes an isomorphism with that of a propositional variable.

The problem for the larger field of conceptivist logics is that nearly every system intro-

duced in the literature admits such an analysis. Hence, this type of critique against Parry’s

system as ill-motivated extends to virtually all Parry-type systems introduced in the litera-

ture to date. Absent an independent and robust semantical picture, Sylvan argues that the

insights provided by Parry-type systems come across as merely parasitic.

On this basis, Sylvan rather vociferously dismisses conceptivist logics, complaining in

(166, p. 100) that philosophical worries concerning entailment ‘are not repaired simply by

throwing on a variable-inclusion filter.’ That the semantics for PAI ensures the Proscriptive

Principle by such a device leads Sylvan to condemn conceptivism because ‘the conceptivist

objections do not rest on a solid base, but on a narrow and arbitrary assumption as to

what counts as a concept or term.’ (166, p. 101) Hence, offered merely as a formalization of

Kantian analytic judgments, Parry’s system seems to fail.



CHAPTER 1. INTRODUCTION 18

An intriguing observation is that while Sylvan reads Fine’s result as sounding a dirge

for conceptivism, Parry himself in (148) greets Fine’s results with great enthusiasm; indeed,

he suggests that Fine’s approach confirms his intuitions concerning PAI. Part of Parry’s

reaction seems to stem from the fact that the interpretation of PAI as a Kantian exegesis is an

assumption on the part not of Parry himself, but of his critics. Insight into Parry’s preferred

interpretation can be found in his PhD dissertation (142). Parry considers Proposition 5.123

of Wittgenstein’s Tractatus, which reads:

If a god creates a world in which certain propositions are true, he creates thereby

also a world in which all propositions consequent on them are true. And similarly

he could not create a world in which the proposition ‘p’ is true without creating

all its objects.

Parry’s reply is:

But one might say: ‘Could not a god create a world in which the proposition p is

true, without thereby creating all the objects contained in any other proposition

q? Then there would be no proposition q, or q ∨̇ ¬̇ q...’

There is certainly room for debate over whether Parry’s reply suffices to show that q ∨̇ ¬̇ q

does not follow from p. But it is clear that Parry is not committed to the equivalence of his

analytic implication with analytic judgments.

Admittedly, Parry’s use of the term ‘analytic implication’ certainly appears to suggest

a Kantian motivation. Yet in (144), Parry explicitly cites his primary inspiration as not

Kant, but H. M. Sheffer, to whom Parry attributes the original case against Addition. This

is reflected well in the discussion of (146):

Our conception of deducibility may be clarified thus: [B] is deducible from [A]

if, in any system in which [A] is asserted, the assertion of [B] is justifiable,
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assuming a reasonably complete logic. Now, we ask, if a system of Euclidean

geometry contains the assertion that two points determine a straight line, are

we justified in asserting in this system: ‘Either two points determine a straight

line or some mice like cheese’? No,. this strange disjunction is not a legitimate

assertion in a system of Eucliddean geometry, for the simple reason that no such

system contains the terms ‘mice’ or ‘cheese’, nor can one define by geometric

concepts a type of cheese any self-respecting mouse would nibble at.(146, p. 24)

But this position does not sound Kantian; it speaks of terms—syntactical objects—rather

than of meaning or content. Yet the dismissal of Parry’s intuition essentially stems from

the supposed conflation of the notions of concept and syntax. As the system is presented by

Parry, the charges of Anderson, Belnap, and Sylvan seem much less compelling. In a sense,

the collapse of the Parry program was illusory; rather than show that Parry’s own intuitions

were off the mark, his critics set up a ‘straw program’ and knocked it down.

It is the goal of the present work to explore some themes related to deductive systems

satisfying one form of the Proscriptive Principle or other, with a special emphasis placed on

the rehabilitation of their study to some degree.

1.2 Overview of the Material

The dissertation is roughly divided into two sections. The first is primarily concerned with

interpreting the Proscriptive Principle through the lens of the semantic category of nonsense,

with Chapters 2, 3, and 4 considering the relationship between the two in the contexts

of linguistics/semantics, metaphysics, and computation, respectively. The second section

emphasizes formal and algebraic analysis the family of first-degree Parry logics intermediate

between Parry’s PAIfde and Richard B. Angell’s AC, with Chapters 5, 6, and 7 treating this

family in the settings of many-valued semantics, Arieli/Avron-style logical bilattices, and
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Correia’s 2004 semantics for AC.

In Chapter 2—much of which has appeared in the paper (77)—we identify and develop

the relationship between Parry-type deductive systems and the field of ‘logics of nonsense.’

Of particular importance is Dmitri Bochvar’s ‘internal’ nonsense logic Σ0, and we observe

that two ⊢-Parry subsystems of Σ0—Harry Deutsch’s Sfde and Frederick Johnson’s RC—

can be considered to be the products of particular ‘strategies’ of eliminating problematic

inferences from Bochvar’s system.

The material of Chapter 3 considers Kit Fine’s program of state space semantics in the

context of Parry logics. In (87), Fine—who had already provided the first intuitive semantics

for Parry’s PAI in (81)—offers a formal model of truthmaking (and falsemaking) that provides

one of the first natural semantics for Richard B. Angell’s logic of analytic containment AC,

itself a ⊢-Parry system. After discussing the relationship between state space semantics

and nonsense, we observe that Fabrice Correia’s weaker framework—introduced in (51) as a

semantics for a containment logic weaker than AC—tacitly endorses an implausible feature of

allowing hypernonsensical statements. By modelling Correia’s containment logic within the

stronger setting of Fine’s semantics, we are able to retain Correia’s intuitions about factual

equivalence without such a commitment. As a further application, we observe that Fine’s

setting can resolve some ambiguities in Greg Restall’s own truthmaker semantics of (159).

Chapter 4—which includes material appearing in (73)—we consider interpretations of

disjunction that accord with the characteristic failure of Addition in which the evaluation

of a disjunction A ∨̇ B requires not only the truth of one disjunct, but also that both disjuncts

satisfy some further property. In the setting of computation, such an analysis requires the

existence of some procedure tasked with ensuring the satisfaction of this property by both

disjuncts. This observation leads to a computational analysis of the relationship between

Parry logics and logics of nonsense in which the semantic category of ‘nonsense’ is associated

with catastrophic faults in computer programs. In this spirit, we examine semantics for
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several ⊢-Parry logics in terms of the successful execution of certain types of programs and

the consequences of extending this analysis to dynamic logic and constructive logic.

Chapter 5—which incorporates material that has appeared in (79)—considers these faults

in the particular case in which Nuel Belnap’s ‘artificial reasoner’ of (23) and (24) is unable

to retrieve the value assigned to a variable. This leads not only to a natural interpretation of

Graham Priest’s semantics of (156) for the ⊢-Parry system S⋆
fde

but also a novel, many-valued

semantics for Angell’s AC, completeness of which is proven by establishing a correspondence

with Correia’s semantics for AC of (49). These many-valued semantics have the additional

benefit of allowing us to apply the material in Chapter 2 to the case of AC to define intensional

extensions of AC in the spirit of Parry’s PAI.

One particular instance of the type of disjunction central to Chapter 4 is Mel Fitting’s

cut-down disjunction, outlined in (91). Chapter 6—incorporating material appearing in (76)

and (80)—examines cut-down operations in more detail and provides bilattice and trilattice

semantics for the ⊢-Parry systems Sfde and AC in the style of Ofer Arieli and Arnon Avron’s

logical bilattices of (12) or (13). The elegant connection between these systems and logical

multilattices supports the fundamentality and naturalness of these logics and, additionally,

allows us to extend the epistemic interpretation of bilattices in the tradition of artificial

intelligence to these systems.

Finally, the correspondence between the present many-valued semantics for AC and those

of Correia is revisited in Chapter 7, which has appeared as the paper (78). The technique

that plays an essential role in Chapter 5 is used to characterize a wide class of first-degree

calculi intermediate between AC and classical logic in Correia’s setting. This correspondence

allows the correction of an incorrect characterization of classical logic in (49) and leads to the

question of how to characterize hybrid systems extending Angell’s AC∗. Finally, we consider

whether this correspondence aids in providing an interpretation to Correia’s first semantics

for AC.



Chapter 2

Nonsense and Proscription

In this chapter, we examine the relationship between the logics of nonsense of Bochvar and

Halldén and the containment logics in the neighborhood of William Parry’s PAI. We de-

tail two strategies for manufacturing containment logics from nonsense logics—taking either

connexive and paraconsistent fragments of such systems—and show how systems determined

by these techniques have appeared as Frederick Johnson’s RC and the system Sfde indepen-

dently discovered by Harry Deutsch and Carlos Oller. In particular, we prove that Johnson’s

system is precisely the intersection of Bochvar’s Σ0 and Graham Priest’s non-symmetrized

connexive logic and that the Deutsch-Oller system lies just beneath the intersection of Σ0

and Priest’s paraconsistent LP. We conclude by examining the Deutsch-Oller system in more

depth, giving it a characterization in terms of LP and showing that it plays the same role to

Harry Deutsch’s paraconsistent containment logic S that Aleksandr Zinov'ev’s S1 plays with

respect to PAI.

22
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2.1 Introduction and Semantical Preliminaries

A close cousin to containment logics—although the shared genetics may not be immediately

clear—is the class of so-called ‘logics of nonsense,’ such as the systems described by Åqvist

(1), Bochvar (32), and Halldén (104). The general motivation for such systems is the thesis

that formal systems must have something to say about statements that are taken to be ‘non-

sense’ or ‘meaningless.’ Bochvar and Halldén each proposed solutions to the semantical para-

doxes by calling the problematic sentences—e.g., the Liar or Curry sentences—‘meaningless’

and offered their systems as means to proceed in formal logic while still allowing for such

a semantical category. Granted that some syntactic objects are indeed meaningless in this

way, these types of systems provide an additional semantic value beyond truth and falsity

and formalize logics flexible enough to account for meaningless formulae.

2.2 Nonsense Logics

Logics of nonsense are logical systems which aim to reconcile a theory of deduction with the

thesis that some statements are meaningless or nonsense, many of which are summarized

in Krystyna Piróg-Rzepecka’s (150). If there are indeed meaningless statements—and such

statements cannot be said to be true or false—then the classical, bivalent logic championed

by Gottlob Frege and Bertrand Russell is inadequate to give an account of the inferential

status of such statements.

The possibility of grammatical yet meaningless statements neither true nor false arises

frequently in philosophical contexts. For example, one type of a purportedly meaningless

statement is a so-called category mistake, e.g., a statement such as ‘the square root of Socrates

is irrational’ in which a predicate (‘the square root of x is irrational’) is applied to an object

(Socrates) in an apparently nonsensical fashion. The statement is apparently grammatical;

whether it is meaningful is less clear. It is arguably plausible to suggest that such statements
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are indeed nonsense—grammatical yet non-significant—and thus demand that a correct the-

ory of deduction be flexible enough to give accounts of meaningless statements. Logics of

nonsense profess to give such a correct theory.

Unlike relevant or constructive logics, there is no unifying formal property delimiting the

class of logics of nonsense; what determines this family of deductive systems is the common

goal of giving an account of deduction in light of meaningless statements. Even supposing

that such an account is necessary, the progenitors of nonsense logic had differing positions on

many technical questions, such as the proper ontological category of meaningless statements

or whether a nonsensical semantic value ought to be designated.

The proponents of logics of nonsense, chief among them being Dmitri Bochvar and Sören

Halldén, agree that the classical propositional calculus is ill-equipped to deal with statements

that are meaningless or nonsense and fail to take a value of either true or false. Yet a

theory of meaninglessness presupposes a theory of meaning and meaning is an extraordinarily

opaque concept. As the theories we will survey in this chapter were developed against the

backdrop of problems of analytic philosophy, we will focus on appearances of the notion of

meaninglessness since the publication of Russell and Whitehead’s Principia Mathematica.

Of those, we restrict our attention to three cases that may be thought to necessitate a theory

of deduction capable of handling meaningless statements.

To be clear, arriving at a theory of deduction accounting for the category of meaningless

statements is not some esoteric task. Hans Reichenbach wrote of Russell’s suggestion that

such a category be considered in the following terms:

It is the basic idea of [Russell’s] theory that the division of linguistic expressions

into true and false is not sufficient, that a third category must be introduced

which includes meaningless expressions. It seems to me that this is one of the

deepest and soundest discoveries of modern logic. (157, p. 37)
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A brief note on nomenclature before proceeding: While the following is not uniformly

observed by proponents of nonsense logics, the distinction between syntax and semantics

demands that some attention is paid to terminology.

We use the terms ‘sentence,’ ‘statement,’ and ‘formula’ to denote a syntactic item, a

certain type of string of symbols. The term ‘proposition’ is used to denote a semantic or

intensional item corresponding to the meaning of the sentence. This usage is by no means

standard; e.g., the positivists at times used the term ‘statement’ to refer only to a meaningful

string of symbols, the term ‘pseudo-statement’ being awarded to the remainder of syntactic

items. In this chapter, we will remain ontologically neutral, putting aside the question of

whether a ‘meaningless proposition’ is a contradiction in terms.

As logics of nonsense were first described in order to address problems of meaningless-

ness in early twentieth century analytic philosophy, we will survey three occasions in which

meaninglessness or nonsense emerge in this tradition.

2.2.1 Semantic Paradoxes

Semantic paradoxes have been discussed in one form or another since at least Epimenides of

Knossos. A very simple version is the Liar sentence, the statement ‘this sentence is false’: its

truth seems to entail its falsehood while its falsehood entails its truth. The instance of such

paradoxes that drove the development of Bochvar and Halldén’s systems was presented in

Whitehead and Russell’s Principia Mathematica, in which such paradoxes of self-reference

are dismissed by appeal to a syntactic notion of meaninglessness.

We need not rehearse the formalism of the Principia to describe the problem. In Intro-

duction to Mathematical Philosophy, Russell gives a sketch of the type of semantical paradox

which he is interested in solving and how the theory of types is intended to resolve it. In the

background is the assumption that for any property P , there exists a class of all objects of

which P is true. The particular paradox is this:
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From... the assemblage [class] of all classes which are not members of themselves.

This is a class: is it a member of itself or not? If it is, it is one of those classes

which are not members of themselves, i.e., it is not a member of itself. If it is

not, it is not one of those classes that are not members of themselves, i.e., it is

a member of itself.(170, p. 136)

By the Principle of Excluded Middle, either this class—which Russell calls ‘κ’—is a

member of itself or not; yet that each entails the contradiction that both κ ∈ κ and not-

κ ∈ κ implies that the statement ‘κ ∈ κ’ is both true and false. This is problematic because

classically, a contradiction entails all propositions and hence all sentences are true in this

theory of classes.

Among the various solutions to this problem described by Russell is one in which problem

cases are cleared away syntactically at the level of language. By iteratively constructing the

formal language in which we work, Russell shows that one can banish self-reference in the

language itself. In the type of language Russell describes, the statement ‘such-and-such a

class is a member of itself’ can be prevented from entering the language at every stage.

In such a setting, self-referential statements are syntactically ill-formed and are therefore

meaningless.

In Russell’s words,

a statement which appears to be about a class will only be significant [meaningful]

if it is capable of translation into a form in which no mention is made of the class.

(170, p. 137)

The class κ cannot be defined without such self-reference; the term ‘class of all classes not

members of themselves’ is thus a pseudo-name, a syntactical object that does not denote.

And according to Russell’s solution,
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a sentence or set of symbols in which such pseudo-names occur in wrong ways is

not false, but strictly devoid of meaning. The supposition that a class is, or that

it is not, a member of itself is meaningless in just this way.(170, p. 137)

The resolution offered by Russell thus appears to demand that certain statements (or

statement-like objects) are neither true nor false but are rather nonsense. Hence, the state-

ment ‘κ ∈ κ’ is not both true and false and the problem is purportedly resolved.

Importantly, this resolves apparent nonsense by appeal to syntax, i.e., the recursive rules

for a language should prevent ‘κ ∈ κ’ from ever appearing and it is thus an ill-formed string

of symbols. In the introduction to Wittgenstein’s Tractatus Logico-Philosophicus, Russell

writes that ‘a logically perfect language has rules of syntax which prevent nonsense’(196,

p. 8), i.e., a correct account of language would dissolve occasions of nonsense before they

could even arise.

2.2.2 Positivism and Verifiability

The early twentieth century philosophical movement known as logical positivism gives a

further appearance of a precise treatment of meaninglessness or nonsense both related to

and contemporary with the issues raised by Russell.

A central theme in logical positivism is the verifiability or empiricist criterion of meaning.

Hempel describes this criterion as:

A sentence makes a cognitively meaningful assertion, and thus can be said to

be either true or false, only if it is either (1) analytic [logically true] or self-

contradictory [logically false] or (2) capable, at least in principle, of experiential

test.(106, p. 108)

We will set aside the nuances of such a principle, such as the feasibility of verification or

the necessity of falsifiability as these are all variations on the same theme. Note however,



CHAPTER 2. NONSENSE AND PROSCRIPTION 28

that a criterion of meaningfulness gives rise to a criterion of meaninglessness as well; those

statements not satisfying the criterion will be meaningless.

Importantly, a number of claims fail to meet these criteria; wielding the verifiability crite-

rion precludes a great number of statements from being counted as meaningful propositions,

e.g., ethical, theological, and metaphysical theses are judged to be nonsense. Much of the

effort of the logical positivists was hence directed at defusing (or, more emphatically, ‘elim-

inating’) philosophical traditions such as ethics or metaphysics, employing the criterion to

dismiss their central theses and points of debate as meaningless.

Rudolph Carnap, for example, initially distinguishes between three types of meaningless

statements (or ‘pseudo-statements’): Those meaningless in virtue of containing a meaningless

term such as ‘good,’ those meaningless in virtue of being ill-formed, and those meaningless in

virtue of ‘type confusion.’ In the first case, a sentence such as, ‘This is teavy’ is meaningless

because an artificial term like ‘teavy’ is nonsensical and thus cannot be employed in an

empirical test of the statement.

More importantly, Carnap’s examples for the second case and third cases are ‘Caesar is

and’ and ‘Caesar is a prime number.’ The former is clearly ill-formed as this string cannot be

formed by the usual rules of English syntax. According to Carnap, the latter is meaningless

in virtue of the fact that the predicate ‘...is a prime number’ can ‘be neither affirmed nor

denied of a person.’(39, p. 68)

Interestingly, in many of the logical positivists’ theories, nonsensical statements of the

third kind are in fact instances of the second kind of nonsense, that is, despite appearing

to be syntactically well-constructed sentences, they are ill-formed. In a perfect language,

something implicitly similar to Russell’s typing ought to occur, so that the verb phrase ‘...is

a prime number’ would fail to syntactically apply to a noun phrase such as ‘Caesar.’

Carnap writes:

If, e.g., nouns were grammatically subdivided into several kinds of words, ac-
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cording as they designated properties of physical objects, of numbers etc., then

the words ‘general’ and ‘prime number’ would belong to grammatically different

word-categories, and [‘Caesar is a prime number’] would be just as linguistically

incorrect as [‘Caesar is and’]. In a correctly constructed language, therefore, all

nonsensical sequences of words would be of the kind of [‘Caesar is and’].(39, p. 68)

That we fail to recognize this fact is diagnosed as an artifact of the imperfections of our

own natural language. Hence, from the standpoint of the logical positivists, as for Russell,

meaninglessness tends to be reducible to ill-formedness. But this is not the only resolution

available.

2.2.3 Category Mistakes

Prior to this syntactical observation, there is a sense in which both Russell’s rejection of

the meaningfulness of ‘κ ∈ κ’ and Carnap’s dismissal of the statement ‘Caesar is a prime

number’ are instances of a more general notion. Suggesting that the propositional function

x̂.x ∈ κ cannot be applied to κ or that ‘is a prime number’ is not the sort of predicate which

may be asserted of a man suggestions that the subject is of the wrong category ; these are

each occasions of making a category mistake.

Gilbert Ryle introduces this term in his 1949 book The Concept of Mind, defining the

making of a category mistake as the treating of objects ‘as if they belonged to one logical

type or category (or range of types or categories when they actually belong to another.’(171,

p. 16) The primary philosophical thesis is that, contra Descartes, taking the language and

intuitions behind our experience of the physical world and applying them to the mental leads

to illicit inferences. As the physical and mental are of different types, predicates applying to

the former are not merely false of the latter, but lead to meaningless statements.

Importantly, throughout the work, Ryle continually associates making a category mistake



CHAPTER 2. NONSENSE AND PROSCRIPTION 30

with uttering nonsense.

It is nonsense to speak of knowing, or not knowing, this clap of thunder or that

twinge of pain, this coloured surface or that act of drawing a conclusion or seeing

a joke; these are accusatives of the wrong types to follow the verb ‘to know.’(171,

p. 161)

As a result, on Ryle’s account, Cartesian philosophy is not merely false, it is literally non-

sense.

Following Ryle, the theory of category mistakes has been taken up by a number of authors

independently of the questions raised by Russell or Carnap. Importantly, in the literature

on category mistakes (also, ‘type crossings’) the emphasis on syntactical ill-formedness of

such statements is eschewed in favor of more semantically-oriented analyses.

Works such as Theodore Drange’s Type Crossings ((64)) and Shalom Lappin’s Sorts, On-

tology, and Metaphor ((125)) tend to assume that such statements are semantically evaluable.

There are, to be sure, debates concerning how to evaluate such statements, but it tends to

be taken for granted that the problematic statements are, in general, well-formed. Note that

this does not necessarily demand a novel logic of nonsense nor a new semantic value. It is

perfectly coherent to either assign these statements values of truth and falsity at random or

uniformly evaluate them as true or false.

Drange’s own account, for example, is that such category mistakes (which he calls ‘type

crossings’) are well-formed and express propositions, albeit propositions that are ‘unthink-

able.’ On Drange’s account, there is no way that one can conceive of a state affairs in which

a proposition such as that expressed by ‘Caesar is a prime number’ turns out true. This

does not entail that the sentence is meaningless, although it does bear the consequence that

‘Caesar is a prime number’ is false.

This position—that nonsensical sentences are false—is like Russell and Carnap’s appeal
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to syntax in that it precludes a need for a logic of nonsense.

2.2.4 Many-Valued Semantics for Two Nonsense Logics

Bochvar and Halldén’s systems each distinguish two types of connectives: On the one hand

are the connectives whose truth functions that output a ‘nonsense’ value whenever one or

more of their arguments contain a ‘nonsense’ value. The semantical value of nonsense is

thus ‘infectious’ or ‘contaminating’ with respect to such connectives, a property that Åqvist

colorfully labels the ‘doctrine of the predominance of the atheoretical element’ in (1). Such

connectives—described by Bochvar and Halldén as ‘internal’ or ‘classical’—are identified

with the operations employed in, e.g., the Principia Mathematica. The languages employed

by Bochvar and Halldén complement these connectives with so-called ‘external’ connectives

whose corresponding truth functions map all arguments to ‘meaningful’ values, i.e., either

truth or falsity. For example, Halldén intends for his unary ‘meaningfulness’ connective +

to evaluate meaningless statements as false and to evaluate meaningful statements as true.

For present purposes, we look at the fragments of Bochvar and Halldén’s logics corre-

sponding to only these ‘internal’ connectives. By ‘Σ0’ and ‘C0,’ we denote the systems that

(48) describes as the ‘classical fragments’ of the nonsense logics of Bochvar and Halldén,

i.e., the systems restricted to ‘internal’ negation, disjunction, and conjunction. Consequence

with respect to the systems Σ0 and C0 can be defined by a standard account of many-valued

semantics. We will follow the presentation in (33) and consider binary consequence relations

induced by logical matrices.

Definition 2.2.1. A logical matrix M for Lzdf is a 5-tuple 〈VM,DM, f
¬̇
M, f

∧̇
M, f

∨̇
M〉 where:

� VM is a nonempty set of truth values

� DM ⊆ VM is a nonempty set of designated values
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� f ¬̇
M is a unary truth function on VM

� f ∧̇
M and f ∨̇

M are binary truth functions on VM

Definition 2.2.2. Let M = 〈VM,DM, f
¬̇
M, f

∧̇
M, f

∨̇
M〉. Then an M valuation v is a function

v : At→ V extended to Lzdf by the recursive scheme:

� v(¬̇A) = f ¬̇
M(v(A))

� v(A ∧̇ B) = f ∧̇
M(v(A), v(B))

� v(A ∨̇ B) = f ∨̇
M(v(A), v(B))

Definition 2.2.3. A logical matrix M characterizes a consequence relation for L if

Γ ⊢L A holds iff for all M valuations v such that v[Γ] ∈ DM, also v(A) ∈ DM.

In the sequel, when L is a deductive system characterized by M we will slightly abuse notation

and conflate L with M so that, e.g., we will call an M valuation an ‘L valuation.’

Definition 2.2.4. Σ0—the classical fragment of Bochvar’s Σ—is the consequence relation

induced by the matrix MΣ0 = 〈VΣ0,DΣ0 , f
¬̇
Σ0
, f ∧̇

Σ0
, f ∨̇

Σ0
〉 where VΣ0 = {t, u, f} and DΣ0 = {t}.

The truth-functions f ¬̇
Σ0
, f ∨̇

Σ0
, and f ∧̇

Σ0
are represented by the matrices:

f ¬̇
Σ0

f ∧̇
Σ0

t u f f ∨̇
Σ0

t u f

t f t t u f t t u t

u u u u u u u u u u

f t f f u f f t u f

We also may note that the matrices provided are equivalent to the weak tables of Kleene. It

is fair to think of the classical fragment of Σ0 as the weak logic described—and rejected—by

Kleene in (122, p. 334).

The logic C0—the classical fragment of Halldén’s C without the unary meaningfulness

operator—differs from Σ0 only with respect to its set of designated values.
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Definition 2.2.5. C0 is the consequence relation induced by the matrix MC0 = 〈VC0 ,DC0, f
¬̇
C0
,

f ∧̇
C0
, f ∨̇

C0
〉 where:

� VC0 = VΣ0

� DC0 = {t, u}

� f ◦
C0

= f ◦
Σ0

for ◦ ∈ {¬̇, ∧̇, ∨̇}

Now, given Halldén’s ‘...is meaningful’ operator + and Bochvar’s ‘...is true’ operator T,

one can embed classical logic within the full systems; hence, the PP⊢ will not hold in C or

Σ. Even in the classical fragments Σ0 and C0 without projection operators, this property

fails. However, in special cases, the PP⊢ holds and Addition fails; moreover, studying why

the PP⊢ fails is instructive and yields a road map of sorts for transforming logics of nonsense

into containment logics.

An observation important to this end is that with respect to a logic of nonsense, four

theses jointly entail the PP⊢. Recall that when v is a valuation and Γ is a set of formulae,

v[Γ] represents the image of Γ under v. Then:

Observation 2.2.1. Suppose that in a semantical presentation of a logic L

1. ‘nonsense’ values are infectious, i.e., for any n-tuple of truth values ~v in which a

nonsense value appears and an n-ary truth-function f , f(~v) is a nonsense value,

2. ‘nonsense’ values are not designated,

3. every set of formulae Γ has a valuation v such that v[Γ] ⊆ DL, and

4. Γ �L B is read as ‘every valuation assigning all A ∈ Γ designated values also assigns

B a designated value’

Then L obeys the PP⊢.
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Proof. Suppose that L enjoys the above four properties and suppose for contradiction that

Γ �L B while some atom in B is not found in any A ∈ Γ. Let C be an atom witnessing

this fact. Now, Γ [from 3] has a valuation v in which all A ∈ Γ are designated. Consider a

valuation v′ identical to v except for its mapping C to a nonsense value. Since C /∈ At[Γ],

all A ∈ Γ remain designated. Since C ∈ At(B), B is assigned a nonsense value by v′ [from

1] and such a value is not designated [from 2]. Given the traditional, semantic reading of

Γ �L B [from 4], we infer that Γ 2L B.

The PP⊢ fails in the classical fragment of Halldén’s system because the meaningless value

is designated.1 To wit, it can be easily checked that A �C0 A ∨̇ B. In Bochvar’s system this

inference fails in general—that A is true does not entail that A ∨̇ B is true as B, after all,

could be meaningless, rendering the disjunction meaningless. Nevertheless, the PP⊢ fails

in Bochvar’s system. Σ0 does not tolerate contradictions, i.e., contradictions cannot take a

designated value, and hence, A ∧̇ ¬̇A �Σ0 B holds vacuously. The PP⊢ holds, on the other

hand, for consistent premises.

This clearly lays out a means to construct a Parry system from a logic of nonsense. The

central question is that of the inferential status of sets of formula Γ which have no valuations

mapping their formulae to designated values; the existence of such sets prevents Σ0 from

enjoying the PP⊢. We may consider two strategies for weakening Σ0 to a nonsense logic.

One strategy is to inferentially quarantine such sets of formula by allowing nothing to be

inferred from contradictory premises; this entails rewriting the usual rules for turnstile. A

second strategy is to homogenize formulae so that all non-empty sets not only have models,

but that inconsistent sets will maintain a similar inferential behavior to that of sets of

consistent formulae.

1Cf. (104, p. 47) for Halldén’s explanation and defense of this feature.



CHAPTER 2. NONSENSE AND PROSCRIPTION 35

2.3 Two Strategies for Containment

The relationship between nonsense logics and containment logics is underscored by the ways

in which Parry logics can be generated from nonsense logics. To illustrate, we will consider

Bochvar’s Σ0 and provide two strategies to yield a fragment that qualifies as a containment

logic. The first strategy is to consider what may be thought of as a connexive fragment of Σ0

and the second is to consider a paraconsistent fragment. In Chapter 4, we will add a third

strategy, by showing the intuitionistic, implicational fragment of Σ0 is also a containment

logic.

2.3.1 Containment Through Connexivity: Johnson’s RC

Parry’s AI was not the only cousin of (or competitor to) relevant logics to receive space

in Anderson and Belnap’s (7). Additionally, pages were set aside to provide an account

and examination of connexive logics, although the systems described therein—due to Storrs

McCall—are distinct from the connexive logics we will employ in the sequel.

What we wish to show in this section is that by employing connexive principles along the

lines of (155), one may make use of the proof of Observation 2.2.1 to generate a containment

logic from a logic of nonsense. Indeed, what we will show is that such a system has already

appeared as the containment logic RC introduced by Frederick Johnson in (116) and that it

is the intersection of the classical fragment of Bochvar’s Σ0 and a connexive logic described

by Graham Priest in (155).

The characteristic feature of connexive logics is the satisfaction of a pair of theses gov-

erning the behavior of implication, Aristotle’s Thesis :

AT→ ¬̇(A→ ¬̇A)

and Boethius’ Thesis :



CHAPTER 2. NONSENSE AND PROSCRIPTION 36

BT→ ¬̇[(A→ B) ∧̇ (A→ ¬̇B)]2

Similar principles can be captured as metalinguistic statements as well:

AT⊢ For all A, A 0 ¬̇A

BT⊢ For all A,B, if A ⊢ B then A 0 ¬̇B

Now, there is a subtle distinction between the two formulations of these theses. That the

symbol ‘¬̇’ appears twice in AT→ suggests that each instance is a species of the same type

of negation, yet this is not necessarily the case with respect to its metalinguistic counterpart

AT⊢. The metalinguistic negation indicated by 0 and the object language negation symbol-

ized by ¬̇ may very well diverge in meaning. We must thus content ourselves with the claim

that AT→ and AT⊢ are similar, rather than identical, principles.

Proposals abound as to how to properly motivate connexive logics, ranging from the

thesis that such systems capture the subjunctive conditional (defended by Richard Angell

in (8), where AT→ is called the ‘principle of subjunctive contrariety’) to the thesis that

negation ‘cancels’ or ‘annihilates’ an affirmation (described, but not defended, by Priest in

(155)). McCall’s (131) and Heinrich Wansing’s (193) provide thorough surveys of the history,

philosophy, and motivation of connexive principles; for a deeper discussion of these matters,

the reader is referred to these sources.

To tie this to the strategy of inferential quarantine, note that there is an apparently

very obvious motivation for why one might expect AT⊢ and BT⊢ to hold. With respect to

contingent formulae—those formulae having a model in which they are verified and one in

which they are not—classical logic satisfies these principles.

Observation 2.3.1. If A and B are classically contingent, then if A �CL B then A 2CL ¬̇B
2BT is typically stated as (A → B) → ¬̇(A → ¬̇B) in the literature on connexive logic. Priest’s

formulation from (155) (which we employ in this chapter) has been called ‘Strawson’s Thesis’ due to P.F.
Strawson’s endorsement of the principle in (181). Priest’s formulation bears a strong resemblance to the
formula (A→ B) ⊃ ¬̇(A→ ¬̇B), called ‘weak Boethius’ Thesis’ by Pizzi and Williamson in (151).
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Proof. Suppose that A �CL ¬̇B; then from A �CL B and A �CL ¬̇B, we may infer that

A �CL B ∧̇ ¬̇B. This can only hold if A is itself a contradiction, from which we infer that it

is not the case that both A and B are classically contingent.

Observation 2.3.2. If A is classically contingent then A 2CL ¬̇A

Proof. Immediate from Observation 2.3.1, substituting A for B and noting that A �CL A.

Implicitly employing these observations, Priest introduced a pair of connexive logics—with

‘plain’ and ‘symmetrized’ versions—in (155). We will call these PN and PS, respectively, and

will consider their respective consequence relations to be defined over the language L+ from

Definition 1.1.1.

The systems share a model structure and we will thus define models for PN and PS in

tandem:

Definition 2.3.1. Models for PN and PS are 3-tuples 〈W, g, V 〉, where W is a set of points

such that g ∈ W and V is a function mapping At to subsets of W .

As the two systems interpret the conditional connective differently, we must define distinct

forcing relations,3 defined identically for all cases with the exception of the truth condition

for →. Following (155), we represent the condition peculiar to the symmetrized system PS

in square brackets:

� w  A iff w ∈ V (A) for A ∈ At

� w  ¬̇A iff w 1 A

� w  A ∧̇ B iff w  A and w  B

� w  A ∨̇ B iff w  A or w  B

3In a number of works (e.g., (88) and (178)), Melvin Fitting and Raymond Smullyan have detailed the
intimate relationship between Cohen’s forcing introduced in (46) and (47) and the relation of truth-at-a-
world in Kripke models. The term ‘forcing relation’ is frequently used to describe truth-at-a-world in models
with possible worlds, even in contexts in which the strict analogy with Cohen forcing is lost.
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� w  A→ B iff































∃w′ ∈ W such that w′  A,

∀w′ ∈ W , if w′  A then w′  B

[and ∃w′ ∈ W such that w′ 1 B]

We will call the relation for PN (without the clause in square brackets) PN
and that for PS

(with the clause in square brackets) PS
.

We are thus now able to define the notion of validity for the two systems.

Definition 2.3.2. PN validity

Γ �PN
A if















there is an M such that for all B ∈ Γ, g PN
B

for all M such that for all B ∈ Γ, M , g PN
B, also g PN

A

PS validity is defined in an analogous fashion, substituting PS
for PN

.

Priest’s approach has appeared in various forms in other contexts; e.g., David Lewis

offers a conditional connective � in (128) that determines a weak subsystem of Priest’s

system PN. In (151), Claudio Pizzi and Timothy Williamson also indirectly describe another

subsystem of Priest’s PN, although its semantics are couched in terms of a conditional logic

rather than a logic of strict implication (cf. (75)).

A further (and isolated) appearance of this approach is found in Frederick Johnson’s

containment logic RC described in (116). Johnson was interested in identifying a simple

and natural means of precluding C.I. Lewis’ famous argument for the principle of explo-

sion found in (127), where explosion is the validity of an inference to an arbitrary formula

from a contradiction. Concerned with the apparent irrelevance of the consequent to the an-

tecedent in such an inference, Johnson aligned his system—described as ‘syntactic relevance

entailment’—with the field of relevant logics rather than with containment or connexive

logics. Neither of the latter themes is mentioned in the paper. Even in the later (117), in
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which a related system is introduced, that the system enjoys the PP⊢ is mentioned only en

passant.

The system RC is semantically described by recalling the logical matrix MΣ0 from Defi-

nition 2.2.4, in which t the only designated value.

Definition 2.3.3. Consequence in the system RC is defined so that:

Γ �RC A if















there is a Σ0 valuation v such that for all B ∈ Γ, v(B) = t

for all Σ0 valuations v s.t. for all B ∈ Γ, v(B) = t, also v(A) = t

Although it is probably clear that RC is a subsystem of both Σ0 and PN, we are able to

obtain an even stronger result:

Observation 2.3.3. RC = PN ∩ Σ0

Proof. We first note that the matrices Johnson provides for RC are Bochvar’s matrices for

Σ0. As validity in Σ0 is a necessary condition for validity in RC, RC ⊆ Σ0.

Moreover, if the inference Γ � A is RC valid, then we may infer a number of things. For

one, we require that Γ must be non-empty. Were it empty, then all Σ0 valuations would

vacuously map each of its members to t; by the definition of validity, this would entail that

all Σ0 valuations map A to t, i.e., that A is a theorem of Σ0. But Σ0 has no theorems.

Furthermore, we infer that there exists a Σ0 valuation v by which all formulae in Γ ∪ {A}

are designated. Any such valuation, however, restricted to At[Γ] is classical, i.e., the image

of At[Γ] under v is {t, f}. (Otherwise, granted the infectiousness of u, v(B) = u for some

B ∈ Γ.) As v[Γ] depends only on the values assigned to At[Γ], we may construct a function

v′ such that

v′(B) =















v(B) if B ∈ At[Γ]

f otherwise
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The range of v′ is {t, f} and v′ is thus a classical valuation mapping all formulae in Γ to t,

which is just to say that Γ is classically consistent. Additionally, as Σ0 is a subsystem of

classical logic, Γ classically entails A. From these two considerations, we infer that Γ �PN
A,

whence RC ⊆ PN.

Suppose that an inference Γ � A is both PN- and Σ0 valid. Then Γ �Σ0 A holds either

vacuously or it does not. The inference cannot hold vacuously; were it to do so, then there

would be no Σ0 valuations granting every B ∈ Γ a designated value and thus, a fortiori,

no classical valuations. But this would imply that Γ is classically a contradiction, entailing

that Γ 2PN
A and contradicting the hypothesis. Hence, there is a Σ0 valuation mapping all

B ∈ Γ to designated values and in all such valuations A receives a designated value; but this

is just to say that Γ �RC A.

It is extraordinarily interesting that the conjunction of two unrelated theses concerning

implication—that of formally accommodating meaninglessness and that of cancellation

negation—should prove equivalent to an entirely distinct intuition, that of Johnson.

The system RC is not without problems. Most disastrous of these is that, as in PN, the

inference A �RC A is not valid. While the account given by Priest of PN makes some sense

of the failure of this inference, it is not clear that Priest’s story serves to resolve such a

pathology in the context of RC.

Quarantining the problematic cases is not the only strategy; we have also mentioned a

strategy of homogenizing inference. Merely providing all sets of sentences with a model is

of little use if such models are trivial; rather, we may want a way to maintain nontrivial

yet inconsistent models. This can be performed by taking a paraconsistent fragment of a

nonsense logic.
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2.3.2 Containment Through Paraconsistency: The System Sfde

As Parry was a student of Lewis, it is not surprising that many of the ‘paradoxes’ of im-

plication, e.g., the principle of explosion, were of concern to him. As noted in the case

of Johnson, such an inference is in some quarters taken to be suspicious due to a lack of

relevance between the antecedent and consequent.

As shown in Observations 1.1.1 and 1.1.2, the relationship between Parry’s system and

relevant logic is a clear one: Relevant logics enjoy the variable-sharing property, establishing

all Parry systems as relevant logics. But if we take the notion of relevance as a desideratum

seriously, even in PAI, there are theorems in which apparent irrelevance arises. The PAI

theorem

((A ∧̇ ¬̇A) ∧̇ B)→ ¬̇B

might arouse—and has indeed aroused—similar suspicions. Harry Deutsch describes this as

‘the fallacy of making too much of one small, if nasty, mistake’ (59, p. 139) and asserts that

this principle is as suspicious as the principle of explosion.

Carlos Oller essentially rediscovers this perceived shortcoming, diagnosing what he calls

the ‘the paradoxes of Parry’s analytic implication’ (140, p. 93) in the first-degree fragment

of PAI:

A ∧̇ ¬̇A ∧̇ B �PAIfde ¬̇B

Deutsch and Oller independently introduced a four-valued logic in order to rectify such

perceived pathologies by further weakening Parry’s system.4 The system has appeared by a

4While the position outlined by Oller against the Parry ‘paradoxes’ is clear, it is also obvious that
inferences such as

B �Sfde B ∨̇ ¬̇B

are correct modulo Sfde, although such inferences appear to run afoul of the spirit of Deutsch and Oller’s
complaint.
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number of names, e.g., Deutsch calls the system ‘g’ when it is first introduced in (58), ‘Dfde’

in (60), and ‘Sfde’ (which we ourselves will adopt in the sequel) in (61) while Oller introduces

it with identical matrices in as ‘AL’ in (140).

Definition 2.3.4. Sfde is the first-degree logic induced by the matrix

〈VSfde ,DSfde , f
¬̇
Sfde

, f ∧̇
Sfde

, f ∨̇
Sfde
〉

where VSfde = {t, b, u, f} and DSfde = {t, b} and the functions f ¬̇
Sfde

, f ∧̇
Sfde

, f ∨̇
Sfde

are defined by

the following matrices:

f ¬̇
Sfde

f ∧̇
Sfde

t b u f f ∨̇
Sfde

t b u f

t f t t b u f t t t u t

b b b b b u f b t b u b

u u u u u u u u u u u u

f t f f f u f f t b u f

Although the conclusion that Sfde enjoys the PP⊢ is proven in (140), it will be instructive

to rehearse our own proof.

Observation 2.3.4. Sfde enjoys the PP⊢

Proof. A brief inspection of the matrices for Sfde will establish that u is infectious in the

sense of Observation 2.2.1, while a glance at DSfde shows that u is not designated.

Moreover, every set of formulae Γ has an Sfde valuation in which all B ∈ Γ take designated

values. The map v′ : A 7→ b for all A ∈ At assigns a designated value to all atoms. By

inspecting the matrices for Sfde, we can easily observe that this propagates through the

language, assigning every formula the value of b. With the language itself having a model,

each of its subsets has a model.

By Observation 2.2.1, this entails that the PP⊢ holds for Sfde.
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That consideration of logics of nonsense played a role in proving that Sfde enjoys the PP⊢

is no coincidence. Sfde is a logic of nonsense; indeed, it is a subsystem of Σ0.

Observation 2.3.5. Sfde ⊆ Σ0

Proof. By examining the matrices appearing in Definitions 2.2.4 and 2.3.4, one may confirm

that every Σ0 valuation is also an Sfde valuation. Hence, if Γ entails A modulo Sfde the same

can be said a fortiori for Σ0.

Recall that a logic is paraconsistent if explosion—the inference A ∧̇ ¬̇A � B—is not a

valid inference in that logic. Also, recall that it was explosion that most clearly prevented Σ0

from enjoying the PP⊢, because A ∧̇ ¬̇A had no models at all. Just as employing connexive

principles to eliminate this case generates a containment logic, so, too, does relaxing Σ0 to

a paraconsistent logic yield a containment logic.

A paradigmatic paraconsistent logic is the system LP introduced by Priest in (154).

Definition 2.3.5. LP is the first-degree logic induced by the matrix MLP:

〈VLP,DLP, f
¬̇
LP
, f ∧̇

LP
, f ∨̇

LP
〉

with truth values VLP = {t, b, f} and designated values DLP = {t, b}. The truth functions

f ¬̇
Sfde

, f ∧̇
Sfde

, f ∨̇
Sfde

are defined by the following matrices:

f ¬̇ f ∧̇ t b f f ∨̇ t b f

t f t t b f t t t f

b b b b b f b t b b

f t f f f f f t b f

Clearly, Sfde is a subsystem of LP, as we may easily prove.

Observation 2.3.6. Sfde ⊆ LP
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Proof. Examining the matrices shows that every LP valuation is an Sfde valuation. Hence,

if some property holds for all Sfde valuations it holds a fortiori for all LP valuations as well.

Hence, if Γ �Sfde A then Γ �LP A, i.e., Sfde ⊆ LP.

Corollary 2.3.1. Sfde ⊆ Σ0 ∩ LP

Proof. Immediate from Observations 2.3.5 and 2.3.6.

This result is encouraging but, although we come close, we do not enjoy the nice alignment

that we found in Observation 2.3.3, notably, there are some inferences both Σ0 valid and LP

valid.

Observation 2.3.7. Sfde 6= Σ0 ∩ LP

Proof. Observe that both A ∧̇ ¬̇A �Σ0 A ∨̇ B and A ∧̇ ¬̇A �LP A ∨̇ B. In the former case,

there is no Σ0 valuation granting A ∧̇ ¬̇A a designated value and the inference is satisfied

vacuously; in the latter cases, that A ∧̇ ¬̇A is designated entails that A is also designated,

whence A ∨̇ B is designated. Clearly, this inference fails to satisfy the PP⊢ and is thus not

a valid Sfde inference.

What is especially interesting about this is that the inference witnessing the inequality

between Sfde and Σ0 ∩ LP holds in the latter systems for entirely different reasons.5

With respect to a first-degree logic L, use the notation LPP to denote the class of L valid

inferences satisfying the PP⊢, i.e., the system defined by

Γ �LPP
A iff Γ �L A and At(A) ⊆ At[Γ]

We may think of this as the ‘analytic fragment’ of L. Then we are able to correctly charac-

terize Sfde:

5We will encounter a similar phenomenon in the sequel when we describe the axiom Safety that is a
hallmark of the first-degree fragment of R−Mingle.
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Observation 2.3.8. Sfde = LPPP

Proof. For left-to-right, we note that Observations 2.3.5 and 2.3.6 entail that any Sfde en-

tailment is valid in LPPP.

For right-to-left, suppose that Γ �LP A and At(A) ⊆ At[Γ]. Note that Sfde valuations

come in two varieties: those whose restrictions to At[Γ ∪ {A}] are LP valuations and those

that are not, i.e., those in which for some B ∈ At[Γ ∪ {A}], v(B) = n. By hypothesis,

for all valuations of the former type in which all formulae of Γ are designated, A is likewise

designated—this is precisely what Γ �LP A means. With respect to the latter type, by

hypothesis, At(A) ⊆ At[Γ], and hence, some formula B ∈ Γ has a constituent atom valued

at n. By the ‘infectiousness’ of this value, it follows that v(B) = n. Hence, in any such

valuation, some B ∈ Γ fails to take a designated values, i.e., the only valuations in which all

B ∈ Γ take designated values are the LP-like valuations. But we have assumed that in such

valuations, A takes a designated value when all formulae in Γ do.

These observations will come into play again shortly, as we make a deeper examination

of Sfde and its role in paraconsistent Parry systems in general.

2.4 The Role of Sfde in Paraconsistent Parry Systems

While Johnson’s RC is rather anomalous, playing no role with respect to the broader family

of containment logics, the Deutsch-Oller system Sfde plays a central role in the structure of

paraconsistent Parry systems. To observe this, we offer, with minor notational deviations,

the semantics for PAI discovered by Kit Fine in (81). We first define a PAI model:

Definition 2.4.1. A PAI model is an ordered 5-tuple 〈W,R,C, Γ, V 〉 with the following in-

terpretations:

� W is a non-empty set of points
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� R is a transitive, reflexive relation on W

� C is a set {Cw : w ∈ W} such that Cw = 〈Cw, ◦w〉 is a lower semilattice for all w ∈ W

� Γ is a set {γw : w ∈ W} such that γw maps each element of At to an element of

Cw, extended through the language by γw(A) = γw(B0) ◦w ... ◦w γw(Bn), where each

Bi ∈ At(A)

� V is a pair of functions 〈V +, V −〉 mapping all elements of At to ℘(W ) with the con-

dition that for all A ∈ At, V +(A) and V −(A) are pairwise disjoint and exhaust W

The elements of W may retain the usual interpretation of possible worlds while the intended

interpretation of the elements of a set Cw are the ‘concepts’ that occur at world w.

Define a ≤w b as a ◦w b = b. Then we may describe a pair of forcing relations, defined

and interpreted as follows:

Definition 2.4.2. In a PAI model, the positive relation + can be thought of as holding when

a formula is true at a point:

� w + A iff w ∈ V +(A) for A ∈ At

� w + ¬̇A iff w − A

� w + B ∧̇ C iff w + B and w + C

� w + B ∨̇ C iff w + B or w + C

� w + B → C iff















∀u such that wRu, γu(C) ≤u γu(B), and

∀u such that wRu and u + B, u + C

Similarly, the negative relation − may be read as holding when a formula is false at some

point:
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� w − A iff w ∈ V −(A) for A ∈ At

� w − ¬̇A iff w + A

� w − B ∧̇ C iff w − B or w − C

� w − B ∨̇ C iff w − B and w − C

� w − B → C iff















w 1+ B → C, or

w + B and w − C

The notation employed here is inspired by Wansing’s (192) in which a pair of forcing

relations—one positive, one negative—is defined. Also note that a deeper analogy with

Wansing’s logics IjCk introduced in (192) is available. The conditions are virtually identical

to Wansing’s treatment of Nelson’s N of (135). Wansing observes that there isn’t necessarily

a privileged interpretation of the falsity condition of an implicational formula and offers four

distinct approaches to evaluating falsity of a conditonial at a point or possible world.6 Just as

Nelson’s logic of constructible falsity admits such variations, we could just as easily give the

same treatment to Deutsch’s S by selecting alternative falsity conditions for the conditional.

We say that a formula is true in a model—M � A—if for all points w in that model,

M, w  A.

Definition 2.4.3. PAI validity

Γ �PAI A if for every PAI model M if for all B ∈ Γ, M � B then M � A

An interesting observation is that the first-degree fragment of PAI is effervescent, popping

up repeatedly in the literature. The first-degree fragment has been independently discovered

by no fewer than four authors. In addition to Parry himself, the system was described by

6Also see (74) and (80) for more discussion on the theme of falsity conditions for conditionals.



CHAPTER 2. NONSENSE AND PROSCRIPTION 48

Zinov'ev as the system S1 in (202), as Parks-Clifford’s first-degree Z in (141), and was also

labeled NDR in (117) when rediscovered by Frederick Johnson.

An important relationship holds between PAI, S1, and the classical propositional calculus

CL. In regard to a logic L defined over a language including an intensional conditional

connective →, let Lfde denote the first-degree fragment of L, i.e., for a finite, non-empty set

of formulae Γ and formula A with no appearances of →, Γ �Lfde A iff �L

∧

Γ→ A.

Observation 2.4.1. Γ �S1 A iff Γ �CL A and At(A) ⊆ At[Γ]

Proof. That S1 = CLPP is well established; the reader is referred to proofs in (202) or

(117).

The correspondence between S1 and PAIfde has been asserted on several occasions. With

respect to Zinov'ev’s work, that S1 = PAIfde has been observed in (166) (in which S1 is called

‘ZV’) while Parry asserts in (145) that PAIfde is characterized by the equivalent bipartite

condition. In neither case is this assertion proven, however, so it is prudent to provide proof

here.

Observation 2.4.2. S1 is the first-degree fragment of Parry’s PAI, i.e., A �S1 B iff �PAI

A→ B

Proof. By Observation 2.4.2, we are free to equate S1 with CLPP; that PAIfde = CLPP can

be easily seen by considering an arbitrary PAI model and a point in that model. For left-to-

right, consider a first-degree entailment A→ B, where A and B are zeroth-degree formulae;

if A → B is a theorem of PAI then, as a subsystem of CL, it is a theorem of CL. That PAI

obeys the PP→ entails that At(B) ⊆ At(A).

For right-to-left, as CL is the ‘internal’ logic of every point w, that w  A entails that

w  B. Moreover, as At(B) ⊆ At(A), γw(B) ≤w γw(A) for any point w. Hence, at any

point w′, w′  A→ B.
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In Section 2.3.2, we referred to a critique of PAI shared by both Deutsch and Oller. We

have seen how Oller responded; Deutsch, influenced by the semantical picture laid out by

Fine in (81), detailed three fully intensional (i.e., higher degree) systems of paraconsistent

containment logic, S, S′, and S′′ over the course of several papers: (59), (61), and (62).

In the above semantics for PAI, there was a qualification on the functions V + and V −

that for any atom A, V +(A) ∩ V −(A) 6= ∅ and V +(A) ∪ V −(A) = W . Relaxing this

requirement would permit either an atom to be simultaneously true and false at a point or

to be neither true nor false at a point, i.e., would yield a paraconsistent or paracomplete

logic. The semantics presented earlier with this restriction relaxed to permit paraconsistency

corresponds to Deutsch’s S.

Definition 2.4.4. An S model is defined by rehearsing the conditions from Definition 2.4.1

while relaxing the condition on V + and V − to the weaker clause that

For all A ∈ At, V +(A) ∪ V −(A) = W

Definition 2.4.5. Validity in S is defined by the following scheme:

Γ �S A if for every S model M if for all B ∈ Γ, M � B then M � A.

We can make a few further observations concerning the relationship between Sfde and

other containment logics. In analogy to the fact that S1 = CLPP, Observation 2.3.8 shows

that Sfde = LPPP. For one, this enables us to provide a characterization of Sfde along the

lines of Observation 2.3.3.

Corollary 2.4.1. Sfde = S1 ∩ LP

A further analogy may be made, however, between Sfde and Deutsch’s S. That Sfde is the

first-degree fragment of S is reflected by our choice of notation and is asserted by Deutsch in

(60) and (61). However, this assertion receives no proof and we thus provide a proof here.
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Observation 2.4.3. Sfde is the first-degree fragment of Deutsch’s S, i.e., A �Sfde B iff

�S A→ B

Proof. We recall that in Deutsch’s semantics, for each point w, all atoms are given valuations

of either {t}, {f}, or {t, f}. With small changes in notation, for negation, conjunction, and

disjunction, Deutsch provides the following:

(¬̇ t) t ∈ vw(¬̇A) iff f ∈ vw(A)

(¬̇ f) f ∈ vw(¬̇A) iff t ∈ vw(A)

(∧̇ t) t ∈ vw(A ∧̇ B) iff t ∈ vw(A) and t ∈ vw(B)

(∧̇ f) f ∈ vw(A ∧̇ B) iff f ∈ vw(A) or f ∈ vw(B)

(∨̇ t) t ∈ vw(A ∨̇ B) iff t ∈ vw(A) or t ∈ vw(B)

(∨̇ f) f ∈ vw(A ∨̇ B) iff f ∈ vw(A) and f ∈ vw(B)

Essentially, that t ∈ vw(A) and that f ∈ vw(A) in Deutsch’s original presentation correspond

to w + A and w − A, respectively.

Let h be a function equating the values of vw with LP truth values so that singleton truth

values in S are equated with their elements in Sfde, i.e.,

h(vw(A)) =































t if vw(A) = {t}

b if vw(A) = {t, f}

f if vw(A) = {f}

We may note by a simple induction that the ‘internal logic’ of a point is precisely LP. This

is to say that if vw is a valuation mapping atoms to ℘({t, f}), then for a first-degree formula,

not only is h ◦ vw an LP valuation, but for any zeroth-degree formula B and a truth value v,

v ∈ vw(B) iff h(vw(B)) = h(v).

Suppose that �S A→ B. Then, in every point w in every model, at all points w′ such that

wRw′, γw′(B) ≤w′ γw′(A). Moreover, if A takes a designated value at w′, i.e., t ∈ vw′(A),

then B takes a designated value at w′. If at all points in all models does γw′(B) ≤w′ γw′(A)
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then At(B) ⊆ At(A). Suppose there is an atom D ∈ At(B) not in At(A); then for

some model, one could assign γw′(D) to be an element d ∈ Cw′ such that γw′(A) �w′ d,

whence γw′(B) �w′ γw′(A). Moreover, if at all points in all models a zeroth-degree formula

A entails a zeroth-degree formula B, then whenever t ∈ vw(A), also t ∈ vw(B). By the

above considerations, however, this is just to say that in every LP valuation in which A is

designated, B is designated, i.e., A �LP B. By Observation 2.3.8, these two observations

mean that A �Sfde B.

On the other hand, if A �Sfde B where A and B are zeroth-degree formulae, then at any

point w in any model, if w + A then w + B. Likewise, that At(B) ⊆ At(A) entails that

at any such point, γw(B) ≤w γw(A), whence �S A→ B.

Given that Deutsch’s system is the natural result of modifying PAI to yield a paraconsistent

system, the Deutsch-Oller system plays a central role in the theory of S. It also provides

insight into further means of generating Parry systems. For example, the system S⋆
fde

—the

PP-fragment of Efde introduced by Priest in (156)—would play a central role in a paracon-

sistent and paracomplete logic similar to S.

2.5 Conclusions

As Parry frequently referenced, Kurt Gödel conjectured in (101) that AI might enjoy a

‘double-barrelled’ analysis, i.e., A→ B is an AI theorem iff

1. A⇒ B is a theorem in a ‘carrier logic’ for some connective ⇒, and

2. At(B) ⊆ At(A)

In providing his semantics for PAI in (81), Fine essentially confirms Gödel’s conjecture and

remarks on the wide variety of logics that can be generated by altering the ‘carrier logic,’
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e.g., by interpreting ⇒ as intuitionistic or relevant implication. (The ‘carrier logic’ in the

case of PAI itself is S4.)

We have observed that the same can be said for the Deutsch-Oller system Sfde and similar

conclusions may be drawn about Johnson’s RC and Deutsch’s S. Does this suggest that, as

Sylvan suggests in (166), containment logics are merely a syntactic gimmick?

If anything, the opposite conclusion should be drawn from the structure of RC and Sfde.

Rather than resting, as Sylvan suggested, ‘on a narrow and arbitrary assumption as to

what counts as a concept’ (166, p. 101), aligning containment logics with logics of nonsense

provides an alternative foundation. That an isomorphism exists between concepts and atomic

formulae is not necessary; merely making the claim that meaningfulness must be established

in order to ensure the validity of an inference already starts one down the path towards

Parry systems.

Moreover, however syntactical the flavor of the PP may be, this does not entail that

Parry calculi deal in gimmickry. The VSP—an equally syntactical criterion—is, after all,

a symptom of relevance rather than its explication. That the PP is suggested by a number

of distinct and relatively natural positions on inference demonstrates that the Proscriptive

Principle may emerge without overt appeal to syntax.

In the coming two chapters, we are going to examine two distinct contexts in which

this relationship between nonsense and containment is apparent. In Chapter 3, we will

examine Kit Fine’s analysis of Richard Angell’s containment logic AC in which nonsense will

correspond to the absence of any truthmaker or falsemaker for a sentence at a world. In

Chapter 4, we will consider containment logics through the lens of computation, in which

nonsense will correspond to the failure of a procedure to terminate its computation.



Chapter 3

Metaphysical Considerations on State

Space Semantics

In this chapter, we review elements of Kit Fine’s project of truth maker semantics, in which

models are constructed on spaces of states—fine-grained semantical devices that can stand

in for many objects, such as facts, truthmakers, situations, and so forth. Fine’s framework

has rapidly borne fruit, providing very natural semantics for many logics and providing

elegant solutions to many thorny semantical problems. Fine’s state spaces may be counted

as a member of a tradition of fine-grained, objectual approaches to semantics including

the distinct fact-based semantics of Bas van Fraassen and Roman Suszko and the situation

semantics of Jon Barwise and John Perry. More recent examples of this lineage are found in

Greg Restall’s own truthmaker semantics and Fabrice Correia’s version of Fine’s semantics.

Restall and Correia both suggest that intuitions concerning facts and their relationship

with propositions lead to justifications for various consequence relations (or consequence-like

relations), although the two projects each have some unusual features when truthmaking is

considered from a metaphysical perspective. Although Fine has cautioned against placing

too much metaphysical weight on state space semantics, this chapter suggests that recasting

53
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Restall and Correia’s work in the setting of Fine’s truthmaker semantics provides insight

into the metaphysical presuppositions and commitments of these projects.

3.1 State Space Semantics

3.1.1 Facts and Their ‘Philosophical Entourage’

We can consider state-space semantics as a descendant of the semantical analyses of conse-

quence modeled on states that sprung up in the 1960s. It will thus be useful to examine the

more fine-grained analyses of entailment made possible by appeal to proper parts of worlds

more generally. The interpretation of the central objects of such models, i.e., ‘facts and their

philosophical entourage’ (189, p. 477) in van Fraassen’s words, vary; we will use words like

‘states of affairs,’ ‘facts,’ ‘situations,’ and ‘truthmakers’ interchangeably.

Intuitively, moving from worlds to parts of worlds is semantically liberating. Refusing to

consider parts of the world as playing a semantical role restricts the richness of the theory and

leads to counterintuitive consequences that might be thought of as pathologies. Just as the

coarse-grained apparatus of possible worlds (without their parts) forces us into the paradoxes

of strict implication, when worlds are taken to be the most fine-grained semantical device

available, the semantics leads us towards other paradoxes of relevance in the truthmaker case.

For example, truthmaker maximalism—which is such a coarse-grained theory—pushes us

towards the thesis that tautologies count all facts as truthmakers, a feature that Restall (159)

considers one of the ‘darker properties’ (159, p. 333) of the implicit theory of truthmaking

underlying classical semantics.

While Armstrong (17) points to Aristotle’s Categories as an early example of appeal to

truthmakers in the world, these types of objects briefly flourished in the early 20th Century,

although always in an informal and inchoate fashion. Mulligan, Simons, and Smith capture
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some of this prehistory:

Some thinkers however, such as Russell, Wittgenstein in the Tractatus, and

Husserl in the Logische Untersuchungen, argued that instead of, or in addition

to, truth-bearers, one must assume the existence of certain entities in virtue of

which sentences and/or propositions are true. Various names were used for these

entities, notably ‘fact’, ‘Sachverhalt’, and ‘state of affairs’.(134, p. 287)

Despite the frequency of appeals to facts and other truthmakers in the 1930s, the accounts

remained informal for the most part and fell out of vogue until, as van Fraassen describes,

the prevalent opinion seems to be that facts belong solely to the prehistory of

semantics and either have no important use or are irredeemably metaphysical or

both.(189, p. 477)

In the late 1960s, two projects independently emerged that provided interesting models that

demonstrated the power and legitimacy of appeal to facts in the work of Roman Suszko

initiated in (182) and the work of van Fraassen in (189).1

Suszko’s (182) (further developed in collaborations with Stephen Bloom (29) and (30))

and van Fraassen’s (189) provide roughly contemporary semantical accounts in which atomic

facts or situations are taken to be primitive. Both take the representation of facts endorsed

by, e.g., Wittgenstein and Russell, as a starting point and consider how theories of facts

influence theories of entailment. As an illustration of the notion of fact to which Suszko and

van Fraassen appeal, consider one of the quintessential remarks concerning this philosophical

entourage in Bertrand Russell’s Lectures on Logical Atomism:

1It would not be unreasonable to include the contemporary work of Richard Sylvan and Val Plumwood in
(168) within this group. However, Sylvan and Plumwood’s interpretation of the novel semantical invention
of (168)—the set-up—bears more of a likeness to possible worlds than their parts.
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When I speak of a fact—I do not propose to attempt an exact definition, but an

explanation, so that you will know what I am talking about—I mean the kind of

thing that makes a proposition true or false. If I say ‘It is raining’, what I say is

true in a certain condition of weather and is false in other conditions of weather.

The condition of weather that makes my statement true (or false as the case may

be), is what I should call a ‘fact’.(169, pp. 500–501)

Working in a first-order language, both Suszko and van Fraassen describe facts in terms

of complexes with respect to a domain M , i.e., tuples 〈R, a0, ..., an−1〉 where R is an n-ary

relation on M and a0, ..., an−1 ∈M . In van Fraassen’s case,

[t]he representation of the complex that-aRb may now conveniently be achieved

by identifying it with the triple 〈R, a, b〉. (189, p. 482)

An important feature in both accounts is that these primitive complexes are inherently

signed. In Suszko’s formalism, for each primitive complex 〈R, a0, ..., an−1,+〉 there exists a

primitive complex 〈R, a0, ..., an−1,−〉 corresponding to the negation of that-aRb; in (189),

this is represented as 〈R̄, a0, ..., an−1〉. This type of representation has carried forward to the

present day. In, e.g., (51), such primitives are interpreted as ‘the obtaining of certain atomic

states of affairs and the nonobtaining of certain atomic states of affairs.’(51, p. 2)

There are subtleties with respect to the way in which this interpretation departs from

Russell. For one, while the terms ‘fact’ or ‘truthmaker’ are typically taken to indicate

veridicality, this is not in general required. Although it indeed seems reasonable to suggest

that the existence of a truthmaker for a statement A entails the truth of A, it is equally

reasonable to think that there are things—possibly mere fictions—that would have made a

statement true had they obtained.

Furthermore, on the Russellian account, when a complex 〈R, a, b〉 fails to hold, (i.e.,

〈a, b〉 /∈ R), the literal ¬̇Rab is made true by the absence of the tuple 〈a, b〉 from the



CHAPTER 3. STATE SPACE SEMANTICS 57

interpretation of R, i.e., ¬̇Rab is made true by a negative fact in a very literal sense.

Suszko and van Fraassen and their inheritors, however, generally allow that there is a robust

truthmaker corresponding to ¬̇Rab, which is, of course, the complex 〈R̄, a, b〉.

There are good reasons for accepting that falsemakers are primitive, that is, on an onto-

logical par with truthmakers. In the theory of truthmaking, for example, that a truthmaker

fails to make true a statement A should hardly entail that it is a falsemaker for A. Further-

more, there exist problems with respect to our ability to apprehend negative truths should

we deny the existence of atomic falsemakers. In (165), Jay Rosenberg details such a problem:

if the falsity of an atomic proposition consists in its failure to correspond to

any atomic fact, it may seem as if, in order to discover that a given atomic

proposition was false, we should have to compare it one by one with each atomic

fact, noting in each case that it fails to correspond. And this, of course, is an

absurd supposition.(165, p. 36)

This last assertion doesn’t seem quite true. One could suggest, for example, that the falsity

of a proposition ϕ consists in a demonstration that there can be no truthmaker for ϕ, then

one could arguably falsify atomic propositions without being forced to survey all possible

truthmakers for the statement. All one would need would be a method of showing that the

supposition that a truthmaker for ϕ exists leads to absurdity.

This is, of course, to equate falsity with intuitionistic negation, which suggests an inter-

esting parallel in the work of Nelson (e.g., (135), (137)) concerning the distinction between

intuitionistic and constructible or strong negation. Intuitionist negation asserts that any

demonstration of some proposition could be converted into a demonstration of absurdity;

the analogous interpretation in terms of truthmakers, would be that the existence of a truth-

maker for a statement ϕ is absurd. Nelson in (135) and (136) suggests that such an account

of falsity is inadequate in a number of ways and promotes a constructible negation assert-
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ing the existence of what is essentially a constructible falsemaker for a formula ϕ. This

distinction is illustrated well in the discussion of falsification in Heinrich Wansing’s (194).

Wansing cites the example of (102) and suggests that a yellow lemon falsifies the statement

‘the lemon is red’ just as directly as it verifies the statement ‘the lemon is yellow.’ We will

assume that theories of truthmaking also must provide accounts of falsemaking and that

theories of verification also must provide theories of falsification.

3.1.2 Fine’s Truthmaker Semantics

Fine’s state space semantics, like the frameworks of Suszko, van Fraassen, and Barwise and

Perry, allow a more fine-grained verification relation between statements and things in virtue

of which they are true than is available when coarser objects such as possible worlds are taken

to be primitive objects.2 For example, given the logical equivalence between formulae A and

A ∨̇ (A ∧̇ B), it is reasonable to expect that the formulae are true at precisely the same

worlds. However, although there is a sense in which statements are true in virtue of worlds,

this intuition doesn’t exhaust the underlying story. After all, we may be reluctant to suggest

that A and A ∨̇ (A ∧̇ B) are true in virtue of precisely the same facts.

Fine describes this additional richness afforded by state space semantics in the following

terms:

For consider a disjunction of the form A ∨̇ (A ∧̇ B), say ‘it is rainy or rainy

and windy’ and compare it with its first disjunct A (‘it is rainy’). The exact

verifiers of the disjunction are the presence of rain and the presence of rain and

wind. But the exact verifier for the disjunct A is simply the presence of rain.

Thus within the exact semantics, there is a semantical distinction between A and

2See (149) and (180) for a discussion of how fine-grained an analysis is possible from semantics using
possible worlds.
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A ∨̇ (A ∧̇ B)3 while, within the inexact semantics, there is no such distinction;

the verifiers of either statement will be the same, viz. those states that involve

the presence of rain.(86, p. 4)

Moreover, Fine has assembled a host of topics concerning the semantical evaluation of state-

ments that encounter problems when evaluated against the backdrop of coarse devices like

possible worlds, including counterintuitive features of possible-worlds evaluations of scalar

implicature, of the logic and meaning of imperatives, and of counterfactuals. In work such

as (83), Fine shows that these problems evaporate when one appeals to the additional ex-

pressiveness of state space semantics. In particular—and relevant to the matter of Parry’s

PP—state space semantics allow a very elegant way to model the subject-matter of a propo-

sition.

To examine Fine’s truthmaker semantics, we will first describe the formalism. The pri-

mary structure that underlies the models we will employ is a state space:

Definition 3.1.1. A state space is a pair 〈S,⊑〉 where S is a nonempty set of states and

� ⊑ is a partial ordering on S

� Every subset of S has a least upper bound with respect to ⊑

This is to say that 〈S,⊑〉 is an up-complete poset. The intended reading of ⊑ is a parthood

relation so that for states s, t, s ⊑ t is read as ‘s is a part of t.’

Furthermore, since least upper bounds are guaranteed to exist, in any state space we can

define a binary operation ⊔ on states s, t ∈ S as the least upper bound of s and t under

⊑. This is read as the fusion of states s and t. We can extend this definition to fusion over

arbitrary sets of states so that for a set T ⊆ S,
⊔

T is defined as the least upper bound of

all elements of T . By completeness of any state space, we are guaranteed that a state space

3N.b. that this presupposes that A and B are distinct.
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S counts as members the fusion � of all states in S as well as the fusion � of the empty set

(the ‘null state’).

For many purposes, such as providing accounts of the equivalence of propositions, this

structure may suffice, providing all the structure required, for example, in Correia’s state

space semantics of (51). But for some purposes, some additional structure is necessary; in

(85), Fine considers a notion of possibility, codified by the addition of a subset S✸ ⊆ S

interpreted as possible states, that is, those states that could obtain in a world.

Definition 3.1.2. A modalized state space 〈S, S✸,⊑〉 is a triple where 〈S,⊑〉 is a state space

and S✸ ⊆ S is a nonempty set such that

If s ∈ S✸ and t ⊑ s, then t ∈ S✸

We can consider some further definitions concerning states in a modalized state space:

Definition 3.1.3. A state s is consistent if s ∈ S✸ and inconsistent otherwise.

Definition 3.1.4. States s, t are compatible if s ⊔ t ∈ S✸ and incompatible otherwise.

Note that consistency, compatibility, and their contrary properties are not defined in terms of

valuations but are determined pre-linguistically, that is, in virtue of the structure 〈S, S✸,⊑〉.4

We also are interested in subsets of S and extend the relation ⊑ in the following way:

Definition 3.1.5. Let T, U ⊆ S. Then:

� T ⊒ U—read ‘T subsumes U ’—if for all states t ∈ T , there exists a state u ∈ U such

that u ⊑ t

4The appearance of notions of compatibility and incompatibility is especially interesting due to the role of
these notions in the development of modal logic. In early presentations of Lewis’ systems of strict implication,
entailment ‘J’ is not primitive, but is defined in terms of the primitive, binary compatibility or co-consistency
connective ‘◦.’ Lewis goes so far as to refer to the Survey System as the ‘Calculus of Consistencies’ in (126).
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T

U

T ′

U ′

Figure 3.1: T ⊒ U and U ′ ⊑ T ′

� U ⊑ T—read ‘U subserves T ’—is defined as the property that for all states u ∈ U there

exists a t ∈ T such that u ⊑ t

Fine provides the ‘pictorial’ interpretation by the analogy that explicates containment as

the condition that ‘each member of T will look down at a member of U and each member of

U will look up at a member of T .’(87, p. 9) Note that the two relations are not necessarily

inverses of one another, as is implicit in the illustration of these relations in Figure 3.1.

From these two definitions, Fine provides a further notion of containment :

Definition 3.1.6. For T, U ⊆ S, T contains U (T > U) if















T ⊒ U , and

U ⊑ T

Combining the semantic features of a number of models built off of state spaces (in (51),

(82), (87)), we arrive at the following definition of a model:

Definition 3.1.7. A strong modalized state space model is a tuple 〈S, S✸,⊑, |·|+, |·|−〉 where

〈S, S✸,⊑〉 is a modalized state space and valuations |·|+ and |·|− are functions mapping atoms

to nonempty subsets of S such that the following properties hold:

� Semi-Regularity: |p|+ and |p|− are complete, i.e.,
⊔

|p|+ ∈ |p|+



CHAPTER 3. STATE SPACE SEMANTICS 62

� Exclusivity: for all s ∈ |p|+ and t ∈ |p|−, s ⊔ t /∈ S✸

� Exhaustivity: for all s ∈ S✸, either there exists t ∈ |p|+ such that s ⊔ t ∈ S✸ or there

exists a t′ ∈ |p|− such that s ⊔ t′ ∈ S✸

|p|+ and |p|− are interpreted as the sets of exact verifiers and exact falsifiers of p, respectively.

Note that the requirement of Semi-Regularity is not assumed by Fine in, e.g., (87).5 The

assumption, however, makes the models easier to work with while not impacting any of the

deductive systems defined in terms of state-space semantics. With respect to the properties

of Exclusivity and Exhaustivity, Fine offers the following interpretation:

The first constraint rules out there being too many falsifiers for a given set of

verifiers and corresponds to the principle that no proposition should be both true

and false; and the second rules out there being too few falsifiers for a given set of

verifiers and corresponds to the principle that every proposition should be [either]

true or false. (85, p. 5)

In (87), distinct verification conditions are provided—an exact verification in the style of

(189) and an inclusive verification. However, given completeness of valuations (i.e., Semi-

Regularity), the two types of verification coincide. Hence, we will provide the inclusive

variety:

Definition 3.1.8. The exact verification and falsification conditions between states and

formulae are recursively described as:

� s + p if s ∈ |p|+

� s − p if s ∈ |p|−

5N.b. that the canonical model Fine gives in (87) is a term model with ⊑ construed as set inclusion.
Hence, valuations in the canonical model are complete and Semi-Regularity can be assumed without loss
of generality. We sacrifice a modest amount of the flexibility of Fine’s models, but nothing upon which
anything in the sequel turns.
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� s + ¬̇A if s − A

� s − ¬̇A if s + A

� s + A ∧̇ B if there exist t, u ∈ S such that t + A, u + B, and t ⊔ u = s

� s − A ∧̇ B if s − A, s − B, or there exist t, u ∈ S such that t − A, u − B, and

t ⊔ u = s

� s + A ∨̇ B if s + A, s + B, or there exist t, u ∈ S such that t + A, u + B, and

t ⊔ u = s

� s − A ∨̇ B if there exist t, u ∈ S such that t − A, u − B, and t ⊔ u = s

From these conditions, Fine provides definitions for several distinct notions of content.

Definition 3.1.9. The set ⌈A⌉+ of exact verifiers of A or its complete content is the set

{s ∈ S | there is an s′ ⊑ s such that s′ + A}6

Likewise, the set ⌈S⌉− of exact falsifiers of A is the set

{s ∈ S | there is an s′ ⊑ s such that s′ − A}

Fine is especially interested in a notion of subject-matter. The subject-matter of A

might be reasonably construed as those states—whether states in a world or not—that A

is about. Because ⌈A⌉+ is complete, its fusion
⊔

(⌈A⌉+) ∈ ⌈A⌉+ and thus may be taken to

be a state from which the information in ⌈A⌉+ may be recovered. Given the relevance that

holds between a proposition and its possible verifiers, the maximal verifier is the fusion of

all states that A is about and is a natural contender for the role of the subject-matter of a

sentence. Fine suggests that we take this state to represent the subject-matter of A.

6Fine also defines a notion of content |A| as the set of exact verifiers without the constraint that |A|
is complete. As we are considering complete valuations, however, completeness will be inherited by the
content-sets of complex formulae and the definitions will coincide, that is, for any A, |A| = ⌈A⌉ in any
model.
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Definition 3.1.10. The positive and negative subject-matters σ+(A) and σ−(A) of A are

defined as
⊔

([A]) and
⊔

([¬̇A]), respectively, i.e., the maximal verifier and the maximal

falsifier of A.

The elegance of identifying the maximal verifier of A with its subject matter is apparent in

many properties of the semantics.

The appropriateness is especially exhibited by Fine’s definition of the replete content of

a statement as the convex closure of ⌈A⌉+.

Definition 3.1.11. The convex closure T∗ of a set T ⊆ S is defined as

{s ∈ S | there exist t, t′ ∈ T such that t ⊑ s ⊑ t′}.

Definition 3.1.12. The set [A]+—the replete content of A—is ⌈A⌉+∗ , i.e., the convex closure

of the complete content of A.

It is interesting to note that Fine’s account of subject-matter is subtly encoded within

the notion of replete content. An alternative definition for the replete content could have

explicitly invoked the subject-matter of a statement A, i.e., σ+(A), as illustrated in the

following:

Theorem 3.1.1 (Fine). [A]+ = {s ∈ S | there exist t ∈ ⌈A⌉ such that t ⊑ s ⊑ σ+(A)}

I.e., the replete content of A is the span of its set of exact verifiers and its subject matter.

This is an especially interesting result when described in the following terms:

Thus the verifiers of A [in its replete content] are those states ‘big’ enough to

contain an exact verifier but ‘small’ enough to be included within the subject-

matter of the statement. They conform to what might b called the ‘Goldilocks’

Principle’, according to which a state s counts as a verifier if it is neither too

small (i.e., s ⊒ t [for] some t ∈ ⌈A⌉) nor too large (i.e., s ⊑
⊔

(⌈A⌉).(87, p. 12)
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3.1.3 Validity and Consequence: Two Systems

Given the notion of content defined by Fine, there are a number of ways that the concept of

entailment could be construed. While it seems plausible to suggest that entailment requires

the containment of content from premise to conclusion, it seems equally natural to suggest

that entailment holds when all verifiers of a premise verify the conclusion. Fine’s models are

flexible enough to accommodate many of these intuitions and, as we might expect, different

consequence relations emerge as a result. Two such systems are Richard Angell’s logic of

analytic containment AC and the Belnap-Dunn logic of Efde.

Various understandings of entailment defined within Fine’s state space semantics as de-

scribed by Fine in (87) gives rise to the deductive system AC of (9) and (11). Correia—who

described the first semantics for AC in (49)—had argued in (50) that AC indeed gave an

appropriate characterization of factual equivalence.

The deductive system of analytic containment introduced by Richard Angell in (9) and

examined anew in (11) was intended by Angell to characterize a notion of synonymity. Angell

interpreted AC so that the property that A and B are consequences of one another in AC is

intended to provide an adequate analysis of synonymity between A and B.

A number of potential applications for AC have been proposed since its introduction.

Belnap suggested the use of AC in (25) to amend some perceived shortcomings of Nicholas

Rescher’s system of hypothetical reasoning of (158). After providing semantics for AC in

(49), Fabrice Correia argued in (50) that AC characterizes a notion of factual equivalence,

i.e., that A and B are logically equivalent in AC precisely when the two describe the same

collection of facts. (N.b. that in (51), Correia abandoned this view, arguing that a subsystem

of AC provides the correct account.)

In (11), Angell considers formulae of the form A↔ B to be primitive, where A,B ∈ Lzdf,

while Correia considers an equivalent account of AC employing formulae of the form A→ B.
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Angell himself remarks that A → B and A ∧̇ B ↔ A are equally good characterizations of

the notion of analytic containment. In the present account, we aim to hew close to Correia’s

own presentation and thus consider the language of first-degree formulae Lfdf.

Definition 3.1.13. Lfdf is defined so that

Lfdf = {A→ B | A,B ∈ Lzdf},

Now, let us examine the axiomatization of AC as it appears in (49).

Definition 3.1.14. The system AC is defined by the following axioms:

AC1a A→ ¬̇ ¬̇A

AC1b ¬̇ ¬̇A→ A

AC2 A→ A ∧̇ A

AC3 A ∧̇ B → A

AC4 A ∨̇ B → B ∨̇ A

AC5a A ∨̇ (B ∨̇ C)→ (A ∨̇ B) ∨̇ C

AC5b (A ∨̇ B) ∨̇ C → A ∨̇ (B ∨̇ C)

AC6a A ∨̇ (B ∧̇ C)→ (A ∨̇ B) ∧̇ (A ∨̇ C)

AC6b (A ∨̇ B) ∧̇ (A ∨̇ C)→ A ∨̇ (B ∧̇ C)

while the rules of AC are:

AC7 From A→ B and B → A infer ¬̇A→ ¬̇B

AC8 From A→ B infer A ∨̇ C → B ∨̇ C

AC9 From A→ B and B → C infer A→ C

This gives us a standard account of theoremhood in AC.

Definition 3.1.15. We say that a formula A → B ∈ Lfdf is a theorem of AC when there

exists a finite sequence σ of formulae, each of which is either an axiom of AC or an application
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of one of the inference rules to an earlier formula or formulae in the sequence such that σ

terminates in A→ B.

One of the remarkable results of (87) is the characterization of AC as a natural consequence

relation arising in truthmaker semantics. Indeed, Fine regards his work in (87) as a sort of

‘vindication’(87, p. 2) of Angell’s work. In the context of state space models, Fine provides

a semantical relation corresponding to AC entailment, characterized so that:

Observation 3.1.1 (Fine). A→ B is a theorem of AC iff for every strong state space model,

[A]+ > [B]+, that is, the replete content of A contains the replete content of B.

In plain language, AC entailment holds when every verifier for A contains a verifier for B

and every verifier for B is contained within a verifier for A.

Fine also observes that this relation of containment can be decomposed into a bipartite

condition:

Observation 3.1.2. [Fine] [A]+ > [B]+ iff















⌈A⌉+ ⊒ ⌈B⌉+, and

σ+(B) ⊑ σ+(A)

It is interesting to note the proximity between Observation 3.1.2 and the explication of con-

tainment provided by Yablo in (200), in which we find the following assessment of semantic

containment:

A contains B, I propose, if the argument A, therefore B, is both truth-preserving

and subject-matter preserving.(200, p. 3)

Yablo’s explication of containment in terms of the containment of subject-matter can also

be thought of as a containment with respect to content or that which a statement is about.

The resemblance between these schemata and Sylvan’s so-called ‘double-barrelled anal-

ysis’ makes it worthwhile to appraise Fine’s observation by the lights of Sylvan’s criticism
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of Parry logics. This charge has some prima facie plausibility; the canonical model of (81),

for example, identifies ‘concepts’ with atomic formulae, filtering out problematic entailments

on the basis of whether certain sentence letters appear in the antecedent and consequent.

In (87), however, this double-barrelled analysis falls out so elegantly from the state space

semantics—in what Fine acknowledges is ‘an especially pleasing way’(87, p. 12)—that it is

hard to see how a charge of artificiality could possibly be sustained.

Fine’s semantics is rich enough to accomodate other intuitions concerning entailment,

including a vindication of van Fraassen’s discussion in (189) of the Belnap-Dunn logic Efde

of tautological entailments. The truth-functional semantics for first-degree system Efde—

so-called because it is the first-degree fragment of the relevant logic E and is often labeled

‘FDE’—was introduced by Dunn in (66). Belnap’s interpretation of this semantics—outlined

in (23) and (24)—will be of special importance in the sequel.

From a proof-theoretic perspective, Efde may be defined as follows:

Definition 3.1.16. The system Efde is defined axiomatically by adding the following axiom

to the axiomatic presentation of AC:

FDE1 A→ A ∨̇ B

A four-valued semantics for Efde may also be given, described as follows:

Definition 3.1.17. The logic Efde is the logic induced by the matrix MEfde

〈VEfde
,DEfde

, f ¬̇
Efde

, f ∧̇
Efde

, f ∨̇
Efde
〉

where VEfde
= {t, b, n, f}, DEfde

= {t, b}, and the functions f ¬̇
Efde

, f ∧̇
Efde

, f ∨̇
Efde

are defined by the

following matrices:
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f ¬̇
Efde

f ∧̇
Efde

t b n f f ∨̇
Efde

t b n f

t f t t b n f t t t t t

b b b b b f f b t b t b

n n n n f n f n t t n n

f t f f f f f f t b n f

Belnap considers the problem of what occurs when a computer or ‘artificial reasoner’ receives

contradictory messages. E.g., a central computer can be set up to receive values from sensors

concerning the velocity of a vehicle. Suppose there are two such sensors in the vehicle and

that one is malfunctioning so that the computer is being informed by two equally trustworthy

sources that the vehicle is moving at two different speeds. Classically, faced with inconsistent

data, one has warrant to infer any arbitrary conclusion. But from the standpoint of a relevant

logician—Efde is ⊢-relevant—such contradictions should not ‘pollute the data,’ in Belnap’s

words.

On this reading, that A is evaluated as t is read as ‘I have a source that has told me that

A is true.’ When A is evaluated as f, this is read as ‘I have a source that has told me that

A is not true.’ Naturally, one can be faced with a situation in which both these statements

hold, which corresponds to the value b, while when one has received no statements regarding

A, this is represented by A’s being evaluated as n.

Now, while the most salient interpretation Efde is in terms of computation, Efde and fact-

like semantics enjoy a deep and effervescent relationship. Both van Fraassen in (189) and

Barwise and Perry in (21) suggest that Efde captures an important and interesting entailment

relationship between propositions. It is not surprising, then, that Fine proves in (87) that

Efde can be recast in his semantics in a natural way.

Fine defines inexact consequence in the following way:

Definition 3.1.18. B is an inexact consequence of A if in any state space model, ⌈A⌉+ ⊒

⌈B⌉+
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It is proven in (87) that Efde corresponds to the logic of inexact consequence.

Theorem 3.1.2 (Fine). A �Efde
B if and only if in any state space model, ⌈A⌉+ ⊒ ⌈B⌉+

3.2 Correia on Factual Equivalence

In (49), Correia studied Angell’s AC in the context of a strong equivalence between facts.

Correia defines a notion of factual equivalence so that two sentences A and B are factu-

ally equivalent whenever any statement of the form “s grounds A” can be replaced by “s

grounds B” salva veritate. In (50), Correia further argued for the suitability of AC as an

axiomatization of the logic of factual equivalence.7

3.2.1 Correia’s Logic of Factual Equivalence

In (51), Correia rejected his earlier position that AC captured an adequate notion of factual

equivalence, arguing that there are equivalent formulae that do not describe precisely the

same facts. AC is thus rejected by Correia as too strong, compelling Correia to provide a

weaker notion of factual equivalence, one that is a subsystem of the equivalential formulation

of AC. Correia provides no name for this system, and we will default to the easily recognizable

label “Cor.”

Definition 3.2.1. The system Cor is determined by the following axioms:

7There is a parallel between how models are employed by Fine and Correia and how models are employed
by van Fraassen and Suszko. van Fraassen was concerned with providing fine-grained accounts of entailment

while Suszko was concerned with an appropriate account of identity. A similar divide occurs between Fine
and Correia: Correia is concerned with the equivalence of two formulae in a model while Fine is concerned
with representing consequence in a model.
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Cor1 A↔ ¬̇ ¬̇A

Cor2 A↔ A ∧̇ A

Cor3 A ∧̇ B ↔ B ∧̇ A

Cor4 A ∧̇ (B ∧̇ C)↔ (A ∧̇ B) ∧̇ C

Cor5 A↔ A ∨̇ A

Cor6 A ∨̇ B ↔ B ∨̇ A

Cor7 A ∨̇ (B ∨̇ C)↔ (A ∨̇ B) ∨̇ C

Cor8 ¬̇(A ∧̇ B)↔ ¬̇A ∨̇ ¬̇B

Cor9 ¬̇(A ∨̇ B)↔ ¬̇A ∧̇ ¬̇B

Cor10 A ∧̇ (B ∨̇ C)↔ (A ∧̇ B) ∨̇ (A ∧̇ C)

The rules of Cor are:

Cor11 From A↔ B infer B → A

Cor12 From A↔ B and B ↔ C infer A↔ C

Cor13 From A↔ B infer A ∧̇ C → B ∧̇ C

From a proof-theoretic perspective, Correia notes that AC may be derived from Cor by the

addition of rule AC7 or by adding the pair of axioms AC6a and AC6b. Furthermore, in Cor we

may define a notion of entailment where A→ B serves as an abbreviation for A ∧̇ B ↔ A.

As a subsystem of Angell’s AC, the first-degree entailment version of Cor so defined will enjoy

the Proscriptive Principle and may be thus considered a Parry logic as well.

In order to provide a semantics for Cor, Correia modifies the strong state space models

of (87) by relaxing the condition that valuations be total, i.e., Correia assumes only that |·|+

and |·|− are partial functions. Correia calls his modification of Fine’s state space semantics

“fitting description semantics” as the relation of exact verification s + A is interpreted by

Correia as the property that a situation s is fittingly described by A.

Definition 3.2.2. A weak state space model is a tuple 〈S,⊑, |·|+, |·|−〉 where 〈S,⊑〉 is a

state space and valuations |·|+ and |·|− are partial functions mapping atoms to complete and
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nonempty subsets of S.

In (51), Correia argues that for two statements A,B to be factually equivalent is for A and

B to fittingly describe precisely the same states in each weak state space model. That two

formulae A,B fittingly describe the same states in every model is described as supervalidity

of the equivalential formula A ↔ B. Equivalently, supervalidity may be defined as the

property that the complete content of A is identical to that of B in every weak state space

model.

Definition 3.2.3. A formula A ↔ B is supervalid if in every weak state space model S,

⌈A⌉+ = ⌈B⌉+

Soundness and completeness between the axiomatic and semantical presentations of Cor is

proven in (51).

Theorem 3.2.1 (Correia). A↔ B is a provable in Cor if and only if A↔ B is supervalid.

Note, of course, that Fine’s strong models are trivially weak models. However, in order

to induce the logic Cor, the class of models with respect to which it is complete must be

weak. Hence, accepting Cor comes with a semantical commitment as well. If the facts qua

semantical device are believed to reflect any features of facts qua metaphysical object, then

Correia’s reliance on weak models bears rather heavy metaphysical commitments as well.

3.2.2 Correia’s Rejection of Distribution

In (51), Correia diverges from Angell because of worries that the relation of factual equiv-

alence “does not validate the distributivity principle according to which A ∨̇ (B ∧̇ C) is

always equivalent to (A ∨̇ B) ∧̇ (A ∨̇ C).”(51, p. 2) In both (50) and (51), the importance of

a logical account of factual equivalence is motivated by concerns of intersubstitutivity within

contexts of explanation or grounding.
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Justifying the rejection of distributivity in AC requires that one provides a case in which

some fact grounds a sentence of the form (A ∨̇ B) ∧̇ (A ∨̇ C) but fails to serve as a ground

for A ∨̇ (B ∧̇ C). Correia gives the following example to suggest there are instances of

these two formulae that are not factually equivalent, i.e., intersubstitutable in contexts of

grounding. Correia supposes for the argument that the sentences “Sam is sad” and “Sam is

ill” are true and presents the following three sentences:

1 The fact that Sam is sad grounds the fact that (Sam is sad or Sam is bad)

2 The fact that Sam is ill grounds the fact that (Sam is sad or Sam is ill)

3 The facts that Sam is sad and that Sam is ill ground the fact that ((Sam is sad or

Sam is bad) and (Sam is sad or Sam is ill)).

Were distributivity to hold, then from 3, we could infer

4 The facts that Sam is sad and that Sam is ill ground the fact that (Sam is sad or

(Sam is bad and Sam is ill)).

But Correia wants to reject this proposition, and hence, must reject distributivity.

But intuitively [4] is false. For we may suppose that Sam is not bad, in which

case ‘Sam is bad and Sam is ill’ will be false, and accordingly the fact that Sam

is ill will play no role whatsoever in grounding the disjunctive fact. (The fact

that Sam is sad will do the work.)(51, p. 17)

In order to more precisely parse this, let us turn to an example of a weak state space model

that witnesses a failure of distribution. For simplicity’s sake, we will not consider the state

space to be modalized.

Example 3.2.1. Let SC be defined so that
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� S = {s0, s1, s2}

� s0 ⊑ s2 and s1 ⊑ s2

� |p|+ = {s0} and |q|+ = {s1}

Given this model, we observe that s0 + p, whence s0 + p ∨̇ r. Furthermore, because

s1 
+ q, also s1 

+ p ∨̇ q. Because s2 = s0 ⊔ s1, it follows that s2 
+ (p ∨̇ r) ∧̇ (p ∨̇ q).

However, s2 1+ p ∨̇ (r ∧̇ q). Were this to hold, then given the recursive definition, either

1. s2 
+ p,

2. s2 
+ (r ∧̇ q), or

3. there exist t, u ∈ S such that s2 = t ⊔ u, t + p, and u + r ∧̇ q

The first fails to hold by construction of S. The failure of the second and third conditions

illustrates the need for Correia’s requirement that |·|+ and |·|− be partial functions. Both

would require that for some t ⊑ s2, t 
+ q.

We note that formalizing Correia’s plain language example required that the model be

weak insofar as |r|+ = ∅. But, as we noted, this assumption carries semantical baggage,

requiring an account of logical space in which it is not logically possible that some statement—

r in the example—has verifiers or falsifiers. This has the consequence that it is only when

certain states of affairs are entirely absent from logical space that Correia’s account of factual

equivalence holds true.

3.2.3 Hypernonsensicality

Depending on how much interpretive weight we place on the semantics, it is reasonable to find

Correia’s assumption to be quite metaphysically charged. Correia follows Fine in interpreting

state space models as representing the collection of logical space, i.e., the totality of possible
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facts. Correia’s weak models essentially allow that some atom p may not have verifiers or

falsifiers.

Now, the absence of both verifiers and falsifiers may be reasonable in a number of

contexts—in the actual world, if p has a verifier then we expect it to lack a falsifier. In-

deed, the possibility that a proposition may lack verifiers and falsifiers is reflected in Parry’s

suggestion that a god could “create a world in which the proposition p is true, without

thereby creating all the objects contained in any other proposition q,” a crucial element of

his motivations for (142). Likewise, in Peter Loptson’s (129) and (130), Loptson develops

possible worlds semantics that captures the observation that in a possible world in which

an individual a (say that it is denoted by “a”) does not exist, any Russellian proposition

corresponding to a sentence containing the name “a” will not exist. For example, according

to Russell, the structured proposition corresponding to the statement

� Either Barack Obama is president or Barack Obama is not the president.

contains the referent of “Barack Obama” as a part. Hence, the proposition itself will not

exist at any world w in which Obama was not born, and the sentence would therefore not

be true at w due to the absence of any truth bearer. In such occasions, the position of

e.g. Bochvar ((31)) or Halldén ((104)) that some statements are nonsensical seem rather

reasonable.

But S, under Correia and Fine’s readings, is taken to represent logical space, and while

some statements (e.g. “Colorless green ideas sleep furiously.”) may lack verifiers or falsifiers

with metaphysical necessity, it is another matter entirely that some statements lack verifiers

or falsifiers with logical necessity, that is, there is no possible assignment of the terms in

the sentence to meanings such that the sentence would turn out true. In a sense, Correia’s

condition then corresponds to the possibility of a proposition’s being hypernonsensical—that

not only might a proposition be meaningless at a world but also meaningless in logical space.
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Our earlier considerations on logics of nonsense provide cases related to grammaticality

in which examples of hypernonsensical statements might seem plausible. Åqvist’s (1), for

example, considers “an important class of meaningless sentences [to be] those that are not

well formed in accordance with certain syntactical rules.”(1) Certainly, if mere juxtapositions

of syncategorematic terms are identified as paradigmatic “nonsensical” statements, Åqvist’s

example seems to provide a case of “statement” that lacks verifiers and falsifiers in logical

space, e.g., it is entirely reasonable to exclude truthmakers for the string “and or and” from

logical space. However, as Dawson notes in (57), to identify ill-formed strings of symbols

with formulae is to misunderstand Bochvar and Halldén, something reflected in such strings

not appearing in the language with which we have so far worked. This sentiment is also

reflected in the related work of Leonard Goddard and Richard Sylvan, who, in discussing

such systems, ‘exclude from consideration both gibberish and garbled word-strings.’ (99,

p. 42) More problematically for the present case, Correia’s example requires an occasion

in which a statement lacks verifiers but has possible falsifiers, but Åqvist’s example of ill-

formed formulae seems to preclude such instances. For example, the string “not-(and or

and)” seems as ill-formed as “and or and”; the suggestion that there are no verifiers for an

ill-formed string seems to entail that neither are their falsifiers.

A more plausible—albeit analogous—case is found in Carnap’s strain of logical positivism

(e.g., (39)), in which category mistakes such as “Caesar is a prime number” are considered to

be literally nonsensical. Carnap’s solution to the problem of category mistakes is to reduce

these statements to the category of the ungrammatical. Recall that “Caesar is a prime

number” is “just as linguistically incorrect” (39, p. 68) as “Caesar is and” and this pseudo-

statement is therefore meaningless with logical necessity. With no possible verifiers in logical

space, on Carnap’s account, category mistakes are indeed a type of “hypernonsense.”

However, although Dawson’s worry is perhaps superficially resolved, other problems re-

lated to Åqvist’s suggestion reappear. If “Caesar is a prime number” is of the same species
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as “Caesar is and,” then it is not clear how the sentence could have a possible falsifier while

lacking any possible verifiers. More importantly, Correia’s examples—being on their faces

well-formed, meaningful sentences—are not of this type, no matter how category mistakes

are treated. Correia’s example requires that the sentence “Sam is bad” fittingly describes

no state—that is, that the sentence has no verifiers—and “Sam is bad” should hardly be

counted as a category mistake, much less ungrammatically so.

A representation of logical space in which a modest statement like “Sam is bad” has

no possible verifiers seems to be a questionable representation. That strong state space

models prohibit the hypernonsensicality of such statements seems to be a mark in their

favor, making it reasonable to ask whether the metaphysical intuitions that Correia seeks to

model lead inevitably to such scenarios, i.e., whether these intuitions require weak state space

models. In what follows, we will attempt to dismiss the specter of hypernonsensicality by

accommodating Correia’s intuitions concerning distribution within the framework of strong

state space models.

3.2.4 Factual Equivalence Without Hypernonsense

That the metaphysical stakes are relatively high entails that it is reasonable to ask if this

alteration to Fine’s models is indeed necessary, that is, whether Correia’s intuitions about

factual equivalence can be accommodated by strong models. In order to examine this, let

us introduce the following notation:

Definition 3.2.4. For a state s and formula A, let ⌈A⌉↾s—the s-restricted content of A—be

defined as {t ∈ S | t ⊑ ⌈A⌉ and t ⊑ s}.

It can be easily demonstrated that given completeness of valuations, ⌈A⌉↾s is complete for

all s and A.

We can now proceed to provide an alternative semantical account of Cor more harmonious
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with the semantics of (87) in that it requires valuations to be total, that is, we can impose

the condition of completeness of valuations without impacting the logic itself.

Observation 3.2.1. A ↔ B is a theorem of Cor iff in all strong modalized state space

models, for any state s ∈ S, ⌈A⌉↾s = ⌈B⌉↾s

Proof. For left-to-right, we prove the contrapositive. Given a strong modalized state space

model 〈S, S✸,⊑, |·|+, |·|−〉, one can construct a weak state space model (not necessarily

modalized) 〈{t ∈ S | t ⊑ s},⊑, |·|+, |·|−〉 where |p|+ and |p|− are defined as ⌈p⌉↾s and

⌈¬̇ p⌉↾s, respectively. Furthermore, as the verification and falsification conditions at a state t

are determined exclusively by states t′ ⊑ t, the restrictions of the verification and falsification

conditions at each t ⊑ s will remain unchanged in the corresponding weak model. Hence, if

there is a strong state space model such that there exists an s where [A]↾s 6= [B]↾s, we can

extract from this a weak model witnessing this. By completeness of Correia’s semantics of

(51), this entails that A↔ B is not a theorem of—is not supervalid in—Cor.

For right-to-left, we again prove the contrapositive. Suppose that A↔ B is not a theorem

of Cor. Then we note that Correia’s completeness proof for Cor found in (51) appeals to Fine’s

canonical model of (87), in which |p|+ = {p} and |p|− = {¬̇ p}. By completeness, in the

canonical model |A| 6= |B|, whence |A|↾� 6= |B|↾�. Furthermore, we can follow (85) and

define a strong, modalized state space model by defining

S✸ = {s ∈ ℘(Lit) | for all p ∈ At either p /∈ s or ¬̇ p /∈ s}.

Hence, the canonical model provides the counterexample we require.

It follows that the questionable picture of logical space in which there may be atoms with

no possible verifiers or falsifiers is not essential to Correia’s account of equivalence.
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We are thus free to read supervalidity in Cor as the assertion that with respect to any

complex state of affairs s, the elements of s verifying A are precisely those that verify B.

This seems to be a reasonable characterization; assertions are not made in a vacuum but

carry presuppositions—i.e., states against which a proposition is evaluated—no matter how

meager these presuppositions may be.

Both AC and Cor can be considered to be containment logics and the state space semantics

brings to the fore the sense in which some account of nonsense or meaninglessness plays a role.

In particular, a fact-based semantics allowed us to frame—and resolve—related questions

with respect to Correia’s preferred account of factual equivalence in (51). Before returning

to the matter of nonsense and containment in the context of computation, though, we may

briefly consider a further way in which Fine’s state space semantics can aid in the clarification

of matters of entailment and truthmaking.

3.3 Restall on Truthmaking

State space semantics may also be employed to shed light on competing fact-like semantics.

In a series of papers (159), (161), and (162), Restall has worked to provide a formal, se-

mantical account of truthmaking faithful to the Australian Realist tradition as exemplified

by, e.g., the work of Armstrong in (17). In the introduction to (159), Restall cites Frank

Jackson as an illustration of the obvious connection between truthmakers and entailment:

If Φ entails Π, what makes Φ true also makes Π true (at least when Φ and Π are

contingent).(111, p. 32)

Of particular interest is the following thesis:

Whever something is true, there must be something whose existence entails in

an appropriate way that it is true.(26, p. 126)
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The models that we will now review are intended to capture this thesis.

3.3.1 Restall’s Truthmaker Semantics

Restall’s models of (159) are simpler than Fine’s state space models but insofar as the two

semantics are meant to capture similar intuitions, there is much in common between the

two frameworks. For his models, Restall assumes a space S of truthmakers and defines the

semantics so that each statement ϕ is mapped to some set of elements of S—the truthmakers

of ϕ.

Definition 3.3.1. A Restall model is a 3-tuple 〈S,⊑, |·|〉 where 〈S,⊑〉 is a state space and

|·| is a function from Lit to ℘(S) such that:

� For no s does s � p and s � ¬̇ p

� For all p, there exists a state s ∈ S such that either s � p or s � ¬̇ p

As in the case of state space models, we extend a forcing relation between truthmakers (i.e.,

states) and complex formulae:

Definition 3.3.2. In a Restall model, we extend a truthmaking relation  so that for literals,

� s  p if s ∈ |p|

� s  ¬̇ p if s ∈ |¬̇ p|

This is extended to the case of complex positive formulae:

� s  A ∧̇ B iff s  A and s  B

� s  A ∨̇ B iff s  A or s  B

And in negative complex formulae, we appeal to Boolean equivalences:
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� s  ¬̇ ¬̇A iff s  A

� s  ¬̇(A ∧̇ B) iff s  ¬̇A or s  ¬̇B

� s  ¬̇(A ∨̇ B) iff s  ¬̇A and s  ¬̇B

Truth in a model is defined as we expect, that is, M � A holds when there exists a truthmaker

for A.

Definition 3.3.3. A Restall model M makes a statement A true—M � A—if there exists

an s ∈ S such that s  A.8

Like van Fraassen in (189), Restall has an interest in describing classical consequence in

terms of facts or truthmakers, suggesting that more fine-grained models will provide insight

into the role that facts/truthmakers play with respect to logical consequence. Having defined

truth in a model—where a model M stands in for a possible world—classical entailment can

be recovered as truth preservation at all possible worlds.

Theorem 3.3.1. (Restall) A �CL B is a classically valid inference if at every Restall model

M such that M � A, also M � B.

That classical consequence can be so naturally recast in terms of Restall’s models attests to

the flexibility of his semantics.

Now, insofar as a model M is identified with a possible world (with S serving to catalog

its parts), this account of classical consequence coincides with the interpretation as truth

preservation at all possible worlds. Despite the added power of the semantics, construing

entailment in this way leads to familiar problems. For example, the familiar paradoxes of

strict implication of (126) or (127) appear so that all propositions A bear this relationship

to the tautology B ∨̇ ¬̇B.

8While using “�” both as a relation between formulae and as a relation between a model and a formula
might be considered an abuse of notation, this is standard in model theory.



CHAPTER 3. STATE SPACE SEMANTICS 82

It is thus interesting to pursue truthmaker accounts of stronger, more subtle entailment

relations between antecedent and consequent than is reflected in the classical account, and

Restall offers two competing versions of “real” entailment in (159) that reflect a more robust

role played by truthmakers in the inference from A to B. Restall’s first account of truthmaker

entailment (or truthmaker entailment in the first sense) imports the familiar notion of strict

entailment as preservation of truth across all worlds, i.e., that A J B is true if at every

world at which A is true, B, too, is true. Restall assigns an analogous role to truthmakers

so that A→ B holds if “every truthmaker for A is a truthmaker for B.” (159, p. 339) More

formally, we define

Definition 3.3.4. A � B is a truthmaker entailment in the first sense if at every Restall

model M, for every truthmaker s ∈ S such that s  A, also s  B.

Restall continues to show that the deductive system corresponding to this first sense of

truthmaker entailment is a familiar one. The logic of truthmaker entailment in the first

sense corresponds to consequence in the strong Kleene three-valued logic K3, introduced in

(122) as an account of classical logic in which valuations may be partial functions.9

K3 may be defined over the language Lzdf by the following matrix:

Definition 3.3.5. K3 is the logic induced by the matrix

〈VK3,DK3 , f
¬̇
K3
, f ∧̇

K3
, f ∨̇

K3
〉

where VK3 = {t, n, f} and DK3 = {t} and the functions f ¬̇
K3
, f ∧̇

K3
, f ∨̇

K3
are defined by the

following matrices:

9Recall that Bochvar’s internal nonsense logic Σ0 was also introduced by Stephen Kleene in (122) and is
thus frequently referred to as Kleene’s “weak” three-valued logic, whence the description of K3 as “strong.”
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f ¬̇
K3

f ∧̇
K3

t n f f ∨̇
K3

t n f

t f t t n f t t t t

n n n n n f n t n n

f t f f f f f t n f

In (159), Restall shows that truthmaker entailment in the first sense and K3 consequence

coincide, captured by the following theorem:

Theorem 3.3.2. (Restall) A � B is a truthmaker entailment in the first sense if and only

if A �K3 B

While Kleene introduced K3 in the context of studying partial functions, its appearance in

this context is not altogether surprising. It is worth mentioning that Barwise and Perry’s

situation semantics in (20) yields K3 consequence as well. Although the later semantics of (21)

(like van Fraassen’s factual entailment) yields Efde, the earlier paper disallows inconsistent

situations, a condition that corresponds to the suppression of the truth value n and, hence,

the collapse of the matrix semantics for Efde to the matrix semantics for K3.
10

There is a long tradition of using facts not only to define and explain weak consequence

relations, but also to shed light on classical logic by recovering classical entailment within

some framework of facts or situations. It seems that it is an equally worthy goal to see what

light can be shed on Restall’s account by reseating it within the framework of state space

semantics.

3.3.2 Worlds, Again

Reviewing Fine’s “classical recapture”—i.e., the account of classical validity in terms of state

space models—is worthwhile for two reasons. On the one hand, such a review will provide

10Precluding inconsistent situations is analogous to removing the “both” value b from the semantics for
Efde described in Definition 3.1.17. Removing this value leads to the many-valued semantics for K3 in
Definition 3.3.5.
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us insight into how to bring Fine’s account of CL into harmony with the underlying picture

in Restall’s Theorem 3.3.1. On the other hand, examining alternative characterizations of

classical logic in state space semantics will allow us to introduce a handful of interesting

observations.

Fine’s recovery of classical consequence in (86) is given in terms of verification by states

in general. However, an equivalent notion of entailment in sympathy with Restall’s repre-

sentation of classical consequence may be described as well. But in order to define truth

preservation across possible worlds, we have to first define an appropriate representation of

a world in state space semantics.

The most intuitive interpretation of states is that they represent states of affairs or facts.

If the Tractarian view is that world is an aggregates of states of affairs, then it is clear that

state space semantics can support a similar, combinatorial notion of possible world. A very

prominent example of this is found in (16), the main thesis of which is described by Sider in

the following terms:

The core idea of David Armstrong’s combinatorial theory of possibility is at-

tractive. Rearrangement is the key to modality; possible worlds result from

scrambling bits and pieces of other possible worlds.(176, p. 679)

The corresponding notion to a combinatorial possible world is a fusion of other primitive

states that meets certain criteria. In Fine’s paper (84), he provides a corresponding definition

of a particular type of state called a world-state.

Definition 3.3.6. A world-state is a state w ∈ S✸ such that for all s ∈ S✸, either s ⊑ w

or s is incompatible with w.

Fine’s world-states are factually saturated in the sense that with respect to a world w,

every possible state s ∈ S✸ is either part of w—that is, obtains in w—or is incompatible

with w in a strong sense. Compare this account of world-states with Armstrong’s (16):
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The simplest way to specify a possible world would be to say that any conjunction

of possible atomic states of affairs, including the unit conjunction, constitutes

such a world.(16, p. 47)

It is arguable that invoking possible worlds carries more metaphysical commitments than

merely invoking situations or facts. Consistent with this position, Fine shows that classical

logic can be recovered without appeal to worlds and chooses to present classical consequence

as the preservation of loose verification across arbitrary states.

Definition 3.3.7 (Loose Verification). A state s loosely verifies A—written s l A—if any

state that is compatible with s is compatible with some t ∈ ⌈A⌉.

Observation 3.3.1 (Fine). A �CL B is a classically valid inference if for every state space

model S and every s ∈ S, if s l A then s l B

But consider Fine’s definition of world-states and assume the natural position that the truth

of a statement A at a world w is precisely the existence of a truthmaker s ⊑ w such that

s  A.

Then we are free to recast classical entailment—as Restall supposes in (159)—as truth-

preservation at any possible world.

Observation 3.3.2. A �CL B if for every state space model and world-state w, if w inexactly

verifies A, then w inexactly verifies B.

Recasting the recapture of classical entailment in this way provides an analogy by which we

may represent Restall’s account of entailment and truthmaking. In (159), Restall’s mod-

els are taken to represent possible worlds containing truthmakers as their parts. So it is

reasonable to consider the following definition relating parts of worlds to worlds themselves:

Definition 3.3.8. Call a state s w-actual if w is a world and s ⊑ w.
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A state’s being w-actual is analogous to saying that the state is a truthmaker at w or

that w obtains as a fact at w.

Observation 3.3.3. A �K3 B iff for every world-state w, w-actual verifier of A contains a

w-actual verifier of B

Proof. For left-to-right, we prove the contrapositive. First, if s ⊑ w for a world w ∈ S✸,

then for no atom p does s + p and s − p. Suppose that t ⊑ w and t′ ⊑ w and t + p and

t′ − p. Then because t ⊑ w and t′ ⊑ w, t ⊔ t′ ⊑ w. But by definition of S✸, that w ∈ S✸

and t ⊔ t′ ⊑ w entails that t ⊑ t′ ∈ S✸. But by Exclusivity, t ⊑ t′ /∈ S✸.

Hence, with respect to any s ⊑ w, for every p ∈ At, either there is an exact verifier t ⊑ s

for p, there is an exact falsifier t ⊑ s for p, or there are no exact verifiers or falsifiers of p

that are part of s. We can thus recursively construct a K3 valuation vs by initially assigning

values {t}, {f}, or ∅ to atoms

vs(p) =































t if ∃t ⊑ s such that t + p

f if ∃t ⊑ s such that t − p

n otherwise

The initial valuation can be extended recursively easily. The cases for truth, for example:
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vs(¬̇A) = t iff ∃t ⊑ s such that t + ¬̇A

iff t − A

iff vs(A) = f

vs(A ∧̇ B) = t iff ∃t ⊑ s such that t + A ∧̇ B

iff ∃t, u ⊑ s s.t. t + A and u + B

iff vs(A) = t and vs(B) = t

vs(A ∨̇ B) = t iff ∃t ⊑ s such that t + A ∨̇ B

iff ∃t, u ⊑ s s.t. t + A or u + B

iff vs(A) = t or vs(B) = t

Analogous conditions can be derived in the case of falsity and the third value n. The K3

truth tables can be reconstructed, whence given a world-state w and a w-actual verifier s

for B that contains no exact verifier for A, vs will serve as a K3 valuation witnessing that

A 2K3 B, i.e., will verify that vs(A) = t and vs(B) 6= t.

For right-to-left, let v be a K3 valuation serving as a counterexample to A �K3 B and

consider the set:

Lv = {{p} | if v(p) = t} ∪ {{¬̇ p} | if v(p) = f}

Now consider the set
⋃

Lv.

Now,
⋃

Lv is a state present in the canonical model described in (87). Moreover, it is a

part of many world-states in the canonical model, e.g., the state

!Lv =
⋃

Lv ∪
⋃

{{p} | {p, ¬̇ p} ∩ (
⋃

Lv) = ∅}

An easy induction establishes that v(A) = t if and only if there exists a state s ⊆
⋃

Lv such

that s  A. Hence, any truth-functional counterexample yields an appropriate part of a



CHAPTER 3. STATE SPACE SEMANTICS 88

world-state in the canonical model.

We can also rephrase this by defining a notion of “worldy content” of a statement at a world

w. Recall the notation of Definition 3.2.4. Then ⌈A⌉+↾w is the set of the w-actual verifiers

of A.

Hence, we are free to rephrase Observation 3.3.3 in the following terms:

Observation 3.3.4. A �K3 B iff for every world-state w, ⌈A⌉+↾w ⊒ ⌈B⌉
+↾w

So Restall’s account of K3 in terms of state space semantics appears entirely natural. As

we’ve suggested, there is some precedent for this, as Barwise and Perry implicitly endorsed

this consequence relation in (20).

3.3.3 The Emergence of RMfde

In the concluding two paragraphs of (159)—immediately after discussing K3 as a candidate

for a form of “real” entailment—Restall briefly suggests a second sense of truthmaker entail-

ment. After observing that A ∧̇ ¬̇A entails an arbitrary formula B in truthmaker entailment

in the first sense, Restall suggests this second species of truthmaker entailment in two lines.

Where ⇒ represents the first sense of “real” entailment, the brief passage is:

But we can get closer to first-degree entailment by setting A⇒2 B if and only if

A⇒ B and ¬̇B ⇒ ¬̇A. Then we do not have A ∧̇ ¬̇A⇒2 B, but we still have

A ∧̇ ¬̇A⇒2 B ∨̇ ¬̇B.(159, p. 339)

Granted the role Efde has played in the semantics of (189) and (21), the attractiveness of

“approximating” Efde is understandable. What is especially interesting—and perhaps a bit

surprising—about Restall’s suggestion is the subsequent remark that this second species

of truthmaker entailment corresponds to the deductive system RMfde, i.e., the first-degree

fragment of R-Mingle.
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From a proof-theoretic perspective, RMfde is a relatively natural system. Syntactically, a

proof theory for RMfde can be defined by enriching the axiomatic definition of Efde provided

in Definition 3.1.16 with the so-called Safety axiom (cf. (68)):

Safety ϕ ∧̇ ¬̇ϕ→ ψ ∨̇ ¬̇ψ

Of course, we can recognize that Safety corresponds to the final valid entailment mentioned

by Restall in the earlier quote. Syntactic consequence in RMfde thus springs easily from Efde.

Within the setting of Restall’s models, consequence for RMfde can be defined in (159) as

follows:

Theorem 3.3.3. (Restall) A � B is valid in RMfde if at every Restall model M, every

truthmaker s ∈ W such that s  A, also s  B and every truthmaker s ∈ W such that

s  ¬̇B, also s  ¬̇A.

Now, Restall’s presentation of RMfde as a logic of real entailment is extraordinarily terse

and seems to come from nowhere. Although Restall takes care to interpret and motivate

the first species of entailment (i.e., K3), the paper lacks any explanation of why one might

embrace the picture assumed by the second sense of truthmaker entailment. In conjunction

with the somewhat unusual semantical account for RMfde, that Restall floats the system as

an account of real entailment may be puzzling. By rephrasing Restall’s intuitions in the

setting of state space semantics, however, we can provide some insight into why someone

may embrace consequence in RMfde as a logic of “real” entailment.

Restall’s endorsement is helped little by the fact that from the perspective of many-valued

semantics, RMfde is a rather odd system. As the axiomatic account suggested, RMfde is a

proper extension of Efde, as are Priest’s LP and Kleene’s K3. However, while from the many-

valued presentations of LP and K3 (cf. Definitions 2.3.5, 3.1.17, and 3.3.5), each of these

subsystems can be defined as restrictions of the matrix MEfde
, there is no similar restriction
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of the matrix of Efde that yields RMfde. Rather, as shown implicitly by Dunn in (67) (and

more explicitly in (68)), many-valued semantics for RMfde are provided by appealing to the

pair of matrices MLP and MK3.
11 Semantics for RMfde can be described in terms of the

matrix semantics for LP (in Definition 2.3.5) and K3 (in Definition 3.3.5) as follows:

Definition 3.3.9. A �RMfde
B is valid if















for all LP valuations v s.t. v(A) ∈ DLP, v(B) ∈ DLP, and

for all K3 valuations v s.t. v(A) ∈ DK3, v(B) ∈ DK3

It follows from this presentation that RMfde is the intersection LP ∩ K3. Now, the lack of a

standard matrix semantics for RMfde might be considered a mark against the system. But

the characterization of RMfde in Definition 3.3.9 yields a clue concerning how RMfde might

be a plausible—perhaps attractive—candidate for an account of truthmaker entailment.

Given the duality between LP and K3 we have the following observation (which has, for

example, been noted by Jc Beall in (22)):

Observation 3.3.5. A �K3 B if and only if ¬̇B �LP ¬̇A

Hence, an equivalent way of characterizing RMfde consequence would be:

Definition 3.3.10. A �RMfde
B is valid if















A �K3 B is valid, and

¬̇B �K3 ¬̇A is valid

A natural interpretation of Definition 3.3.10 would be that RMfde consequence identifies

entailment not only with truth preservation but also with non-falsity preservation. The case

of logics of nonsense provide one of the most important examples of interpreting entailment

11It is worth noting that there exists an intriguing connection between Dunn’s semantics for RMfde and
the more recent swap structure semantics introduced by Walter Carnielli and Marcelo Coniglio in (41). In
many cases, swap structures are isomorphic to finite collections of logical matrices, enabling Carnielli and
Coniglio to show that a number of logics of formal inconsistency (cf. (42)) that are not characterizable by a
finite matrix have characterizations by collections of such matrices.



CHAPTER 3. STATE SPACE SEMANTICS 91

as non-falsity preservation. For present purposes, we will consider for now Bochvar’s logic

of nonsense Σ (and its “internal fragment” Σ0) outlined in (31) and Halldén’s C introduced

in (104) (alongside its “classical fragment” C0).

Recall that Σ0 and C0 differ only in that the latter takes the “nonsense value” to be

designated while the former does not, i.e., logical consequence to Halldén is construed as

ensuring that consequence preserves non-falsity. The motivation for this has enjoyed a num-

ber of distinct interpretations. For example, in (195), Timothy Williamson suggests that

“[t]he rationale for Halldén’s designation policy is clear”(195, p. 105) asserting that Halldén

designates the value u precisely because Σ0’s lacking theorems is a pathology that can be

averted in C0 when nonsense is designated. Halldén’s position is unusual in that designated

values are often interpreted as “truthlike,” a property that is hard to attribute to meaning-

less statements. Ross Brady and Sylvan, for example, reject Halldén’s position by claiming

that it commits us “to sometimes asserting logical nonsense.”(38, p. 219)

Halldén is, in fact, sensitive to this, writing that with respect to such an objection,

[t]he answer... is, roughly, that a formula is to be taken as asserting something

only about those values of which it can meaningfully assert something. The

formula is true if the property or relation it asserts applies to all those values of

which it can be meaningfully asserted.(104, p. 47)

The upshot of Halldén’s response is that selection of designated values is determined by

concerns about validity rather than concerns about truth. Whereas, e.g., Brady and Sylvan

look at the “local” level and judge the treatment of an individual meaningless sentence as

having a “truth-like” property, Halldén is looking to how to judge the validity of an inference

in general.

The requirement that logical consequence must preserve non-falsity becomes all the more

natural when non-falsity preservation is recast in terms of truthmakers. Because of the
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entrenchment of Efde in these types of semantics, it will be useful to observe that in Efde

consequence-as-truth-preservation and consequence-as-non-falsity-preservation coincide. Re-

casting this observation in terms of truthmaking and falsemaking, this phenomenon can be

described in the following observation:

Observation 3.3.6. The following are equivalent

1. In all state space models, ⌈A⌉+ ⊒ ⌈B⌉+

2. In all state space models, both ⌈A⌉+ ⊒ ⌈B⌉+ and ⌈B⌉− ⊒ ⌈A⌉−

3. In all state space models, ⌈B⌉− ⊒ ⌈A⌉−

Proof. By the rules for Efde, A → B is valid, i.e., ⌈A⌉+ ⊒ ⌈B⌉+ holds in all models, if and

only if ¬̇B → ¬̇A is valid. This latter claim is equivalent to ⌈¬̇B⌉+ ⊒ ⌈¬̇A⌉+, which is

equivalent to ⌈B⌉− ⊒ ⌈A⌉−.

Likewise, the type of bipartite scheme represented by RMfde could have been imposed in,

e.g., (189) without any loss of generality.

This observation has consequences for how different entailment relations are construed

in state space semantics. For example, if we recall Fine’s definition of inexact consequence,

Observation 3.3.6 entails that the following provides an equivalent definition for inexact

consequence:

Definition 3.3.11. B is an inexact consequence of A if in any state space model, both














⌈A⌉+ ⊒ ⌈B⌉+, and

⌈B⌉− ⊒ ⌈A⌉−

From this observation, then, we can infer that this equivalent notion of inexact consequence

will correspond to Efde as well:
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Corollary 3.3.1. A �Efde
B if and only if in any state space model, both















⌈A⌉+ ⊒ ⌈B⌉+, and

⌈B⌉− ⊒ ⌈A⌉−

Now, suppose that someone is taken by Fine’s account of truthmaker semantics but

doggedly subscribes to a combinatorialist view, accepting that the only possible states of

affairs are those that are actual. Such an individual would presumably wish to follow the

general scheme of, e.g., inexact consequence while restricting the verifiers and falsifiers of

a formula A by which inexact consequence is evaluated to those that actually obtain in a

world w. In other words, such a combinatorialist might embrace a “local logic of inexact

consequence.” However, granted the equivalence of Definitions 3.1.18 and 3.3.11, there is no

one deductive system that serves as the unique local logic of inexact consequence.

Moreover, although equivalent globally (i.e., when evaluated against arbitrary states),

Definitions 3.1.18 and 3.3.11 diverge locally (i.e., when considering only states that are w

actual). Let us explicitly represent these notions of local inexact consequence by making the

requisite restrictions on Definitions 3.1.18 and 3.3.11, respectively:

Definition 3.3.12. B is a local inexact consequence of A in the first sense if in every state

space model and world-state w, ⌈A⌉+↾w ⊒ ⌈B⌉
+↾w

Definition 3.3.13. B is a local inexact consequence of A in the second sense if in every

state space model and world-state w, both















⌈A⌉+↾w ⊒ ⌈B⌉
+↾w, and

⌈B⌉−↾w ⊒ ⌈A⌉
−↾w

The similarity between these local particularizations of inexact consequence and the charac-

terizations of K3 and RMfde in state space semantics is pronounced.

For example, if we recall Observation 3.3.4, the following is immediate:

Observation 3.3.7. A �K3 B iff B is a local inexact consequence of A in the first sense.
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And from the structure of Definition 3.3.13, the claim of RMfde to the mantle of the logic of

wordly inexact consequence appears just as legitimate as the claim of K3. This observation

follows from an alternative formulation of RMfde consequence in state space semantics.

Observation 3.3.8. A �RMfde
B if in all world-states w,















⌈A⌉+↾w ⊒ ⌈B⌉
+↾w, and

⌈B⌉−↾w ⊒ ⌈A⌉
−↾w

Proof. As described in (68), consequence in RMfde can be defined so that:

A �RMfde
B iff















A �K3 B, and

A �LP B

Where LP is Priest’s “logic of paradox” of (154) (defined in Definition 2.3.5). Furthermore,

we have noted that

A �K3 B iff ¬̇B �LP ¬̇A

Granted these observations, we may appeal to Observation 3.3.4 to immediately secure the

observation.

Just as Observation 3.3.4 and Definition 3.3.12 bore a clear resemblance, Observation 3.3.8

allows us to appeal to its similarity to Definition 3.3.13 to draw the following conclusion:

Observation 3.3.9. A �RMfde
B iff B is a local inexact consequence of A in the second

sense.

Not only does this characterization show that RMfde has a legitimate claim as the logic of

inexact consequence but it also reflects a natural picture of truthmaking entailment. Note

that Observation 3.3.8 boils down to the claim that in any world w, every exact verifier of A

contains an exact verifier of B and that every exact falsifier of B contains an exact falsifier

of A.
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This latter condition may be rephrased as the demand that any exact-non-falsifier of

A is an exact-non-falsifier of B. From a näıve perspective, we expect correct reasoning to

preserve non-falsity and this intuition is reinforced once we move from thinking about truth

values to truth makers. We undoubtedly expect of falsifiers that they support this analysis

of consequence. When, e.g., a suspected criminal is on trial, the body of evidence employed

by the court can count as a truthmaker or falsemaker for his or her testimony. Suppose that

the accused has provided an alibi while on the stand; then the role of the prosecution is to

employ the body of evidence as a falsifier for the accused’s alibi. It seems reasonable to

expect that if the evidence fails to reveal “I was at Abel’s house at the time the crime was

committed” as perjury—if the evidence is too weak to disprove the alibi—then the evidence

should also fail to reveal “I was either at Abel’s house or Becky’s house during the crime”

to be a falsehood.

Note that the K3 account of “real” entailment fails to validate this intuition. For example,

the inference A ∧̇ ¬̇A �K3 B is valid for arbitrary formulae B. Now, for an arbitrary state

s ∈ S✸, s is a non-falsemaker for a contradiction A ∧̇ ¬̇A. Considering an arbitrary model

in which a contingent proposition ¬̇B holds shows that the fact that s is a non-falsemaker

for the contradiction does not preclude s from serving as a falsemaker for a contingent

proposition B. Hence, RMfde as a type of truthmaker entailment captures intuitions that K3

does not support.

3.4 Concluding Remarks

Although we have noted that Suszko’s (182) is contemporary to van Fraassen’s (189), Fine’s

state space semantics for Angell’s containment logic AC and Correia’s account of Cor are

clearly counted in the lineage of van Fraassen’s work. It is worth noting, however, that

Parry-type systems in general—and AC in particular—admit analyses within the framework
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of Suszko and Bloom’s non-Fregean logics from (29) and (30).

In (139), Marek Nowak cites (20) and (21) as motivation for the formulation of a so-called

Barwise and Perry’s principle concerning the identity between two formulae:

BP Two sentences whose logical forms are logically equiv-

alent and have the same extralogical constants, [ex-

press the same proposition].

As a particularization of BP to the propositional case, Nowak attributes to (197) a constraint

he calls Wójcicki’s principle (WP):

WP Two sentences whose logical forms in sentential lan-

guage are logically equivalent and have the same sen-

tential variables [express the same proposition].

The system so determined can be seen to be the set of first-degree biequivalences in Parry’s

PAI, that is, strong consequence in the propositional case (via Wójcicki) is equivalent to con-

sequence in PAIfde. Further work in which the containment logics induced by such constraints

is developed has appeared by Andrzej Bilat in (27) and (28).

But AC, too, has received an analysis within this framework. Tadao Ishii, in (109)

and (110) has described systems of propositional logic with identity in which AC emerges.

It stands to reason that Cor can be folded into this framework as well. Although these

two traditions—that of van Fraassen and that of Suszko—differ, it should still be worth

considering Cor and state space semantics through the lens of non-Fregean logic.



Chapter 4

A Computational Interpretation of

Conceptivism

One of the hallmark features of the deductive systems known as ‘conceptivist’ or ‘contain-

ment’ logics is that the principle of Addition (the inference to A ∨̇ B from A) fails. In this

chapter, we examine a number of prima facie unrelated deductive contexts that do not sup-

port Addition and attempt to harmonize them by developing a computational interpretation

of conceptivist logics. With a computational interpretation ready-to-hand, further applica-

tions of conceptivist systems emerge, including themes in propositional dynamic logic and

constructive logic.

4.1 Formal Remarks

In order to be as precise as necessary, we will stop to formally define a number of properties

that deductive systems may exhibit before moving on to formally introduce a number of the

more well-known conceptivist systems.

For example, we will deal with three distinct propositional languages in the sequel: the

97
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familiar propositional language of zeroth degree formulae Lzdf introduced in Definition 1.1.2

whose logical connectives include negation (‘¬̇’), conjunction (‘∧̇’), and disjunction (‘∨̇’),

the language L+ of Definition 1.1.1 that enriches Lzdf by the addition of an intensional

conditional connective (‘→’), and a pure implicational language L→ whose sole connective

is the intensional conditional →.

4.1.1 A Family of →-Parry Deductive Systems

While a number of→-Parry logics have been introduced, some—like Parry’s original system

and Sören Halldén’s S0, introduced in (103)—lack semantics. There are, however, a number

of systems in the literature that can be given a common semantical framework.

Parry, in (144), had enriched his system of (142) and (143) with the axiom:

(A ∧̇ ¬̇B)→ ¬̇(A→ B)

When the matter of analytic implication was taken up by (65), (188), and (81), this axiom

was included. However, Parry’s attitude in (144) seems to be that this axiom is in keeping

with the spirit of his dissertation and, as such, does not represent so much an extension of

his original system but a correction thereto. It is this system—PAI—in terms of which the

remaining three are motivated.

Dunn’s ‘demodalized’ analytic implication DAI follows from the observation that necessity

in logics of strict implication can be defined so that ✷A =df (A → A) → A. Hence, adding

an axiom A→ ((A→ A)→ A), i.e., A→ ✷A, effectively eliminates modal distinctions and

demodalizes the system PAI. The addition of this axiom to the logic of strict implication

S4, for example, collapses the system to classical logic. After providing algebraic semantics

for his system, Dunn cites Robert Meyer as suggesting a very simple semantical approach to

DAI.
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The abstract (69) is the first appearance of DAI as ‘dependence logic’ as a species of

Epstein’s larger program of set-assignment semantics. In (71), in which the system is called

‘D,’ retains the truth-function nature of the connectives but adds a function s from At to

a set of ‘subject-matters.’ A model is thus a pair 〈v, s〉, where v behaves classically for

negation, disjunction, and conjunction, while implication receives evaluations obeying:

v(A→ B) =















f if either s(B) * s(A) or both v(A) = t and v(B) = f

t otherwise

While finding set-assignment semantics for weaker systems is an interesting question, there

are at present no semantics for, e.g., PAI in the style of Epstein.

While Dunn and Epstein explore a strengthened form of analytic implication, we have

encountered Harry Deutsch’s S, motivated by the assertion that PAI is overly strong. For

the time being, Deutsch’s S will remain the weakest of the systems studied. Recalling the

semantics for S in Chapter 2, we will characterize the stronger systems in terms of restrictions

of S models. The language over which these logics are defined is L +.

Deutsch’s semantics are a modification of Fine’s models for PAI in (81), which themselves

employ Kripke frames. Like other logics with Kripke-style semantics, restricting frames

〈W,R〉 often yields stronger deductive systems. In the present case, restricting our attention

to only models in which R linearly orders W yields the system S′ studied in (61).

Definition 4.1.1. Γ �S′ A iff for all S models M such that 〈W,R〉 is a linear order and

points w ∈ W , if M , w + B for all B ∈ Γ, then M , w + A

In (60), Deutsch also defines a system S′′ (appearing in his dissertation as “D′′”) correspond-

ing to the class of S models for which W is a singleton.

Definition 4.1.2. Γ �S′′ A iff for all S models M for which W is a singleton {w}, whenever

M , w + B for all B ∈ Γ, it follows that M , w + A
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PAI DAI

S S′′S′

Figure 4.1: Relationships Between →-Parry Systems

As the frames for S′′ models are degenerate examples of linear orders, we may observe that

S′′ is an extension of S.

As is clear from Definition 2.4.1, we may recall that Fine’s original semantics for PAI

correspond to the class of all S models whose distributions of formulae are consistent, i.e.,

PAI corresponds to S models for which V + and V − assign only consistent valuations of atoms:

Definition 4.1.3. Γ �PAI A iff for all S models M such that for all p ∈ At, V +(p)∩V −(p) =

∅, and points w, if M , w  B for all B ∈ Γ, then M , w  A

Finally, the Dunn-Epstein system DAI defined as the restriction of PAI to single-pointed

frames:

Definition 4.1.4. Γ �DAI A iff for all S models M such that

� for all p ∈ At, V +(p) ∩ V −(p) = ∅, and

� W is a singleton {w}

if M , w  B for all B ∈ Γ, then M , w  A.

This definition makes it clear that Dunn’s possible worlds semantics and Epstein’s set-

assignment semantics are equivalent, as the single lattice 〈Cw, ◦w〉 is analogous to a set

of subject matters in Epstein’s set-assignment semantics for D. To wit, the canonical models

for DAI and D, the lattice 〈Cw, ◦w〉 and the set of subject matters are isomorphic.
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The picture of this family of systems is represented by Figure 4.1. As mentioned earlier,

other conceptivist systems have been described in the literature, although their semantics do

not immediately admit an account in the above terms.1 For example, Charles Daniels’ story

logic—which we will identify as ‘S⋆’—first described in (54) is a further conceptivist system

whose semantics we will omit here.2 Daniels’ interpretation of ‘story implication’ employs

stories as its primitive semantical device so that A → B is valid in S⋆ if in every ‘story’ in

which A is true, B is also true. Daniels suggests that if a story is thought to have a ‘cast,’

one must ‘discard the idea that if A is in a story, A ∨̇ B and B ∨̇ A are also in it,’ as the

sentence denoted by B, after all, may ‘introduce new and unwanted characters.’(54, p. 222)

Daniels acknowledges the proximity to Parry’s system and motivates the de facto rejection

of Addition on the basis of names—a wholly syntactic, yet not ad hoc, motivation.

Daniels’ system deserves special mention as its first-degree fragment S⋆
fde

will play a role

in the sequel.

4.1.2 A Family of ⊢-Parry Deductive Systems

Many of the ⊢-Parry systems in the literature—and other propositional logics with which we

will be concerned—can be semantically characterized by a simple set of matrices. Central

will be the system S⋆
fde

, which makes up the first-degree fragment of Daniels’ S⋆. Properly

speaking, Angell first described this deductive system in passing in his abstract (9), in which

S⋆
fde

is described as the logic corresponding to the intersection Efde ∩ PAIfde.
3 An axiomatic

account of S⋆
fde

was independently introduced by Daniels in (55), in which Daniels declared

1Included among these systems is Parry’s original AI of (142) and (143) for which no corresponding
semantics has been introduced.

2Although Daniels’ semantics does not immediately conform to the underlying semantical picture de-
scribed in, e.g., Definitions 2.4.1 and 2.4.4, the intuitions implicit in his work on these systems (e.g., (54),
(55), (56)) bear many similarities to Parry’s own work. Thus, it is plausible that S⋆ might be given semantics
within a modification of Fine’s framework, although we set this aside for future work.

3Proof of the identity of S⋆
fde

and Angell’s Efde ∩ PAIfde has not appeared in the literature but proof of
this identity will be provided in Observation 5.4.1.
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without proof that S⋆
fde

coincided with the first-degree fragment of his logic with ‘story

semantics.’4 The truth-functional semantics for this system was independently discovered

by Graham Priest in (156) as “FDEϕ” in the context of the catus.kot.i, an element of Buddhist

dialectics, in which Priest enriches the truth values of Efde (cf. Definition 3.1.17) with a fifth

semantical value u (called “e” by Priest) that formalizes an alethic value corresponding to

emptiness, following Priest’s interpretation of remarks made by the Buddhist philosopher

Nāgārjuna.

The semantical presentation of S⋆
fde

we will employ, like Priest’s account in (156), can be

interpreted as an enrichment of the set of truth values VEfde
with an additional, infectious

value.

Definition 4.1.5. The logic S⋆
fde

is the deductive system induced by the matrix MS⋆
fde
:

〈VS⋆
fde
,DS⋆

fde
, f ¬̇

S⋆
fde

, f ∧̇
S⋆
fde

, f ∨̇
S⋆
fde

〉

Where VS⋆
fde

= {t, b, u, n, f} ( i.e., VEFfde
∪ {u}) and DS⋆

fde
= {t, b}.

The truth functions f ¬̇
S⋆
fde

, f ∧̇
S⋆
fde

, and f ∨̇
S⋆
fde

are defined by the matrices:

f ¬̇
S⋆
fde

f ∧̇
S⋆
fde

t b u n f f ∨̇
S⋆
fde

t b u n f

t f t t b u n f t t t u t t

b b b b b u f f b t b u t b

u u u u u u u u u u u u u u

n n n n f u n f n t t u n n

f t f f f u f f f t b u n f

The Belnap-Dunn system Efde and the Deutsch-Oller system Sfde can be clearly defined by

placing additional conditions on the valuations of V,e.g., Efde corresponds to validity with

respect to S⋆
fde

valuations v such that u /∈ v[At].

4Problematically, Daniels, like Deutsch, calls his intensional system “S” in (55), ensuring that the notation
“Sfde” is ambiguous when unqualified. Decorating Daniels’ system with a star was introduced in (79) to
distinguish the two first-degree systems.
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The final first-degree conceptivist system playing a role in this chapter is Johnson’s system

RC from (116), semantics for which was described in Definition 2.3.3.

Inspection of the matrices yields a few important facts concerning the relationship be-

tween these systems. In particular, we provide a particular schematic analysis of validity

in the systems S⋆
fde

, Sfde, and RC. Recall Gödel’s conjecture of (101) that Parry’s system

of analytic implication AI would permit what Sylvan called a ‘double-barrelled’ analysis,

according to which the theoremhood of a formula A (or validity of an inference A ⊢ B) in

a deductive system L can be characterized by a pair of constraints: Validity in a distinct

system L′ in conjunction with the satisfaction of some syntactic criterion by the formula A.

We have noted that a property closely related to Gödel’s conjecture was confirmed for

PAI by Kit Fine in (81), in which it was demonstrated that the Lewis system S4 serves as

the “carrier logic” for PAI. In light of this, we will call an account of a containment logic in

which the logic is characterized by a distinct system L with a syntactic sieve a Gödel-Fine

analysis.

The truth functional semantics for S⋆
fde

is sufficiently rich to allow the Gödel-Fine analysis

of S⋆
fde

.

Observation 4.1.1. A �S⋆
fde
B iff















A �Efde
B, and

At(B) ⊆ At(A)

Proof. For left-to-right, because all Efde valuations are trivially S⋆
fde

valuations, that A �S⋆
fde

B entails that A �Efde
B. Moreover, it is shown in (140) that for the system Sfde—of which

S⋆
fde

is itself a subsystem—A �Sfde B entails that At(B) ⊆ At(A). As a subsystem of Sfde,

whenever A �S⋆
fde
B, we may infer that A �Sfde B and by transitivity, that At(B) ⊆ At(A).

For right-to-left, suppose that A �Efde
B and that At(B) ⊆ At(A) although A 2S⋆

fde
B.

Then there is an S⋆
fde

valuation v such that v(A) ∈ DS⋆
fde

but v(B) /∈ DS⋆
fde

. That v(A) ∈ DS⋆
fde

and At(B) ⊆ At(A) tells us that for no p ∈ At(B) is v(p) = u. By the truth functional
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nature of S⋆
fde

, any valuation v′ agreeing with v on the elements of At(A) will likewise map

A to an element of DS⋆
fde

with v′(B) /∈ DS⋆
fde

.

Likewise, Observation 2.3.8 can be rephrased in the style of the Gödel-Fine analysis of Sfde:

Observation 4.1.2. Γ �Sfde A iff















Γ �LP A, and

At(A) ⊆ At[Γ]

In a sense, then, S⋆
fde

and Sfde are the conceptivist fragments (or, more formally, the ⊢-Parry

fragments) of Efde and LP, respectively.

Johnson’s RC admits a similar analysis. Let Con(Γ) represent the statement that Γ is

classically consistent, i.e., that there is a classical valuation mapping each of its formulae to

t and let �CL denote semantic consequence for the classical propositional calculus. Then we

have the analysis:

Observation 4.1.3. Γ �RC A iff































Con(Γ),

Γ �CL A, and

At(A) ⊆ At[Γ]

These systems bear a tidy relationship with one another, which can be made still tidier

by defining the first-degree fragment of PAI. As (166) observes, PAIfde enjoys the following

property:

Observation 4.1.4. Γ �PAIfde A if















Γ �CL A, and

At(A) ⊆ At[Γ]

Then we have the series of containments pictured in Figure 4.2. With these formal remarks,

we are prepared to move forward.
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RC

PAIfde

S⋆
fde

Sfde

Figure 4.2: Relationships Between ⊢-Parry Systems

4.2 The Failure of Addition

Recall that after identifying Parry’s position with the failure of Addition, Sylvan rejects the

Kantian interpretation of conceptivist logics. If the quasi-Kantian motivation for Parry’s

intuitions is indeed ‘narrow and arbitrary’ and fails to motivate a rejection of Addition, then

what sort of case can be made in support of rejecting Addition? By casting the net a bit more

widely and examining a number of logical and linguistic enterprises that each independently

entail a rejection of the principle of Addition, we may begin filling in alternative motivations

for conceptivism. Some of the areas we will discuss are the so-called ‘logics of nonsense’ and

species of disjunction described as ‘intensional disjunction,’ ‘free choice disjunction,’ and

‘cut-down disjunction.’5

4.2.1 Meaninglessness

The class of logics of nonsense, such as the truth-functional systems described by Dmitri

Bochvar and Sören Halldén in (31) and (104), respectively, are held together by the thesis

that some syntactic objects masquerading as propositions are in fact meaningless, in some

sense of the term. Supposing that this is the case, the usual semantics for classical logic

is ill-equipped to account for such a circumstance as it presupposes that all formulae are

5A thorough investigation into the nature of disjunction in general can be found in (113).
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meaningful ‘out of the gate’; in general, semantic treatments of logics of nonsense employ a

truth-value corresponding to meaninglessness or nonsense.6 Bochvar’s system—with which

we are primarily concerned—has two sets of connectives, ‘external’ connectives which act

as projection operators mapping all arguments to either truth or falsity and ‘internal,’ non-

projective connectives.

Importantly, the system enjoys what Lennart Åqvist labels the ‘doctrine of the predom-

inance of the atheoretical element,’ that is, that with respect to the internal connectives

(which Bochvar takes to correspond to the classical, logical connectives of, e.g., the Prin-

cipia Mathematica), the meaningless value is ‘infectious.’ Nonsense propagates from atomic

formulae to complex formulae so that a subformula’s being nonsense entails that the complex

formula is likewise nonsense when all the connectives in the complex formula are internal

connectives.

We may recall the internal or classical calculi of Bochvar and Halldén defined in Defini-

tions 2.2.4 and 2.2.5, respectively and note that these systems differ only in that both t and

u are designated in C0.

By examining the matrices, the infectiousness of the nonsense value u is sufficiently clear

to demonstrate the failure of Addition in Σ0. Bochvar’s system is truth-functional, whence

altering v to a valuation v′ mapping some B /∈ At(A) to u will not interfere with its mapping

A to t. But by the infectiousness of the nonsense value, v′ will map A ∨̇ B to the nonsense

value with ‘∨̇’ denoting internal disjunction. So A 2Σ0 A ∨̇ B.7 The motto of the Bochvar

account might be summarized as ‘all subformulae must be meaningful.’ In other words, in

natural language, we have the following property:

6But cf. Timothy Smiley’s interpretation in (177), according to which a formula assigned the meaningless
value of Bochvar has a sense but merely fails to denote a proper truth-value.

7Bochvar’s system fails to satisfy Parry’s Proscriptive Principle only because, e.g., contradictions cannot
take a designated value and B follows from A ∧̇ ¬̇A vacuously.



CHAPTER 4. A COMPUTATIONAL INTERPRETATION OF CONCEPTIVISM 107

A ∨̇ B is true iff































either A is true or B is true, and

A is meaningful, and

B is meaningful

A further consequence is more epistemic in nature. Bochvar’s intuition concerning infectious

nonsense values entails that in general the truth of a formula A ∨̇ B cannot be established by

merely examining, e.g., A and determining that it is true. The doctrine of the predominance

of the atheoretical element entails that in order to confirm that a disjunction is true, for each

disjunct some procedure must be carried out to check whether both disjuncts are meaningful.

4.2.2 Intensional Disjunction

In Section 1.1.2, one of the distinguishing features of relevant logics was identified as the

rejection of Disjunctive Syllogism. Yet this rejection was cited in the context of disjunction

as employed by the proof of ECQ outlined by C. I. Lewis, a species of disjunction that

Anderson and Belnap label the ‘truth-functional “or”.’ With respect, however, to intensional

disjunction, there are instances in which instances of Disjunctive Syllogism are in fact valid

inferences:

On the other hand the intensional varieties of ‘or’ which do support the dis-

junctive syllogism are such as to support corresponding (possibly counterfactual)

subjunctive conditionals. When one says ‘that is either Drosophila melanogaster

or D. virilis, I’m not sure which,’ and on finding that it wasn’t D. melanogaster,

concludes that it was D. virilis, no fallacy is being committed. But this is pre-

cisely because ‘or’ in this context means ‘if it isn’t one, then it is the other.’(6,

p. 22)

This condition—that a disjunction is conditional-supporting—is the hallmark of an inten-
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sional disjunction on the relevant account, in which it is often symbolized by ‘⊕’ and referred

to as ‘fission.’ The disjuncts in the Drosophila case ostensibly share a relationship lacking in,

e.g., the disjuncts in the statement ‘either Napoleon was born in Corsica or else the number

of the beast is perfect,’ namely a conditional assertion that the falsehood of one entails the

truth of the other.

If an intensional disjunction carries with it the assertion of such a relationship, then

Addition must fail with respect to fission. To use Anderson and Belnap’s example, while

it is true that Napoleon was born in Corsica, it hardly follows that the falsehood of this

statement would counterfactually entail any arbitrary proposition.

If it is a criterion of relevance between disjuncts that distinguishes the species of disjunc-

tion modulo which Addition is valid from those for which it fails, then it is not immediately

apparent what the failure of Addition for intensional disjunction has to do with the failure

of Addition for Bochvar’s disjunction. The internal disjunction of Bochvar naturally seems

to fall into the category of truth-functional disjunctions. Models for Σ0 are, after all, just

functions from atoms to truth values. Moreover, Anderson and Belnap’s criterion that in-

tensional disjunctions ‘support corresponding... subjunctive conditionals’ (6, p. 22) seems

to fail for Bochvar’s internal disjunction. For example, Anderson and Belnap’s example of a

paradigmatic non-intensional disjunction—‘either Napoleon was born in Corsica or else the

number of the beast is perfect’—appears to be true by the lights of a logic of nonsense. Each

disjunct is plausibly meaningful and the former is true although there remains no support

for the corresponding conditional.

However, viewing the two species of disjunction available to the relevant logician from a

different perspective in fact sheds light on this situation. The rule for introducing fission on

the right in Gentzen-style sequent calculi (as presented in (160)) is as follows:

Γ ⊢ ∆, A, B
[⊕R]

Γ ⊢ ∆, A⊕ B
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Reviewing (98), this also can be seen as an instance of the right introduction rule for the

multiplicative disjunction ` of Jean-Yves Girard’s linear logic, a species of disjunction for

which Addition fails as well.

If we look to the proof theory for Σ0, however, we find that proof theoretically, the truth-

functional disjunction of Bochvar and the intensional disjunction of Anderson and Belnap

or Girard behave identically. In Marcelo Coniglio and Maŕıa Corbalán’s Gentzen-style proof

theory for Σ0 found in (48), the introduction rule for disjunction has the following form:

Γ ⊢ ∆, A, B
[∨̇ R]

Γ ⊢ ∆, A ∨̇ B

In isolation, then, both fission and Bochvar’s disjunction appear to be mere notational vari-

ants of one another.

When one includes the structural rule of Right Weakening, that is,

Γ ⊢ ∆[Wk R]
Γ ⊢ ∆, A

it is immediate that the rules corresponding to classical and intensional disjunction corre-

spond in the sense that a sequent Γ ⊢ ∆, A ∨̇ B is derivable if and only if Γ ⊢ ∆, A ⊕ B

is derivable. In other words, granted Right Weakening, we can introduce extensional and

intensional disjunction in precisely the same contexts.

It is reasonable to question whether one ought to identify what Bochvar calls ‘disjunction’

with disjunction as is practiced in natural language. It seems that this observation provides

a fair response, via the famous remark of Gentzen:

The introductions represent, as it were, the ‘definitions’ of the symbols concerned,

and the eliminations are no more, in the final analysis, than the consequences of

these definitions.(95, p. 80)

From the standpoint of Gentzen, then, these connectives have identical meanings; the dif-

ferences are a function of external factors, e.g., what structural rules are accepted.
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A further semantic point can be made from observing the rules for fission and internal

disjunction. Bochvar’s intuition concerning infectious nonsense values entails that in general

the truth of a formula A ∨̇ B cannot be established by merely examining, e.g., A and

determining that it is true. The doctrine of the predominance of the atheoretical element

entails that in order to confirm that a disjunction is true, for each disjunct some procedure

must be carried out to check whether both disjuncts are meaningful.

This picture is only reinforced by looking to the proof theory. We are unable to add new

formulae at will to the succedent position in order to yield new disjunctions. Each disjunct

must have been introduced into the proof by some nontrivial means, i.e., there was some

rationale for introducing each disjunct. Along with the relevant logicians, one can interpret

this criterion as a demand that each disjunct must bear relevance to the set of assumptions.

However, we can view this just as easily as the demand for the existence of a procedure or

mechanism by which each disjunct has been introduced.

4.2.3 Free Choice Disjunction

A further cue may be taken from the analysis of ‘free choice disjunction’ as described by

Thomas E. Zimmerman in (201). Zimmerman’s interpretation of disjunction is intended to

solve a puzzle about the distribution of modal operators over disjunction in natural language,

the so-called ‘free choice permission’ problem:

how can it be that sentences of the form ‘X may A or B’ are usually understood

as implying ‘X may A and X may B’ ?(201, p. 255)

There is no operator © in the standard modal logics according to which ©(A ∨̇ B) entails

©A ∧̇ ©B, although when ‘©’ is read as a deontic operator representing ‘agent α may...’

this seems to follow in natural language.8 The puzzle is thus how to find a reasonable and

8There are operators which satisfy this inference, e.g., da Costa’s consistency operator ◦ (an account of
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intuitive semantical model supporting this type of inference.

Zimmerman’s solution to this problem involves an atypical, formal treatment of disjunc-

tion, in which a disjunction A ∨̇ B is read as a list of epistemic possibilities, i.e., ‘A is

possible (for all I know) and B is possible (for all I know).’ The näıve semantical approach

to disjunction treats propositions as collections of epistemic possibilities and invokes the

following three conditions to evaluate a disjunction A ∨̇ B:

A ∨̇ B is true iff































either A is the case or B is the case, and

A might be the case, and

B might be the case

Zimmerman offers ‘closed’ and ‘open’ readings of disjunction. A disjunction is called closed

if at least one of the disjuncts is thought to hold and open if the list is not believed to be

exhaustive, i.e., closed disjunction must satisfy all three conditions while open disjunction

must satisfy only the latter two.

Importantly, disjunction enjoys what might be read as a ‘disjunction-as-weak-conjunction’

paradigm since Zimmerman’s approach unavoidably makes use of conjunction. With respect

to the ‘list’ reading, a list is in a strong sense a conjunction of items; on the above truth

condition, one must employ conjunction to ensure that the second and third clauses are sat-

isfied. Hence, that it is a disjunction over which ‘may’ distributes is thus merely apparent;

the list’s being a conjunction of possibilities entails that ‘may’ distributes over a conjunction.

This is far less problematic: in virtually any modal logic stronger than S1, necessity and

possibility operators distribute over conjunction.

That Addition must be rejected relative to either species of free choice disjunction is clear.

That A is true says nothing concerning whether B is possible; indeed, B may be thought to

be impossible, whence A ∨̇ B will not hold. Hence, with respect to free choice disjunction,

which may be found in (42)) or the ‘...is meaningful’ operator + of Halldén’s nonsense logic introduced in
(104). Yet there is no clear way to interpret such operators as giving rise to a reading of ‘may.’
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A ∨̇ B does not follow from A. We will consider the motto of free choice disjunction to be

‘all subformulae must be possible.’

The problem of free choice permission and purported solutions to it will play a role in

matters to be discussed in Section 4.4.1; for now, we will continue surveying paradigms of

disjunction in which Addition fails.

4.2.4 Cut Down Disjunction

So, one might challenge the validity of Addition out of concerns related to meaninglessness

or related to relevance. Although these appear to be prima facie distinct concerns, the two

begin to coincide in the treatment of disjunction described by Melvin Fitting as ‘cut-down

disjunction.’

In (91), Fitting provides an account of generalizing the interpretation of the internal

Bochvar logic (represented in Fitting’s paper as the weak Kleene three-valued logic) to the

case of bilattices. Fitting considers bilattices B = 〈B,≤t, ≤k〉, where ≤t is the ‘truth

ordering’ on the underlying set B and ≤k represents the ‘information ordering.’ For elements

a, b ∈ B, a ≤k b means that a is more informative than b; e.g., in the case in which

experts supply both evidence for and against a formula A, this is maximally informative or

constituting ‘information overload.’ Each ordering gives rise to independent join and meet

operators; ⊕ and ⊗, respectively, in the case of ≤k and ∨ and ∧ the case of ≤t.

Continuing with this example: Fitting offers the interpretation of the semantical value of

a formula A as a pair 〈Pi, Ni〉, where Pi andNi are construed as groups of experts (alternately,

collections of data or evidence). Pi denotes those in support of A and Ni denotes those against

A, respectively. Such an account of semantical values is closely related to the interpretation

offered by Belnap in the paper (23), in which an artificial reasoner evaluates formulae A

in terms of whether it has received affirmations or denials of A. On this interpretation,

the operation ∨ is defined so that the alethic join of elements 〈P0, N0〉 and 〈P1, N1〉 is
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〈P0 ∪ P1, N0 ∩ N1〉. This gives a natural interpretation of disjunction, which, indeed, is in

harmony with Belnap’s interpretation. In this setting, the operations ⊕ and ⊗ are defined so

that 〈P0, N0〉⊕〈P1, N1〉 =df 〈P0∪P1, N0∪N1〉 and 〈P0, N0〉⊗〈P1, N1〉 =df 〈P0∩P1, N0∩N1〉.

In the case of the internal Bochvar logic, when considering the semantical status of a

conjunction or disjunction, Fitting offers an interpretation in which one is interested only in

the opinions of experts who have opined on both conjuncts or disjuncts. As it ‘cuts down’ the

field of acceptable data, Fitting describes this species of disjunction as ‘cut-down disjunction.’

Let us sketch this out: Given a formula A with value 〈P0, N0〉, the value assigned to A⊕¬̇A

is 〈P0 ∪ N0, P0 ∪ N0〉. The intended reading of the value 〈P0 ∪ N0, P0 ∪ N0〉 is an ordered

pair each element of which comprises the collection of experts who maintain an opinion

concerning A, that is, those experts who have either provided information supporting A or

have provided evidence against A. We will say that JAK is the cut-down of A that represents

the proposition that there is sufficient evidence to evaluate A. Then the operation which

corresponds to evaluating a disjunction against the opinions of the group of experts opining

on both disjuncts will be defined as follows:

A ▽ B =df (A ∨̇ B)⊗ JAK⊗ JBK

Reading ⊗ as a species of conjunction, it becomes apparent that Bochvar’s logic admits

an interpretation that bears at least a superficial resemblance to Zimmerman’s free choice

disjunction. Fitting’s analysis of this type of disjunction is that A ∨̇ B is designated if A ▽ B

is designated on the bilattice. In English,

A ▽ B is true iff































some group of experts X supports either A or B, and

all members of X have opined on A, and

all members of X have opined on B
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Addition clearly fails in the context of cut-down disjunction as well; that a group of experts

has affirmed A to be true does not entail that anyone has provided any evidence concerning

B, either in its favor or against it.

We will return to examine Fitting’s cut-down operations with much more detail in Chap-

ter 6.5. For now, note that, beyond the reappearance of a tripartite analysis of disjunction,

Fitting’s interpretation of cut-down disjunction also supports the theme of the necessity of

some procedure surveying each component of a formula that we had found in each of the

above cases. That it is a requirement that all members of some group of experts have given

an assessment of each disjunct appears similar to the demand that such a psychological pro-

cedure exists (in the case of logics of nonsense) or a proof-theoretic procedure exists (in the

case of intensional disjunction in relevant and linear logics). In each species of disjunction

for which Addition fails, the demand that both disjuncts are surveyed in some manner is a

necessary condition for the truth of a disjunction A ∨̇ B.

4.3 Towards a Computational Interpretation

Although Fitting’s analysis of the internal Bochvar logic draws together some formal aspects

of nonsense and free choice disjunction contexts, it fails to bring together the notions of

meaningfulness and possibility. In the case of a disjunction, that one cuts down the data

to experts opining on each disjunct does not intuitively admit an interpretation in terms

of possibility, as experts uniformly condemning (i.e., opining negatively on) both disjuncts

would still make the cut. Nor does it say much about meaningfulness. Nevertheless, we

find the same tripartite scheme demanding that not only must one of the disjuncts be true,

but that each must possess some further property. That these species of disjunction admit

analyses so similar to one another in form suggests that they are related. In this section, we

consider an interpretation of conceptivist logic that harmonizes the Bochvar-Halldén demand
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that subformulae be meaningful with the Zimmerman-type demand that subformulae be

epistemically possible.

We may take a cue from John McCarthy’s computational interpretation—in terms of par-

tial functions—found in (132), in which a novel deductive system is introduced. McCarthy’s

system, while supporting Addition as a valid inference, abandons an inference similar to

Addition; while A � A ∨̇ B is accepted, A � B ∨̇ A is rejected. This is explained in terms of

the terminating (or not) of procedures tasked with evaluating subformulae.

Suppose that p is false and q is undefined; then... p ∧̇ q is false and q ∧̇ p

is undefined. This unsymmetry... turns out to be appropriate in the theory of

computation since if a calculation of p gives F as a result q need not be computed

to evaluate p ∧̇ q, but if the calculation of p does not terminate, we never get

around to computing q.(132, pp. 40–41)

Clearly, considering the truth of p ∨̇ q rather than the falsity of p ∧̇ q yields a similar result.

Arnon Avron and Beata Konikowska formalize the disjunction of ‘McCarthy logic’ in (18),

providing a matrix semantics for the McCarthy logic M:

Definition 4.3.1. The McCarthy logic M is defined by the matrix 〈VM,DM, f
¬̇
M
, f ∧̇

M
, f ∨̇

M
〉. The

extensions of the members of the matrix are given so that VM = {t, u, f}, DM = {t}, and the

truth functions are determined by the matrices:

f ¬̇
M

f ∧̇
M

t u f f ∨̇
M

t u f

t f t t u f t t t t

u u u u u u u u u u

f t f f f f f t u f

The evaluation of a complex formula in McCarthy logic is left-to-right, in what is sometimes

known as a ‘lazy evaluation.’ Consider, for example, a disjunction A ∨̇ B in which A is



CHAPTER 4. A COMPUTATIONAL INTERPRETATION OF CONCEPTIVISM 116

evaluated as t and B is assigned a value of u. In some paradigms in which the disjunction

is evaluated from left-to-right, the discovery that A is true to conclude that the disjunction

is true without having to consider the value assigned to B. If the assignment of the value u

to B indicates that a catastrophic error is triggered whenever one attempts to retrieve the

value of B, in those cases in which A ∨̇ B can be evaluated without retrieving a value for the

rightmost subformula B the accompanying error will be avoided. There exist programming

languages, such as Lisp, in which the ‘lazy,’ McCarthy-style operators exist alongside their

Boolean counterparts.

The nonsense value u has so far been given many readings: u represents ‘undefined’ in

the partial function reading, or nonsense in the Bochvar-Halldén setting, or ineffability in

Priest’s interpretation of S⋆
fde

. In the present case, however, the value u may be given a more

concrete readings as ‘the routine evaluating this formula fails to terminate.’9

McCarthy assumes that the system evaluates a formula sequentially rather than in par-

allel. If the routine evaluates p and finds it to be true, it terminates and evaluates the

complex formula as true, even if it would have been stuck in a loop upon evaluating q. In

this case, the latter procedure is never called and hence never given the opportunity to fail.

However, under any circumstance in which the subroutine evaluating p fails to terminate,

the complex routine evaluating the disjunction will itself never terminate; it will never get

around to calling the procedure to evaluate q. In a parallel context, the counterpart slogan

will be that if one of the subprocedures evaluating p and q fails to terminate, p ∨̇ q will never

be evaluated.

This motivates us to ask under which conditions a system may fail to terminate while

evaluating a subformula, and whether such occasions say anything about possibility and

meaningfulness.

9The truth value u is represented as ‘e’ in (18) for ‘error.’
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4.3.1 Ill-Formedness

We have observed in foregoing sections (e.g., Sections 2.2 and 3.2.3) the coincidence of the

themes of meaningfulness and possibility implicit within the context of logics of nonsense. If

we recall the remarks made by Åqvist while describing his own system of nonsense logic, who

concedes in (1, p. 151) that there are circumstances in which the doctrine of the predomi-

nance of the atheoretical element clearly holds. In labeling ill-formed formulae ‘statements’

and professing that they exhibit a particular type of semantical behavior, Åqvist may be

interpreted as suggesting that ill-formed formulae constitute paradigmatic examples of syn-

tactical objects that, while meaningless, still demand a logical analysis. Indeed, Åqvist’s

rejection of this doctrine is due only to the intuition that the class of ill-formed formulae

does not exhaust the class of meaningless statements.

We may try to apply Åqvist’s comment associating meaningfulness with well-formedness

to shine light on the interpretation of disjunction in Σ0 and C0. Before judging some string

of symbols to be true (or false), one must determine that the string is in fact a well-formed

formula and this demands that all its components must be surveyed. Otherwise, there exists

an open invitation to error.

We can employ a concrete illustration—along the lines of the treatment of conjunction in

(132)—to demonstrate that there is something intuitively correct about this picture. Suppose

for a moment that merely securing the truth of the first disjunct were sufficient to establish

the truth of a disjunction. Then, for example, we could design an algorithm to evaluate a

string of symbols interpreted as positive disjunctive formulae as represented in Figure 3.

At first blush, examining a few cases suggests that such an algorithm is sufficient for the

task. If p is true (i.e., v(p) = 1) and we feed in pp ∨̇ qq, then the algorithm returns true

(by assigning a value of 1 to x); if we feed in pq ∨̇ pq, it returns true. Likewise, if v(p) and

v(q) are both 0, the algorithm will not affirm the string pp ∨̇ qq. The algorithm treats these



CHAPTER 4. A COMPUTATIONAL INTERPRETATION OF CONCEPTIVISM 118

procedure Disjunctive(v,s)
read s
if s = pi then

if v(pi) = 1 then

x← 1
return

else

move Right
call Disjunctive

end if

else

move Right
call Disjunctive

end if

end procedure

Figure 4.3: McCarthy-style Algorithm Interpreting Disjunction

formulae correctly and, more importantly, it apparently does so for the right reason: It finds

a disjunct that is valued as true and, on that basis, reports that the disjunction is true.

Consider, however, the case in which p is true and one inputs the string pp ∨̇ ∨̇q to the

algorithm. It reads a propositional variable in the initial position of the string, proceeds

to examine the variable, and, finding this disjunct to be true, judges the entire string to

represent a true formula. Arguably, pp ∨̇ ∨̇q should not be affirmed as a true formula by

the algorithm and, importantly, the clear source of the error is that the algorithm failed to

discover that the second ‘disjunct’ was nonsense.10

Meaningfulness as well-formedness also gives an account of possibility similar to that

expressed in Zimmerman’s free choice disjunction. In a very weak sense, a formula’s being

well-formed is a kind of possibility. While, e.g., the likelihood of a system evaluating pp ∧̇

¬̇ pq as 1 and that of its evaluating pp ∧̇ ¬̇q as 1 are equal, there is still a sense in which

10To this, one might object that it would not be incoherent to evaluate a ‘statement’ of the form ‘The
half life of uranium-238 is approximately 4 billion years, or or or and’ as true. From a phenomenological
perspective, human beings encounter language not in toto but in a stream. Hence, it is plausible to suggest
the evaluation of complex statements by human agents resembles the ‘lazy,’ McCarthy-style paradigm more
closely than it resembles the Boolean picture.
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the former is more possible than the latter. When we draw the conclusion that pp ∧̇ ¬̇ pq is

unsatisfiable, we at least know what it would be for a valuation to map it to the truth.

For example, when determining that A ∧̇ ¬̇A is false by use of indirect proof, it is

necessary that we recreate the steps that would be necessary for its truth. We know that

were A ∧̇ ¬̇A true, both A and ¬̇A would be true and judge this to be impossible; but this

procedure only makes sense against some dim understanding of what conditions its truth

would presuppose. But no such story is available for the string pA ∧̇ ¬̇q; if we try to rehearse

the procedure on this string, we are faced with evaluating the semantical value of the symbol

‘¬̇.’

To sharpen this point, we observe that on the nonsense-as-ill-formedness reading any

procedure evaluating such formulae necessarily maintains some procedure by which each

component of the formula is surveyed. Although the algorithm in Figure 3 is clearly an

oversimplification, it underscores that without such a resource, e.g., McCarthy’s procedure

in some cases is unable to distinguish between pp ∨̇ qq and pp ∨̇ ∨̇q. There must exist

some active process that provides an assurance that the formula is meaningful, whether

this process is psychological or mechanical. In general, that a formula A is epistemically

possible, as free choice disjunction requires, is read as an existential statement, i.e., that

an alternative or scenario exists according to which A obtains. This is apparent in, e.g.,

Hintikka’s analysis of the operator Pa corresponding to epistemic possibility with respect

to an agent a. In regard to a ‘model set’ µ—a consistent set of formulae representing a

knowledge state—Hintikka outlines the intuitive condition:

If Pap ∈ µ then there is at least one alternative µ∗ to µ, (with respect to a) such that

p ∈ µ∗.(107, p. 34)

If we allow that well-formedness yields a weak kind of possibility, the analogy can thus be

extended to provide an analogue of this existential aspect: The existence of a procedure



CHAPTER 4. A COMPUTATIONAL INTERPRETATION OF CONCEPTIVISM 120

actively checking and affirming the well-formedness of a variable or subformula is akin to the

existence of an epistemic scenario witnessing the intelligibility or possibility of some formula.

4.3.2 Declaration of Variables

We find precisely such a species of possibility in the theory of computation. In defining

an environment, we note that the environment is responsible for ensuring the possibility of

semantical interpretations of syntactical symbols. Abelson and Sussman describe this in (2,

p. 8) in the following terms:

It should be clear that the possibility of associating values with symbols and

later retrieving them means that the interpreter must maintain some sort of

memory that keeps track of the name-object pairs. This memory is called the

environment.

A necessary condition for the possibility of a symbol’s having meaning is that there be some

process in the environment associating the syntactical object with a meaning. Note that this

type of possibility is existential in nature, just as Hintikka’s definition of epistemic possibility.

In order for A to be possible in this weak sense, there must exist a resource allocated by the

interpreter tasked with its interpretation.

More importantly, we find that this notion of possibility is precisely aligned with the

notion of meaningfulness :

In an interactive language such as Lisp, it is meaningless to speak of the value

of an expression such as (+ x 1) without specifying any information about the

environment that would provide a meaning for the symbol x. (2, p. 11)

In practice, the guarantee that some atom is possible is secured by the commands to declare

or initialize a variable.
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procedure Declaration(y)
boolean p← 1
x← (p or q)

end procedure

Figure 4.4: Algorithm with Undeclared Variables

In, e.g., C++, in order to render some syntactical object p usable as a Boolean variable,

one must inform the interpreter that p is to be used in this manner. When the program is

run, an instruction will be made allocating sufficient memory for p to take a value. To declare

the Boolean variable p is to allocate the necessary resources; to initialize the Boolean variable

is to declare it and simultaneously assign it a value. Without a variable being declared, it

is meaningless ; even if a formula is well-formed, if its atomic variables have not yet been

declared, it is no more serviceable than an ill-formed string of symbols.

The distinction between declaring a variable and initializing a variable also has an a

priori connection to the notion of possibility implicit in free choice disjunction. In the

former case, memory is merely allocated for the variable; in the latter, not only is the

memory allocated but it is also employed by assigning an initial value to the variable. In

other words, while initializing the variable gives an evaluation, declaring the variable merely

ensures the possibility of an evaluation.

Let us examine the fate of the Principle of Addition by considering a program, represented

by the pseudocode in Figure 4.4. The algorithm is trivially a function of y but operates by

initializing the Boolean variable p with the value 1 before proceeding to return the value of

p or q, where ‘or’ denotes logical (i.e., Boolean) disjunction.

When this algorithm is run, the compiler will arrive at the symbol q and not know how

to respond, yielding an error. q, having not been declared, is merely a symbol like any other.

Hence, the program will terminate with a value of 1 occupying the memory set aside for the

Boolean variable p although it will not return a value of 1 with respect to p or q. What this

means is that Addition is not valid in this setting.
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4.3.3 Three Concrete Cases

The possibility-as-declaration-of-a-variable picture yields an interesting, if näıve, interpreta-

tion of a number of containment logics already in the literature. Before proceeding to this,

however, we take a detour to define what will be called Belnap variables.

A Boolean variable may in principle be assigned only a value of either 1 or 0, correspond-

ing to truth (t) and falsity (f), respectively, although the fact that a variable may be declared

without being initialized suggests a de facto third value. In Section 4.1.2, we defined seman-

tic consequence for the first-degree system Efde, whose set of truth values is {t, b, n, f}. The

semantical approach to this system and its values is given a robust interpretation in (23)

and (24) which serves to generalize the notion of a Boolean variable.

Belnap worries about a computer receiving contradictory data from distinct sources,

e.g., two sensors reporting irreconcilable states of affairs to the system. Classically, such a

situation would be trivializing, that is, it would render every piece of data unusable. Belnap,

however, rightly suggests that a malfunctioning sensor should not interfere with, for instance,

the arithmetical operations of the system. As a solution, Belnap considers values beyond

merely t and f: the value b, i.e., ‘both true and false’ and the value n, i.e., ‘neither true nor

false.’

Belnap anticipates the objection that formulae cannot in reality be both true and false

by taking an explicitly epistemic approach. While one might not be able actually to know

that a formula is both true and false, one can certainly be told that the formula is both true

and false, and can indeed receive these reports from sources regarded as equally reliable.

Belnap’s position, as related in (24), is that ‘the answer does not have the ontological force,

“That’s the way the world is,” but rather the epistemic force, “That’s what I’ve been told

(by people I trust to get it generally right)”.’

Define a Belnap variable to be a variable accepting the Belnap-like values so that any
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procedure may only increase or leave untampered the variable’s information rather than

decrease it, that is, so the variable can not be cleared. This is in keeping with the Belnapian

paradigm in (23), in which a computer is in a sense the passive recipient of data accumulating

over time. A näıve interpretation immediately follows from the demand that a formula B is

a consequence of Γ iff in every program with Boolean variables terminating so that A ∈ Γ

has a value of 1, B is valued as 1. While such an interpretation fails to enjoy the Proscriptive

Principle—and is thus not a conceptivist system—it does suggest a semantical approach to

other systems.

A few complications of this scheme immediately yield new interpretations for conceptivist

systems already present in the literature. We will introduce three consequence relations the

semantics of which are given in terms of programs with respect to sets of formulae Γ ⊆ L

and formulae A ∈ L . The first involves programs for systems employing Boolean variables:

Definition 4.3.2. Γ �⋆
1 A iff there exists a program employing Boolean variables terminating

with all B ∈ Γ assigned a designated value and for all such programs, upon termination A

is assigned a designated value.

The second relation is defined for programs employing Belnap variables that introduce values

only by initialization, i.e., in which one must assign a value to a variable upon declaring it.

Definition 4.3.3. Γ �⋆
2 A iff for all programs employing Belnap variables introduced only

by initialization, if the program terminates with all B ∈ Γ assigned a designated value, then

A is assigned a designated value.

Of course, in practice, one can declare a variable p without initializing it. If this is considered,

we can define a further relation:

Definition 4.3.4. Γ �⋆
3 A iff for all programs employing Belnap variables, if the program

terminates with all B ∈ Γ assigned a designated value, then A is assigned a designated value.
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Now, if we consider the first-degree systems surveyed in Section 4.1.2, we find that the above

relations, defined in terms of programs, correspond to the consequence relations for RC, Sfde,

and S⋆
fde

, respectively.

We will now proceed to prove these equivalences:

Observation 4.3.1. Γ �⋆
1 A iff Γ �RC A

Proof. Recall from Section 4.1.2 that Johnson’s conceptivist propositional calculus RC enjoys

the property that

Γ �RC A iff































Con(Γ),

Γ �CL A, and

At(A) ⊆ At[Γ]

.

We can employ this analysis to prove this observation.

For right-to-left, suppose that Γ �RC A. Then, from Con(Γ), there exists a classical

valuation v such that v(B) = t for all B ∈ Γ. Such a valuation can clearly serve as the basis

for a program with Boolean variables assigning all formulae in Γ a value of 1 by initializing

each p ∈ At[Γ] and assigning appropriate values. Moreover, in any such program, that

Γ �CL A ensures that the value of A will be 1. Hence, we reason that Γ �⋆
1 A.

For left-to-right, suppose that Γ �⋆
1 A. Then from the existence of a program π such

that all formulae in Γ are assigned a value of 1, we can recover a classical valuation v

witnessing that Con(Γ). Moreover, Γ �⋆
1 A entails that Γ �CL A. Suppose for contradiction

that Γ 1CL A. Then there exists a valuation v′ such that v′(B) = t for each B ∈ Γ while

v′(A) = f. But the equivalence of Boolean operations and classical truth functions entails

that from v′ we could write a program assigning all B ∈ Γ a value of 1 while assigning A a

value of 0, contradicting that Γ �⋆
1 A.

Finally, we can observe that this entails that At(A) ⊆ At[Γ]. Suppose that Γ �⋆
1 A holds

although At(A) contains a variable p not appearing in any formula in Γ. Then let π be the
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program witnessing the satisfaction of both Γ and A and let π′ be that program that differs

from π only in not declaring p. Then each B ∈ Γ will receive a value of 1 in π′ although

attempting to retrieve a value for A will result in error.

On the basis of Γ �⋆
1 A, we have proven each of the three conditions that are together

equivalent to Γ �RC A.

Observation 4.3.2. Γ �⋆
2 A iff Γ �Sfde A

Proof. We first recall some observations concerning Sfde. We may recall that Observation

4.1.2 shows that Sfde consequence is equivalent to LP consequence in conjunction with the

criterion that all atoms appearing in the succedent formula appear in the set of assumptions.

Moreover, by the semantics described in Definition 2.3.5, we may observe that LP is the

restriction of Efde to the values {t, b, f}. By the foregoing discussion, Efde is the logic by

which Belnap variables operate.

Now, for left-to-right, suppose that Γ �⋆
2 A. As we are employing Belnap variables, this

entails that Γ �Efde
A and, as a subsystem of LP, this entails that Γ �LP A. To show that this

entails that At(A) ⊆ At[Γ], suppose that there exists a variable p ∈ At(A) not appearing

in any formula in Γ. As there is an Efde valuation that maps all formulae to a designated

value, Γ �⋆
2 A does not hold vacuously and there exists a program π terminating with all

formulae in Γ ∪ {A} assigned a designated value. Consider a program π′ differing from π

only by deleting the line declaring the variable p. As p does not appear in any B ∈ Γ, Γ

will take a designated value but A will not be evaluated as the system will not be able to

retrieve a value for p. Hence, At(A) ⊆ At[Γ]. The observation above guarantees that these

two conditions entail that Γ �Sfde A.

For right-to-left, suppose that Γ �Sfde A, i.e., both Γ �LP A and At(A) ⊆ At[Γ], and

suppose for contradiction that Γ 6�⋆
2 A. The latter condition entails that there be a program
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π terminating with all B ∈ Γ assigned a designated value, but A not be assigned a designated

value. That all formulae in Γ are assigned designated values must entail that all variables in

At[Γ] have been initialized and this, in conjunction with the assumption that At(A) ⊆ At[Γ],

entails that all variables appearing in A have likewise been initialized. Hence, the values of

all formulae in Γ and that of A form a subset of {t, b, f}. But this assignment corresponds to

an Efde valuation restricted to {t, b, f}, which is precisely an LP valuation, whence Γ 2LP A,

contradicting the assumption that this is valid in LP.

Observation 4.3.3. Γ �⋆
3 A iff Γ �S⋆

fde
A

Proof. The proof runs virtually identically to that of Observation 4.3.2 except for associating

the truth value n with the state of a variable when it is declared but not yet assigned a

value.

Despite admitting this computational interpretation, Sfde is introduced as a conceptivist

logic, in particular, as a means to repair some perceived shortcomings with Parry’s PAIfde. We

can stop to consider Sfde—and S⋆
fde

—in more detail and suggest that such systems present a

reasonable first step towards reconciling the prima facie unrelated notions of meaningfulness

and possibility with conceptivist systems.

First, if we examine the matrices for Sfde or S⋆
fde

, we note that these systems obey the

doctrine of the predominance of the atheoretical element and thus admit a reading similar

to that which we gave to Σ0. Indeed, each is a subsystem of Bochvar’s logic, as can be

confirmed by noting that the Sfde matrices restricted to {t, f, u} are the Σ0 matrices.

More importantly, disjunction in Sfde and S⋆
fde

also exhibits behavior approximating

Zimmerman’s notion of free choice disjunction. Let DSfde = {t, b}, the set of designated

values of Sfde. By examining the matrices we note that for appropriate valuations v, v(A ∨̇

B) ∈ DSfde if f ∨̇
P (v(A), v(B)) ∈ DSfde . But parsing the intension of f ∨̇

P is interesting in that,

as we saw in the work of Zimmerman and Fitting, there is an unavoidable use of conjunction.
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Then

v(A ∨̇ B) ∈ DSfde iff































v(A) ∈ DSfde or v(B) ∈ DSfde , and

v(A) 6= u, and

v(B) 6= u

Assuming the intuitive readings of ‘v(A) ∈ DSfde ’ as ‘A is the case’ and ‘v(A) 6= u’ as ‘A might

be the case,’ we find that the above mirrors Zimmerman’s free choice disjunction perfectly,

i.e.,

v(A ∨̇ B) ∈ DSfde iff































either A is the case or B is the case, and

A might be the case, and

B might be the case

Sfde thus gives us an example of a conceptivist logic that can be motivated on computational,

rather than Kantian, grounds. Moreover, by amending the notions of ‘meaningfulness’ and

‘possibility’ to render them suitable to a computational setting, Sfde also unifies the insights

underlying a pair of very distinct semantical traditions.

We thus see how tracing a computational theme yields a conceptivist logic

a. that is a subsystem of a nonsense logic (and is thus itself a nonsense logic) and

b. whose account of disjunction mirrors that of free choice disjunction.

Although näıve, the ‘declaration of variables’ interpretation is able to bring these disparate

rejections of Addition under one roof.

4.4 Enriching the Interpretation

A clear limitation of the näıve account of declaration of variables as outlined above is that

it is static and gives only a snapshot of the state of some program. But computation is
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not static; there are dynamic and temporal aspects of computation that were necessarily

suppressed in the foregoing discussion.

If we are to further develop the theme of reading conceptivist systems as having a salient

interpretation for computing, it will be fruitful to consider systems capable of respecting

this dynamism. This section intends to take some initial steps into doing just this by con-

sidering systems that enrich the declaration-of-variables picture with dynamic and temporal

apparatus.

4.4.1 Conceptivism and Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal system of propositional logic in which

the ✷ and ✸ operators of modal logic are given explicit interpretations—[α] and 〈α〉—where

α is interpreted as either a program or an action. Following Harel, Kozen, and Tiuryn in

(105), the interpretation of [α]A for a PDL formula A is ‘every execution of the program α

yields a state in which A is true.’ The dual connective 〈α〉 is read so that 〈α〉A is interpreted

as ‘there exists some execution of α terminating in a state at which A is true.’ (The reading

in terms of actions is easily recovered from these interpretations.)

The syntax of PDL allows a number of operations on programs within the scope of the

brackets. Programs are built up from a set of atomic programs AtΠ = {a, b, c, ...} so that

the set of programs Π is constructed recursively:

� If a ∈ AtΠ then a ∈ Π

� If α ∈ Π then α∗ ∈ Π

� If α, β ∈ Π then α; β ∈ Π and α ∪ β ∈ Π

α⋆ represents a program that nondeterministically selects a finite n and executes program α

n many times, while program α; β is the program executing α followed by β.
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Of present importance is the operator ∪ so that to execute the program α ∪ β is to

‘choose either α or β nondeterministically and execute it.’ In terms of actions, this clearly

has a reading of freely choosing to perform either α or β. An anonymous referee for the

Journal of Applied Non-Classical Logics has suggested a prima facie connection between

the distribution of a modal operator over disjunction—that the possibility of a disjunction

entails the possibility of each disjunct—and propositional dynamic logic, notably the axiom

[α ∪ β]A↔ [α]A ∧̇ [β]A

There are two things that can be said of this apparent connection.

Intriguingly, a connection between the problem of free choice permission and PDL has

been investigated by Robert van Rooij in the paper (190). In part, van Rooij diagnoses the

difficulty in inferring ✸(A) ∧̇ ✸(B) from ✸(A ∨̇ B) as an artifact of the possible worlds

reading of propositions. That is, if X is a nonempty set of possible worlds at which A ∨̇ B

holds, then this clearly does not entail the existence of any worlds at which, e.g., B holds.

However, van Rooij cites a different approach to the interpretation of deontic modals:

Another tradition... is based on the assumption that deontic concepts are usually

applied to actions rather than propositions.(190, p. 5)

In essence, van Rooij’s solution is to add an atomic proposition Per representing all ‘permis-

sible worlds.’ Then, [α]Per (which van Rooij symbolizes ‘Per(α)’) means that any execution

of action (i.e., program) α leads to a permissible state of affairs.

Then, substituting the proposition Per for A, we yield

[α ∪ β]Per↔ [α]Per ∧̇ [α]Per,

as a theorem of PDL. This instance suggests the desired reading that if a random selection

between actions α and β each lead to a permissible state of the world, then individually,

both α and β will lead to such a state.
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However, independently of the matter of free choice disjunction, the reading of a term

α as a program is independently interesting inasmuch as it suggests a direct application of

Parry’s syntactic concerns. One cannot, for example, add a new syntactical element, such

as an arbitrary line of code, to a program without concern for its meaningfulness.

In one sense, PDL fulfills the spirit of Parry’s remarks. When terms α are interpreted

as programs, there is a sense in which PDL resists the notion of error-free introduction of

arbitrary syntax. For example, consider the theorem of PDL

〈α〉A→ 〈α ∪ β〉A

At first blush, it may appear that this is a violation of the spirit of the Proscriptive Principle,

as the fact that a particular program α has a property (that some instance of its computation

yields a state at which A is true) entails that some further program α∪ β—where β is arbi-

trary, perhaps even nonsensical or error-ridden—has this property. Upon closer inspection,

however, all that this means is some instance of the program α ∪ β yields A, namely, the

instance witnessed by the antecedent 〈α〉A.

PDL, in fact, seems to have a built in ability to throw away syntactically ill-formed

programs. The formula

[α]A→ 〈α〉A

fails to be a PDL-theorem, whence one can infer that merely because one can write a program

does not mean that it can be executed.

There is, however, tension between some of the observations made in Section 4.3.3 and

the peculiarities of PDL. Consider, for example, that the natural language interpretation of

the formula

[α]A→ [α](A ∨̇ B)
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is that for an arbitrary program α, if any execution of α results in a state at which A is true,

then any execution of α will also result in a state at which A ∨̇ B is true. As the ‘local’ logic

of the models is classical, i.e., the Principle of Addition holds locally at every state w, this is

clearly a theorem of PDL. It is also one which the present considerations seem to contradict.

For example, we noted that one can consider a program π whose sole operation is to

initialize a variable p with a value of 1. If one were to make two amendments to π by adding

code to recover the value of p and to recover the value of p or q (where ‘or’ is the disjunction

from the algorithm), respectively, the first amended program would report that p has a value

of 1 while the second would report an error. π seems to witness that there are programs the

execution of which yields a state such that p is true—assigned a value of 1—while p ∨̇ q is

not.

If this is rephrased in the language of propositional dynamic logic, this is analogous to

the statement that

¬̇([π]p→ [π](p ∨̇ q))

This is apparently a counterexample to the PDL theorem in question.

There seem to be ready-to-hand ways of addressing this matter in PDL. If, for example,

one builds into PDL a definition so that

At(α) =df {p ∈ At | p is declared in α},

then one candidate account of the operator [α] may read:

w  [α]A if















at all w′ such that wRαw
′, w′  A, and

At(A) ⊆ At(α)

Clearly, the formula [α]A→ [α](A ∨̇ B) will not be a theorem of such a weakened subsystem

of PDL. This appears to be a plausible and conceptually sound revision of PDL respecting

the matter of declaration of variables.
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There are a number of subtle questions with respect to how such a system is to be

formalized and axiomatized. For example, if programs α and β each declare the variable

p, then how should the program α; β—the program executing α and then executing β—be

analyzed? One could arguably reject α; β as ill-formed, answering this question at the level

of syntax. Alternatively, one could either treat the declaration of p in β as redundant or

treat it as clearing the variable. Exploring such questions could take up an entire chapter;

for present purposes, it must suffice to raise these questions and identify them as interesting.

4.4.2 An Intuitionistic Conceptivist Logic

The connection between intuitionistic logic and computation is well-known. By means of

the Curry-Howard correspondence, provability of a formula A in the implicational fragment

of intuitionistic logic corresponds to the existence of a program or function in the λ-calculus

of type A. Similar correspondences exist between other propositional logics and classes of

programs or computable functions; for example, the provability of A in R→—the pure impli-

cational fragment of relevant logic R—corresponds to the class of λI-terms. (179) provides

a very good discussion of this correspondence, as well as many other such correspondences.

This computational picture is reinforced by the Kripke semantics for intuitionistic logic

first introduced in (124), in which points w in a model can be thought of as states and moving

forward along an accessibility relation R can be read as the evolution of a computational

procedure. Kripke’s semantical picture is prima facie equally well-suited to account for the

declaration of variables as well; one can imagine not only processes evolving and calculating

values but also declaring syntax over the course of these evolutions. As we will see in this

section, doing so yields a conceptivist system.

A basis for such an approach can be found in a program begun by Peter Woodruff of

producing intuitionistic subsystems of many-valued logics in (198). The techniques of his

dissertation are brought to bear on Halldén’s C in (199), in which constructive subsystems
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are provided for C and Krister Segerberg’s D, a further logic of nonsense described in (172).

The ensuing constructive systems are called CI and DI, respectively. CI essentially exports

Halldén’s intuitions about nonsense and applies them to Kripke’s models for intuitionistic

logic.

By some simple revisions of Woodruff’s definitions, the system CI can be further adapted

to provide constructive subsystems of Bochvar’s Σ and Σ0 that admit the very reading we

are after. Inasmuch as the following technique will yield a fragment of Σ0 that qualifies as

a containment logic, we can think of this section as providing a third ‘strategy’ to comple-

ment the two strategies described in Chapter 2, i.e., taking connexive and paraconsistent

fragments.

We will first review Woodruff’s semantics for CI.

Definition 4.4.1. A CI model is a 4-tuple 〈W,R, VT , VM〉 such that

� W is a nonempty set of points

� R is a reflexive and transitive binary relation on W

� VT : At→ ℘(W ) with the condition that if w ∈ VT (p) and wRw′ then w′ ∈ VT (p)

� VM : At→ ℘(W ) with the condition that if w ∈ VM(p) and wRw′ then w′ ∈ VM(p)

� for all p ∈ At, VT (p) ⊆ VM(p)

From these, a pair of forcing relations are defined in tandem.

As we will ultimately be interested in a pure implicational fragment of this system, we

will provide truth conditions only for formulae in the pure implicational language L→, that

is, the collection of propositional formulae in which no connective but → appears. To make

things precise, we define L→:

Definition 4.4.2. The propositional language L→ is recursively defined so that
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� If p ∈ At then p ∈ L→

� If A,B ∈ L→ then A→ B ∈ L→

As we are restricting our attention to a pure implicational language, we will define the

relevant semantic relations only for members of L→:

Definition 4.4.3. Meaningfulness of a formula A at a point w in a model M , symbolized

by M , w M A is defined so that:

� M , w M p if w ∈ VM(p)

� M , w M A→ B if M , w M A and M M B

Truth of a formula A is similarly defined:

� M , w T p if w ∈ VT (p)

� M , w T A→ B if















∀w′such that wRw′, if M , w′ T A, then M , w′ T B, and

M , w M A→ B

Validity for the intuitionistic system CI is defined by the following scheme.

Definition 4.4.4. Γ �CI A iff for all models M and points w, if M , w T B for all B ∈ Γ

and M , w M A, then M , w T A

We wish to construct the analogous system for an intuitionistic version of Bochvar’s logic, but

Woodruff’s semantics does not make use of truth values. If it is a dispute concerning truth

values that distinguishes the accounts of Bochvar and Halldén, it may not be immediately

clear how to adapt Woodruff’s semantics to a system harmonious with Bochvar’s intuitions.

Recall from Section 3.3.3 that Halldén is adamant that designation of the nonsense value

is not to say that nonsense is truth-like in any way, but rather, to say that validity is only
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concerned with cases in which the consequent is meaningful. This is, in effect, to say that

one should never reject an entailment Γ ⊢ A by producing a counterexample in which A is

nonsense. Woodruff’s qualification that Γ �CI A is only evaluated in occasions at which A is

meaningful aligns it with Halldén’s taking the nonsense truth value as designated.

This is the difference between the internal calculi of Bochvar and Halldén in a nutshell.

We can thus describe a system ΣI that bears the same relationship to CI that Σ bears to C.

We merely revise the definition of validity so that:

Definition 4.4.5. Γ �ΣI A iff for all models M and points w, if M , w T B for all B ∈ Γ,

then M , w T A

Clearly, this furthermore determines a constructive subsystem of Bochvar’s Σ0 when the

connective ‘→’ is identified with Bochvar’s internal implication.

Just as Σ0 is not ⊢-Parry, neither is ΣI0, and for identical reasons. Inasmuch as A ∧̇ ¬̇A

can never be true at a point w, A ∧̇ ¬̇A �ΣI0 B will vacuously hold. On the other hand,

inasmuch as a contradiction cannot be expressed without negation, every formula in the

pure implicational fragment of ΣI has a model. Inferences concerning any formulae in this

language will enjoy the Proscriptive Principle with respect to ⊢. Importantly, ΣI→—the

implicational fragment of ΣI—will be ⊢-Parry.11

Intuitively, the semantical picture admits a reading in which variables are declared at

certain stages in a computation. Consider, for example, a ΣI→ model whose frame is a

tree with a root node w. Suppose that w M p holds in the model; this can be read as

p being globally declared by the main procedure w, as all subsequent points recognize p as

meaningful. If, on the other hand, some atom q is not meaningful at w, but there exists a

distinct w′ such that wRw′ and w′ M q, then one can interpret w′ as a subprocedure called

by w that locally declares q. Calculations made outside of this subprocedure—i.e., outside

11Note that this suggests that the two strategies for defining conceptivist subsystems of Σ0 described in
Section 2.3—that is, by taking connexive or paraconsistent fragments—are joined by a third strategy.
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of the upwards R-cone of w′—will not necessarily be able to employ q.

The implicational system ΣI→ admits a simple natural deduction proof theory. Consider

the following definition.

Definition 4.4.6. The natural deduction calculus for ΣI→ is defined by the rules:

[Ax] A ⊢ A is an axiom.

Γ,Γ′ ⊢ B
[Str]

Γ, A,Γ′ ⊢ B

Γ, A, A,Γ′ ⊢ B
[Con]

Γ, A,Γ′ ⊢ B

Γ, A, C,Γ′ ⊢ B
[Exc]

Γ, C, A,Γ′ ⊢ B

Γ, A ⊢ B
[→ I] provided that At(A) ⊆ At[Γ]

Γ ⊢ A→ B

Γ ⊢ A→ B Γ ⊢ A[→ E]
Γ ⊢ B

As expected, this system is indeed a conceptivist calculus.

Observation 4.4.1. ΣI→ is ⊢-Parry

Proof. This follows from a simple induction on the lengths of proofs. All axioms clearly

satisfy the Proscriptive Principle for ⊢. In each of the inference rules, it can be directly

observed that this property is inherited by each succeeding application of a rule. Hence, all

derivable sequents enjoy the property, whence ΣI→ is ⊢-Parry.

Completeness between the natural deduction calculus and the Woodruff-style semantics can

be established by means of the canonical model technique. We will first define the canonical

model for ΣI→:

Definition 4.4.7. The canonical model S = 〈W,R, VT , VM〉 for ΣI→ is defined so that:

� W = {Γ | Γ is a deductively closed ΣI→-theory}

� R = {〈Γ,∆〉 | Γ ⊆ ∆}

For atoms p, we then set VM and VT so that:
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� VM(p) = {Γ ∈ W | ∃B ∈ Γ such that p appears in B}

� VT (p) = {Γ ∈ W | p ∈ Γ}

That what we have defined is in fact a model in Woodruff’s sense is not trivial; we must

confirm that it enjoys the necessary properties.

Observation 4.4.2. S is a model.

Proof. Clearly, VT ⊆ VM ; that p ∈ Γ trivially implies that each of its atoms is found in Γ.

That R is reflexive and transitive follows immediately from the properties of ⊆. This

also entails that both VM and VT are hereditary, i.e., that if w ∈ VM(p) and wRw′ then

w′ ∈ VM(p) and mutatis mutandis for VT .

Lemma 4.4.1. A ∈ Γ iff S ,Γ T A

Proof. In the case of atomic formulae p, the definition of VT entails that Γ ∈ VT (p) iff p ∈ Γ.

Hence, that Γ ⊢ΣI→ p is equivalent to p ∈ Γ, which is by definition equivalent to Γ ∈ VT (p)

which is just the definition for S ,Γ T p.

Now, we prove this for arbitrary formulae of the form A → B. We will prove this by

induction on complexity of formulae. Suppose for induction hypothesis that this has been

shown to hold for all subformulae of A→ B.

For right-to-left, suppose that Γ ⊢ΣI→ A → B. Then, as A→ B ∈ Γ, trivially all atoms

in A → B appear in some C ∈ Γ, whence S ,Γ M A → B. Moreover, by (→ E), in any

extension Γ′ ⊇ Γ, if A ∈ Γ′ then B ∈ Γ′. By induction hypothesis, this is to say that for

all Γ′ such that ΓRΓ′, if S ,Γ′ T A then S ,Γ′ T B. But this—with the observation that

S ,Γ M A→ B—entails that S ,Γ T A→ B.

Now, for left-to-right, suppose that S ,Γ T A → B. We infer then that at every Γ′

such that ΓRΓ′, if S ,Γ′ T A then S ,Γ′ T B which, by induction hypothesis, allows us



CHAPTER 4. A COMPUTATIONAL INTERPRETATION OF CONCEPTIVISM 138

to infer that in any extension Γ′ ⊇ Γ, if Γ′ ⊢ΣI→ A then Γ′ ⊢ΣI→ B. This, however, does

not immediately allow us to infer that Γ ⊢ΣI→ A → B; we need more work to show that

At(A) ⊆ At[Γ].

This work begins by noting that S ,Γ M A → B, entailing that there exists some

formula C such that both Γ ⊢ΣI→ C and At(A → B) ⊆ At(C). Hence, C ∈ Γ, from

which we may make it explicit that to say that Γ, A ⊢ΣI→ B is equivalent to saying that

Γ, C, A ⊢ΣI→ B. Hence, as At(A) ⊆ At(C), we are licensed to infer that Γ, C ⊢ΣI→ A→ B.

By the redundancy of C, however, we conclude that Γ ⊢ΣI→ A→ B.

Theorem 4.4.1. If Γ �ΣI→ A then Γ ⊢ΣI→ A.

Proof. We prove the contrapositive. If Γ 0ΣI→ A then A /∈ Γ. By Lemma 4.4.1, this entails

that S ,Γ 1T A, witnessing that Γ 2ΣI→ A.

Theorem 4.4.2. If Γ ⊢ΣI→ A then Γ �ΣI→ A.

Proof. This can be established by induction on the length of proofs. In the basis step, note

that all instances of axioms are semantically valid. All inferences in the natural deduction

calculus can be easily seen to be validity-preserving. That this holds for every derivable

Γ ⊢ΣI→ A follows by induction.

Although the picture is suggestive, there is still much to be developed concerning such a

system. For example, inhabitation problems must be rephrased, as ΣI→ has no theorems.

Asking whether there is a function inhabiting such-and-such a formula only makes sense

against the backdrop of a nontrivial environment.

But this is actually quite natural in this context. In the formulae-as-types paradigm,

a set of premises Γ in a judgment is called the ‘environment.’ As we saw in (2), it is the

environment that assigns meanings to symbols in computing. Hence, from an interpretative
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standpoint, it is perfectly natural to expect that no inferences can be drawn from an empty

environment as all symbols remain uninterpreted in such an environment.12

4.5 Conclusions

The interpretation of conceptivist logic offered above provides a way of examining some

formal problems with respect to these systems, such as the matter of dealing with quantifi-

cation and entailment connectives, that differs from the standard semantical interpretations

of conceptivist systems. Moreover, it also is hoped that the computational approach to

conceptivism might bear some practical fruit as well.

The aim of this discussion has been, in part, to rehabilitate Parry-type logics—and

deductive systems rejecting Addition in general—by providing a natural and serviceable

foundation for their intuitions and formalisms. Yet the utility of the present interpretation

very likely goes beyond elucidating an obscure footnote in the history of logic. While Section

4.3.3 provides concrete interpretations of such systems, conceptivist systems may yield more

general fruits as well.

The Belnap account of computing can address one sort of error or problem, that is,

the matter of drawing inferences in the face of inconsistent data. Papers such as (43) are

motivated by a particular instance of this problem: the inconsistent database. In general,

as a matter of fact, paraconsistent systems do appear to be well-equipped to handle such

circumstances. The considerations of this chapter suggest that there are further sources

of error that must be addressed in such a database: beyond occasions in which a system

retrieves inconsistent data lie the occasions in which a system is unable to retrieve any value

at all.

Suppose, for instance, that we are employing a database constructed with Efde as an

12Cf. (55), in which Daniels expresses the sentiment that ‘[i]t’s doubtful whether any sentence is true in
all stories.’(55, p. 424)
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underlying logic, just as Belnap suggests. Querying a database and retrieving Belnap’s value

of n for some proposition is minimally informative in Efde, but this does not necessarily entail

that the receipt of this value conveys no information at all. Belnap’s epistemic interpretation

of retrieving a n value is that the sources have neither reported that the corresponding

proposition is true nor have they reported that it is false. From this circumstance, however,

it is reasonable to infer that the sources possess neither solid evidence in its favor nor a

compelling counterexample; had the sources been in possession of this sort of evidence, it

would have been reported. Concretely, the system knows that the sources did not submit

positive or negative values. Hence, there is something to be learned from retrieving such a

value.

In (92), Luciano Floridi gave an example that illustrates this distinction well. Floridi

considered querying a database (in his case, the Routledge Encyclopedia of Philosophy on

CD-ROM ) for such-and-such a search term. In one case, ‘[i]f the database provides an

answer, it will provide at least a negative answer, e.g., the [encyclopedia] will open a small

window with the message “no search hits found”.’ This error imparts negative information

to the end user. Distinct from this, however, is the case in which the database fails to

reply to the query. It either ‘fails to provide any data at all’ or some additional process at

least informs the end user that there is an error in the database. The truth values can be

associated with this interpretation—truth with a positive hit on the search, falsity with a

negative hit on the search, and the nonsense value with some process from the environment

informing the user of some fault or other.

What, however, is there to be learned when the system queries the database only to

find that there is an error, whether it is due to a variable not being declared or data being

corrupted? A corrupted entry in a database provides strictly less information than having

not received any entries. While from, for example, one of the truth values corresponding

to those of Efde one can infer something negative, if an entry is corrupted, or otherwise



CHAPTER 4. A COMPUTATIONAL INTERPRETATION OF CONCEPTIVISM 141

irretrievable, all of these possibilities are a priori equipossible. Efde is thus not able to model

this scenario.

A conceptivist and paraconsistent system such as Sfde provides a way of accounting for

each of these dimensions. For example, a database which includes instances of corrupted

data and instances of data which are inconsistent with each other, will be best modeled by

a system such as Sfde. Clearly, Sfde has some significant limitations. Sfde supports some

inferences difficult to motivate in this context. For example, the inference p ∨̇ q �Sfde q ∨̇ ¬̇ q

is valid, which on the present reading suggests that the variable q’s being declared entails

that it has been initialized. Daniels’ system S⋆
fde

—which does not support this inference—

may thus provide a better starting point. In any case, the computational interpretation of

conceptivist logics in general yields a novel way of thinking about such matters.

What is more difficult is embellishing the philosophical aspect. At first blush, there is

no connection between the work of Bochvar and Halldén on the one hand and Zimmerman

on the other. Many epistemically impossible formulae, e.g., A ∧̇ ¬̇A, are meaningful on

the account of logics of nonsense; the work of Zimmerman is particularized to a single case

of the problem of free choice permission, without any appeal to notions of meaningfulness.

That these two, very distinct, formal approaches converge while interpreting a third, equally

unrelated thesis of containment is quite curious. While this chapter does not definitively

account for this phenomenon, further exploration of the coincidence of these three themes

appears to be warranted.

In short, the treatment of conceptivist logic presented in this chapter raises as many

questions as it solves and many matters of interpretation remain up for grabs. That said,

the present interpretation demonstrates that there may still be some life in the conceptivist

scheme and provides further evidence that the obituary Sylvan wrote for it might well have

been premature.



Chapter 5

Faulty Belnap Computers and

Subsystems of Efde

In this chapter we consider variations of Nuel Belnap’s ‘artificial reasoner.’ In particular, we

examine cases in which the artificial reasoner is faulty, e.g., we consider situations in which

the reasoner is unable to calculate the value of a formula due to an inability to retrieve the

values of its atoms. In the first half of the paper, we consider two ways of modeling such

circumstances and prove the deductive systems arising from these two types of models to be

equivalent to the Daniels-Priest system S⋆
fde

and Richard Angell’s AC, making computational

interpretations of these systems possible. The Belnap-type interpretation of AC yields a novel

many-valued semantics for AC, bringing Angell’s system in line with similar treatments of

other containment logics in its neighborhood. The second half of the paper examines formal

questions, such as whether AC admits an analysis along the lines of that given to the related

system of William Parry’s system of analytic implication (PAI), as suggested by Kurt Gödel

and confirmed by Kit Fine. Furthermore, a natural means of extending these systems to

languages with an intensional implication connective is investigated.

142
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5.1 Introduction

In (23), Nuel Belnap outlines a prescription for how, in light of the practical problem of a

computer’s receiving contradictory data, a computer ought to ‘think.’ In particular, Belnap

suggests that the inconsistency-tolerant logic of first-degree entailment (Efde) can be fruitfully

employed to deal with occasions in which such data were received. In this chapter, we will

not take up the normative question of whether a computer ought to think as Belnap suggests;

rather, for the sake of argument, we will assume that Belnap is correct. What we will consider

is the question: Given that a computer ought to operate in this way, how would it operate?

In particular, we consider a further deviation from theoretically pure computing: occasions

in which the Belnap computer is unable to recover the value assigned to a variable.

Although the earlier presentation of Efde in Definition 3.1.17 considers its semantic values

to be individuals, the semantical values of Efde can also be represented as a pair of data cor-

responding to a truth value and a falsity value. This representation suggests two reasonable

implementations of a ‘Belnap computer’: a case in which the entire semantical value may be

stored at a single address, and a case in which a Belnap variable requires distinct addresses

for each coordinate. The cases in which faults in retrieval of the values occur will thus be

called the ‘single address’ and ‘two address’ accounts, respectively. The logic determined by

the ‘single address’ account is the Daniels-Priest system S⋆
fde

described in Definition 4.1.5.

The logic of the ‘two address’ account is equivalent to Angell’s system of analytic contain-

ment (AC). The semantics introduced in the present paper provide a perspective on AC

differing from those described by Fabrice Correia in (50) or Kit Fine in (87). We will then

shift focus to examine some consequences of the semantics described in this chapter.

The interpretation offered in this chapter has the benefit of providing AC and S⋆
fde

into

alignment with other containment logics, allowing these systems to be extended to higher-

degree logics in a natural fashion. In the case of AC, after introducing the present nine-valued



CHAPTER 5. FAULTY BELNAP COMPUTERS AND SUBSYSTEMS OF EFDE 144

semantics (which will initially be denoted by ‘NC’), we will review the semantics introduced

by Correia in (49) before showing the soundness and completeness of the present semantics

to AC. We will then continue the inquiry by employing these semantics to give a deeper

analysis of AC and S⋆
fde

, such as providing the Gödel-Fine analysis of AC. Finally, we adapt

Fine’s semantics from (81) for William Parry’s intensional containment logic PAI to extend

S⋆
fde

and AC to accommodate formulae in a language with nested arrows.

We begin by reviewing the first-degree systems.

5.2 Three First-Degree Logics

We examine three first-degree systems. Such systems are defined over the language Lzdf

that lack an intensional implication connective (although a material conditional ⊃ may be

defined); their novelty lies in the correspondence between valid inferences of the form A � B

in the first-degree case and valid theorems A → B in intensional cases, i.e., in first-degree

entailment Efde, A �Efde
B iff A→ B is a theorem of Anderson and Belnap’s E, where A and

B have no instances of the intensional entailment connective, i.e., are zeroth degree formulae.

5.2.1 First-Degree Entailment Efde

Belnap’s interpretation of Efde of (23) and (24) plays a central role in the sequel and we

will discuss Belnap’s artificial reasoner in more detail. Recall that Belnap describes both an

interpretation and a proposed application of the four-valued logic of first-degree entailment in

a computational setting. Belnap’s observation is that a computer—or ‘artificial reasoner’—

obtains data from a variety of inputs and it is conceivable that the data from distinct and

independent sources may be contradictory. For example, if a system sends a calculation

for a Boolean variable A to two subprocedures to review in parallel and if a fault in one

of the subprocedures leads it to an error in its calculation, the subprocedures may return
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incompatible values for A. Absent a definitive indication concerning which subprocedure is

in error, the system will have as good evidence for the value of A’s being 1 as it will for the

value being 0.

Of course, in the classical propositional calculus, contradictory data in a theory trivializes

the theory as arbitrary formulae may be deduced from a contradiction. Rather than allow-

ing small, isolated inconsistencies to ‘pollute’ the entire ocean of data in this way, Belnap

proposes the motto ‘Keep our data clean.’ Efde, he suggests, is precisely the means by which

this motto ought to be observed.

In Definition 3.1.17, we have introduced four-valued semantics for the system Efde ac-

cording to which VEfde
= {t, b, n, f}. However, an equally salient expression of the semantics

does not interpret the set semantic values as independent and non-classical truth values,

but rather construes them as pairs of classical truth values. In such a bilateral account of

truth values, the first and second coordinates are often construed as representing distinct

and independent truth and falsity values, respectively.

In the more epistemically-oriented context of Belnap’s artificial reasoner, the first coor-

dinate of a semantical value represents whether a formula has been reported as true and the

second coordinate represents whether a formula has been reported as false. For this reason,

the values 〈t, f〉 and 〈f, t〉 correspond to t and f, respectively, in the earlier semantics. Sim-

ilarly 〈t, t〉 corresponds to b (i.e., ‘both true and false”is analogous to ‘it is true that the

system has been told that the proposition is true and it is true that the system has been

told that the proposition is false’) and 〈f, f〉 corresponds to n (with a similar analogy). Many

systems in this work admit a similarly bilateral semantics; we will decorate the names of

such sets of truth values with the symbol ⋆ to indicate that this is the case.

The bilateral semantics for Efde is defined over the language Lzdf and is described as

follows:

Definition 5.2.1. The bilateral semantics for Efde is induced by the matrix M⋆
Efde

, in which
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the set of truth values V ⋆
Efde

is defined as {t, f} × {t, f} and the set of designated values

D⋆
Efde

is {〈t, t〉, 〈t, f〉}. To define the truth functions over the bilateral truth values, let f ∧̇
CL

and f ∨̇
CL

denote the classical truth functions corresponding to conjunction and disjunction,

respectively. Then the truth functions are defined as follows:

� f ¬̇
Efde

(〈v0, v1〉) = 〈v1, v0〉

� f ∧̇
Efde

(〈v0, v1〉, 〈v′0, v
′
1〉) = 〈f ∧̇

CL
(v0, v

′
0), f

∨̇
CL

(v1, v
′
1)〉

� f ∨̇
Efde

(〈v0, v1〉, 〈v
′
0, v

′
1〉) = 〈f ∨̇

CL
(v0, v

′
0), f

∧̇
CL

(v1, v
′
1)〉

A bilateral Efde valuation is a function v from At to V ⋆
Efde

extended so that

� v(¬̇A) = f ¬̇
Efde

(v(A))

� v(A ∧̇ B) = f ∧̇
Efde

(v(A), v(B))

� v(A ∨̇ B) = f ∨̇
Efde

(v(A), v(B))

We write that A �Efde
B if for every bilateral Efde valuation v such that v(A) ∈ D⋆

Efde
, also

v(B) ∈ D⋆
Efde

.

Note that insofar as the negation switches the two values, it can be thought of as a ‘toggle

negation’ in the sense of Andreas Kapsner’s (119).

That inconsistent data does not ‘pollute’ the broader field of data should be clear; that

a system has been provided data indicating that A is true and also data indicating that

A is false is represented by a valuation v assigning A a semantical value of 〈t, t〉. In such

occasions, v(A ∧̇ ¬̇A) ∈ D⋆
Efde

. Yet this does not indicate that the system has been provided

data suggesting the truth of atomic B, i.e., this does not preclude v from assigning a non-

designated semantical value such as 〈f, f〉 to an atom B. Hence, such a v witnesses that

A ∧̇ ¬̇A 2Efde
B.
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5.2.2 Single Address Faulty Efde

While Belnap considers cases in which contradictory data are returned to an artificial rea-

soner, this is not the only type of potentially trivializing circumstance that may occur in

such a system.

Consider how a Belnap computer evaluates a formula A: The system employs an algo-

rithm to read the string of symbols corresponding to A and, upon reading each symbol, acts

in some prescribed manner. For example, upon reading the symbol corresponding to a unary

connective, the system will call a subprocedure (possibly itself) to calculate the semantical

values of the requisite subformulae. Upon reading a variable B, however, the system will

have to recover the value corresponding to B. To do this, it must obtain the address at

which the semantical value of B is stored and access the memory at that address. Call the

case in which both coordinates of the Belnap-type value are stored at a single address (i.e.,

in which only one ‘piece’ of information is necessary to recover both coordinates) the ‘single

address’ case.

Classical logic, of course, presupposes that every variable be assigned one and only one

value so as to obey the principles of excluded middle and contradiction; this is the assumption

that Belnap resists in (23). But a further presupposition—one not challenged by Belnap—is

that the value is always recoverable. Irrespective of which of Belnap’s truth values is assigned

to a variable, Belnap’s assumption is that a system is capable of querying the address at

which this variable’s value is stored and retrieving its value. This does not hold in practice; a

computer, for example, has finite memory and cannot allocate an address to each member of

a denumerably infinite set of propositional variables. Furthermore, even supposing that an

address has been assigned to hold the value, there could exist a physical flaw in the memory

preventing the system from retrieving the value. In such cases, the algorithm to evaluate

A will not be executed. The ‘partial functions’ tradition of interpreting such faults (such
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as Kleene’s interpretation of the weak three-valued matrices of (122) or McCarthy’s truth

tables of (132), appearing in Definitions 2.2.4 and 4.3.1, respectively), suggests that upon

such faults, a system will fail to terminate. In practice, of course, such an occasion will lead

to the system either terminating with an error or being held in an infinite loop as it attempts

to locate a phantom resource. In either case, we may think of such errors as producing a

third truth value.

Note that the situation in which, e.g., an atom p is assigned Belnap’s ‘neither’ value is

distinct from that in which its value is irrecoverable. In the former case, a system is perfectly

capable of calculating the value of formulae C in which p appears; the system can retrieve the

values of all atoms of C and calculate accordingly. If, however, the act of recovering the value

of p triggers an error—suppose that such an action causes the system to crash—the system

will be unable to perform this calculation. From an epistemological perspective, too, these

situations are distinct. Under Belnap’s interpretation, when a ‘neither’ value is recovered

for a variable p, the system possesses some information, namely, that it has received no data

concerning p. When the system is unable to recover the value of p, it lacks even this meager

information. As these scenarios differ in their behavior, it is natural to think of them as

corresponding to distinct truth values.

In the single address Efde case, we are able to model these circumstances by moving to

a five-valued logic that serves as a bilateral version of the semantics for S⋆
fde

from Definition

4.1.5. We presuppose the Belnapian picture that the semantical value of a variable A repre-

sents data corresponding to both its truth as well as its falsity. Moreover, we assume that

whatever data are being sent to the system concerning A may be stored at a single address

so that recovery of the first and second coordinates of a truth value stand and fall together.

In addition to the bilateral semantical values of Efde, then, we consider a fifth value 〈u, u〉

that represents a failure to retrieve a value.1 Note that if variables p0, ..., pn−1 enumerate

1That we are employing the value u ∈ VΣ0
, i.e., an infectious nonsense value, is not by accident.
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At(A), then an algorithm evaluating A demands the successful retrieval of the value of each

atom pi. Therefore, calculating the value of A will fail if for any pi there is an error in its

retrieval.

The bilateral account of the Daniels-Priest system S⋆
fde

is as follows:

Definition 5.2.2. The bilateral semantics for S⋆
fde

is induced by the matrix M⋆
S⋆
fde

=〈V ⋆
S⋆
fde

,

D⋆
S⋆
fde

,f ¬̇
S⋆
fde

, f ∧̇
S⋆
fde

, f ∨̇
S⋆
fde

〉 where the set of truth values is V ⋆
Efde
∪{〈u, u〉} and the set of designated

values D⋆
S⋆
fde

= D⋆
Efde

.

The truth functions f ¬̇
S⋆
fde

, f ∧̇
S⋆
fde

, and f ∨̇
S⋆
fde

can be defined by referencing their analogous

functions in the bilateral semantics for Efde. Letting ◦ ∈ {∨̇, ∧̇}, the definitions are:

� f ¬̇
S⋆
fde

(〈v0, v1〉) =















〈u, u〉 if v0 = v1 = u

f ¬̇
Efde

(〈v0, v1〉) otherwise

� f ◦
S⋆
fde

(〈v0, v1〉, 〈v′0, v
′
1〉) =















〈u, u〉 if v0 = v1 = u or v′0 = v′1 = u

f ◦
Efde

(〈v0, v1〉, 〈v′0, v
′
1〉) otherwise

While Efde permits the inference to A ∨̇ B from A, i.e., A �Efde
A ∨̇ B, the principle of

Addition fails for S⋆
fde

. Consider a bilateral S⋆
fde

valuation v such that for atoms p and q,

v(p) = 〈t, f〉 and v(q) = 〈u, u〉. Then v(p) ∈ D⋆
S⋆
fde

although v(p ∨̇ q) = 〈u, u〉, whence

v(p ∨̇ q) /∈ D⋆
S⋆
fde

. Such a valuation witnesses that this inference is not valid in S⋆
fde

.

5.2.3 Two Address Faulty Efde

We will now further complicate the Belnapian picture by revisiting the issue of faults when

retrieving a semantical value. We had considered the case in which both types of report

with respect to a variable p were stored at a single address. This type of reading licenses

the inference A �S⋆
fde
A ∨̇ ¬̇A; that A takes a designated value implies that the location at
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which the value of the truth of A is stored is accessible.2 If this is the same address as that

at which the value of ¬̇A, i.e., the value corresponding to whether A is false, is stored, then

the system is able to pull up the value of ¬̇A when evaluating A ∨̇ ¬̇A. In such cases, of

course, it will find A ∨̇ ¬̇A to take a designated value.

That said, an equally—if not more—reasonable implementation of the Belnapian picture

would employ a pair of addresses for each atom p: One to store a flag that p has been affirmed

and another to store a flag that p has been denied, i.e., an address for each coordinate of the

semantical value of p. If, e.g., only a single bit is allocated at a time, then each coordinate

will require a distinct address.

Note that the bilateral semantics for S⋆
fde

was defined in terms of the classical truth

functions that govern reports of truth and falsity so that in a sense, S⋆
fde

can be interpreted

as employing two parallel systems of positive classical logic to calculate truth and falsity

independently of one another. The system that will arise from the ‘two address’ treatment

of Belnap’s picture will bear the same relation to Bochvar/Kleene weak three-valued logic

defined in Definition 2.2.4.

We have seen in the foregoing that Σ0 is closely related to a number of containment

logics. Σ0 bears an equally deep relationship with the semantics we will now outline. Call

the semantical system to be introduced NC, defined with respect to the same language as

that of AC.

Definition 5.2.3. NC is defined by the set of truth values VNC = VΣ0 × VΣ0 and DNC =

{〈t, v〉 | v ∈ VΣ0}.

The truth functions f ¬̇
NC
, f ∧̇

NC
, and f ∨̇

NC
corresponding to negation, conjunction, and dis-

junction, respectively, are defined so that for all 〈v0, v1〉, 〈v′0, v
′
1〉 ∈ VNC,

� f ¬̇
NC

(〈v0, v1〉) = 〈v1, v0〉

2We will see that this inference in a sense characterizes the single address account, as the proof theory
for S⋆

fde
is equivalent to the addition of this inference to the logic determined by the two address case.
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� f ∧̇
NC

(〈v0, v1〉, 〈v′0, v
′
1〉) = 〈f ∧̇

Σ0
(v0, v

′
0), f

∨̇
Σ0

(v1, v
′
1)〉

� f ∨̇
NC

(〈v0, v1〉, 〈v′0, v
′
1〉) = 〈f ∨̇

Σ0
(v0, v

′
0), f

∧̇
Σ0

(v1, v
′
1)〉

An NC valuation is a function from At to VΣ0 × VΣ0 extended so that

� v(¬̇A) = f ¬̇
NC

(v(A))

� v(A ∧̇ B) = f ∧̇
NC

(v(A), v(B))

� v(A ∨̇ B) = f ∨̇
NC

(v(A), v(B))

Before connecting the system NC to AC, we pause to demonstrate some useful features of

the system NC.

Observation 5.2.1. NC is a subsystem of Efde

Proof. The set {〈t, f〉, 〈t, t〉, 〈f, f〉, 〈f, t〉} is just VEfde
. Furthermore, it can be calculated that

the system Efde, i.e., its values, designated values, and truth functions, can be recovered by

restricting NC to V ⋆
Efde

.

Let Lit denote the set of literals, i.e., Lit = At ∪ {¬̇A | A ∈ At}. Then we provide the

following definition:

Definition 5.2.4. The literal normal form of a formula A (denoted ANF ) is recursively

defined as follows:

� ANF = A for A ∈ Lit

� (A ∧̇ B)NF = ANF ∧̇ BNF

� (A ∨̇ B)NF = ANF ∨̇ BNF

� (¬̇ ¬̇A)NF = ANF
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� (¬̇(A ∧̇ B))NF = (¬̇A)NF ∨̇ (¬̇B)NF

� (¬̇(A ∨̇ B))NF = (¬̇A)NF ∧̇ (¬̇B)NF

Lemma 5.2.1. For any NC valuation v, v(A) = v(ANF )

Proof. By induction on complexity of formulae. Clearly, v(A) = v(ANF ) for A ∈ Lit. As

induction hypothesis, assume that v(A) = v(ANF ) and v(B) = v(BNF ).

For v(A ∧̇ B) and v(A ∨̇ B), note that

v((A ∧̇ B)NF ) = v(ANF ∧̇ BNF ) = f ∧̇
NC

(v(ANF ), v(BNF )) = f ∧̇
NC

(v(A), v(B)).

But this is just v(A ∧̇ B); the case of disjunction proceeds identically, other things being

equal.

There are three cases to consider for negated formulae. For double negation, v(¬̇ ¬̇A) =

v(A) and A is (¬̇ ¬̇A)NF . For negated conjunctions ¬̇(A ∧̇ B), we observe that by defini-

tions and the induction hypothesis, we have the following: v((¬̇(A ∧̇ B))NF ) = v((¬̇A)NF ∨̇

(¬̇B)NF ) = f ∨̇
NC

(v((¬̇A)NF ), v((¬̇B)NF )) = f ∨̇
NC

(v(¬̇A), v(¬̇B)). By definition, this is equal

to

f ∨̇
NC

(f ¬̇
NC

(v(A)), f ¬̇
NC

(v(B))). But it can be easily confirmed that this is equivalent to

f ¬̇
NC

(f ∧̇
NC

(v(A), v(B))), i.e., v(¬̇(A ∧̇ B)). Finally, the case of negated disjunctions follows

analogously.

Definition 5.2.5. The sets At+(A)—the positive atoms of A and At−(A)—the negative

atoms of A—are recursively defined:

� At+(A) = {A} for A ∈ At

� At−(A) = ∅ for A ∈ At

� At+(¬̇A) = At−(A)
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� At−(¬̇A) = At+(A)

� At+(A ◦B) = At+(A) ∪At+(B) for ◦ ∈ {∧̇, ∨̇}

� At−(A ◦B) = At−(A) ∪At−(B) for ◦ ∈ {∧̇, ∨̇}

A simple induction can be employed to prove that NC inherits a form of the ‘infectiousness’

of the truth value u from Σ0. Let pr0 and pr1 be the projection functions mapping ordered

pairs to their first and second coordinates, respectively.

Lemma 5.2.2. For an atomic formula A, an arbitrary formula B, and an NC valuation v,

� if A ∈ At+(B) and pr0(v(A)) = u then v(B) /∈ DNC

� if A ∈ At−(B) and pr1(v(A)) = u then v(B) /∈ DNC

Proof. By induction on complexity of formulae.

Having noted these features of the system NC, we will now prove the equivalence of NC with

Richard Angell’s system of analytic containment AC.

5.3 Angell’s Analytic Containment AC

In the following, we will prove equivalence between the nine-valued semantics and the logic

of analytic containment AC, which has been discussed and defined in Section 3.1.3.

We will construe the connective → from the axiomatization in Section 3.1.3 as a con-

sequence relation so that A ⊢AC B will be interpreted as equivalent to the theoremhood of

A→ B in AC.
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5.3.1 Correia Semantics for Analytic Containment

Angell himself never published semantics for AC.3 The first semantics for the system was

discovered by Correia in (49), which we rehearse immediately below:

Correia’s models are essentially collections of elements that we will call Correia pairs.

Let ‘⋐’ denote the finite subset relation (i.e., let X ⋐ Y mean that X is a finite subset of

Y ). Then:

Definition 5.3.1. A Correia pair is an ordered pair 〈Γ,∆〉 where Γ ⋐ At, ∆ ⋐ At, and

Γ ∪∆ 6= ∅.

Note that the definition demands that Γ and ∆ be finite. Although this definition is not

assumed by Correia in (50), we will offer justification for this assumption shortly.

From this constituent material, we define Correia models.

Definition 5.3.2. A Correia model v is a nonempty collection of Correia pairs.

The first step towards generating interesting relations in a Correia model is the recursive

definition of a relation �v:

Definition 5.3.3. The relation �v⊆ ℘(Lzdf)×℘(Lzdf) is defined recursively by the following

clauses:

� Γ �v ∆ iff 〈Γ,∆〉 ∈ v for Γ,∆ ⋐ At

� Γ �v ∆, ¬̇A iff Γ, A �v ∆

� Γ, ¬̇A �v ∆ iff Γ �v ∆, A

� Γ �v ∆, A ∨̇ B iff Γ �v ∆, A, B

3Angell asserts the existence of a semantics for ‘analytic equivalence’ by employing ‘analytic truth tables’
in the abstract (10). Possibly due to the severe constraints on space, however, Angell’s definition of an
analytic truth table is not entirely clear.
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� Γ, A ∨̇ B �v ∆ iff both Γ, A �v ∆ and Γ, B �v ∆

� Γ �v ∆, A ∧̇ B iff both Γ �v ∆, A and Γ �v ∆, B

� Γ, A ∧̇ B �v ∆ iff Γ, A, B �v ∆

An instance of the relation Γ v ∆ will be referred to as a ‘pseudosequent’ in the sequel.

Intuitively, a pseudosequent Γ �v ∆ is to be read as the assertion that with respect to the

model v, the disjunction whose disjuncts comprise each of the members of ∆ and the negated

members of Γ is true. It follows that a formula A is considered true in a model v if ∅ �v A.4

A formula A is true in a model v when the pseudosequent ∅ v A can be derived from a

pseudosequent Γ v ∆ in which Γ,∆ ⊂ At by a finite number of applications of the above

rules.

Correia notes that the logic corresponding to all models without restriction is much

weaker than AC, e.g., there exist countermodels to the AC theorem (p ∧̇ (q ∨̇ r)) → (p ∨̇

q). In order to properly characterize AC, we must restrict our attention to only Correia

models satisfying a particular property. In (49), Correia characterizes AC in terms of models

satisfying the following condition:

Definition 5.3.4 (Condition AC). For all sets of atoms Γ, Γ′, Γ′′, ∆, ∆′, and ∆′′ if 〈Γ,∆〉 ∈

v and 〈Γ′ ∪ Γ′′,∆′ ∪∆′′〉 ∈ v then 〈Γ ∪ Γ′,∆ ∪∆′〉 ∈ v

We will, however be interested also in an alternative (although equivalent) property of vocab-

ulary closure. As an intermediate step towards the introduction of this property, we define

a binary relation 4 between pairs of sets of atoms.

Definition 5.3.5. The relation 4 between two pairs of sets of formulae 〈Γ,∆〉 and 〈Γ′,∆′〉

is defined so that

4Note that as the conditions for v provide no means of eliminating instances of formulae from a pseudose-
quent, whenever a pseudosequent ∅ v A is derivable, it is derivable after a finite number of manipulations
of a finite initial pseudosequent Γ v ∆. Hence, it is always sufficient to consider finite Correia models,
justifying our assumption of the finitude of Correia models v.
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〈Γ,∆〉 4 〈Γ′,∆′〉 iff















Γ ⋐ Γ′ , and

∆ ⋐ ∆′

Note that the relation 4 is defined for arbitrary pairs of sets of formulae without qualification

(rather than Correia pairs). Hence, the relation 〈Γ,∆〉 4 〈Γ′,∆′〉 is well-defined even when

Γ′ and ∆′ are infinite.

Consider also the following definition:

Definition 5.3.6. The negative and positive vocabularies of a Correia model v—Γ⋆
v
and

∆⋆
v
, respectively—are defined so that:

� Γ⋆
v

= {p ∈ At | ∃〈Γ,∆〉 ∈ v such that p ∈ Γ}

� ∆⋆
v = {p ∈ At | ∃〈Γ,∆〉 ∈ v such that p ∈ ∆}

Now we are prepared to define the alternative property corresponding to the class of Correia

models in terms of which AC validity may be defined.

Definition 5.3.7. The vocabulary closure of a Correia model v—symbolized JvK—is the

smallest Correia model v′ extending v such that:

� for all Correia pairs 〈Γ,∆〉 4 〈Γ⋆
v
,∆⋆

v
〉, if there exists a 〈Γ′,∆′〉 ∈ v such that 〈Γ′,∆′〉 4

〈Γ,∆〉, then 〈Γ,∆〉 ∈ v′

I.e., the set {〈Γ,∆〉 | ∃〈Γ′,∆′〉 ∈ v s.t. 〈Γ′,∆′〉 4 〈Γ,∆〉 4 〈Γ⋆
v,∆

⋆
v〉}.

We say a Correia model v is vocabulary closed if v = JvK.

The equivalence between vocabulary closed models and those satisfying Condition AC is

clear. Hence, Correia’s results in (49) entail that AC corresponds to the preservation of

truth in vocabulary closed models.

This provides us with the necessary apparatus to define AC validity:
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Definition 5.3.8. A �AC B iff for every vocabulary closed Correia model v, if ∅ v A then

∅ v B

5.3.2 Equivalence of NC and AC

We wish to show that the truth functional semantics captures Angell’s system AC. We

proceed by showing that all axioms of Angell’s system correspond to valid inferences in NC

and that the rules of Angell’s system preserve validity when applied to an NC inference.

Recall that the functions pr0 and pr1 are the operators projecting a pair onto the first and

second coordinate, respectively and that the notation ‘f [X ]’ represents the image of X under

f .

Then, the first move towards proving equivalence is proving that anything valid inference

in AC is a valid inference modulo the nine-valued semantics. We show this by evaluating the

rules and axioms of AC and demonstrating that they correspond to valid inferences in NC.

Lemma 5.3.1. The axioms AC1–AC6b are valid in NC

Proof. The validity of each of the axioms may be directly inferred by appeal to the truth

functions.

To establish the validity of other axioms of AC, we prove some intermediate lemmas:

Lemma 5.3.2. If A �NC B and B �NC A then At+(A) = At+(B) and At−(A) = At−(B)

Proof. Without loss of generality, suppose that A �NC B and there is an atomic p ∈ At+(B)

although p /∈ At+(A). Then consider a valuation v such that v(A) ∈ DNC and v(B) ∈ DNC.

Next, construct a valuation v′ differing from v only in that it assigns the first coordinate of

p the value u. Because v′ agrees with v on all atoms appearing in A, the value of A remains

unchanged, i.e., v′(A) ∈ DNC. However, by Lemma 5.2.2, that pr0(v
′(p)) = u entails that

v′(B) /∈ DNC. Hence, A 2NC B.
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Lemma 5.3.3. With respect to an NC valuation v, if u /∈ pr0[v[At+(A)]] and u /∈ pr1[v[At−(A)]]

then for any NC valuation v′ agreeing with v with respect to these values, v(A) ∈ DNC iff

v′(A) ∈ DNC

Proof. Suppose that u /∈ pr0[v[At+(A)]] and u /∈ pr1[v[At−(A)]]. Then we may prove the

lemma by induction on complexity of ANF (i.e., the literal normal form of A). In the case

of literals p or ¬̇ p, p ∈ At+(A) or p ∈ At−(A). The selection of v′ ensures that v and v′

agree on these sets, whence v(p) = v′(p) or v(¬̇ p) = v′(¬̇ p) as the case requires.

As induction hypothesis, suppose that this property holds for all subformulae of ANF . If

ANF = B ∧̇ C, then v(B ∧̇ C) ∈ DNC iff v(B) ∈ DNC and v(C) ∈ DNC. This by hypothesis

holds iff v′(B) ∈ DNC and v′(C) ∈ DNC, i.e., v′(A ∧̇ B) ∈ DNC. Disjunction follows from an

identical proof.

Hence, as v(A) ∈ DNC iff v(ANF ) ∈ DNC, we conclude that v(A) ∈ DNC iff v′(A) ∈

DNC.

Lemma 5.3.4. The inference rule AC7 is validity preserving

Proof. By Lemma 5.3.2, whenever both A �NC B and B �NC A we may infer that At+(A) =

At+(B) and At−(A) = At−(B). But At+(A) = At−(¬̇A) and mutatis mutandis for B,

whence ¬̇A and ¬̇B share positive and negative atoms.

Now suppose for contradiction that ¬̇A 2NC ¬̇B. Then there is an NC valuation v

such that v(¬̇A) ∈ DNC and v(¬̇B) /∈ DNC. By Lemma 5.2.2, that v(¬̇A) ∈ DNC entails

that u /∈ pr0[v[At+(¬̇A)]] and u /∈ pr1[v[At−(¬̇A)]]. That At+(¬̇A) = At+(¬̇B) and

At−(¬̇A) = At−(¬̇B) entails that this holds for ¬̇B as well.

Construct an NC valuation v′′ by the following scheme for all atoms p:
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v′′(p) =















































〈t, t〉 if v(p) = 〈t, u〉 or v(p) = 〈u, t〉 or v(p) = 〈u, u〉

〈f, t〉 if v(p) = 〈f, u〉

〈t, f〉 if v(p) = 〈u, f〉

v(p) otherwise

Then v and v′′ agree on the first coordinates of the values assigned to At+(¬̇A) and the

second coordinates of values assigned to At−(¬̇A). Hence, by Lemma 5.3.3, v′′(¬̇A) ∈ DNC

iff v(¬̇A) ∈ DNC and v′′(¬̇B) ∈ DNC iff v(¬̇B) ∈ DNC. But v′′ is a bilateral Efde valuation

because the values assigned to all formulae are in V ⋆
Efde

, whence v′′ witnesses that ¬̇A 2Efde

¬̇B.

However, we also note that as a subsystem of Efde, that B �NC A entails that B �Efde
A.

In turn, B �Efde
A entails that ¬̇A �Efde

¬̇B (cf. the axiomatization in (24)), whence we

infer that ¬̇A �Efde
¬̇B. This contradicts our earlier conclusion that ¬̇A 2Efde

¬̇B.

Lemma 5.3.5. The inference rules AC8–AC9 are validity preserving

Proof. That AC8 and AC9 preserve designated validity is trivial, AC8 by appeal to the

truth tables and AC9 by the definition of validity.

We are now equipped to prove correctness of AC with respect to NC.

Theorem 5.3.1. If A �AC B then A �NC B

Proof. Suppose that A �AC B. Then, by completeness of the Correia semantics with respect

to the axioms, there exists a proof of A → B from the axioms of AC. But all axioms are

valid inferences of NC and the inferences are validity preserving. Hence, A �NC B.

Now, to prove equivalence of AC and NC, we must prove the converse of Theorem 5.3.1, i.e.,

we must show that NC is a subsystem of AC. To do so, we will need some further notation

and a lemma concerning Correia models.
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Definition 5.3.9. The operation
b

is defined so that for two Correia pairs 〈Γ,∆〉 and

〈Γ′,∆′〉, 〈Γ,∆〉
b
〈Γ′,∆′〉 = 〈Γ ∪ Γ′,∆ ∪∆′〉

Note that the relation 4 defined in Definition 5.3.5 admits a characterization in terms of
b

,

i.e., 〈Γ,∆〉 4 〈Γ′,∆′〉 holds if and only if 〈Γ,∆〉
b
〈Γ′,∆′〉 = 〈Γ′,∆′〉.

We also define two further properties in terms of
b

:

Definition 5.3.10. With respect to a Correia model v, a pair 〈Γ,∆〉 ∈ v is a
b
-minimal

element of v if for all 〈Γ′,∆′〉 ∈ v, if 〈Γ′,∆′〉 4 〈Γ,∆〉 then 〈Γ′,∆′〉 = 〈Γ,∆〉.

Definition 5.3.11. The set of generators of a Correia model v—symbolized G(v)—is the set

of
b
-minimal elements of v, i.e., the set:

{〈Γ,∆〉 ∈ v | ∀〈Γ′,∆′〉 ∈ v if 〈Γ′,∆′〉 4 〈Γ,∆〉 then 〈Γ′,∆′〉 = 〈Γ,∆〉}.

With these definitions in hand, we can make the following observation:

Lemma 5.3.6. For any Correia model v and every Correia pair 〈Γ,∆〉 ∈ v, there exists a

Correia pair 〈Γ′,∆′〉 ∈ G(v) such that 〈Γ′,∆′〉 4 〈Γ,∆〉

Proof. Consider an arbitrary 〈Γ,∆〉 ∈ v; we prove the existence of an appropriate pair

〈Γ′,∆′〉 ∈ G(v) by arguing by cases. Either there exists a distinct 〈Γ′,∆′〉 ∈ v such that

〈Γ′,∆′〉 4 〈Γ,∆〉 or not.

If there is such an element of v, then because Γ,∆ are finite, the chain

... 4 〈Γ′′,∆′′〉 4 ... 4 〈Γ,∆〉

must terminate at some initial pair 〈Γ′′′,∆′′′〉 ∈ v. But if 〈Γ′′′,∆′′′〉 is the terminal element

of the chain, then 〈Γ′′′,∆′′′〉 ∈ G(v) and may thus serve as the required Correia pair in v.

If there is no such element of v, then 〈Γ,∆〉 ∈ G(v) and by reflexivity of 4, 〈Γ,∆〉 is

itself the required Correia pair.
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When Γ ⊆ Lzdf, then let Γ¬̇ represent the set {¬̇A | A ∈ Γ}. Now, in (49), Correia

maintains an explicit ‘analogy’ with sequents (or consecutions) in the style of Gentzen, an

analogy made salient by the likeness that a Correia pair 〈Γ,∆〉 bears to a sequent Γ ⇒ ∆.

This analogy permits us to apply a proof-theoretic observation due to William Tait (as

reported by Wolfram Pohlers in (152)) that whenever the antecedent and succedent of a

sequent contain only atomic formulae, one can encode all of the information in that sequent

by means of a single set of formulae, i.e., whenever Γ ∪∆ ⊆ At, one can recover all of the

information in a sequent Γ⇒ ∆ from the set Γ¬̇ ∪∆.

Definition 5.3.12. For a Correia pair 〈Γ,∆〉, the literal projection of 〈Γ,∆〉—symbolized

by 〈Γ,∆〉τ—is the set Γ¬̇ ∪∆. When X is a set of Correia pairs, Xτ will be defined as the

set of literal projections of its elements.

For example, where G(v) is the set of generators of a Correia model v, G(v)τ is the collection

of literal projections of elements of G(v).

Definition 5.3.13. Where G(v) is the set of generators of a Correia model v,
∏

(G(v)τ ) is

the set of all choice functions on G(v)τ , that is:

∏

(G(v)τ ) = {C : G(v)τ → ∪G(v)τ | C(〈Γ,∆〉τ ) ∈ 〈Γ,∆〉τ}

Recall that pr0 and pr1 are the projection operators projecting pairs onto their first and

second coordinates, respectively. Then for each choice function C ∈
∏

(G(v)τ ), we can

associate a many-valued NC valuation vC :

Definition 5.3.14. Suppose that v is a vocabulary closed Correia model and consider a

choice function C ∈
∏

(G(v)τ ). Then we define the NC valuation vC so that:

pr0(vC(p)) =































t if ∃〈Γ,∆〉τ ∈ G(v)τ such that C(〈Γ,∆〉τ) = p

f if ∀〈Γ,∆〉τ ∈ G(v)τ , C(〈Γ,∆〉τ) 6= p but p ∈ ∆⋆
v

u if p /∈ ∆⋆
v
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pr1(vC(p)) =































t if ∃〈Γ,∆〉τ ∈ G(v)τ such that C(〈Γ,∆〉τ) = ¬̇ p

f if ∀〈Γ,∆〉τ ∈ G(v)τ , C(〈Γ,∆〉τ) 6= ¬̇ p but p ∈ Γ⋆
v

u if p /∈ Γ⋆
v

In the sequel, for a Correia model v, F(v) will represent the set containing the NC valuation

vC for every choice function C ∈
∏

(G(v)τ ).

Now we describe a semantic relation on collections F(v) of NC valuations by the following

definition:

Definition 5.3.15. Γ F(v) ∆ is defined so that for arbitrary Γ,∆ ⋐ Lzdf, Γ F(v) ∆ if for

every AC valuation vC ∈ F(v), the following holds:

vC([
∨

Γ¬̇] ∨̇ [
∨

∆]) ∈ DAC.

N.b. that inasmuch as Γ and ∆ are by definition finite and Γ ∪∆ is nonempty, the formula

[
∨

Γ¬̇] ∨̇ [
∨

∆] is a well defined formula of Lzdf.

Our strategy will be to provide a correspondence between the manipulations of pseu-

dosequents described in Definition 5.3.3 and the features of the relation F(v). Such a corre-

spondence will permit us to ‘track’ the derivation of a pseudosequent by the truth-functional

semantics. As each of these manipulations must be mimicked by the relation F(v), there are

a number of intermediate lemmas that must be established.

Lemma 5.3.7. Γ F(v) ∆, ¬̇A iff Γ, A F(v) ∆

Proof. First, we note that the commutativity of disjunction in NC entails that [
∨

Γ¬̇] ∨̇

[
∨

∆∪{¬̇A}] is truth functionally equivalent to [
∨

[Γ∪{A}]¬̇] ∨̇ [
∨

∆]. Now, Γ F(v) ∆, ¬̇A

is defined so that for all C ∈
∏

(G(v)τ ), vC([
∨

Γ¬̇] ∨̇ [
∨

∆ ∪ {¬̇A}]) ∈ DNC. By the

truth functional equivalence of the two formulae, this statement is equivalent to the claim

that for all C ∈
∏

(G(v)τ ), vC([
∨

[Γ ∪ {A}]¬̇] ∨̇ [
∨

∆]) ∈ DNC, which is just to say that

Γ, A F(v) ∆.
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Lemma 5.3.8. Γ, ¬̇A F(v) ∆ iff Γ F(v) ∆, A

Proof. This case follows from an argument analogous to that made for Lemma 5.3.7.

Lemma 5.3.9. Γ F(v) ∆, A ∨̇ B iff Γ F(v) ∆, A, B

Proof. This is nearly trivial; the formula
∨

(∆ ∪ {A,B}) differs from the formula (
∨

∆) ∨̇

(A ∨̇ B) only by exporting a single disjunct. The commutativity of disjunction in NC ensures

the equivalence of the two formulae.

Lemma 5.3.10. Γ, A ∧̇ B F(v) ∆ iff Γ, A, B F(v) ∆

Proof. This follows from an argument analogous to that made for Lemma 5.3.9.

Lemma 5.3.11. Γ F(v) ∆, A ∧̇ B iff Γ F(v) ∆, A and Γ �v ∆, B

Proof. For left-to-right, suppose that for all C ∈
∏

(G(v)τ ), vC([
∨

Γ¬̇] ∨̇ [[
∨

∆] ∨̇ (A ∧̇

B)] ∈ DNC; then in any such vC , it follows that both vC([
∨

Γ¬̇] ∨̇ [[
∨

∆] ∨̇ A]) ∈ DNC and

vC([
∨

Γ¬̇] ∨̇ [[
∨

∆] ∨̇ B]) ∈ DNC. This is just to say that Γ F(v) ∆, A and Γ F(v) ∆, B.

For right-to-left, suppose for contradiction that both Γ F(v) ∆, A and Γ F(v) ∆, B hold

although there exists an C ′ ∈
∏

(G(v)τ ) such that vC′([
∨

Γ¬̇] ∨̇ [[
∨

∆] ∨̇ (A ∧̇ B)] /∈ DNC.

Hence, vC′([
∨

Γ¬̇] ∨̇ [
∨

∆]) /∈ DNC and vC′(A ∧̇ B) /∈ DNC. By hypothesis, vC′([
∨

Γ¬̇] ∨̇

[[
∨

∆] ∨̇ A]) ∈ DNC and vC′([
∨

Γ¬̇] ∨̇ [[
∨

∆] ∨̇ B]) ∈ DNC, entailing that vC′(A) ∈ DNC and

vC′(B) ∈ DNC, which entails that vC′(A ∧̇ B) ∈ DNC, contradicting our earlier assumption

that vC′(A ∧̇ B) /∈ DNC.

Lemma 5.3.12. Γ, A ∨̇ B F(v) ∆ iff Γ, A F(v) ∆ and Γ, B F(v) ∆

Proof. The structure of this follows the proof of Lemma 5.3.11 identically.

We have nearly sufficient material to demonstrate that for every valid inference A �AC B,

the inference A �NC B is also valid. There remain a few further lemmas to establish.
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Lemma 5.3.13. For all Γ,∆ ⋐ Lzdf and vocabulary closed Correia models v,

Γ F(v) ∆ iff Γ v ∆.

Proof. To begin, we first observe that for all sets Γ,∆ ⊂ At, the equivalence between

Γ F(v) ∆ and Γ v ∆ holds. Consider the assertion that Γ F(v) ∆, i.e., that for all

NC valuations vC ∈ F(v), vC([
∨

Γ¬̇] ∨̇ [
∨

∆]) ∈ DNC. This assertion is itself equivalent

to the claim that for every selection function C ∈
∏

(G(v)τ ) there exists some Correia pair

〈Γ′,∆′〉 ∈ G(v) such that C(〈Γ′,∆′〉τ) ∈ Γ¬̇∪∆. This property holds if and only if there exist

Correia pairs 〈Γ0,∆0〉, ..., 〈Γn−1,∆n−1〉 ∈ G(v) such that ∪i<nΓi = Γ and ∪i<n∆i = ∆. By

vocabulary closure of v, this statement is equivalent to the condition that
b

i<n〈Γi,∆i〉 ∈ v.

But this condition is precisely to say that 〈Γ,∆〉 ∈ v, a statement that we may recognize as

the definition of Γ v ∆.

Before beginning the induction, it is furthermore important to observe that for arbitrary

Γ and ∆, whenever Γ v ∆ there exists a finite sequence σ of pseudosequents such that

the initial element of σ is Γ0 v ∆0 where Γ0,∆0 ⊂ At and the terminal element of σ

is the pseudosequent Γ v ∆. Moreover, for any n less than the length of σ, the nth

pseudosequent appearing in σ follows from the n− 1th pseudosequent by the application of

one of the manipulations described in Definition 5.3.3.

With this observation, we may proceed to prove the lemma by induction on the length of

such sequences. Because in any initial pseudosequent 〈Γ0,∆0〉, Γ0 ∪∆0 ⊆ At, the basis step

for the induction—that is, the case in which only one pseudosequent appears in the sequence

σ—is established by the previously observed equivalence of Γ0 F(v) ∆0 and Γ0 v ∆0.

Now, let Γn v ∆n be the nth pseudosequent of a sequence σ and suppose as induction

hypothesis that the equivalence holds for pseudosequents appearing earlier in σ. In par-

ticular, the induction hypothesis entails that for the n − 1th pseudosequent, the following

holds:
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Γn−1 v ∆n−1 iff Γn−1 F(v) ∆n−1

Now, the nth pseudosequent Γn v ∆n is derived from Γn−1 v ∆n−1 by the application

of one of Correia’s manipulation rules. But Lemmas 5.3.7–5.3.12 jointly ensure that the

application any one of these rules is mirrored by the relation F(v). Hence:

Γn v ∆n iff Γn−1 v ∆n−1 iff Γn−1 F(v) ∆n−1 iff Γn F(v) ∆n

This establishes the equivalence between Γn v ∆n and Γn F(v) ∆n. Because any derivable

pseudosequent appears as the mth pseudosequent in a finite sequence σ, this equivalence

holds for arbitrary derivable pseudosequents Γ v ∆.

Now we are prepared to prove the theorem.

Theorem 5.3.2. If A �NC B then A �AC B

Proof. We prove the contrapositive. Suppose that A 2AC B. Then there exists a vocabulary

closed Correia model v such that ∅ v A and ∅ 1v B. By Lemma 5.3.13, this assertion

entails that ∅ F(v) A, which in turn implies that for all choice functions C ∈
∏

(G(v)τ ),

vC(A) ∈ DNC. But identical reasoning yields that it is not the case that ∅ F(v) B, entailing

the existence of some valuation vC′ ∈ F(v) such that vC′(B) /∈ DNC. As vC′(A) ∈ DNC, vC′

witnesses that A 2NC B.

Corollary 5.3.1. AC = NC

Proof. By Theorem 5.3.1, AC is a subsystem of NC; Theorem 5.3.2 proves the converse.

Hence, AC = NC.

With this reassurance, we are free to abandon talk of NC and may use the nomenclature AC

to describe the nine-valued semantics. For example, we will use the symbol �AC in the sequel

to denote consequence with respect to the semantics of Definition 5.2.3.
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In addition to admitting a Belnap-style interpretation of AC, the nine-valued semantics

makes a further type of interpretation available. We have noted that AC bears an identical re-

lationship to Bochvar’s Σ0 to that which Efde bears to classical logic. In (199), Peter Woodruff

remarks that a ‘popular explication’ of Halldén-type nonsense logics, (e.g., Bochvar’s Σ0) lies

in interpreting the truth functions as partial functions, as suggested by Kleene in (122) when

describing the matrices for Σ0. If we understand the semantical functions of AC bilaterally,

that is, as a pair of Σ0 truth functions independently calculating values corresponding to

truth and falsity, the semantics of Definition 5.2.3 opens AC to a similar partial function

interpretation.

5.4 Steps Forward

The simplicity of the above semantics for AC does more than merely to provide a novel way

to interpret the system. It also has a formal upshot in permitting us to address some formal

questions in a simple fashion. For one, we can give a particular type of ‘double-barrelled

analysis’ of AC (and S⋆
fde

), the availability of which is not apparent in the Correia semantics.

Moreover, the nine-valued semantics suggests a natural adaptation of Fine’s semantics for

PAI of Definition 2.4.1 in a way that provides an account of higher-degree extensions of AC

(as well as such extensions of S⋆
fde

).

5.4.1 The Gödel-Fine Analysis of AC

Recall the definition of a Gödel-Fine analysis of a deductive system L in Section 4.1.2.

Virtually every containment logic, e.g., Harry Deutsch’s S (of (59)), can receive such a

characterization. In addition to the analyses described in Section 4.1.2, the many-valued

semantics for AC enable us to provide the Gödel-Fine analysis of AC.
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Observation 5.4.1. A �AC B iff































A �Efde
B,

At+(B) ⊆ At+(A), and

At−(B) ⊆ At−(A)

Proof. The left-to-right direction is proven in (11). For right-to-left, then, suppose that

A �Efde
B and both At+(B) ⊆ At+(A) and At−(B) ⊆ At−(A) hold. Suppose for contra-

diction that A 2AC B.

Let v be an AC valuation witnessing this fact. Then from v(A) ∈ DAC if follows

from Lemma 5.2.2 that both u /∈ pr0[v[At+(A)]] and u /∈ pr1[v[At−(A)]]. Moreover, that

At+(B) ⊆ At+(A) and At−(B) ⊆ At−(A) entails that the same can be said of B. By

employing the construction in Lemma 5.3.4, we can build an Efde valuation v′′ such that

v′′(A) ∈ D⋆
Efde

and v′′(B) /∈ D⋆
Efde

, i.e., A 2Efde
B.

Observation 5.4.1 has been independently established by Fine in (87), although its statement

is expressed in significantly different terms.

These analyses allow us to make a further observation concerning S⋆
fde

’s relationship with

the field of containment logics. Just as Efde is the first-degree fragment of E, Parry’s PAI

has a distinct first-degree fragment. As Sylvan suggested in (166), the first-degree fragment

PAIfde appeared in Aleksandr Zinov'ev’s (202) as the system S1, the semantics of which were

given as a tacit Gödel-Fine analysis:

A �S1 B iff















A �CL B, and

At(B) ⊆ At(A)

where �CL denotes classical entailment. Clearly, S⋆
fde

counts Angell’s AC as a subsystem, but

the analysis of Observation 4.1.1 allows us to prove the equivalence between the many-valued

semantics for S⋆
fde

in Definition 4.1.5 and the two proof-theoretic characterizations due to

Angell (in (9)) and Daniels (in (55)).
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As we noted in Section 4.1.2, the first appearance of a deductive system equivalent to

S⋆
fde

is found in Angell’s abstract (9), in which Angell provides an axiomatization of the

intersection of Efde and PAIfde. Although it has not been mentioned in the literature—

much less proven—consequence in S⋆
fde

in fact corresponds to consequence in the intersection

Efde ∩ PAIfde. By invoking the equivalence of PAIfde and S1, Observation 4.1.1 immediately

implies the following corollary:

Corollary 5.4.1. S⋆
fde

= Efde ∩ PAIfde

In (9), Angell also remarks that the logic Efde ∩ PAIfde is axiomatized by adding the axiom

A ⊢ A ∨̇ ¬̇A to AC. This gives us the following proof-theoretic corollary:

Corollary 5.4.2. S⋆
fde

= AC + A ⊢ A ∨̇ ¬̇A

We have also observed that S⋆
fde

is syntactically introduced by Daniels in (55), in which it

is asserted that S⋆
fde

is the first-degree fragment of the logic corresponding to Daniels’ ‘story

semantics’ of (54). Daniels provides a tacit Gödel-Fine analysis in his syntactic definition

of S⋆
fde

according to which validity of an inference A ⊢S⋆
fde
B is defined as the validity of the

inference A ⊢Efde
B in conjunction with the condition that At(B) ⊆ At(A). This gives us a

further corollary:

Corollary 5.4.3. The system described by Daniels in (55) corresponds to the five-valued

semantics for S⋆
fde

These analyses will be reflected in the semantics as we move to higher degree systems.

5.4.2 Extending to Higher Degree Formulae

One of Correia’s suggestions in (49) as an interesting topic future research on AC was to

provide an intuitive means of extending the first-degree system to account for the language

with formulae containing nested conditionals. By the present semantics for AC, we are



CHAPTER 5. FAULTY BELNAP COMPUTERS AND SUBSYSTEMS OF EFDE 169

provided with a very natural means of defining such an extension. In Definition 2.4.4, we

observed that subsystems of PAI could be described by relaxing certain conditions implicit

in Fine’s semantics for Parry’s PAI of (81). Just as relaxing the requirement of consistency

for PAI models yielded semantics for Deutsch’s S introduce two higher degree systems, by

further weakening PAI models, we can define semantics for systems PAC (for ‘Parry-like’ AC)

and PFDEϕ (for ‘Parry-like’ FDEϕ).5

We will not offer axiomatizations for the systems introduced in this section, although

the proximity to Fine’s semantics suggests that his canonical model construction can be

easily adapted for soundness and completeness proofs. Our goal is merely to outline a very

reasonable way of treating such systems that is harmonious with the prevailing treatments

of other containment logics.

The logic PAI is defined over the language L+ defined in Definition 1.1.1 so that formulae

may contained nested instances of the intensional conditional. Working in a richer language

compels us to extend the definition of functions At+(A) and At−(A) from Definition 5.2.5 to

accommodate higher degree formulae. We enrich the definition of these functions by adding

the clauses:

� At+(A→ B) = At+(A) ∪At+(B)

� At−(A→ B) = At−(A) ∪At−(B)

To produce a semantics for logics the first-degrees of which correspond to AC or S⋆
fde

, we

continue the trend from Definition 2.4.1 to Definition 2.4.4 and define an even weaker version

of Fine’s semantics of (81). We will call the structure central to this section a PAC model.

Definition 5.4.1. A PAC model is a 5-tuple 〈W,R,C, Γ, V 〉 where:

� W is a nonempty set of points

5Constancy might suggest that PS⋆
fde

would be a more appropriate name for the Parry-like extension of
S⋆
fde

. But the system has been introduced in print as PFDEϕ and we will retain that nomenclature now.
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� R ⊆W ×W is reflexive and transitive

For each w ∈ W there exists a semilattice Cw ∈ C where Cw = 〈Cw, ◦w〉, so that:

� Cw is a nonempty set

� ◦w is an associative, commutative, and idempotent function on Cw

Because Cw is a semilattice, each induces a relation ≤w so that for all a, b ∈ Cw, a ≤w b if

a ◦w b = b. Finally,

� for all w ∈ W , the set Γ contains a pair of functions γ+w and γ−w from At to Cw

� V includes two functions V + and V − from At to ℘(W )

For each point w, from functions γ+w and γ−w we construct a function γw : L+ → Cw so that

for an arbitrary formula A ∈ L+:

� γw(A) = γ+w (p0) ◦w ... ◦w γ+w (pm−1) ◦w γ−w (q0) ◦w ... ◦w γ−w (qn−1)

where {p0, ..., pm−1} = At+(A) and {q0, ..., qn−1} = At−(A).

The two valuation functions V + and V − in the presentation of Fine’s semantics found in

Definition 2.4.1 were included in anticipation of the requirement in Definition 2.4.4 that truth

and falsity are treated independently. In splitting Fine’s γw into γ+w and γ−w , we make an

analogous revision in which positive negative concepts are treated independently. It is worth

noting that this distinction reflects Fine’s bilateral account of subject-matter discussed in

Section 3.1.2, in which a proposition enjoys distinct positive and negative subject-matters.

We give truth and falsity conditions, represented by + and −, respectively.

Definition 5.4.2. The positive forcing relation + is defined for all formulae so that:

� w + A if w ∈ V +(A) for A ∈ At



CHAPTER 5. FAULTY BELNAP COMPUTERS AND SUBSYSTEMS OF EFDE 171

� w + ¬̇A if w − A

� w + A ∧̇ B if w + A and w + B

� w + A ∨̇ B if w + A or w + B

� w + A→ B if ∀w′ ∈ W s.t. wRw′,















w′ + A implies w′ + B and

γw′(B) ≤w′ γw′(A)

The negative relation is defined so that:

� w − A if w ∈ V −(A)

� w − ¬̇A if w + A

� w − A ∧̇ B if w − A and w − B

� w − A ∨̇ B if w − A and w − B

� w − A→ B if ∃w′ ∈ W s.t. wRw′ and















w′ + A and w′ − B or

γw′(B) 6≤w′ γw′(A)

We call the system determined by these semantics PAC:

Definition 5.4.3. The system PAC is defined so that Γ �PAC A if for every point w in every

PAC model, whenever w + B for all B ∈ Γ, also w + A.

We are able to show that PAC extends AC in the desired fashion.

Observation 5.4.2. AC is the first-degree fragment of PAC

Proof. To show that A �AC B entails that �PAC A→ B, we prove the contrapositive. Suppose

for zeroth degree formulae A,B that 2PAC A → B. Then there exists a point w in a model

such that w 1+ A → B. Hence, there exists a w′ such that wRw′ at which either w′ + A

and w′ 1+ B or γw′(A) 6≤w′ γw′(B).
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In the former case, we can build an Efde valuation showing that A 2Efde
B. Let u be a

bilateral Efde valuation defined so that for all p ∈ At,

u(p) =















































〈t, t〉 if w′ ∈ V +(p) and w′ ∈ V −(p)

〈t, f〉 if w′ ∈ V +(p) and w′ /∈ V −(p)

〈f, t〉 if w′ /∈ V +(p) and w′ ∈ V −(p)

〈f, f〉 if w′ /∈ V +(p) and w′ /∈ V −(p)

That u[At] ⊆ V ⋆
Efde

entails that the above is a bilateral Efde valuation. A simple induction

on complexity of formulae shows that for zeroth degree formulae C, u(C) ∈ D⋆
Efde

if and only

if w′ + C. As A and B have no instances of the intensional implication connective, this

entails that A 2Efde
B. But as AC is a subsystem of Efde, this entails that A 2AC B.

In the latter case, γw′(A) 6≤w′ γw′(B). This may occur only if there is an atom p such that

either p ∈ At+(B) and p /∈ At+(A) or p ∈ At−(B) and p /∈ At−(A). Suppose without loss

of generality that the former holds and construct an Efde valuation u defined as above with

the sole exception that pr0(u(p)) = u. The valuation u will thus map A to DAC; however, by

Lemma 5.2.2, the conjunction of the fact that p appears positively in B and the fact that

pr0(u(p)) = u implies that u(B) /∈ DAC, i.e., A 2AC B.

In both cases we conclude A 2AC B, hence, that 2PAC A→ B entails that A 2AC B.

To prove that �PAC A→ B entails that A �AC B for A,B ∈ Lzdf, suppose that A 2AC B

and let u be an AC valuation that witnesses this fact. We construct a PAC model witnessing

the failure of A→ B in PAC. For an atomic formula q, let pq represent the pair 〈pqq, 0〉 and

lt mq represent the pair 〈pqq, 1〉, so that pq and mq are pairs comprising the syntactic object

itself and with a natural number standing in for its polarity. Now, let W be a singleton {w}

and let Cw = ℘({pq | q ∈ At+(A ∧̇ B)} ∪ {mq | q ∈ At−(A ∧̇ B)}) with ◦w interpreted as

set theoretic union.

Construct valuations V + and V − so that for all q ∈ At,
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� w ∈ V +(A) iff pr0(u(q)) = t

� w ∈ V −(A) iff pr1(u(q)) = t

and construct functions γ+w and γ−w so that for all q ∈ At,

� γ+w (q) =















{pq} if q ∈ At+(A ∧̇ B)

∅ otherwise

� γ−w (C) =















{mq} if q ∈ At−(A ∧̇ B)

∅ otherwise

By the Gödel-Fine analysis of AC in Observation 5.4.1, that A 2AC B entails that one of

three conditions holds: Either A 2Efde
B, At+(B) 6⊂ At+(A), or At−(B) 6⊂ At−(A). We

prove the observation by arguing by cases.

In the first case, the valuation u serves as a bilateral Efde valuation witnessing the failure

of the inference from A to B. Now, because A and B have no instances of the implication

connective, that u(A) ∈ DAC and u(B) /∈ DAC entails that w + A and w 1+ B. As wRw,

this entails that w 1+ A→ B, whence we infer that 2PAC A→ B.

The latter two cases are symmetrical. Hence, we examine the first, in which At+(B) 6⊂

At+(A), without loss of generality. If this is the case, then there exists some q ∈ At+(B)

not appearing positively in A. But this means that pq ∈ γw(B) but pq /∈ γw(A). As ◦w

is interpreted in our example as set-theoretical union, this entails that γw(B) 6⋐w γw(A),

entailing that w 1+ A→ B.

From the assumption that A 2AC B we thus conclude that 2PAC A→ B. By contraposi-

tion, that A→ B is a PAC theorem entails that A �AC B is a valid inference.

A simple restriction to the semantics yields the analogous extension for S⋆
fde

.
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Definition 5.4.4. The system PFDEϕ is defined so that Γ �PFDEϕ
A if for all PAC models

enjoying the property that

γ+w (p) = γ−w (p) for all p ∈ At

if w + B for all B ∈ Γ, also w + A.

We may also confirm that PFDEϕ extends S⋆
fde

in the desired fashion.

Observation 5.4.3. S⋆
fde

is the first-degree fragment of PFDEϕ.

Proof. The proof is virtually identical to that of Observation 5.4.2.

We may observe that the definition of a PAC model gives a great deal of flexibility; there are

three degrees of freedom by which we may restrict models to yield stronger systems, i.e., by

adding restrictions to any of Γ, V , and R, we can generate corresponding extensions of PAC.

For example, considering validity in the restricted class of PAC in which for all p ∈ At and

w ∈ W , both γ+w (p) = γ−w (p) and V +(p)∪V −(p) = W yields Harry Deutsch’s paraconsistent

containment logic S from (59). The various definitions from Section 4.1.1 entail that adding

the further restriction to this class models so that we consider only models in which R linearly

orders W will yield Deutsch’s S′ introduced in (61), while adding the additional restriction

that W is a singleton will correspond to a ‘demodalized’ extension S′′. Of course, adding the

restriction that for all p ∈ At, V +(p) ∩ V −(p) = ∅ to the restrictions that characterized S

will yield Fine’s original semantics for PAI in Definition 2.4.1. Finally, restricting the class of

PAI models to those in which W is a singleton yields Dunn’s demodalized containment logic

DAI, introduced in (65) and rediscovered by Richard Epstein with different (set-assignment)

semantics as ‘D’ in (69). Figure 5.1 portrays the relationship between various intensional

containment logics, arranged by which of γ, V , or R is restricted.

Moreover, it is also clear that one could also define ‘demodalized’ versions of PAC and

PFDEϕ. Examining this structure in more detail and providing an axiomatic account of these

relationships is an interesting task, although a task left for future study.
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S S′′

PAI DAI

PFDEϕ

PAC

V

R

γ

S′

Figure 5.1: Systems Intermediate Between PAC and DAI

5.5 Conclusion

The present work goes some way towards providing S⋆
fde

and AC with a robust and use-

ful interpretation, as well as addressing some formal questions. We conclude with some

suggestions for future research.

It would be interesting to find ways to extend the present approach to some of the first-

degree logics near AC. For example, the only authentically semantical presentation of S1—

presented in (121), in which Kielkopf proves that S1 is characterized by the matrices Parry

uses in (143) to prove consistency of AI—is rather unintuitive. In addition to examining

Efde ∩ S1—which we saw to be S⋆
fde

—Angell’s (9) also gives an axiomatic account of the

system Efde ∪ S1. What semantics exist for this system and how could they be interpreted?

The intensional containment logics intermediate between PAC and DAI are left largely

unexamined and questions remain unanswered. What relationship exists between restricting

γ, v, and R? What are the axiomatizations of these systems? Is there a way to provide a

more elegant axiomatization of S and S′ than was offered by Deutsch? I suspect that the
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structure of these intermediate systems is a rich one, worthy of exploration.

A further topic worthy of investigating is examining faulty networks of Belnap computers.

In (175), Yaroslav Shramko and Heinrich Wansing ask how to extend the Belnapian picture

to a network of such systems. In particular, Shramko and Wansing discover that the sixteen-

valued logic of such a network determines the same consequence relation as does the four-

valued semantics for Efde; furthermore, this result extends to networks of such networks, and

networks of networks of networks, ad infinitum. As a deductive system, Efde is thus stable

in a strong sense. Exploring suitable generalizations of the faulty Belnap computer to faulty

Shramko-Wansing networks and asking whether S⋆
fde

and AC are stable in the same sense as

Efde are very intriguing topics, which are examined to some degree in the following chapter.



Chapter 6

Cut-Down Operations on

Multilattices

In Section 4.2.4, we considered Melvin Fitting’s ‘cut-down’ connectives—propositional con-

nectives that ‘cut down’ available evidence—in the context of containment logics. We now

return to examine this relationship more closely. The work of Arnon Avron and Ofer Arieli

has shown a deep relationship between the theory of bilattices and the Belnap-Dunn logic

Efde. This correspondence has been interpreted as evidence that Efde is ‘the’ logic of bilat-

tices, a consideration reinforced by the work of Yaroslav Shramko and Heinrich Wansing in

which Efde is shown to be similarly entrenched with respect to the theories of trilattices and,

more generally, multilattices. In this chapter, we export Fitting’s ‘cut-downs’ to the case of

multilattices and show that two related first-degree systems—the Deutsch-Oller system Sfde

and Richard Angell’s AC—emerge just as elegantly and are as intimately connected to the

theory of multilattices as the Belnap-Dunn logic.

177
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6.1 Introduction: Bilattices and Cut-Downs

Recall from Section 4.2.4 Fitting’s epistemic interpretation of the operations of Bochvar’s

‘internal’ logic Σ0 (equivalent to Kleene’s weak three-valued logic). In this section, we will

examine the generalization of cut-down operations and study how such cut-down operations

behave in the context of multilattices. Two types of cut-downs will be considered, and the

logic of such operations will be described.

Bilattices were introduced by Matthew Ginsberg in (96) and (97) as a formal tool in

which to model aspects of reasoning in artificial intelligence. The study of bilattices was

also taken up by Fitting (e.g., (89), (91)), in which a bilattice is treated as a generalized

truth-value space with applications to logic programming and the theory of truth.

Definition 6.1.1. A bilattice B is a structure 〈B,≤t,≤k,¬〉 where:

� B is a nonempty set

� ≤t and ≤k are partial orderings of B such that both 〈B,≤k〉 and 〈B,≤t〉 are complete

lattices

� ¬ : B → B is a inversion such that

– ¬¬a = a

– If a ≤t b then ¬b ≤t ¬a

– If a ≤k b then ¬a ≤k ¬b

N.b. that the original definition of a bilattice does not include the clause stipulating the

existence of an inversion ¬. Following the work of Fitting (e.g., (89), (90), (91)) and Arieli

and Avron (e.g., (12), (13), (14)), the stipulation that such a function exists has become

standard. In current parlance, structures defined like the above definition bilattice without

the stipulation that a negation operation exists are called ‘prebilattices.’
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The orderings ≤t and≤k are often referred to as the ‘truth’ and ‘information’ orderings,

respectively, representing an increase in the degree of truth and the amount of information.

Meet and join with respect to ≤t are denoted by ‘∧’ and ‘∨’ while meet and join with respect

to ≤k are denoted by ‘⊗’ and ‘⊕,’ respectively. Moreover, the definition assumes that for all

bilattices B and a, b ∈ B, meets and joins modulo both ≤k and ≤t exist and that there exist

distinct tops and bottoms modulo each relation.

Definition 6.1.2. With respect to two lattices A, B with orderings ≤A and ≤B, respectively,

the Ginsberg-Fitting product A⊙B is a bilattice 〈A×B,≤t,≤k,¬〉 where for 〈a0, b0〉, 〈a1, b1〉 ∈

A× B:

� 〈a0, b0〉 ≤k 〈a1, b1〉 iff a0 ≤A a1 and b0 ≤B b1

� 〈a0, b0〉 ≤t 〈a1, b1〉 iff a0 ≤A a1 and b1 ≤B b0

� ¬〈a0, b0〉 = 〈b0, a0〉

Definition 6.1.3. The set [a, b]k = {x ∈ B | a ≤k x ≤k b}.

Definition 6.1.4. A bilattice B is bilinear if B is isomorphic to a bilattice L ⊙ L, where

〈L,≤L〉 is a linear order.

In (90), Fitting studies a logic including a binary ‘guard connective,’ from which the weak

operations of Kleene are definable. However, Fitting’s (91) gives an equivalent formalization

of these weak operations in terms of ‘cut-down’ operations which can be defined in terms of

the standard bilattice operations. First-degree systems in which conjunction and disjunction

are interpreted as cut-down operations on bilattices are the targets of this chapter.

In (91), Fitting offers an epistemically-rich interpretation of the Kleene/Bochvar logic in

which groups of experts opining on propositions serve in place of truth-values. The truth

value assigned to a conjunction ϕ ∧ ψ, e.g., is interpreted as a pair comprising a group of
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experts who assent to both ϕ and ψ and a group of experts opposing either ϕ or ψ. But, as

Fitting notes, it is a truism that not all experts have opinions on all matters; hence, within

this interpretation it may be reasonable that

we want to ‘cut this down’ by only considering people who have actually expressed

an opinion on both propositions [ϕ] and [ψ].

The basic device by which Fitting accomplishes this is a unary cut-down operation:

Definition 6.1.5. For an element a ∈ B, the Fitting cut-down of a—symbolized by JaK—is

defined as a⊕ ¬a.

Definition 6.1.6. For elements a, b ∈ B, the Kleene-Fitting cut-down connectives △ and ▽

are defined so that:

� a △ b =df (a ∧ b)⊗ JaK⊗ JbK, and

� a ▽ b =df (a ∨ b)⊗ JaK⊗ JbK

Observation 6.1.1. For every bilattice B and all a ∈ B, ¬JaK = J¬aK.

Proof. It is easily confirmed that ¬ distributes over both ⊗ and ⊕. Hence, ¬JaK, i.e.,

¬(a⊕ ¬a) is equivalent to ¬a⊕ ¬¬a. But this is just J¬aK.

Observation 6.1.2. De Morgan’s laws hold for △ and ▽, i.e., for all a, b ∈ B, ¬(a △ b) =

¬a ▽ ¬b and ¬(a ▽ b) = ¬a △ ¬b.

Proof. In the first case, employ Observation 6.1.1 and the fact that De Morgan’s Laws hold

with respect to ∧ and ∨ to yield the following equivalences:

¬(a △ b) = ¬((a ∧ b)⊗ JaK⊗ JbK)

= ¬(a ∧ b)⊗ ¬JaK⊗ ¬JbK

= (¬a ∨ ¬b)⊗ J¬aK⊗ J¬bK

= ¬a ▽ ¬b

The second case follows from identical reasoning.
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6.2 Cut-Down Operations on Bilattices

In this section, we will review some of Arieli and Avron’s work on the logic of bilattices. The

techniques and constructions developed by Arieli and Avron are very general and elegant,

and can be readily adapted to account for logics including cut-down operations.

6.2.1 Logical Bilattices

In, e.g., (13) and (14), Arieli and Avron have shown that Efde plays a very robust role with

respect to the general theory of bilattices. The salient analogy is that just as classical, two-

valued logic acts as the logic of all Boolean algebras, Efde serves as the logic of all bilattices.

To review the relevant results, consider a few definitions. First, the notion of a filter on

a partially ordered set is generalized to that of a bifilter.

Definition 6.2.1. A bifilter on a bilattice B is a nonempty and proper subset F ⊂ B such

that for all a, b ∈ B,

� a ∧ b ∈ F iff a ∈ F and b ∈ F , and

� a⊗ b ∈ F iff a ∈ F and b ∈ F .

A bifilter F is prime if for all a, b ∈ B,

� if a ∨ b ∈ F then either a ∈ F or b ∈ F , and

� if a⊕ b ∈ F then either a ∈ F or b ∈ F .

In the sequel, bifilters will act as counterparts to familiar sets of truth values. Bifilters permit

the recasting of many logical notions in terms of bilattices, e.g., the closure of a bifilter under

arbitrary joins can be contrued as analogous to the principle of Addition, i.e., that whenever

ϕ is true, the truth of the disjunction ϕ ∨̇ ψ for an arbitrary ψ follows.
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A non-degenerate bilattice B (i.e., a bilattice extending FOUR2) equipped with a prime

bifilter on B is called by Arieli and Avron a logical bilattice:

Definition 6.2.2. A logical bilattice is a pair 〈B,F〉 where B is a non-degenerate bilattice

and F is a prime bifilter on B.

In order to define a consequence relation for a logical bilattice, maps from L to B must be

defined:

Definition 6.2.3. An Arieli-Avron valuation on a bilattice B is a function v : L → B such

that:

� v(¬̇ϕ) = ¬(v(ϕ))

� v(ϕ ∧̇ ψ) = v(ϕ) ∧ v(ψ)

� v(ϕ ∨̇ ψ) = v(ϕ) ∨ v(ψ)

Finally, validity for 〈B,F〉 is defined in terms of Arieli-Avron valuations as follows:

Definition 6.2.4. With respect to a logical bilattice 〈B,F〉, an inference from Γ to ϕ is

AA valid—written Γ �
〈B,F〉
AA

ϕ—if for all Arieli-Avron valuations v such that v[Γ] ⊆ F , also

v(ϕ) ∈ F .

In (13), Arieli and Avron prove the remarkable result that for Efde is sufficient for reasoning

about arbitrary bilattices in the following sense:

Observation 6.2.1. For all logical bilattices 〈B,F〉 and sets of formulae Γ ∪ {ϕ},

Γ �
〈B,F〉
AA

ϕ iff Γ �Efde
ϕ.

Arieli and Avron interpret this result as showing that the relationship between Efde and

bilattices is analogous to that between classical logic and Boolean algebras.

A similar correspondence can now be shown to hold between the logic of cut-down oper-

ations on bilattices and the logic Sfde that was described in Definition 2.3.4.
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6.2.2 Sfde on Bilattices

To begin, the notion of an Arieli-Avron valuation can be tailored to the case of cut-down

operations:

Definition 6.2.5. A Kleene-Fitting valuation on a bilattice B is a function v : L → B such

that:

� v(¬̇ϕ) = ¬(v(ϕ))

� v(ϕ ∧̇ ψ) = v(ϕ) △ v(ψ)

� v(ϕ ∨̇ ψ) = v(ϕ) ▽ v(ψ)

Validity modulo Kleene-Fitting valuations is identical to validity with respect to Arieli-Avron

valuations:

Definition 6.2.6. With respect to a logical bilattice 〈B,F〉, an inference from Γ to ϕ is KF

valid—written Γ �
〈B,F〉
KF

ϕ—if for all Kleene-Fitting valuations v such that v[Γ] ⊆ F , also

v(ϕ) ∈ F .

One of the most fundamental bilattices is FOUR2, pictured in Figure 6.1. The corre-

spondence between the logic of cut-down operations on FOUR2 and Sfde can be established

by the following observation.

Observation 6.2.2. For all sets of formulae Γ and formulae ϕ,

Γ �
〈FOUR2,{t,⊤}〉
KF

ϕ iff Γ �Sfde ϕ

Proof. Let h⋆ : FOUR2 → VSfde be a bijection defined so that:

h⋆(t) = t, h⋆(⊤) = b, h⋆(⊥) = u, and h⋆(f) = f
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⊤

f t

⊥

k

t

Figure 6.1: The Bilattice FOUR2

Then by examining the operations on FOUR2, one can make their behavior explicit in the

form of ‘truth tables’ for the elements of FOUR2:

¬ △ t ⊤ ⊥ f ▽ t ⊤ ⊥ f

t f t t ⊤ ⊥ f t t t ⊥ t

⊤ ⊤ ⊤ ⊤ ⊤ ⊥ f ⊤ t ⊤ ⊥ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

f t f f f ⊥ f f t ⊤ ⊥ f

By identifying the ‘truth tables’ for FOUR2 with those for Sfde, it is simple to confirm that:

� h⋆(¬a) = f ¬̇
Sfde

(h⋆(a))

� h⋆(a △ b) = f ∧̇
Sfde

(h⋆(a), h⋆(b))

� h⋆(a ▽ b) = f ∨̇
Sfde

(h⋆(a), h⋆(b))
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Hence, a simple induction on complexity of formulae entails that for every Kleene-Fitting

valuation v, there exists an Sfde valuation v⋆ such that for all ϕ ∈ L, v⋆(ϕ) = h⋆(v(ϕ)).

It follows that whenever Γ 2〈FOUR2,{t,⊤}〉
KF

ϕ, one can take any Kleene-Fitting valuation v

witnessing the failure of the inference to yield an Sfde valuation v⋆ witnessing that Γ 2Sfde ϕ.

As h⋆ is a bijection, one can employ the function (h⋆)−1 to construct a Kleene-Fitting

valuation witnessing the failure of Γ �
〈FOUR2,{t,⊤}〉
KF

ϕ whenever Γ 2Sfde ϕ.

Because Sfde is a fragment of some of the Kleene logics with guard connectives considered

by Fitting in (90), an implicit corollary of Fitting’s (90) is that Sfde is the logic of cut-down

operations on all bilinear bilattices as defined in Definition 6.1.4.

Observation 6.2.3. For all logical bilattices 〈B,F〉 such that B is bilinear,

Γ �
〈B,F〉
KF

ϕ iff Γ �
〈FOUR2,{⊤,t}〉
KF

ϕ.

Proof. See (90).

This result can be substantially improved, however, to hold not merely for bilinear bilattices

but for all non-degenerate logical bilattices. Thus, Sfde emerges as naturally and elegantly

from the theory of bilattices as Efde.

In order to show that Γ �
〈B,F〉
KF

ϕ holds iff Γ �Sfde ϕ for any non-trivial logical bilattice

〈B,F〉 the steps followed by Arieli and Avron in (14) may be adapted without much difficulty.

Following this work, recall the below definition:

Definition 6.2.7. For a logical bilattice 〈B,F〉, define a partition of B by the following:

� T 〈B,F〉
⊤ = {a ∈ B | a ∈ F and ¬a ∈ F}

� T 〈B,F〉
t

= {a ∈ B | a ∈ F and ¬a /∈ F}

� T 〈B,F〉
f

= {a ∈ B | a /∈ F and ¬a ∈ F}
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� T 〈B,F〉
⊥ = {a ∈ B | a /∈ F and ¬a /∈ F}

Now, consider some observations concerning cut-down operations on logical bilattices. Let

〈B,F〉 be a logical bilattice where a, b ∈ B.

Observation 6.2.4. JaK ∈ F iff either a ∈ F or ¬a ∈ F .

Proof. As JaK is defined as a ⊕ ¬a, the primeness of F ensures that JaK ∈ F if and only if

either a ∈ F or ¬a ∈ F .

Observation 6.2.5. JaK ∈ T 〈B,F〉
⊤ iff a /∈ T 〈B,F〉

⊥

Observation 6.2.6. a △ b ∈ F iff a ∈ F and b ∈ F

Proof. For left-to-right, suppose that a △ b ∈ F . Then, as F is closed upwards under ≤k

and a △ b = (a ∧ b) ⊗ JaK ⊗ JbK, also a ∧ b ∈ F . But as F is closed upwards under ≤t and

both a ∧ b ≤t a and a ∧ b ≤t b, it follows that a ∈ F and b ∈ F .

For right-to-left, suppose that a ∈ F and b ∈ F . This entails that a ∧ b ∈ F and that

both a, b /∈ T 〈B,F〉
⊥ . By Observation 6.2.5, it follows that JaK ∈ F and JbK ∈ F . As F is

closed upwards under finite meets, these observations entail that (a∧ b)⊗ JaK⊗ JbK ∈ F , i.e.,

a △ b ∈ F .

Observation 6.2.7. a ▽ b ∈ F iff either a ∈ F or b ∈ F , and both JaK ∈ F and JbK ∈ F .

Proof. For left-to-right, if a ▽ b ∈ F , then (a ∨ b)⊗ JaK⊗ JbK ∈ F . By closure under ≤k, it

follows that a ∨ b ∈ F and that both JaK ∈ F and JbK ∈ F . By primeness of F , a ∨ b ∈ F

entails that either a ∈ F or b ∈ F . Hence, either a ∈ F or b ∈ F and both JaK ∈ F and

JbK ∈ F .

For right-to-left, if a ∈ F or b ∈ F and both JaK ∈ F and JbK ∈ F , then by closure under

finite applications of ⊗, (a ∨ b)⊗ JaK⊗ JbK ∈ F . But this is just to say that a ▽ b ∈ F .

Arieli and Avron’s definitions can be further exploited:
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Definition 6.2.8. Let 〈B0,F0〉 and 〈B1,F1〉 be logical bilattices and let a0 ∈ B0 and a1 ∈ B1

be elements of each. Then a0 and a1 are similar—written a0 ≃ a1—if

� a0 ∈ F0 iff a1 ∈ F1, and

� ¬a0 ∈ F0 iff ¬a1 ∈ F1

Definition 6.2.9. Two Kleene-Fitting valuations v0 and v1 for logical bilattices 〈B0,F0〉 and

〈B1,F1〉, respectively, are similar—written v0 ≃ v1—if for all atomic p ∈ L,

v0(p) ≃ v1(p)

Observation 6.2.8. Let v0 and v1 be Kleene-Fitting valuations for logical bilattices 〈B0,F0〉

and 〈B1,F1〉, respectively. If v0 ≃ v1, then for all formulae ϕ ∈ L,

v0(ϕ) ≃ v1(ϕ)

Proof. By induction on complexity of formulae. For atomic formulae p, this is secured by the

assumption that v0 ≃ v1. For induction hypothesis, assume that whenever ψ is a subformula

of ϕ, v0(ψ) ≃ v1(ψ).

Now, in the case of negation, this follows immediately from the involutivity of ¬. If

v0(ψ) ≃ v1(ψ), then

� v0(¬̇ψ) ∈ F0 iff ¬v0(ψ) ∈ F0 iff ¬v1(ψ) ∈ F1 iff v1(¬̇ψ) ∈ F1.

� v0(¬̇ ¬̇ψ) ∈ F0 iff v0(ψ) ∈ F0 iff v1(ψ) ∈ F1 iff v1(¬̇ ¬̇ψ) ∈ F1

But this is just to say that v0(¬̇ψ) ≃ v1(¬̇ψ).

In the case of a formula ψ ∧̇ ξ, by appeal to Observation 6.2.6, infer that v0(ψ ∧̇ ξ) ∈ F0

holds iff both v0(ψ) ∈ F0 and v0(ξ) ∈ F0. By induction hypothesis, this is equivalent to

suggesting that both v1(ψ) ∈ F1 and v1(ξ) ∈ F1, which by Observation 6.2.6, is equivalent

to v1(ψ ∧̇ ξ) ∈ F1.
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In the case of a negated conjunction, by appeal to Observation 6.1.2, v0(¬̇(ψ ∧̇ ξ)) =

v0(¬̇ψ ∨̇ ¬̇ ξ)—and mutatis mutandis for v1. Hence, v0(¬̇(ψ ∧̇ ξ)) ∈ F0 iff v0(¬̇ψ ∨̇ ¬̇ ξ) ∈ F0

iff ¬(v0(ψ)) ▽ ¬(v0(ξ)) ∈ F0. By Observations 6.2.4 and 6.2.7, this is equivalent to the

tripartite claim that:

� ¬(v0(ψ)) ∈ F0 or ¬(v0(ξ)) ∈ F0, and

� ¬(v0(ψ)) ∈ F0 or ¬¬(v0(ψ)) ∈ F0 (i.e., v0(ψ) ∈ F0), and

� ¬(v0(ξ)) ∈ F0 or ¬¬(v0(ξ)) ∈ F0 (i.e., v0(ξ) ∈ F0)

But by induction hypothesis, this is equivalent to:

� ¬(v1(ψ)) ∈ F1 or ¬(v1(ξ)) ∈ F1, and

� ¬(v1(ψ)) ∈ F1 or ¬¬(v1(ψ)) ∈ F1, and

� ¬(v1(ξ)) ∈ F1 or ¬¬(v1(ξ)) ∈ F1.

By further appeal to Observations 6.1.2 and 6.2.7, this is equivalent to suggesting that

v1(¬̇(ψ ∧̇ ξ)) ∈ F1. Hence, both v0(ψ ∧̇ ξ) ∈ F0 iff v1(ψ ∧̇ ξ) ∈ F1 and ¬v0(ψ ∧̇ ξ) ∈ F0 iff

¬v1(ψ ∧̇ ξ) ∈ F1. But this is just to say that v0(ψ ∧̇ ξ) ≃ v1(ψ ∧̇ ξ).

The case of disjunction follows analogously.

Let ιdenote the Russellian definite description operator. Then Arieli and Avron’s defi-

nitions can be further altered to yield the following:

Definition 6.2.10. Let g〈B,F〉 : B → FOUR2 be a function such that

g〈B,F〉(x) = ιy.x ∈ T 〈B,F〉
y

This immediately yields the principal lemma:
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Lemma 6.2.1. If v is a Kleene-Fitting valuation on 〈B,F〉, then g〈B,F〉 ◦ v is a valuation on

〈FOUR2, {⊤, t}〉 such that v ≃ g〈B,F〉 ◦ v.

Proof. Immediate from the definition of g〈B,F〉.

From Lemma 6.2.1, a further observation follows:

Observation 6.2.9. For all logical bilattices 〈B,F〉,

Γ �
〈B,F〉
KF

ϕ iff Γ �
〈FOUR2,{⊤,t}〉
KF

ϕ.

Proof. For right-to-left, suppose that Γ �
〈B,F〉
KF

ϕ. Then there exists a Kleene-Fitting val-

uation v on 〈B,F〉 such that v[Γ] ⊆ F and v(ϕ) /∈ F . Then by Lemma 6.2.1, g〈B,F〉 ◦ v

is a Kleene-Fitting valuation on 〈FOUR2, {⊤, t}〉 such that (g〈B,F〉 ◦ v)[Γ] ⊆ {⊤, t} and

(g〈B,F〉 ◦ v)(ϕ) /∈ {⊤, t}. This witnesses that Γ 2〈FOUR2,{⊤,t}〉
KF

ϕ.

For left-to-right, let v be a function witnessing that Γ 2〈FOUR2,{⊤,t}〉
KF

ϕ. As FOUR2 ⊆ B,

v is also a Kleene-Fitting valuation on 〈B,F〉. As ⊤, t ∈ F and ⊥, f /∈ F , it follows that v

on 〈B,F〉 is similar to v on 〈FOUR2, {⊤, t}〉. Hence v also witnesses that Γ 2〈B,F〉
KF

ϕ.

From these observations, one can prove the correspondence of cut-down operations on all

bilattices and the logic Sfde.

Observation 6.2.10. For all logical bilattices 〈B,F〉,

Γ �
〈B,F〉
KF

ϕ iff Γ �Sfde ϕ.

Proof. From Observations 6.2.2 and 6.2.9.

6.3 NINE2 and AC

Now, other unary operations on bilattices appear in the literature that a priori conform to

Fitting’s epistemic understanding of a cut-down. On the bilattice NINE2, shown in Figure
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⊤

of

f

ot

d⊥

df

t

dt

⊥

k

t

Figure 6.2: The Bilattice NINE2

6.2, a further reasonable cut-down corresponds to AC. In (53), Carlos Damásio and Lúıs

Pereira provided a deep study of the bilattice NINE2 in the context of logic programming.

Damásio and Pereira equip NINE2 with a ‘weak negation’ not—a unary negation-like

operation lacking involutivity—defined on NINE2 by the table:

x ⊥ df dt f t ⊤ of ot d⊥

¬x ⊥ dt df t f ⊤ ot of d⊥

not x ⊥ t f t f ⊤ ⊤ ⊤ ⊤

not ¬x ⊥ f t f t ⊤ ⊤ ⊤ ⊤

Now, the unary not operation defined by Damásio and Pereira provides the needed tool

to define a cut-down similar to the Fitting definition. In (53), the operation λx.not ¬x is

described with a similar epistemic character, as a function that ‘determines if... a proposition

is at least believed.’ We will interpret this function as a cut-down.
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Definition 6.3.1. For any a ∈ B, JJaKK—the Damásio-Pereira cut-down of a—is defined as

not ¬a.

Definition 6.3.2. The Damásio-Pereira weak operations N and H are defined so that:

� a N b =df (a ∧ b)⊗ JJaKK⊗ JJbKK, and

� a H b =df (a ∨ b)⊗ JJaKK⊗ JJbKK.

Clearly, interpreting disjunction and conjunction modulo the Damásio-Pereira cut-down is

similar in spirit to Fitting’s interpretation of a cut-down. For example, if one evaluates a H b

as true (or a member of F) only when both JJaKK and JJbKK are also members of F , one is cutting

down the body of evidence to only those propositions which one at least believes.

Definition 6.3.3. A Damásio-Pereira valuation of the language L on a bilattice B is a

function v : L → B such that:

� v(¬̇ϕ) = ¬(v(ϕ))

� v(ϕ ∧̇ ψ) = v(ϕ) N v(ψ)

� v(ϕ ∨̇ ψ) = v(ϕ) H v(ψ)

Definition 6.3.4. Γ �
〈B,F〉

DP
ϕ if for every Damásio-Pereira valuation v such that v(ψ) ∈ F

for each ψ ∈ Γ, also v(ϕ) ∈ F .

Now it may be shown that AC captures the behavior of Damásio-Pereira cut-downs on

NINE2.

Observation 6.3.1. Γ �
〈NINE2,[t,⊤]k〉

DP
ϕ iff Γ �AC ϕ.

Proof. Define two partitions of NINE2: Π0 = {π0
t , π

0
f , π

0
u} and Π1 = {π1

t , π
1
f , π

1
u}, defined so

that:
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� π0
t = {⊤, ot, t}

� π0
f = {of ,d⊥,dt}

� π0
u = {f ,df ,⊥}

� π1
t = {⊤, of , f}

� π1
f = {ot,d⊥,df}

� π1
u = {t,dt,⊥}

Let v, v′, ... be arbitrary elements of VΣ0; one can employ a map h such that with respect to

each a ∈ NINE2,

h(a) = 〈 ιv.a ∈ π0
v ,

ιv′.a ∈ π1
v′〉

h is clearly a bijection between NINE2 and VAC. Moreover, it is also clear that h[π0
t ] =

h[[t,⊤]k] = DAC.

What must then be shown is that:

� h(¬a) = f ¬̇
AC

(h(a))

� h(a N b) = f ∧̇
AC

(h(a), h(b))

� h(a H b) = f ∨̇
AC

(h(a), h(b))

To begin, note that negation behaves appropriately, that is, if h(a) = 〈v, v′〉 then h(¬a) =

〈v′, v〉, which immediately entails that for all a ∈ NINE2, h(¬a) = f ¬̇
AC

(h(a)).

In the case of conjunction, let a, b ∈ NINE2. One can mimic the behavior of Σ0. First

consider the element of Π0 within which a N b lies:

ιv.a N b ∈ π0
v =































t if a ∈ π0
t and b ∈ π0

t

u if a ∈ π0
u or b ∈ π0

u

f otherwise

And compare this to the truth function associated with conjunction in Σ0:



CHAPTER 6. CUT-DOWN OPERATIONS ON MULTILATTICES 193

f ∧̇
Σ0

(v, v′) =































t if v = t and v′ = t

u if v = u or v′ = u

f otherwise

It immediately follows that

ιv.a N b ∈ π0
v = f ∧̇

Σ0
( ιv′.a ∈ π0

v′ ,

ιv′′.b ∈ π0
v′′)

Let pr0 and pr1 be the projection operators onto the first and second coordinates. From the

above reasoning conjoined with the relationship between Σ0 and AC, one can infer that:

ιv.a N b ∈ π0
v = pr0(f

∧̇
AC

(〈 ιv′.a ∈ π0
v′ ,w〉, 〈

ιv′′.b ∈ π0
v′′ ,w

′〉))

where w and w′ are arbitrary elements of VΣ0 . A similar correspondence for the second

coordinate entails that
ιv.a N b ∈ π1

v = pr1(f
∨̇
AC

(〈w, ιv′.a ∈ π1
v′〉, 〈w

′, ιv′′.b ∈ π1
v′′〉))

for arbitrary w,w′ ∈ VΣ0. Putting these observations together, one can infer that:

h(a N b) = f ∧̇
AC

(h(a), h(b))

That the analogous equivalence holds for disjunction follows from the duality of conjunction

and disjunction.

Hence, an induction on complexity of formulae entails that for any Damásio-Pereira

valuation v witnessing that Γ 2〈NINE2,[t,⊤]k〉
DP

ϕ, one can find a corresponding AC valuation

h ◦ v witnessing the failure of Γ �AC ϕ. That h is a bijection entails that this holds from

right-to-left as well. Hence, Γ �
〈NINE2,[t,⊤]k〉
DP

ϕ holds iff Γ �AC ϕ.

Now, recent work on related structures—trilattices—have suggested that the Belnap-

Dunn logic Efde is as firmly entrenched in the theory of multilattices in general. For example,

the logic induced many of the interpretations of connectives on the trilattice described in
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(174) ends up equivalent for all intents and purposes with Efde. Given the foregoing, it is

natural to ask whether Sfde and related systems emerge in the theory of multilattices as well.

We will proceed to show that the logic of cut-downs on trilattices is sensitive to how one

interprets logical negation and that the two most natural interpretations of negation lead to

Sfde and AC.

6.4 Cut-Down Operations on Trilattices

Trilattices are a natural generalization of bilattices introduced in (174), in which they were

offered as a generalization of bilattices in which orderings ≤t and ≤k were joined by an

ordering ≤c measuring the constructivity of a degree of truth. More recent discussions of

trilattices (e.g., (163), (174), (175)) forgo the use of a constructivity ordering in favor of a

falsity ordering ≤f distinct from ≤t. We will follow this convention, although it is important

to note that nothing essentially hinges on the interpretation of the ordering ≤f .

Definition 6.4.1. A trilattice T is a structure 〈T,≤t,≤f ,≤k〉 where:

� T is a nonempty set

� ≤t, ≤f , and ≤k are partial orderings of T such that 〈T,≤t,≤k〉, 〈T,≤t,≤f 〉, and 〈T,≤f

,≤k〉 are complete prebilattices

Each partial ordering induces binary meet and join operators. We will employ the convention

of treating ≤t and ≤f as alethic, and thus describe the corresponding meets and joins as ∧t,

∨t, ∧f , and ∨f . We treat ≤k as an information ordering and carry over the notation of ⊗k

and ⊕k to reinforce this interpretation.

In (174), Shramko, Dunn, and Takenaka explicitly part ways with the convention of

including a negation-like operation in the definition of a bilattice, and omit the requirement
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that such an inversion exists from the definition of a trilattice. However, we are interested

in such negation-like operators and we may define inversions as follows:

Definition 6.4.2. A t-inversion on a trilattice T is an involutive function ¬t : T → T such

that for all a, b ∈ T :

� If a ≤t b then ¬tb ≤t ¬ta

� If a ≤f b then ¬ta ≤f ¬tb

� If a ≤k b then ¬ta ≤k ¬tb

f -inversions ¬f and tf -inversions ¬tf are defined analogously, i.e., ¬f reverses the ordering

≤f but respects ≤t and ≤k, while ¬tf reverses both ≤t and ≤f but respects ≤k.

Much of the formal work in the sequel will appeal to Umberto Rivieccio’s representation

theorems found in (163) that show that many classes of trilattices are isomorphic to certain

products of bilattices. By appealing to these representation theorems, we will be able to

export some of the properties of cut-down operations on bilattices to the case of trilattices

without difficulty.

A product trilattice of two bilattices—the generalization of the Ginsberg-Fitting product

of two lattices—is defined as follows:

Definition 6.4.3. For bilattices A = 〈A,≤A
t ,≤

A
k ,¬

A〉 and B = 〈B,≤B
t ,≤

B
k , ¬

B〉, the product

trilattice A⊙ B is the trilattice 〈A×B,≤t,≤f ,≤i〉 where for all 〈a, b〉, 〈a′, b′〉 ∈ A× B:

� 〈a, b〉 ≤t 〈a′, b′〉 if a ≤A
t a′ and b ≤B

t b
′

� 〈a, b〉 ≤f 〈a
′, b′〉 if a′ ≤A

k a and b ≤B
k b

′

� 〈a, b〉 ≤k 〈a′, b′〉 if a ≤A
k a′ and b ≤B

k b
′
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From this definition, we can explicitly represent the meets and joins onA⊙B by the following:

〈a, b〉 ∧t 〈a
′, b′〉 = 〈a ∧A a′, b ∧B b′〉 〈a, b〉 ∨t 〈a

′, b′〉 = 〈a ∨A a′, b ∨B b′〉

〈a, b〉 ∧f 〈a′, b′〉 = 〈a⊕A a′, b⊗B b′〉 〈a, b〉 ∨f 〈a′, b′〉 = 〈a⊗A a′, b⊕B b′〉

〈a, b〉 ⊗k 〈a′, b′〉 = 〈a⊗A a′, b⊗B b′〉 〈a, b〉 ⊕k 〈a′, b′〉 = 〈a⊕A a′, b⊕B b′〉

Inversions behave nicely on product trilattices, so that ¬t and ¬f are unique:

Definition 6.4.4. On a product trilattice A ⊙ B, if A and B have negations ¬A and ¬B,

respectively, then the t-inversion ¬t is defined so that for all 〈a, b〉 ∈ A×B:

� ¬t〈a, b〉 =df 〈¬
Aa,¬Bb〉

If, moreover there is an isomorphism h : A ∼= B, then the f -inversion ¬f is defined so that:

� ¬f 〈a, b〉 = 〈h−1(b), h(a)〉

Product trilattices will be useful due to Umberto Rivieccio’s representation theorems for a

large class of trilattices presented in (163). Rivieccio shows that every interlaced trilattice

T is isomorphic to a product trilattice. The property of interlacing—which appears in many

contexts in the theory of bilattices as well—is a very natural property, being exhibited by

the most common bilattices and trilattices (e.g., FOUR2, NINE2, SIXT EEN 3 are all

interlaced).

Definition 6.4.5. A trilattice T is interlaced if the binary operations ∧t, ∨t, ∧f , ∨f , ⊗k,

and ⊕k are each monotone with respect to all three orderings.

For our purposes, the most important representation theorems of (163) are those involving

interlaced trilattices with inversions that naturally correspond to negation:

Theorem 6.4.1 (Rivieccio). T is an interlaced trilattice if and only if T is isomorphic to

a product trilattice A⊙ B where A and B are prebilattices.
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Theorem 6.4.2 (Rivieccio). T is an interlaced trilattice with t- and f -inversions if and

only if T is isomorphic to a product trilattice A⊙A where A is a prebilattice.

It follows from the observations of (163) that on an interlaced trilattice with inversions ¬t

and ¬f , ¬t and ¬f always commute.

By Theorem 6.4.2, there is essentially a single t-inversion on an interlaced trilattice, which

permits us to state the following corollary concerning tf -inversions:

Corollary 6.4.1. For an interlaced trilattice T with t- and f -inversions, there exists pre-

cisely one tf -inversion ¬tf , equivalent to the operation ¬t¬f .

Proof. A tf -inversion ¬tf is identical to the operation ¬tf¬f¬f and Definition 6.4.4 entails

that ¬tf¬f is just the unique t-inversion. Hence, for any a ∈ T , ¬tfa = ¬tf¬f¬fa =

¬t¬fa.

In the sequel, this entitles us to treat an inversion ¬tf as interchangable with the decomposed

¬t¬f (or, equivalently, ¬f¬t).

6.4.1 Generalizations of Cut-Down Operations

In the case of trilattices, the plenitude of distinct ways to define negation-like inversions

and conjunction and disjunction-like meets and joins entails that the Kleene-Fitting cut-

down does not pick out a unique generalization. For example, if a cut-down is defined as

the information join of an element and its negation, the natural question arises: By which

inversion should we interpret negation? If there are meets and joins modulo both the truth

and falsity orderings, in terms of which ordering should we define, say, weak conjunction?

When a trilattice has a k-inversion ¬k, the value x⊕ ¬kx will map all elements x to the

information-top, so defining a cut-down JxKk by the scheme JxKk = (x⊕¬kx) will be fruitless.

In the sequel, we will consider cut-down conjunctions and disjunctions to be interpreted

in virtue of the ordering ≤t. Generally speaking, inference as truth-preservation is a more
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familiar concept than other candidates, and on this interpretation, ∧t and ∨t are most

noticably recognizable as the standard conjunction and disjunction connectives. We’ll first

define our cut-down operations:

Definition 6.4.6. For an element a of a trilattice T with a t-inversion, the t-cut-down of

a—JaKt—is defined so that:

� JaKt =df a⊕k ¬ta

Definition 6.4.7. For a trilattice with a t-inversion, the t-weak conjunction △t and the

t-weak disjunction ▽t are defined:

� x △t y =df (x ∧t y)⊗k JxKt ⊗k JyKt

� x ▽t y =df (x ∨t y)⊗k JxKt ⊗k JyKt

For the interpretation of negation, we will consider the options of interpreting the t-inversion

¬t and the tf -inversion ¬tf (i.e., ¬t¬f). These—along with ¬f—are cited by Shramko and

Wansing as ‘the most obvious candidates for representing an object-language negation.’ (175,

p. 133) Both appear to be equally natural in this context; e.g., both inversions ¬t and ¬tf

interact with the cut-down JaKt in a similar fashion to what was observed in the case of

bilattices:

Observation 6.4.1. For a trilattice T with a inversion ¬t, for all a ∈ T ,

¬tJaKt = J¬taKt

Proof. ¬tJaKt = ¬t(a ⊕k ¬ta). Because ¬t distributes over the information join ⊕k, this is

equivalent to ¬ta⊕k ¬t¬ta, i.e., J¬taKt.

Observation 6.4.2. For a trilattice T with commuting inversions ¬t and ¬f , for all a ∈ T ,
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¬tf JaKt = J¬tfaKt

Proof. We appeal to the following equivalences: ¬tf JaKt is equivalent by definition to ¬tf (a⊕

¬ta) and hence, to ¬tfa⊕ ¬tf¬ta. Because ¬tf¬ta = ¬t¬f¬ta, by commutativity of ¬t and

¬f , we infer that this is equivalent to ¬tfa⊕ ¬t¬tfa, which is just J¬tfaKt.

Moreover, De Morgan’s laws can be seen to hold for both species of inversion.

Observation 6.4.3. For all elements a and b in a trilattice T with an inversion ¬t, ¬t(a △t

b) = ¬ta ▽t ¬tb and ¬t(a ▽t b) = ¬ta △t ¬tb

Proof. ¬t(a △t b) is just ¬t((a ∧t b)⊗k JaKt ⊗k JbK). ¬t distributes over ⊗k, whence we infer

equivalence with ¬t(a ∧t b)⊗k ¬tJaKt ⊗k ¬tJbK. By Observation 6.4.1 and De Morgan’s laws

for ∧t, we infer equivalence with (¬ta ∨t ¬tb)⊗k J¬taKt ⊗k J¬tbK, i.e., ¬ta ▽t ¬tb.

The second case follows from analogous reasoning.

Observation 6.4.4. For all elements a and b in a trilattice, ¬tf (a △t b) = ¬tfa ▽t ¬tfb and

¬tf (a ▽t b) = ¬tfa △t ¬tf b

Proof. ¬tf (a △t b) = ¬tf ((a∧t b)⊗k JaKt⊗k JbKt). Because both ¬t and ¬f distribute over ⊗k,

this is equal to ¬tf (a∧t b)⊗k ¬tf JaKt⊗k ¬tf JbKt. We can note that ¬tf (a∧t b) = ¬tfa∨t ¬tfb.

¬tf (a∧t b) is defined as ¬t¬f (a∧t b). The f -inversion distributes over the t-operations, so this

is equal to ¬t(¬fa∧t¬fb), which—by De Morgan’s laws—is equivalent to ¬t¬fa∨t¬t¬fb, i.e.,

¬tfa∨t ¬tf b. Furthermore, by Lemma 6.4.2, ¬tf JaKt⊗k ¬tf JbKt is equal to J¬tfaKt⊗k J¬tf bKt.

Putting these observations together, we infer that ¬tf (a ∧t b) ⊗k ¬tf JaKt ⊗k ¬tf JbKt is

equivalent to (¬tfa∨t ¬tfb)⊗k J¬tfaKt⊗k J¬tfbKt, i.e., ¬tfa ▽t ¬tfb. The second case follows

by dualizing the foregoing argument.

With natural generalizations of cut-down operations in hand, we now proceed to consider

how to consider logical consequence in this setting, again by generalization Arieli and Avron’s

approach.
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6.4.2 Some Properties of Trifilters

Now, because we wish to talk about validity with respect to certain operations on trilattices,

we proceed generalize Arieli and Avron’s notion of a bifilter to the case of a trilattice. We

will call the following natural generalization a trifilter, that is, a set of the elements of a

trilattice that is closed upwards under each of the three orderings.

Definition 6.4.8. A trifilter on a trilattice T is a nonempty and proper subset F ⊂ T closed

upwards under each ordering and closed under finite meets:

a ∧t b ∈ F iff a ∧f b ∈ F iff a⊗k b ∈ F iff a ∈ F and b ∈ F .

F is prime if for all a, b ∈ B,

a ∨t b ∈ F iff a ∨f b ∈ F iff a⊕k b ∈ F iff either a ∈ F or b ∈ F .

By this definition, a trifilter is a special case of the notion of a multifilter independently

defined by Yaroslav Shramko in (173).

It will behoove us to establish a few connections between trifilters on product trilattices

and bifilters on the bilattices from which they are constructed. Given the representation

theorems for interlaced trilattices, these results will enable us to apply many observations

about bifilters to the case of trifilters.

In the first case, we can show that given a product trilattice A⊙B, the product of A (i.e.,

the elements of bilattice A) and any prime filter on B will yield a trifilter on the product

trilattice.

Lemma 6.4.1. For a product trilattice A⊙B and a prime bifilter FB on B, the set F = A×FB

is a prime trifilter on A⊙ B.

Proof. Let A = 〈A,≤A
t ,≤

A
k 〉 and B = 〈B,≤B

t ,≤
B
k 〉 be the prebilattices that yield A⊙B and

fix an element 〈a, b〉 ∈ F .
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Then if 〈a, b〉 ≤t 〈a′, b′〉, that a′ ∈ A follows by definition. By the primeness of FB, we

also know that b ≤B
t b′ entails that b′ ∈ FB. If 〈a, b〉 ≤f 〈a′, b′〉 or 〈a, b〉 ≤k 〈a′, b′〉, then

a′ ∈ A by construction and because b ≤B
k b

′, also b′ ∈ FB. In all three cases, 〈a′, b′〉 ∈ F .

For primeness, suppose 〈a, b〉 ∨t 〈a′, b′〉 ∈ F . This element is 〈a ∨A a′, b ∨B b′〉, whence

b ∨B b′ ∈ FB. By primeness of FB, either b ∈ FB or b′ ∈ FB. Because both a and a′ are

elements of A, the first case entails that 〈a, b〉 ∈ F and the second entails that 〈a′, b′〉 ∈

F . The cases of primeness for the falsity and information orderings follow from a similar

argument.

Conversely, we can show that every trifilter on a product trilattice can be represented as

such a product.

Lemma 6.4.2. Every prime trifilter on a product trilattice A⊙ B is identical to a product

A× FB where FB is a prime bifilter on B.

Proof. Let F be a prime trifilter on A⊙ B.

We consider the first coordinate. Consider an arbitrary element a ∈ A and pick an

arbitrary 〈a′, b′〉 ∈ F . Then a′ ≤A
k (a⊕A a′) and b′ ≤B

t b
′, so 〈a′, b′〉 ≤k 〈a⊕A a′, b′〉, whence

by closure under ≤k, 〈(a⊕A a′), b′〉 ∈ F . However, because a ≤A (a⊕A a′) and b′ ≤A
k b′, also

〈(a ⊕A a′), b′〉 ≤f 〈a, b′〉. By closure under ≤f , this entails that 〈a, b′〉 ∈ F . It follows that

whenever 〈a′, b′〉 ∈ F , for all a ∈ A, also 〈a, b′〉 ∈ F . Hence, F is the product of A and the

set

FB = {b ∈ B | ∃a ∈ A such that 〈a, b〉 ∈ F}

We now must show that FB is a prime bifilter on B. For any b ∈ FB, there is an a ∈ A such

that 〈a, b〉 ∈ F . Hence, whenever b ≤B
t b′ or b ≤B

k b′′, 〈a, b〉 ≤t 〈a, b
′〉 and 〈a, b〉 ≤k 〈a, b

′〉,

respectively. In the first case, closure of the trifilter F entails that 〈a, b′〉 ∈ F , whence
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b′ ∈ FB; in the second case, closure entails that 〈a, b′′〉 ∈ F , ensuring that b′′ ∈ FR. Thus,

FR is a bifilter on B.

For primeness of FB, if b ∨B b′ ∈ FR, then for some a ∈ A, 〈a, b ∨B b′〉 ∈ F . But this

element is 〈(a ∨A a), (b ∨B b′)〉, i.e., 〈a, b〉 ∨t 〈a, b′〉, and by primeness of F , either 〈a, b〉 ∈ F

(entailing that b ∈ FB) or 〈a, b′〉 ∈ F (entailing that b′ ∈ FB). An identical argument yields

primeness of FB with respect to ⊕B as well.

6.5 Analytic Logic on Trilattices

With the foregoing definitions, the approach to bilattice logic championed by Arieli and

Avron—and the variations upon this approach described in Section 6.2.2—are readily adapted

to the case of interlaced trilattices.

Definition 6.5.1. A logical trilattice is a pair 〈T ,F〉 where T is a non-degenerate trilattice

and F is a prime trifilter on T .

Note the reappearance of the condition that T must be non-degenerate. This is essentially

the condition that the theory of the trilattice is sufficiently rich. The smallest non-degenerate

trilattice is SIXT EEN 3. This is a very reasonable constraint, e.g., it is required in the case

of logical bilattices described in Definition 6.2.2.

As stated before, we have two inversions that equally resemble negation. We will thus

define two types of valuations: one in which negation ¬̇ is interpreted as ¬t and another in

which negation is considered to be ¬tf . The upshot will be that the former logic of cut-downs

on trilattices is Sfde while the latter logic is equivalent to AC. The general structure of the

two arguments will be to first show a correspondence between any logical trilattice in which

the trilattice is a product and the logical trilattice 〈FOUR2 ⊙ FOUR2, FOUR2 × {⊤, t}〉,

then to show a correspondence between valuations of an appropriate type on 〈FOUR2 ⊙
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FOUR2, FOUR2×{⊤, t}〉 and consequence in Sfde or AC. Finally, we will appeal to Riviec-

cio’s representation theorems to prove that the correspondence extends to all logical bilattices

〈T ,F〉 such that T is interlaced.

6.5.1 Sfde on Trilattices

First, we will examine the logic of cut-down operations on trilattices in which negation is

interpreted as a t-inversion. The most natural generalization of Kleene-Fitting valuations

may be defined as follows:

Definition 6.5.2. A ¬t-Kleene-Fitting valuation on a trilattice T is a function v : L → T

such that:

� v(¬̇ϕ) = ¬t(v(ϕ))

� v(ϕ ∧̇ ψ) = v(ϕ) △t v(ψ)

� v(ϕ ∨̇ ψ) = v(ϕ) ▽t v(ψ)

Definition 6.5.3. An inference from Γ to ϕ is ¬t-KF valid on a logical trilattice 〈T ,F〉—

written Γ �
〈T ,F〉
KF[¬t]

ϕ—if for all ¬t-Kleene-Fitting valuations v, if v[Γ] ⊆ F then v(ϕ) ∈ F .

Given the representation theorems for interlaced trilattices, we will consider only product

trilattices for the moment.

Let us define a second notion of similarity, tailored to the case in which negation is

identified with the operation of t-inversion.

Definition 6.5.4. Consider two logical product trilattices 〈A0 ⊙ B0, A0 × F0〉 and 〈A1 ⊙

B1, A1×F1〉 where F0 and F1 are prime bifilters on B0 and B1, respectively.Then two elements

〈a, b〉 ∈ A0 × B0 and 〈a′, b′〉 ∈ A1 ×B1 are ¬t-similar—written 〈a, b〉 ≃t 〈a′, b′〉—if:

� 〈a, b〉 ∈ A0 × F0 if and only if 〈a′, b′〉 ∈ A1 × F1, and
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� ¬t(〈a, b〉) ∈ A0 × F0 if and only if ¬t(〈a′, b′〉) ∈ A1 ×F1

As in the case of Section 6.2.2, the notion of ¬t-similarity between two points extends to

¬t-Kleene-Fitting valuations as well.

Definition 6.5.5. Two ¬t-Kleene-Fitting valuations v0 and v1 on logical trilattices 〈A0 ⊙

B0, A0 × F0〉 and 〈A1 ⊙ B1, A1 ×F1〉 are ¬t-similar if for all atomic p ∈ L , v0(p) ≃t v1(p).

This definition allows us to prove two intermediate lemmas suggesting that many properties

of a logical trilattice 〈A ⊙ B, A× FB〉 can be recovered from the logical bilattice 〈B,FB〉.

Lemma 6.5.1. Consider a logical trilattice 〈A⊙B, A×FB〉, with FB a prime bifilter on B.

Then for every ¬t-Kleene-Fitting valuation v:

v(ϕ) ∈ F if and only if pr1(v(ϕ)) ∈ FB

Proof. Immediate from Lemma 6.4.2.

Lemma 6.5.2. Let v be a ¬t-Kleene-Fitting valuation on a logical trilattice 〈A⊙B, A×FB〉

with FB a prime bifilter on B. Then pr1 ◦ v is a Kleene-Fitting valuation on the logical

bilattice 〈B,FB〉.

Proof. We prove that pr0 ◦ v is in fact a Kleene-Fitting valuation on 〈B,FB〉 by induction

on complexity of formulae. As a basis step, we note that pr1 ◦ v maps atoms to elements of

B, as required.

In the case of a formula ¬̇ψ, let v(ψ) = 〈a, b〉. Then:

pr1(¬t〈a, b〉) = pr1(〈¬Aa,¬Bb〉) = ¬B(pr1(〈a, b〉))

In other words, (pr1 ◦ v)(¬̇ψ) = ¬B((pr1 ◦ v)(ψ)).

In the case of conjunction, let 〈a, b〉 and 〈a′, b′〉 be the values of v(ψ) and v(ξ), respectively.

Then v(ψ ∧̇ ξ) = 〈a, b〉 △t 〈a′, b′〉, whence:



CHAPTER 6. CUT-DOWN OPERATIONS ON MULTILATTICES 205

pr1(〈a, b〉 △t 〈a′, b′〉) = pr1(〈a △
A a′, b △B b′〉) = pr1(〈a, b〉) △

B pr1(〈a
′, b′〉)

This entails that (pr1 ◦ v)(ψ ∧̇ ξ) = ((pr1 ◦ v)(ψ)) △B ((pr1 ◦ v)(ξ)).

The case of disjunction can be inferred from the cases of negation and conjunction. Hence,

the valuation pr1 ◦ v maps formulae ϕ to appropriate values, i.e., pr1 ◦ v is a Kleene-Fitting

valuation.

These lemmas entail a fundamental property of ¬t-Kleene-Fitting valuations.

Observation 6.5.1. If v0 and v1 are ¬t-Kleene-Fitting valuations on logical trilattices 〈A0⊙

B0, A0×F0〉 and 〈A1⊙B1, A1×F1〉, then if v0 ≃t v1, for all formulae ϕ ∈ L , v0(ϕ) ≃t v1(ϕ).

Proof. By Lemma 6.5.1, vi(ψ) ∈ Ai ×Fi stands or falls with the claim that pr1(vi(ψ)) ∈ Fi

for each i ∈ {0, 1}. Moreover, by Lemma 6.5.2, pr1 ◦ v0 and pr1 ◦ v1 are Kleene-Fitting

valuations on the logical bilattices 〈B0,F0〉 and 〈B1,F1〉, respectively. As a consequence, we

may infer that for any formula ϕ, v0(ϕ) ≃t v1(ϕ) if and only if (pr1 ◦ v0)(ϕ) ≃ (pr1 ◦ v1)(ϕ).

Because this holds a fortiori when ϕ is an atom p, the hypothesis that v0 ≃t v1 thus

entails that pr1 ◦ v0 ≃ pr1 ◦ v1. By applying Observation 6.2.8, we may infer that for an

arbitrary ϕ, (pr1 ◦ v0)(ϕ) ≃ (pr1 ◦ v1)(ϕ). But by our earlier observation, this entails that

v0(ϕ) ≃t v1(ϕ) and because ϕ was selected arbitrarily, this holds for all formulae ϕ.

Definition 6.5.6. Recall the definition of the partition T 〈B,F〉
x from Definition 6.2.7 and let

〈A ⊙ B, A×FB〉 be a logical trilattice. Then the function g〈A⊙B,A×FB〉 : A×B → FOUR2 ×

FOUR2 is defined so that:

g〈A⊙B,A×FB〉(x) = 〈⊤, ιy.pr1(x) ∈ T 〈B,FB〉
x 〉

Lemma 6.5.3. If v is a ¬t-Kleene-Fitting valuation on 〈A⊙B, A×FB〉 with 〈B,FB〉 a logical

bilattice, then the valuation g〈A⊙B,A×FB〉◦v is a valuation on 〈SIXT EEN 3, FOUR2×{⊤, t}〉

such that v ≃t g〈A⊙B,A×FB〉 ◦ v.
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Proof. By construction of g〈A⊙B,A×FB〉, we can be assured that for all atoms p, v(p) ≃t

(g〈A⊙B,A×FB〉 ◦ v)(p). Hence, by Observation 6.5.1, v ≃t g〈A⊙B,A×FB〉 ◦ v.

Observation 6.5.2. Consider a logical trilattice 〈A⊙B,F〉 and a set of formulae Γ∪{ϕ} ⊆

L. Then we have the following:

Γ �
〈A⊙B,A×FB〉
KF[¬t]

ϕ if and only if Γ �
〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ

Proof. If Γ 2〈A⊙B,A×FB〉
KF[¬t]

ϕ and v is a ¬t-Kleene-Fitting valuation witnessing the failure of

this inference, then g〈A⊙B,A×FB〉 ◦ v is a valuation on 〈SIXT EEN 3, FOUR2 × {⊤, t}〉 such

that for all ϕ ∈ L, v(ϕ) ≃t (g〈A⊙B,A×FB〉 ◦ v)(ϕ). Hence, the ¬t-Kleene-Fitting valuation

g〈A⊙B,A×FB〉 ◦ v witnesses that Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ.

On the other hand, because SIXT EEN 3 is the smallest non-degenerate trilattice, the ele-

ments of FOUR2 can be identified with the top and bottom elements of bothA and B. Hence,

any valuation on 〈SIXT EEN 3, FOUR2×{⊤, t}〉 witnessing that Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ is a fortiori a valuation on 〈A⊙B, A×FB〉 that serves as a countermodel to the inference

Γ �
〈A⊙B,A×FB〉
KF[¬t]

ϕ.

Lemma 6.5.4. For all sets of formulae Γ ∪ {ϕ}, we have the following:

Γ �
〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ if and only if Γ �
〈FOUR2,{⊤,t}〉
KF

ϕ.

Proof. For left-to-right, suppose that Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ and let v be a ¬t-Kleene-

Fitting valuation witnessing the failure of the inference. Then by Lemmas 6.5.1 and 6.5.2,

pr1 ◦ v is a Kleene-Fitting valuation on 〈FOUR2, {⊤, t}〉 such that (pr1 ◦ v)[Γ] ⊆ {⊤, t}

although (pr1 ◦ v)(ϕ) /∈ {⊤, t}. pr1 ◦ v thus witnesses the fact that Γ 2〈FOUR2,{⊤,t}〉
KF

ϕ.

Conversely, if Γ 2〈FOUR2,{⊤,t}〉
KF

ϕ and v is a Kleene-Fitting valuation witnessing this fact,

then v⋆ : x 7→ 〈v(x), v(x)〉 is clearly a ¬t-Kleene-Fitting valuation. By appealing to Lemma

6.5.1, from v[Γ] ⊆ {⊤, t} we can infer that v⋆[Γ] ⊆ FOUR2×{⊤, t} and from v(ϕ) /∈ {⊤, t},
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we infer that v⋆(ϕ) /∈ FOUR2 × {⊤, t}. But this is just to say that v⋆ witnesses that

Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ.

Observation 6.5.3. Let 〈T ,F〉 be a logical trilattice with a t-inversion where T is interlaced.

Then for all sets of formulae Γ ∪ {ϕ}:

Γ �
〈T ,F〉
KF[¬t]

ϕ if and only if Γ �Sfde ϕ

Proof. Suppose that Γ 2〈T ,F〉
KF[¬t]

ϕ and let v be a ¬t-Kleene-Fitting valuation on 〈T ,F〉 wit-

nessing this fact. By Theorem 6.4.1, the trilattice T is isomorphic to a product trilattice

A⊙B and by Observation 6.5.1, F may be represented by the prime trifilter A×FB. Hence,

we infer equivalence with the proposition that Γ 2〈A⊙B,A×FB〉
KF[¬t]

ϕ where F = A × FB. By

Lemma 6.5.1, this holds if and only if there exists an analogous ¬t-Kleene-Fitting valuation

on 〈SIXT EEN 3, FOUR2×{⊤, t}〉 attesting to the proposition Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬t]

ϕ.

Lemma 6.5.4 shows the equivalence between this proposition and Γ 2〈FOUR2,{⊤,t}〉
KF

ϕ. Obser-

vation 6.2.10 ensures that this is equivalent to the claim that Γ 2Sfde ϕ.

We thus observe that—given the most direct and natural generalization of cut-down opera-

tions to the case of trilattices—the interpretation of Sfde as the logic of cut-down operations

on bilattices lifts to the case of interlaced trilattices whenever negation is interpreted as

t-inversion.

6.5.2 Interlude: Analytic Containment and Sfde

From a certain perspective, the relationship between the logics Sfde and AC might be expected

to mirror that between bilattices and trilattices.

On the one hand, we have observed that Rivieccio’s representation theorem for interlaced

trilattices of (163) proves that all interlaced trilattices are isomorphic to the product of two
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bilattices. For example, for a generalization of the Fitting-Ginsberg product ⊙, the trilattice

SIXT EEN 3 can be represented as the product trilattice FOUR2 ⊙ FOUR2.

On the other hand, whereas Chapter 5 described a Belnap-Dunn-like interpretation of

AC as two systems of positive Σ0 running in parallel (i.e., calculating independent truth and

falsity values), semantics for AC could just as easily have been provided by two systems of

Sfde. In this sense, the resulting sixteen-valued semantics for AC can be viewed as a product

of the matrix for Sfde with itself, with negation toggling between the two.

Lemma 6.5.5. The positive fragments of Σ0 and Sfde coincide.

Proof. Let ∼ be the equivalence relation on VSfde induced by the partition {{t, b}, {u}, {f}}.

Then if we use the notation f [x] to denote the image of x under f and the notation [x]∼

to denote the equivalence class of x under ∼, it is easy to confirm the following for all

v, v′ ∈ VSfde :

� f ∧̇
Sfde

[[v]∼ × [v′]∼] = [f ∧̇
Sfde

(v, v′)]∼

� f ∨̇
Sfde

[[v]∼ × [v′]∼] = [f ∨̇
Sfde

(v, v′)]∼

entailing that ∼ is also a congruence relation. This also entails that we have the following

truth tables for the images of equivalence classes of values of VSfde under the truth functions

of Sfde:

f ∧̇
Sfde

{t, b} {u} {f} f ∨̇
Sfde

{t, b} {u} {f}

{t, b} {t, b} {u} {f} {t, b} {t, b} {u} {t, b}

{u} {u} {u} {u} {u} {u} {u} {u}

{f} {f} {u} {f} {f} {t, b} {u} {f}

By appealing to the fact that both VΣ0 ⊆ VSfde and DΣ0 ⊆ DSfde and that there is a clear

analogy between the above truth tables and those for conjunction and disjunction in Defi-

nition 2.2.4, it is easy to confirm that the function h : v 7→ [v]∼ is an isomorphism between

the positive matrix of Σ0 and the quotient of the positive matrix of Sfde under ∼.
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Definition 6.5.7. The relation �AC
′ is the consequence relation induced by the matrix 〈VSfde×

VSfde ,DSfde × VSfde , f
¬̇
AC

′ , f ∧̇
AC

′, f ∨̇
AC

′〉 where:

� f ¬̇
AC

′(〈v0, v1〉) = 〈v1, v0〉

� f ∧̇
AC

′(〈v0, v1〉, 〈v′0, v
′
1〉) = 〈f ∧̇

Sfde
(v0, v

′
0), f

∨̇
Sfde

(v1, v
′
1)〉

� f ∨̇
AC

′(〈v0, v1〉, 〈v′0, v
′
1〉) = 〈f ∨̇

Sfde
(v0, v

′
0), f

∧̇
Sfde

(v1, v
′
1)〉

AC′ valuations and AC′ validity are defined in the standard fashion.

Because the functions f ∧̇
Sfde

and f ∨̇
Sfde

are unable to distinguish between the values t and b in

positive Sfde, MAC
′ provides a correct characterization of Angell’s AC as well.

Lemma 6.5.6. Γ �AC
′ ϕ iff Γ �AC ϕ

Proof. Left-to-right is immediate. Suppose that Γ 2AC ϕ and that v is an AC valuation

witnessing this fact. Then because VAC ⊆ VAC
′ , v is also an AC′ valuation, whence Γ 2AC

′ ϕ.

Right-to-left follows by invoking a trivial induction on complexity of formulae demon-

strating that any AC′ valuation has a corresponding AC valuation by mapping both t and

b to t. Any AC′ countermodel to an inference Γ �AC
′ ϕ entails the existence of an AC

countermodel to Γ �AC ϕ.

This suggests that with respect to the generalization of cut-down operation on trilattices

in Definitions 6.4.6 and 6.4.7, whenever negation is identified with tf -inversion, the account

of Sfde on bilattices can be employed to provide a natural and robust correspondence between

AC and cut down operations on interlaced trilattices.
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6.5.3 AC on Trilattices

Now, granted the foregoing considerations on AC, we will show its equivalence to the logic

of cut-down operations on trilattices in which negation is interpreted as a tf -inversion.

Naturally, the modification of Kleene-Fitting valuations may be defined as follows:

Definition 6.5.8. A ¬tf -Kleene-Fitting valuation on a trilattice T with t- and f -inversions

is a function v : L → T such that:

� v(¬̇ϕ) = ¬tf (v(ϕ))

� v(ϕ ∧̇ ψ) = v(ϕ) △t v(ψ)

� v(ϕ ∨̇ ψ) = v(ϕ) ▽t v(ψ)

Definition 6.5.9. An inference from Γ to ϕ is ¬tf -KF valid on a logical trilattice 〈T ,F〉—

written Γ �
〈T ,F〉
KF[¬tf ]

ϕ—if for all ¬tf -Kleene-Fitting valuations v, if v[Γ] ⊆ F then v(ϕ) ∈ F .

For an interlaced trilattice T with t- and f - inversions, the inversions ¬t and ¬f always

commute. With an eye to the representation theorems, that ¬t and ¬f commute ensures

that not only is every interlaced trilattice T isomorphic to a product trilattice A ⊙ B but

that A is isomorphic to B. Hence, we will consider product trilattices A⊙A in the follow-

ing pages before applying Rivieccio’s representation theorems (163) to extend the following

observations to all interlaced trilattices with inversions ¬t and ¬f .

Again, we proceed by showing a correspondence between logical trilattices of the form

〈A ⊙ A,F〉 and 〈FOUR2 ⊙ FOUR2, FOUR2 × {⊤, t}〉 before demonstrating a correspon-

dence between the latter logical trilattice and AC. An essential ingredient in this correspon-

dence is a final notion of similarity.

Definition 6.5.10. Consider two logical trilattices 〈A0⊙A0, A0×F0〉 and 〈A1⊙A1, A1×F1〉

where F0 and F1 are prime bifilters on A0 and A1, respectively. Then two elements 〈a, b〉 ∈

A0 ×A0 and 〈a′, b′〉 ∈ A1 × A1 are ¬tf -similar—written 〈a, b〉 ≃tf 〈a′, b′〉—if:
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� 〈a, b〉 ≃t 〈a′, b′〉, and

� ¬tf 〈a, b〉 ≃t ¬tf 〈a′, b′〉

Observation 6.5.4. For two logical trilattices 〈A0 ⊙A0, A0 ×F0〉 and 〈A1 ⊙A1, A1 ×F1〉,

for all elements 〈a, b〉 ∈ A0 × A0 and 〈a′, b′〉 ∈ A1 ×A1,

〈a, b〉 ≃tf 〈a′, b′〉 if and only if















b ≃ b′, and

a ≃ a′

where similarity simpliciter ( i.e., ≃) is considered with respect to logical bilattices 〈A0,F0〉

and 〈A1,F1〉.

Proof. An immediate consequence of Lemma 6.5.1 is that

〈a, b〉 ≃tf 〈a
′, b′〉 holds if and only if b ≃ b′.

Moreover, if we note that the claim that ¬tf 〈a, b〉 ≃t ¬tf 〈a′, b′〉 is equivalent to 〈¬b,¬a〉 ≃tf

〈¬b′,¬a′〉, Lemma 6.5.1 entails that this is equivalent to the statement that ¬a ≃ ¬a′, i.e.,

a ≃ a′.

As before, we again extend a notion of similarity to valuations on trilattices, although in

this case, we consider ¬tf -Kleene-Fitting valuations.

Definition 6.5.11. We say that two ¬tf -Kleene-Fitting valuations v0 and v1 are ¬tf -similar

if for all atoms p:

v0(p) ≃tf v1(p)

And we prove a fundamental principle concerning ¬tf -similar valuations.

Observation 6.5.5. Where v0 and v1 are ¬tf -Kleene-Fitting valuations on logical trilattices

〈A0 ⊙ A0, A0 × F0〉 and 〈A1 ⊙ A1, A1 × F1〉 such that v0 ≃tf v1, v0(ϕ) ≃tf v1(ϕ) for all

formulae ϕ ∈ L .
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Proof. Suppose that v0 and v1 are ¬tf -similar. Then we prove the observation by induction

on complexity of formulae.

As induction hypothesis for two formulae ϕ, ψ ∈ L, let v0(ϕ) = 〈a0, b0〉, v0(ψ) = 〈a1, b1〉,

v1(ϕ) = 〈a′0, b
′
0〉, and v1(ψ) = 〈a′1, b

′
1〉 and assume that v0(ϕ) ≃tf v1(ϕ) and v0(ψ) ≃tf v1(ψ).

More explicitly, by Observation 6.5.4, this entails that a0 ≃ a′0, a1 ≃ a′1, b0 ≃ b′0, and b1 ≃ b′1

all hold.

In the case of negation, involutivity of ¬t ensures that the result holds. In particular,

that a0 ≃ a′0 and b0 ≃ b′0 entails that ¬a0 ≃ ¬a′0 and ¬b0 ≃ ¬b′0, entailing that 〈¬b0,¬a0〉 ≃tf

〈¬b′0,¬a
′
0〉, i.e., v0(¬̇ϕ) ≃tf v1(¬̇ϕ).

In the case of conjunction and disjunction, note that v0(ϕ ∧̇ ψ) = 〈a0 △ a1, b0 △ b1〉

and v1(ϕ ∧̇ ψ) = 〈a′0 △ a′1, b
′
0 △ b′1〉. By Observation 6.5.4, the matter of determining ¬tf -

similarity between v0(ϕ ∧̇ ψ) and v1(ϕ ∧̇ ψ) reduces to the matter of determining whether

a0 △ a1 ≃ a′0 △ a′1 and b0 △ b1 ≃ b′0 △ b′1. Likewise, whether v0(ϕ ∨̇ ψ) ≃tf v1(ϕ ∨̇ ψ) stands

or falls alongside the matter of whether both a0 △ a1 ≃ a′0 △ a′1 and b0 ▽ b1 ≃ b′0 ▽ b′1 hold.

The details of Observation 6.2.8 ensure that if a0 ≃ a′0 and a1 ≃ a′1 both hold, then

also a0 △ a1 ≃ a′0 △ a′1 and a0 ▽ a1 ≃ a′0 ▽ a′1 (and mutatis mutandis when b0 ≃ b′0

and b1 ≃ b′1). Hence, the induction hypothesis entails that v0(ϕ ∧̇ ψ) ≃tf v1(ϕ ∧̇ ψ) and

v0(ϕ ∨̇ ψ) ≃tf v1(ϕ ∨̇ ψ).

Definition 6.5.12. Let g′〈A⊙A,A×F〉 : A× A→ FOUR2 × FOUR2 be defined so that:

g′〈A⊙A,A×F〉(a, b) = 〈¬( ιx.a ∈ T 〈A,F〉
x ), ιy.b ∈ T 〈A,F〉

y 〉.

Lemma 6.5.7. If v is a ¬tf -Kleene-Fitting valuation on 〈A ⊙ A, A × F〉 where 〈A,F〉

is a logical bilattice, then the function g′〈A⊙A,A×F〉 ◦ v is a ¬tf -Kleene-Fitting valuation on

〈SIXT EEN 3, FOUR2 × {⊤, t}〉 such that v ≃tf g
′
〈A⊙A,A×F〉 ◦v.

Proof. The construction of g′〈A⊙A,A×F〉 guarantees that (g′〈A⊙A,A×F〉 ◦ v)(p) ≃tf v(p) for each

atom p, entailing that g′〈A⊙A,A×F〉 ◦ v ≃tf v.
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The sum of these observations swiftly yields the corollary that SIXT EEN 3 retains its

fundamental role in the theory of trilattices when negation is interpreted by ¬tf .

The primary theorem will be proven by appealing to a sequence of equivalences described

in the following observations:

Observation 6.5.6. For a logical trilattice 〈A⊙A, A×F〉 and set of formulae Γ∪{ϕ}, we

have the following equivalence:

Γ �
〈A⊙A,A×F〉
KF[¬tf ]

ϕ if and only if Γ �
〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬tf ]

ϕ.

Proof. For right-to-left, suppose that Γ 2〈A⊙A,A×F〉
KF[¬tf ]

ϕ and let v be a ¬tf -Kleene-Fitting

valuation such that v[Γ] ⊆ A × F although v(ϕ) /∈ A× F . Then by Lemma 6.5.7, we may

infer that (g′〈A⊙A,A×F〉 ◦ v)(ψ) ≃tf v(ψ) for each ψ ∈ Γ∪ {ϕ}, entailing that (g′〈A⊙A,A×F〉 ◦ v)

witnesses that Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬tf ]

ϕ.

For left-to-right, we can without loss of generality assume that FOUR2 ⊆ A and that

{⊤, t} ⊆ F . Hence, a ¬tf -Kleene-Fitting valuation v on SIXT EEN 3 is a fortiori a valuation

onA⊙A. Thus, whenever v serves as a countermodel to an inference Γ �
〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬tf ]

ϕ, v also serves as a countermodel to the inference Γ �
〈A⊙A,A×F〉
KF[¬tf ]

ϕ.

Observation 6.5.7. For all sets of formulae Γ ∪ {ϕ}, we have the following:

Γ �
〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬tf ]

ϕ if and only if Γ �AC ϕ.

Proof. Recall the bijection h⋆ between FOUR2 and VSfde from the proof of Observation 6.2.2

and define the map g⋆ : FOUR2 × FOUR2 → VSfde × VSfde so that:

g⋆(x, y) = 〈h⋆(y), f ¬̇
Sfde

(h⋆(x))〉.

To begin, there are several trivial observations that we can make. For one, it is clear that

g⋆ is bijective. It is also immediate to note that the image of FOUR2 × {⊤, t} under g⋆ is

precisely the set of designated values of AC′.
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What remains to be shown is that g⋆ preserves operations between the two structures.

In the case of negation, this is relatively simple, with the steps in the following justification

self-explanatory. Letting 〈a, b〉 ∈ FOUR2 × FOUR2, we have the following:

g⋆(¬tf 〈a, b〉) = g⋆(〈¬b,¬a〉)

= 〈h⋆(¬a), f ¬̇
Sfde

(h⋆(¬b)〉

= 〈f ¬̇
Sfde

(h⋆(a)), f ¬̇
Sfde

(f ¬̇
Sfde

(h⋆(b)))〉

= 〈f ¬̇
Sfde

(h⋆(a), h⋆(b)〉

= f ¬̇
AC

′(〈h⋆(b), f ¬̇
Sfde

(h⋆(a))〉

= f ¬̇
AC

′(g⋆(〈a, b〉)

It follows that if v0 is a ¬tf -Kleene-Fitting valuation on SIXT EEN 3 and v1 is an AC′

valuation such that g⋆(v0(ϕ)) = v1(ϕ), then:

g⋆(v0(¬̇ϕ)) = g⋆(¬tfv0(ϕ)) = f ¬̇
AC

′(v1(ϕ)) = v1(¬̇ϕ)

Likewise, in the case of weak conjunction,

g⋆(〈a, b〉 △t 〈a′, b′〉) = g⋆(〈a △ a′, b △ b′〉)

= 〈h⋆(b △ b′), f ¬̇
Sfde

(h⋆(a △ a′))〉

= 〈f ∧̇
Sfde

(h⋆(b), h⋆(b′)), f ¬̇
Sfde

(f ∧̇
Sfde

(h⋆(a), h⋆(a′)))〉

= 〈f ∧̇
Sfde

(h⋆(b), h⋆(b′)), f ∨̇
Sfde

(f ¬̇
Sfde

(h⋆(a)), f ¬̇
Sfde

(h⋆(a′)))〉

= f ∧̇
AC

′(〈h⋆(b), f ¬̇
Sfde

(h⋆(a))〉, 〈h⋆(b′), f ¬̇
Sfde

h⋆(a′))〉)

= f ∧̇
AC

′(g⋆(〈a, b〉), g⋆(〈a′, b′〉))

Now, consider ¬tf -Kleene-Fitting and AC′ valuations v0 and v1, respectively, where g⋆(v0(ϕ)) =

v1(ϕ) and g⋆(v0(ψ)) = v1(ψ). Then:

g⋆(v0(ϕ ∧̇ ψ)) = g⋆(v0(ϕ) △ v0(ψ)) = f ∧̇
AC

′(v1(ϕ), v1(ψ)) = v1(ϕ ∧̇ ψ).

Hence, given a ¬tf -Kleene-Fitting valuation v on SIXT EEN 3 serving to demonstrate that

Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬tf ]

ϕ, the function g⋆◦v is an AC′ valuation acting as a countermodel
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to the inference Γ �AC
′ ϕ. But Lemma 6.5.6 establishes that AC′ consequence is identical to

AC consequence, whence Γ 2AC ϕ.

Likewise, if Γ 2AC ϕ then there exists an AC′ valuation such that v[Γ] ⊆ DAC
′ and

v(ϕ) /∈ DAC
′. But as g⋆ is an isomorphism, the function (g⋆)−1 ◦ v will be a ¬tf -Kleene-

Fitting valuation establishing that Γ 2〈SIXT EEN 3,FOUR2×{⊤,t}〉
KF[¬tf ]

ϕ.

Theorem 6.5.1. Let 〈T ,F〉 be a logical trilattice with inversions ¬t and ¬f where T is

interlaced. Then for all sets of formulae Γ ∪ {ϕ} ⊆ L,

Γ �
〈T ,F〉
KF[¬tf ]

ϕ if and only if Γ �AC ϕ

Proof. By Rivieccio’s Theorem 6.4.2 and Lemma 6.4.2, 〈T ,F〉 is isomorphic to a logical

trilattice 〈A ⊙ A, A × F〉. We may then appeal to Observations 6.5.6 and 6.5.7 to prove

equivalence between consequence with respect to ¬tf -Kleene-Fitting valuations on 〈T ,F〉

and consequence in AC.

Hence, whenever negation is identified with the inversion ¬tf , the logic of cut down operations

on interlaced trilattices is captured by Angell’s AC.

6.6 Future Directions

There are two promising directions in which the foregoing work on cut-downs can be taken.

Obviously, the results of Section 6.5 are limited insofar as the correspondences described

therein hold only for interlaced trilattices. Although interlacing is a very natural property,

it is obviously desirable to improve these results to hold for all logical trilattices.

A further limitation lies in the fact that the results in Section 6.3 are limited insofar

as the observations apply only to the bilattice NINE2. Of course, there are numerous

possible generalizations of Damásio and Pereira’s operation of not to bilattices in general.
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The question of how to generalize not and how the generalized operations relate to AC in

general is worth pursuing.

In Chapter 5, we had considered Shramko and Wansing’s appeal to SIXT EEN 3 as a

representation of the logic of networks of Belnap computers in (175). If trilattices indeed

constitute a natural model for such Shramko-Wansing networks, Angell’s AC emerges nat-

urally in both the context of Belnap computers and networks of such computers. From

an interpretative standpoint, then, it is plausible there is a corresponding interpretation of

AC as the logic of faulty Shramko-Wansing networks, i.e., networks of Belnap computers in

which catastrophic errors may occur.

Finally, we have seen a host of other many-valued logics qualifying as ‘Parry.’ Whether

bilattice semantics can be given for these systems is worth investigating. For example, given

the interpretation of the Daniels-Priest logic S⋆
fde

as the logic of faulty Belnap computers

in Chapter 5, one might anticipate that it would have been this system—rather than the

Deutsch-Oller system Sfde—that arises in the context of cut down operations on multilattices.

It is worth investigating whether S⋆
fde

corresponds to any salient operations on multilattices.

At this point, we have considered a number of semantical frameworks within which

Angell’s AC can be defined. In the next chapter, we revisit the first semantics for AC,

described by Fabrice Correia in (49).



Chapter 7

Correia Semantics Revisited

Despite a renewed interest in Angell’s logic of analytic containment (AC), Correia’s semantics

for AC has remained largely unexamined. This chapter describes a reasonable approach to

Correia semantics by means of a correspondence with a nine-valued semantics for AC. The

present inquiry employs this correspondence to provide characterizations of a number of

propositional logics intermediate between AC and classical logic. In particular, we examine

Correia’s purported characterization of classical logic with respect to his semantics, showing

the condition Correia cites in fact characterizes the ‘logic of paradox’ LP and provide a

correct characterization. Finally, we consider some remarks on related matters, such as the

applicability of the present correspondence to the analysis of the system AC∗ and an intriguing

relationship between Correia’s models and articular models for first-degree entailment.

7.1 Introduction

In (9) and (11), Richard Angell introduced the systems AC and AC∗ corresponding to a

notion of analytic containment in which entailment is characterized as the containment of

one proposition within another. Although Correia provided the first semantical account of

217
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AC in (49), the semantics was not accompanied by any intuitive interpretation. Although

many of the more recent interpretations have come equipped with corresponding semantics

for AC, the object of study in this discussion is Correia’s semantics of (49).

Although Correia describes the semantics of (49) as ‘unusual,’ the framework still appears

to be authentically semantic in nature, that is, at first blush, the models are not merely a

clever trick to transform syntax into semantics. Importantly, Correia’s first semantics is

not specific merely to AC, but, as Correia shows, provides a framework within which other

deductive systems may be characterized. As an ill-understood semantical framework that

captures the behavior of multiple deductive systems, Correia’s semantics deserves deeper

investigation; such an investigation has so far been missing.

In the present study, the correspondence between the nine-valued, truth functional se-

mantics described in Chapter 5 and Correia’s models is examined anew. This correspondence

yields not only a simple avenue towards further characterizations of deductive systems in

terms of Correia’s models but insight into these properties and why they emerge in Correia

semantics.

7.2 Analytic Containment and Correia Semantics

In this section, we will first examine the proof-theoretical account of analytic containment

before proceeding to examine two semantical approaches: the account of Correia models

introduced in (49) and the many-valued account introduced in (74). Further semantics have

appeared in recent years but will not be reproduced here; the reader is referred to (50), (87),

or (115) for accounts of these alternative approaches to AC.
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7.2.1 Semantical Preliminaries

We have described Correia’s semantics for AC in Section 5.3.1 but are now interested not

only in how this semantics characterizes AC, but the conditions under which other deductive

systems may be captured. To this end, we will have to consider a more general notion of

validity in which only restricted classes of Correia models are considered.

Definition 7.2.1. We say that a formula A→ B is valid with respect to a class of Correia

models X if for all v ∈ X such that ∅ �v A, ∅ �v B.

Definition 7.2.2. A first-degree logic L is characterized by a set X of Correia models if

A→ B is a theorem of L iff A→ B is valid with respect to X.

Given the correspondence between the many-valued semantics for AC and vocabulary

closed Correia models, it will aid us to represent extensions of AC in a similar, bilateral

manner. Hence, we will will provide bilateral semantics for a host of systems as restrictions on

the matrix MAC. For example, we have considered two presentations of Efde: The unilateral

account in Definition 3.1.17 and the bilateral account in Definition 5.2.1. In the latter case,

the set of bilateral truth values V ∗
Efde

is a subset of VAC. Hence, the logical matrix of Definition

5.2.1 can be thought of as a restriction of the matrix MAC of Definition 5.2.3.

Formally, we define the restriction of a logical matrix as follows:

Definition 7.2.3. With respect to a logical matrix M = 〈V ,D , f ¬̇, f ∨̇, f ∧̇〉, suppose that

there exists a set U ⊆ V such that U is closed under f ¬̇, f ∨̇, and f ∧̇. Then the restriction

of M to the set U is the matrix

M ↾U = 〈U ,D ∩U , f ¬̇↾U , f
∨̇↾(U ×U ), f

∧̇↾(U ×U )〉.

Recall the Bochvar-Kleene logic Σ0 from Definition 2.2.4. Eventually, we will reexamine Σ0,

although its semantics will be formulated as a restriction of AC rather than the system from
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which AC is built. As we will have cause to return to Σ0 in the sequel, it is fitting to let this

second presentation of Σ0 illustrate the restriction of the matrix MAC.

Observation 7.2.1. Let V ⋆
Σ0

= {〈t, f〉, 〈f, t〉, 〈u, u〉}. Then

MΣ0
∼= MAC↾V ⋆

Σ0

Proof. Let pr0 and pr1 be the projection operators projecting ordered pairs to their first

and second elements, respectively. Simple calculation confirms that pr0 is an isomorphism,

that is, pr0(f
¬̇
AC

(〈v, v′〉)) = f ¬̇
AC
↾V ⋆

Σ0
(pr0〈v, v

′〉) and mutatis mutandis for conjunction and

disjunction.

7.2.2 Correlating the Two Semantics

In Chapter 5, completeness of the nine-valued semantics was proven indirectly by means

of a construction showing that if A → B is a valid inference by the lights of the nine-

valued semantics, it is valid with respect to vocabulary closed Correia models as well. This

construction, however, provides a useful platform from which we may characterize other

notions of entailment in terms of Correia’s models. This section introduces the construction

and describes how it serves to interpret Correia’s models.

Before reviewing the construction of Chapter 5, it will be helpful to review and introduce

some properties of vocabulary closed Correia models. For example, we characterize the class

of vocabulary closed Correia models in a fashion alternative to that of Definition 5.3.7:

Theorem 7.2.1. A Correia model v is vocabulary closed iff

v = {〈Γ,∆〉 | ∃〈Γ′,∆′〉 ∈ G(v) s.t. 〈Γ′,∆′〉 4 〈Γ,∆〉 4 〈Γ⋆
v
,∆⋆

v
〉}.

Proof. Immediate from Definition 5.3.7 and Lemma 5.3.6.
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Hence, that v is vocabulary closed is to say v is determined precisely by its set of generators

and its positive and negative vocabularies. This entails that when v is vocabulary closed, all

the information in v can be recovered from G(v) and 〈Γ⋆
v,∆

⋆
v〉.

The set G(v) is essential in the correspondence between Correia models and the nine-

valued semantics. In this section, we will describe elements of the correspondence necessary

to the present study. Now, Definition 5.3.14 provided us a truth-preserving method of

translating Correia models into AC valuations that preserves truth. If we want to study

further correspondences, however, it will be necessary to have a technique to translate AC

valuations into Correia models whose theories are identical. This Correia model will be called

a Correia counterpart :

Definition 7.2.4. Let v be an AC valuation. Then the Correia counterpart of v is the unique

vocabulary closed Correia model c(v) where:

� 〈Γ⋆
c(v),∆

⋆
c(v)〉 = 〈{p | pr1(v(p)) 6= u}, {p | pr0(v(p)) 6= u}〉

� 〈∅, {p}〉 ∈ c(v) iff v(p) ∈ DAC

� 〈{p},∅〉 ∈ c(v) iff v(¬̇ p) ∈ DAC

Theorem 7.2.2. ∅ �c(v) A iff v(A) ∈ DAC.

Proof. It can be confirmed that F(c(v)) is a singleton. Then ∅ �c(v) A holds iff ∅ F(c(v)) A

holds. But by Lemma 5.3.13, this is equivalent to saying that v(A) ∈ DAC.

7.2.3 A General Characterization Lemma

While characterizing different deductive systems by classes of Correia models, we employ a

similar scheme of proof for each case. Rather than rehearse a virtually identical proof several

times over, we will prove a lemma to which we may appeal when necessary.
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Lemma 7.2.1 (Characterization Lemma). Let L be a first-degree logic characterized by a

matrix ML such that ML a restriction of MAC and let Φ be a property of some vocabulary

closed Correia models. Moreover, let the following two conditions hold:

� whenever v has property Φ then each vC ∈ F(v) is an ML valuation

� whenever v is an ML valuation then c(v) has property Φ

Then L is characterized by the class of vocabulary closed models with property Φ.

Proof. Suppose that L is such a restriction of AC and that the two conditions hold. Then to

prove that L is characterized by the class of vocabulary closed models satisfying property Φ

is to prove that A→ B is a theorem of L iff for all vocabulary closed Correia models v with

property Φ, whenever ∅ �v A, also ∅ �v B.

For left-to-right, we prove the contrapositive. Suppose that there exists a vocabulary

closed Correia model satisfying Φ such that ∅ �v A but ∅ 2v B. Then by Lemma 5.3.13,

there exists a vC ∈ F(v) such that vC(A) ∈ DAC but vC(B) /∈ DAC. By hypothesis, however,

vC is an L valuation and—as a restriction of AC—this entails that vC(A) ∈ DL but vC(B) /∈

DL. Hence, vC is an L valuation witnessing the failure of A→ B in L.

For right-to-left, we again prove the contrapositive. Let A → B fail to be a theorem of

L and let v be an L valuation witnessing this fact. Then as L is by hypothesis a restriction

of AC, v is trivially an AC valuation. Now consider c(v). By Theorem 7.2.2, ∅ �c(v) A

although ∅ 2c(v) B. But c(v) by hypothesis has property Φ, whence we infer the existence

of a vocabulary closed model with property Φ at which A is true but B is not true.

7.3 Correia Models and Other Propositional Logics

AC admits many equivalent presentations, one in which we are concerned with the validity

of formulae A → B from Lfdf (e.g., the presentation in (49) or (87)) and the other in
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which we are concerned with validity of an inference Γ �AC B for Γ ⊆ Lzdf and B ∈ Lzdf.

Similarly, many propositional logics described in terms of a consequence relation also admit

a formulation as a first-degree deductive system.

The contributions of Correia’s (49) go beyond a characterization of AC in terms of his

models; he also purports to characterize both the Belnap-Dunn logic Efde and the classical

logic CL itself in terms of classes of his models.

In this section, we employ the interpretation of Correia models as sets of truth functions

in order to characterize a number of deductive systems intermediate between AC and CL.

Initially, we will examine Correia’s characterization of the Belnap-Dunn logic of first-degree

entailment Efde to make clear the utility and methodology of interpreting Correia models as

collections of truth functions. Then, we will proceed to characterize some other first-degree

logics in terms of Correia models. Finally, we will examine Correia’s characterization of

classical logic, showing it to be incorrect and providing a correct characterization of classical

logic in the framework of (49).

7.3.1 First-Degree Entailment

Within the many-valued framework, the bilateral semantics for the logic Efde of Definition

5.2.1 can be viewed as a restriction of the nine-valued AC semantics in which the set of truth

values are restricted to those corresponding to truth, falsity, both true and false, and neither

true nor false.

Formally, this identity is expressed by the following observation:

Observation 7.3.1. M⋆
Efde

= MAC↾V
⋆
Efde

Note that V ⋆
Efde

is closed under the truth functions of AC; this will be the case for every

restriction of AC considered in the sequel.

From a proof-theoretic perspective, as verified in (49), Efde can be obtained from AC by
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adding the axiom A→ A ∨̇ B. In (49), Correia also provides a characterization of Efde with

respect to Correia models satisfying the following condition:

Definition 7.3.1 (Condition TE). For all finite sets of atoms Γ, Γ′, ∆, and ∆′ if 〈Γ,∆〉 ∈ v

then 〈Γ ∪ Γ′,∆ ∪∆′〉 ∈ v

To analyze Correia’s result and provide similar characterizations to other deductive systems,

we introduce a property equivalent to Condition TE.

Definition 7.3.2. The language closure of a Correia model v—symbolized JJvKK—is the small-

est Correia model v′ extending v such that

� for all Correia pairs 〈Γ,∆〉, if there exists a 〈Γ′,∆′〉 ∈ v such that 〈Γ′,∆′〉 4 〈Γ,∆〉,

then 〈Γ,∆〉 ∈ v′

I.e., the set {〈Γ,∆〉 | ∃〈Γ′,∆′〉 ∈ v s.t. 〈Γ′,∆′〉 4 〈Γ,∆〉 4 〈At,At〉}. We say that a

Correia model v is language closed if v = JJvKK.

It is clear that these are equivalent conditions.

Observation 7.3.2. v is language closed iff v enjoys Condition TE.

In order to demonstrate the utility Lemma 7.2.1, we will prove Correia’s result by means of

the following lemmas.

Lemma 7.3.1. If v is language closed then for all vC ∈ F(v), vC is an Efde valuation.

Proof. Suppose that v is a language closed Correia model. Then for all p ∈ At, p ∈ ∆⋆
v

and p ∈ Γ⋆
v
. Hence, for any C ∈

∏

(G(v)τ ), we observe that both pr0(vC(p)) 6= u, and

pr1(vC(p)) 6= u. Hence, the range of vC is necessarily a subset of {〈t, f〉, 〈f, t〉, 〈t, t〉, 〈f, f〉},

i.e., the range of vC is a subset of V ⋆
Efde

. But this is just to say that vC is a bilateral Efde

valuation.
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Lemma 7.3.2. If v is a bilateral Efde valuation, then c(v) is language closed.

Proof. Let v be a bilateral Efde valuation; for no atomic formula p is either pr0(v(p)) = u or

pr1(v(p)) = u. Now, as neither coordinate of the value of any atom p is u, Γ⋆
c(v) = ∆⋆

c(v) = At.

As c(v) is by construction vocabulary closed so that all atomic formulae appear in both its

positive and negative vocabularies, it follows that c(v) is language closed.

With the assistance of Lemma 7.2.1, Lemmas 7.3.1 and 7.3.2 yield the theorem immediately.

Theorem 7.3.1. Efde is characterized by the class of language closed Correia models.

By following this general strategy, we are able to provide natural characterizations of nu-

merous deductive systems in terms of Correia semantics.

First, we will examine ‘analytic’ extensions of AC—those sharing a strong relevance prop-

erty to be described in the sequel—before characterizing a few non-‘analytic’ extensions.

Finally, we will turn our attention to the proper characterization of classical logic.

7.3.2 ‘Analytic’ Extensions

We have noted that AC is ‘analytic’ in the sense employed by Parry, i.e., that AC enjoys

the Proscriptive Principle. We have already encountered other first-degree logics that are

‘analytic’ in this sense which may be characterized in a bilateral fashion as restrictions

of MAC. Two such systems that admit an analysis in terms of Correia models are S⋆
fde

described in (55) and Sfde described in (58)—the first-degree fragments of Charles Daniels’

‘story semantics’ of (54) and Harry Deutsch’s logic S of (59).

We will thus provide bilateral semantics for these two systems as restrictions of MAC:

Definition 7.3.3. A bilateral semantics is given for the first-degree formulation of S⋆
fde

by

the matrix MS⋆
fde

= MAC↾V ⋆
S⋆
fde

where

V ⋆
S⋆
fde

= {〈t, t〉, 〈t, f〉, 〈f, t〉, 〈f, f〉, 〈u, u〉}
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Definition 7.3.4. A bilateral semantics is given for the first-degree formulation of Sfde by

the matrix MSfde = MAC↾V ⋆
Sfde

where

V ⋆
Sfde

= {〈t, t〉, 〈t, f〉, 〈f, t〉, 〈u, u〉}

Note that we are employing the decoration of ⋆ to indicate that the set of truth values

considered is bilateral.

The distinction between these systems and AC may be illustrated by examining the

theorems that hold in the stronger logics. For example, the formula A → A ∨̇ ¬̇A fails in

AC, as the fact that v(A) ∈ DAC is not sufficient to guarantee that pr1(v(A)) 6= u; on the

‘nonsense’ reading of the truth value u (as in (31)), this is to say that the positive content of a

proposition may be meaningful while its negative content is not. However, simple calculation

confirms that this formula is in fact a theorem of S⋆
fde

, as the meaningfulness of a proposition

and its negation stand or fall together.

On the interpretation of, e.g., (23) and (24), Sfde results from S⋆
fde

by eliminating the

possibility of a proposition’s being neither true nor false by fiat. Hence, the mere mention of

a proposition B entails that tertium non datur holds of B; this is captured by a restricted

excluded middle, witnessed by the validity of the formula A ∨̇ B → B ∨̇ ¬̇B in Sfde.

Let us proceed to characterize these systems with respect to Correia semantics. First we

will examine properties corresponding to S⋆
fde

.

Definition 7.3.5. A Correia model v is unsigned if Γ⋆
v = ∆⋆

v.

Lemma 7.3.3. If v is an unsigned and vocabulary closed Correia model then for all vC ∈

F(v), vC is a bilateral S⋆
fde

valuation.

Proof. Let v be an unsigned and vocabulary closed valuation. Then for each vC ∈ F(v), vC

is an AC valuation by definition. However, for an atomic formula p, as Γ⋆
v = ∆⋆

v, we observe

that



CHAPTER 7. CORREIA SEMANTICS REVISITED 227

pr0(vC(p)) = u iff p /∈ Γ⋆
v

iff p /∈ ∆⋆
v

iff pr1(vC(p)) = u.

Hence, the first coordinate of a truth value vC(A) is u iff its second coordinate is u. This

strikes 〈t, u〉, 〈f, u〉, 〈u, t〉, and 〈u, f〉 as possible values, effectively restricting the set of truth

values to V ⋆
S⋆
fde

. As this set is closed under the truth functions of AC, this entails that each

such vC is an S⋆
fde

valuation.

Lemma 7.3.4. If v is an S⋆
fde

valuation then c(v) is an unsigned, vocabulary closed Correia

model.

Proof. If v is an S⋆
fde

valuation then v is a fortiori an AC valuation and c(v) is by construction

vocabulary closed. Now, as for any p ∈ At pr0(v(p)) = u iff pr1(v(p)) = u, this entails that

Γ⋆
c(v) = ∆⋆

c(v). But this entails that c(v) is unsigned.

Again, Lemma 7.2.1 entails that we may infer the following theorem from Lemmas 7.3.3 and

7.3.4:

Theorem 7.3.2. The Daniels-Priest logic S⋆
fde

is characterized by the class of unsigned and

vocabulary closed Correia models.

Now, let us examine the stronger property corresponding to Sfde.

Definition 7.3.6. A Correia model v is relatively complete if for every p ∈ Γ⋆
v
∪ ∆⋆

v
,

〈{p}, {p}〉 ∈ v.

We can make the following observations about relatively complete Correia models.

Lemma 7.3.5. If v is relatively complete, then v is unsigned.

Proof. Clearly, that a model v is relatively complete entails that v is unsigned ; if v is relatively

complete, then

p ∈ Γ⋆
v

iff 〈{p}, {p}〉 ∈ v iff p ∈ ∆⋆
v
.
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Lemma 7.3.6. If v is a relatively complete and vocabulary closed Correia model then for all

vC ∈ F(v), vC is a bilateral Sfde valuation.

Proof. Assume v to be relatively complete and vocabulary closed. By Lemma 7.3.5, v is

also unsigned, whence for any vC ∈ F(v), the range of vC is a subset of V ⋆
S⋆
fde

. However, the

value 〈f, f〉 is likewise not admissible. As 〈{p}, {p}〉 ∈ v, every vC ∈ F(v) is such that either

pr0(vC(p)) = t or pr1(vC(p)) = t whenever p ∈ Γ⋆
v ∪ ∆⋆

v. Hence, the set of truth values to

which any atom may be mapped is V ⋆
S⋆
fde

r {〈f, f〉}. But this is just V ⋆
Sfde

.

Lemma 7.3.7. If v is a bilateral Sfde valuation then c(v) is a relatively complete and vocab-

ulary closed Correia model.

Proof. If v is a bilateral Sfde valuation, then it is a fortiori an S⋆
fde

valuation, whence we

infer that c(v) is unsigned and vocabulary closed. Consider an arbitrary p ∈ Γ⋆
c(v) ∪ ∆⋆

c(v).

As v is an Sfde valuation such that neither coordinate of v(p) is u, either v(p) ∈ D⋆
Sfde

or

v(¬̇ p) ∈ D⋆
Sfde

. Hence, either 〈{p},∅〉 ∈ c(v) or 〈∅, {p}〉 ∈ c(v). But as Γ⋆
c(v) = ∆⋆

c(v), either

option entails that 〈{p}, {p}〉 ∈ c(v), whence we infer that c(v) is relatively complete.

From Lemmas 7.2.1, 7.3.6, and 7.3.7, we infer the following:

Theorem 7.3.3. The Deutsch-Oller logic Sfde is characterized by the class of relatively

complete and vocabulary closed Correia models.

7.3.3 Non-‘Analytic’ Extensions

There are a number of popular and much-studied deductive systems intermediate between

AC and classical logic that fail to enjoy the Proscriptive Principle. In this section, we will

characterize three such systems with respect to Correia’s semantics.
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Inasmuch as the truth functional semantics for AC is intimately related to those for Σ0,

it is a natural question to ask whether Σ0 itself can be given Correia semantics. We thus

turn to providing properties that in fact correspond to Σ0.

Definition 7.3.7. A Correia model v is consistent if for all 〈Γ,∆〉, 〈Γ′,∆′〉 ∈ G(v),

∆ ∩ Γ′ = ∅.

Definition 7.3.8. A vocabulary closed Correia model v is relatively determinate if v is

consistent and relatively complete.

Lemma 7.3.8. If a vocabulary closed Correia model is relatively determinate then for each

p ∈ Γ⋆
v
∪∆⋆

v
, precisely one of the following holds:

a 〈{p},∅〉 ∈ v

b 〈∅, {p}〉 ∈ v.

Proof. Let v be vocabulary closed and relatively determinate and consider an arbitrary

p ∈ Γ⋆
v ∪ ∆⋆

v. Then by relative completeness, 〈{p}, {p}〉 ∈ v. However, consistency of

v entails that 〈{p}, {p}〉 /∈ G(v). Hence, there must be some 〈Γ,∆〉 ∈ G(v) such that

〈Γ,∆〉 4 〈{p}, {p}〉, and the only Correia pairs that can witness this are 〈{p},∅〉 and

〈∅, {p}〉. Consistency again prevents both these pairs from simultaneously appearing in

G(v), whence we conclude that precisely one of these pairs is found in v.

Lemma 7.3.9. If v is vocabulary closed, unsigned, and relatively determinate, then the range

of each vC ∈ F(v) is a subset of {〈t, f〉, 〈f, t〉, 〈u, u〉}.

Proof. Let v be vocabulary closed, unsigned, and relatively determinate. By definition, v is

also relatively complete, and by Lemma 7.3.6, this entails that each vC ∈ F(v) is a bilateral

Sfde valuation, i.e., maps each atom p to a value of V ⋆
Sfde

. However, that v is relatively
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determinate entails that every such vC cannot map formulae to the value 〈t, t〉, as for any

C ∈
∏

(G(v)τ ), consistency entails that for no 〈Γ,∆〉, 〈Γ′,∆′〉 ∈ G(v) will C(〈Γ,∆〉τ ) =

C(〈Γ′,∆′〉τ ). Hence, the set of values to which vC can map an atom p is V ⋆
Sfde

r {〈t, t〉}.

Lemma 7.3.10. Let v be an MAC↾V ⋆
Σ0

valuation. Then c(v) is an unsigned and relatively

determinate vocabulary closed Correia model.

Proof. As v is trivially an Sfde valuation, we already may infer that c(v) is unsigned, rela-

tively complete, and vocabulary closed. What remains, then, is to demonstrate that c(v) is

consistent. As c(v) is unsigned and relatively complete, for every 〈Γ,∆〉 ∈ G(c(v)), 〈Γ,∆〉τ

is a singleton. Hence, the only way that c(v) could violate consistency would be if both

〈{p},∅〉 ∈ c(v) and 〈∅, {p}〉 ∈ c(v). But by Theorem 7.2.2, this would entail that both

v(p) ∈ D⋆
Σ0

and v(¬̇ p) ∈ D⋆
Σ0

, i.e., that v(p) = 〈t, t〉. But 〈t, t〉 /∈ V ⋆
Σ0

, whence a violation

of consistency is seen to be impossible. Hence, c(v) is unsigned, relatively determinate, and

vocabulary closed.

As before, Lemmas 7.2.1, 7.3.9, and 7.3.10 yield the following:

Theorem 7.3.4. The logic Σ0 is characterized by the class of vocabulary closed Correia

models that are unsigned and relatively determinate.

Proof. Lemmas 7.2.1, 7.3.9, and 7.3.10 jointly entail that the logic characterized by the

matrix MAC↾V ⋆
Σ0

corresponds to unsigned and relatively determinate Correia models. By

Observation 7.2.1, the Bochvar logic Σ0 is characterized by both MΣ0 and MAC↾V ⋆
Σ0

. Hence,

we may conclude that unsigned and relatively determinate Correia models characterize Σ0.

We’ve discussed the strong Kleene logic in Section 3.3.1, in which unilateral many-valued

semantics were given by Definition 3.3.5.
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The first-degree formulation of K3 also permits analysis in terms of Correia semantics.

To provide this characterization, we first consider an alternative bilateral semantics for K3

as a restriction of MAC.

Definition 7.3.9. A bilateral semantics for K3 is provided by the matrix M⋆
K3

= MAC↾V ⋆
K3
,

where

V ⋆
K3

= {〈t, f〉, 〈f, t〉, 〈f, f〉}.

The natural interpretation of the truth values of K3 is that the system permits propositions

to be true, false, or neither true nor false.

Lemma 7.3.11. If v is a consistent and language closed Correia model then for all vC ∈ F(v),

vC is a K3 valuation.

Proof. Suppose that v is consistent and language closed. Then Γ⋆
v

= ∆⋆
v

= At, whence for

each p and vC ∈ F(v), we can conclude that

� by language closure, both pr0(vC(p)) 6= u and pr1(vC(p)) 6= u, and

� by consistency, either pr0(vC(p)) 6= t or pr1(vC(p)) 6= t.

Hence, the set of truth values to which an atom may be mapped by v is {〈t, f〉, 〈f, t〉, 〈f, f〉},

i.e., V ⋆
K3

. As V ⋆
K3

is closed under each of the AC truth functions, this entails that for arbitrary

formulae A, vC(A) ∈ V ⋆
K3

; in other words, vC is a K3 valuation.

Lemma 7.3.12. If v is a K3 valuation, then c(v) is consistent and language closed.

Proof. Let v be a K3 valuation. As K3 is an extension of Efde, we already understand c(v) to

be language closed. Hence, Γ⋆
c(v) = ∆⋆

c(v). Consistency of c(v) may be established by noting

that 〈t, t〉 /∈ V ⋆
K3

and following the steps in Theorem 7.3.4.
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Lemmas 7.2.1, 7.3.11, and 7.3.12 entitle us to infer the following:

Theorem 7.3.5. The strong Kleene logic K3 is characterized by the class of consistent and

language closed Correia models.

We have already appealed to the dual relationship between K3 and Priest’s logic of paradox

LP, presented in Definition 2.3.5, as documented in, e.g., (22). This duality allows us to

interpret LP in a bilateral fashion as a restriction of MAC. It is thus natural to expect

Correia semantics for LP as well.

We begin by defining LP in terms of MAC.

Definition 7.3.10. A bilateral semantics for LP is provided by the matrix M⋆
LP

= MAC↾V ⋆
LP

,

where

V ⋆
LP

= {〈t, f〉, 〈f, t〉, 〈t, t〉}.

In other words, LP can be interpreted as the restriction of AC induced by demanding that

every proposition be either true or false (and perhaps both).

Lemma 7.3.13. If v is a relatively complete and language closed Correia model then for all

vC ∈ F(v), v is a bilateral LP valuation.

Proof. As before, from language closure of v and completeness relative to At, we may infer

that

� by language closure, both pr0(vC(p)) 6= u and pr1(vC(p)) 6= u, and

� by completeness relative to At, either pr0(vC(p)) = t or pr1(vC(p)) = t

for all vC ∈ F(v) and p ∈ At. We are thereby able to infer that vC must map each atom to

{〈t, f〉, 〈f, t〉, 〈t, t〉}. But this is V ⋆
LP

and we may conclude that each vC ∈ F(v) is a bilateral

LP valuation.
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Lemma 7.3.14. If v is a bilateral LP valuation, then c(v) is a relatively complete and

language closed Correia model.

Proof. Let v be an LP valuation. By construction, Γ⋆
c(v) = ∆⋆

c(v) = At, whence we conclude

that c(v) is language closed. As for all atoms p, either v(p) ∈ D⋆
LP

or v(¬̇ p) ∈ D⋆
LP

, either

〈{p},∅〉 ∈ c(v) or 〈∅, {p}〉 ∈ c(v). But each entails that 〈{p}, {p}〉 ∈ c(v). As p was selected

arbitrarily, this holds for all atoms, whence c(v) is complete relative to At.

Lemmas 7.2.1, 7.3.13, and 7.3.14 secure for us the characterization of LP:

Theorem 7.3.6. The logic of paradox LP corresponds to the class of relatively complete and

language closed Correia models.

This permits an immediate corollary characterizing the first-degree fragment of the logic

RM, i.e., R with the Mingle axiom. We have observed in Definition 3.3.9 that RMfde may

be characterized by the union of unilateral LP valuations and K3 valuations. This obviously

remains true when the LP and K3 valuations are treated as restrictions of AC valuations.

Corollary 7.3.1. The logic RMfde is characterized by the class of language closed Correia

models that are either consistent or relatively complete.

Proof. Immediate from Definition 3.3.9 and Theorems 7.3.5 and 7.3.6.

At this stage, we have characterized a number of deductive systems in terms of Correia

models. Anticipating the correct characterization of classical logic CL in the next section,

we thus arrive at the picture in Figure 7.1.

7.3.4 Correia’s Characterization of Classical Logic

We now turn to the question of the characterization of classical logic CL with respect to

Correia models. In (49), to yield classical consequence, Correia offers the condition:
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AC

Σ0

K3

LP

Sfde

S⋆
fde

RMfde

CL

Efde

Figure 7.1: First-Degree Systems Intermediate Between AC and CL

Definition 7.3.11 (Condition PC). For all finite sets of atoms Γ, 〈Γ,Γ〉 ∈ v.

With this definition, Correia asserts the following:

Assertion 7.3.1 (Correia). Classical propositional logic is characterized by Correia models

enjoying both Conditions TE and PC.

We will proceed to show that Correia’s position, however, is incorrect. While classical logic

is complete with respect to such models, it is not sound.

Observation 7.3.3. The conjunction of Conditions TE and PC does not correspond to CL

inference.

Proof. We provide a countermodel. Let w denote the set

{〈{p0},∅〉, 〈∅, {p0}〉} ∪ {〈{q}, {q}〉 | q ∈ At}.

Now consider the Correia model JwK, the vocabulary closure of w.

By construction, JwK satisfies Conditions TE and PC. However, although ∅ �JwK p0 ∧̇

¬̇ p0, for no q 6= p0 does ∅ �JwK q. Hence, JwK witnesses that p0 ∧̇ ¬̇ p0 → q fails, although

this inference is classically valid.

In (49), Correia shows that the addition of axiom A→ A ∨̇ B to AC provides an axiomatiza-

tion of Efde and that this system is characterized by models satisfying Condition TE. Correia
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next demonstrates that the addition of the axiom A → B ∨̇ ¬̇B to this axiomatization of

Efde is sufficient to provide an account of classical logic CL. The fact that the inclusion of

A → B ∨̇ ¬̇B to his axiomatization of Efde yields classical logic and the fact that Efde is

sound with respect to models satisfying Condition TE jointly suggest a very natural strat-

egy to approach to the soundness of CL. To show CL to be sound with respect to models

satisfying Conditions TE and PC, merely prove that A → B ∨̇ ¬̇B holds in each model of

this class.

The problem with this strategy is subtle. While all theorems of Efde are valid with respect

to models satisfying Conditions TE and PC, the rule of inference AC7—explicitly appearing

in the axiomatization of Efde—fails to hold with respect to this class. As an example, consider

a case in which for distinct p0, q ∈ At, both p0 ∨̇ ¬̇ p0 → q ∨̇ ¬̇ q and q ∨̇ ¬̇ q → p0 ∨̇ ¬̇ p0 are

valid, while JwK (from Observation 7.3.3) witnesses the failure of ¬̇(p0 ∨̇ ¬̇ p0)→ ¬̇(q ∨̇ ¬̇ q).

Hence, it is in the presence of AC7 that the addition of A → B ∨̇ ¬̇B to Efde generates

classical logic. Without the validity of AC7, Conditions TE and PC will correspond to a

proper subsystem of CL.

Now, consider the question of which deductive system is in fact characterized by the

conjunction of Properties TE and PC.

Lemma 7.3.15. A language closed Correia model v enjoys Condition PC iff v is relatively

complete.

Proof. Let v be language closed. Then the positive and negative vocabularies of v are each

equal to At itself. Hence, that v is relatively complete is equivalent to 〈{p}, {p}〉 ∈ v for

all p ∈ At. As {p} is a finite set of atoms, Condition PC immediately entails relative

completeness.

On the other hand, suppose v to be relatively complete and consider a finite set of atoms

Γ such that q ∈ Γ. Then by relative completeness, 〈{q}, {q}〉 ∈ v and by language closure,
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〈Γ,Γ〉 ∈ v. As Γ was selected arbitrarily, v satisfies Condition PC.

Corollary 7.3.2. The conjunction of Conditions TE and PC characterizes the logic LP.

This still leaves the question of how to properly characterize classical logic in terms of Correia

models.

First, let us examine the counterexample from Observation 7.3.3. Clearly, from a seman-

tical perspective, the responsible element of the counterexample is that in the corresponding

set of truth functions F(JwK), each assigns both p0 and ¬̇ p0 a designated value (as both

〈∅, {p0}〉 ∈ JwK and 〈{p0},∅〉 ∈ JwK) without, e.g., necessitating that q take a designated

value.

In order to correctly characterize classical logic, it is essential that we preclude this from

obtaining, i.e., we must permit that one and only one of 〈∅, {p0}〉 and 〈{p0},∅〉 appear in

v. Recall from Definition 7.3.8 the notion of a Correia model’s being relatively determinate.

We observe that it is relatively determinate language closed models that correctly char-

acterize classical logic.

Theorem 7.3.7. Classical logic CL is characterized by the class of language closed models

that are relatively determinate, i.e., are determinate relative to At.

Proof. If v is both language closed and relatively determinate then the set of generators G(v)

contains precisely one of 〈{p},∅〉 or 〈∅, {p}〉 for each p ∈ At. Hence, the set F(v) contains

a single truth function v, the extension of which can be described by the scheme:

v(p) =















〈t, f〉 if 〈∅, {p}〉 ∈ v

〈f, t〉 if 〈{p},∅〉 ∈ v

As the bilateral truth values 〈t, f〉 and 〈f, t〉 can be identified with the unilateral values t and

f, respectively, it can be readily seen that v is essentially a classical valuation on At.
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Hence, there is an isomorphism between the class of relatively determinate, language

closed Correia models on the one hand and classical truth functions on the other. By means

of Lemma 7.2.1, then, we may confirm the theorem.

7.4 Conclusions and Future Research

In (49), Correia suggests two directions in which the study of AC should be taken: the study

of extensions of AC in languages with formulae of arbitrary degree (i.e., those in which one

permits nested arrows) and the study of the interpretation of his models. The first has been

tackled in Chapter 5, in which the similarity between AC and the first-degree fragment of

Parry’s PAI was exploited to describe a semantics for a higher degree system of analytic

containment in the style of Fine’s semantics of (81). It is hoped that in characterizing a host

of systems in terms of Correia’s models, the present inquiry goes some way to addressing

the second of Correia’s suggestions.

There are some very obvious questions that remain, e.g., we have in this study focused

only on systems that have previously appeared in the literature. However—as Figure 7.1

makes clear—there remain intermediate systems that correspond to classes of Correia models

that have not been described here. For example, considering only those vocabulary closed

Correia models that are consistent—without demanding that these models be unsigned—

would make the axiom A ∧̇ ¬̇A→ B valid while permitting counterexamples to the scheme

A→ A ∨̇ ¬̇A. To more fully catalog these systems is left for future research.

Of course, the analysis of one problem in formal logic commonly poses as many new

questions as those it answers, and the present inquiry is little different. To close, let us

consider two further and more difficult directions in which analysis of Correia semantics may

be taken.
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7.4.1 Extensions of AC∗

The foregoing analysis yields more than just a further semantical account of some many-

valued logics. By applying the above characterizations to Correia’s analysis of AC∗, these

characterizations also suggest a way to enrich classical propositional logic CL with operators

corresponding to, e.g., LP entailment.

In (9), Angell describes a system that Correia calls AC∗, considered by both Correia in

(49) and (50) and Fine in (87). To define AC∗, we will need to appeal to a richer language.

This language L ∗ will be defined as follows:

Definition 7.4.1. L ∗ is the language defined in Backus-Naur form where p ∈ At and

B ∈ L ⊃
fdf

:

A ::= p|B| ¬̇A|A ∧̇ A|A ∨̇ A|A ⊃ A

Correia uses A ↔ B as a shorthand for (A → B) ∧̇ (B → A). AC∗ may be described

syntactically by the following definition:

Definition 7.4.2. The axioms for AC∗ are:

AC∗
1 A↔ ¬̇ ¬̇A

AC∗
2 A→ A ∧̇ A

AC∗
3 A ∧̇ B → A

AC∗
4 A ∨̇ B → B ∨̇ A

AC∗
5 A ∨̇ (B ∨̇ C)↔ (A ∨̇ B) ∨̇ C

AC∗
6 A ∨̇ (B ∧̇ C)↔ (A ∨̇ B) ∧̇ (A ∨̇ C)

AC∗
7 (A↔ B) ⊃ (¬̇A→ ¬̇B)

AC∗
8 (A→ B) ⊃ (A ∨̇ C → B ∨̇ C)

AC∗
9 (A→ B) ⊃ ((B → C) ⊃ (A→ C))

AC∗
10 (A→ B) ⊃ (A ⊃ B)
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AC∗ has detachment of the material conditional as its sole rule of inference:

AC∗
11 From A and A ⊃ B, infer B

Defining Correia’s semantics for AC∗ requires a few intermediate definitions.

Definition 7.4.3. Let v be a classical valuation. Then ṽ is the Correia model defined by the

following;

{〈Γ,∆∪ {p}〉 | v(p) = 〈t, f〉 and Γ,∆ ⋐ Lit} ∪ {〈Γ ∪ {p},∆〉 | v(p) = 〈f, t〉 and Γ,∆ ⋐ Lit}.

It can be established that ṽ is just the Correia counterpart c(v) as defined in Definition 7.2.4.

Observation 7.4.1. When v is a classical valuation, ṽ = c(v).

Proof. Immediate from the definitions.

Now, rather than relying on the foregoing account of AC validity, when analyzing AC∗,

Correia insists on revising the notion of semantic consequence. Hence, we must introduce a

new operator �v ⊆ L ⊃
zdf
×L ⊃

zdf
.

Definition 7.4.4. Let v be a Correia model. Then we say A �v B if for all Γ ⋐ L ⊃
zdf , the

following conditons hold:

� if Γ �v A then Γ �v B, and

� A �v Γ iff A,B �v Γ.

Definition 7.4.5. An AC∗ model is a pair 〈v,V〉 where v is a classical valuation and V is a

set of vocabulary closed Correia models such that c(v) ∈ V.

Then truth in a model is given by the definition:
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Definition 7.4.6. If 〈v,V〉 is an AC∗ model, then truth in the model is defined recursively:

� �〈v,V〉 p if v(p) ∈ DCL for p ∈ At

� �〈v,V〉 ¬̇A if 2〈v,V〉 A

� �〈v,V〉 A ∨̇ B if �〈v,V〉 A or �〈v,V〉 B

� �〈v,V〉 A→ B if for all v ∈ V, A �v B

Clauses for conjunction and material implication can be inferred from the above in the usual

fashion.

Inasmuch as AC∗ permits us to talk about a species of nonclassical entailment within

classical logic, the foregoing inquiry into characterizing such entailment relations with respect

to Correia semantics suggests that studying extensions of AC∗ could prove useful.

For example, we could proof-theoretically extend Correia’s analysis of AC∗ to systems

such as an analogous LP∗:

Definition 7.4.7. LP∗ is the deductive system generated by AC∗ by removing the axiom AC∗
7

and adding the axiom

LP∗
1 A→ B ∨̇ ¬̇B

Now, as validity of A→ B in an AC∗ model is a function of the properties of the Correia mod-

els in V, it is natural to expect that one could immediately export the earlier correspondences

to likewise characterize, e.g., LP∗.

Curiously, as we will see, this is not the case.

Observation 7.4.2. LP∗ does not correspond to AC∗ models 〈v,V〉 in which each v ∈ V is

relatively complete and language closed.

Proof. We provide a counterexample. Let x be the set
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{〈{p0},∅〉} ∪ {〈{q},∅〉, 〈∅, {q}〉 | q 6= p0}

Then consider JJxKK—the language closure of x. As p ∈ ∆⋆
JJxKK, because language closure entails

that JJxKK is unsigned, we may infer that p ∈ Γ⋆
JJxKK as well. By construction, then, JJxKK is

relatively complete.

Now, we construct the necessary AC∗ model. Let v be a classical valuation; as c(v)

is language closed and relatively determinate, it is also relatively complete. Hence, the

AC∗ model 〈v, {c(v), JJxKK}〉 is such that each member of {c(v), JJxKK} is language closed and

relatively complete.

Now we are able to provide an instance of the axiom LP∗
1, namely, p0 → p1 ∨̇ ¬̇ p1, that

fails in 〈v, {c(v), JJxKK}〉. By language closure, we infer that 〈{p1}, {p0, p1}〉 ∈ JJxKK. Hence, we

have the following sequence of inferences:

� p1 �JJxKK p0, p1

� ∅ �JJxKK p0, p1, ¬̇ p1

� ∅ �JJxKK p0, p1 ∨̇ ¬̇ p1

� ¬̇ p0 �JJxKK p1 ∨̇ ¬̇ p1

� ¬̇ p0, ¬̇(p1 ∨̇ ¬̇ p1) �JJxKK ∅

However, we are unable to say that ¬̇ p0 �JJxKK ∅. This would only be derivable from ∅ �JJxKK p0,

which would be obtainable only if 〈∅, {p0}〉 ∈ JJxKK. But this Correia pair was omitted by

definition.

Thus, p0 �JJxKK p1 ∨̇ ¬̇ p1 fails and we conclude that 2〈v,{c(v),JJxKK}〉 p0 → (p1 ∨̇ ¬̇ p1), i.e.,

LP∗
1 is not valid in such models.

As a means of adding a variety of nonclassical entailment operators to classical logic, it will

be a worthwhile endeavor to more fully develop extensions of AC∗. Clearly the solution will
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require some further work. It is hoped that the further analysis of such systems can be fully

addressed in a future inquiry.

7.4.2 Clauses and Clutters

With respect to a vocabulary closed Correia model v, it has been an indispensable feature

that all information can be recovered from the set of its generators and its positive and

negative vocabularies. Moreover, in extensions of Efde, the set G(v) itself suffices. It is worth

making a few remarks concerning the structure of G(v).

First, clearly the literal projection τ defined in Definition 5.3.12 is a bijection and we may

consider G(v)τ without loss of generality. It is worthwhile to note that objects such as G(v)τ

are in fact quite common in the study of formal logic. A common treatment of formulae in

disjunctive normal form is to take sets of sets of literals—i.e., subsets of ℘(℘(Lit))—as a

faithful representation of a proposition and by construction for any v, G(v)τ ⊂ ℘(℘(Lit)).

Hence, structures such as G(v)τ have appeared frequently in the literature, most notably, in

the field of automated theorem proving.

Often, this representation of a proposition or formula is taken as a primitive notion. A

disjunction of literals is represented as a clause—a set of literals—and a conjunction of such

disjunctions is construed as a set of clauses. For example, putting quantifiers aside, the most

basic objects—the ‘natural syntactical units’—studied in, e.g., John Alan Robinson’s (164)

are sentences considered as finite collection of finite sets of literals.

What seems to underscore the potential interpretative fruits of such a correlation is

that containment logics like Angell’s AC have been independently discovered as arising from

precisely such structures. The articular models of Ray E. Jennings and Yue Chen were

described in (115) as a framework for analyzing entailment faithful to Gottfried Leibniz’s

vision of the structure of a proposition. Following remarks of Leibniz, they remark that
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[w]e are naturally inclined to interpret the literals as truth-sets, i.e., as members

of ℘(U) where U is the universe in a full propositional model. Accordingly

the articular representation of a sentence as a set of sets of literals under this

interpretation yields a collection of collections of subsets of U , i.e., a hypergraph

on ℘(U).(115, p. 105)

We will not review the details of the framework of Jennings and Chen but will rest by

suggesting a close relationship between the set of generators of a Correia model and the

notion of a hypergraph.

Definition 7.4.8. A hypergraph on a set X is a set of subsets of X, i.e., a set H ⊆ ℘(℘(X)).

A simple hypergraph—called a ‘clutter’ in (114)—is a particular type of hypergraph.

Definition 7.4.9. A simple hypergraph is a hypergraph H such that for all distinct E,E ′ ∈

H, E * E ′.

The relationship of Correia semantics and simple hypergraphs is clear:

Observation 7.4.3. For any Correia model v, 〈G(v),4〉 is isomorphic to a simple hyper-

graph.

Proof. Every element of the set G(v) is clearly incomparable to every other with respect to

4. For example, when 〈Γ,∆〉 ∈ G(v), if 〈Γ,∆〉 4 〈Γ′,∆′〉, then 〈Γ′,∆′〉 /∈ G(v). Hence, each

element of G(v)τ is incomparable to every other with respect to the subset relation. But this

is to say that G(v)τ is a simple hypergraph on Lit.

AC independently appears (as ‘FDAE’ for ‘first-degree analytic entailment’ in (115)) as a

consequence relation arising from valuations that map literals to simple hypergraphs. This

reinforces the speculation that light may be shed on the interpretation of Correia models by

considering work on analyzing propositions as sets of clauses or simple hypergraphs.
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Beyond the matter of interpretation, though, examining the connection between Correia’s

semantics and these areas of research may also assist in obtaining further formal results. Ar-

ticular models are capable of capturing deductive behavior weaker than AC. Correia’s models,

for all their apparent idiosyncrasies, do in fact expose a limitation of presentation of AC in

Definition 5.2.3, that is, that the truth functional semantics does not immediately suggest a

means of modeling systems weaker than AC. There exist systems weaker than AC—such as

the first-degree fragment of Sören Halldén’s S0—that lack sufficient semantic analyses1 and,

as Correia demonstrates, Correia models without the requirement of vocabulary closure also

correspond to a proper subsystem of AC. Hence, to investigate the proximity of Correia’s

models to such semantical frameworks may yield accounts of first-degree deductive systems

that resist a natural analysis in the many-valued framework.

1While S0 (and hence S0fde) has a semantic analysis due to Sylvan and Meyer in (167), the semantics is
exceedingly artificial, as the authors freely concede.



Chapter 8

Concluding Remarks

What have we accomplished by surveying a variety of occasions—linguistic, metaphysical,

computational—in which Parry’s Proscriptive Principle can be given an intuitive reading?

If anything has been accomplished, I hope that what has been shown is that systems

whose behavior more or less respects Parry’s criterion are not limited by their failure to

perfectly capture the notion of Kantian analyticity. Rather, we are afforded a much broader

range of interpretations than Parry’s critics—or his sympathizers, for that matter—had

previously allowed. We have surveyed numerous contexts in which this type of behavior

arises: We have observed that many approaches to the linguistic notion of meaninglessness

or nonsense lead to behavior very similar to the Proscriptive Principle, for example. In meta-

physics, we discussed how the Parry systems of Angell’s AC and Correia’s Cor arise in Fine’s

state space semantics and how this analysis can be applied to resolve some puzzling features

of Restall’s truthmaker semantics. That we have examined such systems in the settings of

bilattices, dynamic logic, and constructive logic suggests that researchers in artificial intelli-

gence or the philosophy of mathematics may themselves benefit from the utility of Parry’s

intuitions. And by considering catastrophic errors in computation—when a program hangs

or is unable to retrieve a value—we provided semantics for several of these systems in terms

245
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of programs.

Most of the foregoing chapters have included suggestions for future research, in which we

have identified a number of investigations regrettably set aside, e.g., looking into Halldén’s

S0, developing a theory of Parry systems on logical multilattices in general, providing ax-

iomatizations of the intensional containment logics included in Deutsch’s S. As we close,

however, I would like consider future directions with a broader brush, by describing several

of the limitations of this dissertation and the directions in which this work may be taken.

8.1 Refining the Notion of Content

Much of the criticism leveled against Parry’s PAI is tacitly related to the fact that the notion

of content it assumes is relatively coarse-grained. In the context of Parry-type systems, we

have refined this notion to some degree by the introduction of positive and negative content,

but further refinements can be made. (81) contains a number of suggestions concerning how

the notion of content or subject-matter can be given a more fine-grained analysis.

8.1.1 The Content of Entailments

For one, the syncategoramatic terms—i.e., the connectives—have played no role in determin-

ing the content of a complex formula in this dissertation. Providing a more subtle reading to

the connectives that takes into account the contribution of such syncategoramatic elements

to a proposition’s overall content is a project that has been suggested by Fine in (81) but

has not yet received an adequate investigation.

With respect to the extensional connectives, it is unclear that one should place too heavy

an emphasis on their contribution. Undoubtedly, between an atom p and the conjunction

p ∧̇ p, the latter ‘contains’ the concept of conjunction in a way that the former lacks.

Despite this, when we go so far as to suggest that the propositions p ∨̇ p and p ∧̇ p express
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incommensurate propositions—the incommensurability between which is understood as an

undesirable feature of Suszko and Bloom’s SCI of (29) and (30)—it seems that the notion

of content becomes so fine-grained as to be indistinguishable from syntax. (And indeed,

Suszko and Bloom’s basic SCI treats even p ∨̇ q and q ∨̇ p as corresponding to wholly

distinct propositions.) To allow this much weight to syncategoramatic terms is to lurch too

far in this direction.

Despite this, the contribution that the notion of entailment makes to the content of a

proposition in which it appears seems distinct from the contribution of the truth-functional

connectives. On its face, it seems far fetched to suggest that the content of extensional claims

about the world—conjunctions and disjunctions of simple atomic statements—includes the

concept of intensional entailment. This intuition bears some resemblance to the classical

is/ought problem: The assertion that some entailment or other is valid is, in a strong sense,

as normative a claim as any of Hume’s ‘oughts,’ and the assertion that A → B just as

clearly ‘expresses some new relation or affirmation’ (108, p. 469) not discoverable in mere

extensional facts.

This intuition is reflected in the Ackermann property—and its converse—common to

many relevant logics. This property—first shown to hold of Wilhelm Ackerman’s Π in (3)

and (4)—is the criterion that every valid entailment of the form A→ (B → C) is such that

the symbol ‘→’ appears in A (or a falsum constant ⊥). When taken up by Anderson and

Belnap, the Ackermann property and its converse become something of a motto:

Entailments are sui generis in the following sense: only entailments entail entail-

ments... Moreover, it is never the case that the denial of an entailment entails

an entailment.[p. 718](5)

Parry actually identifies this criterion as a ‘proscriptive principle,’ although he is skeptical

of its validity:
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This... anticipates the later doubt about [the axiom f(p)→ (p→ p)] stimulated

by the (proscriptive) principle of Ackermann and Anderson-Belnap, that only

entailments entail entailments. But it still seems to me that in any case a non-

entailment may entail an entailment.(148, p. 105)

Parry’s skepticism notwithstanding, the interpretation of the Ackermann property and its

converse as a thesis about analytic implication enjoys quite a bit of plausibility. The devel-

opment of modifications to PAI in which this Humean-style criterion is taken into account it

worthy of exploration.

A further wrinkle in considering the content of formulae including entailments appears

when we make the move to positive and negative subject-matter or content. For example,

when considering the conditional as a primitive, the syntax of a conditional A→ B strongly

suggests that the formulae A and B are employed in a ‘positive’ sense in the formula. This

is especially clear in the Hempel case—i.e., the sentence ‘all ravens are black’—in which the

default position seems to be that one is talking—positively—about ravens and blackness,

rather than non-ravens and non-blackness. This default position was reflected in Definition

5.4.1, in which models for the Parry-like PAC described the positive content of a conditional

A→ B as the union of the positive content of A and the positive content of B.

In Definition 5.4.1 we described the negative content of A→ B in an analogous fashion—

as the union of the negative contents of both A and B. But this, I suspect, parts ways with

the polarities of one’s assertions when one denies a conditional. To deny A → B on many

readings—such as Nelson’s in (135)—is to suggest a counterexample in which A is true and

B is false. The Nelsonian identification of ¬̇(A → B) and A ∧̇ ¬̇B—i.e., that the two

have identical meanings—entails that the two have identical content, suggesting that the

valence of A remains positive in the negative content of A → B. To revise Definition 5.4.1

to incorporate this assertion in the content functions γ+ and γ− might appear as follows:
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� γ+(A→ B) = γ+(A) ∪ γ+(B)

� γ−(A→ B) = γ+(A) ∪ γ−(B)

Such a definition appears to be entirely natural. Axiomatizing not only PAC but also its

cousin determined by this alternative, Nelsonian account of the positive and negative content

of an entailment is a compelling next step to take.

8.1.2 Quantification

One of the upshots of the present interpretations of first-degree, propositional Parry sys-

tems is that they provide new frameworks within which to examine the various notions in

conceptivist systems. One such notion that has been thus far ill-understood in conceptivist

systems is quantification and predicate extensions. In general, quantificational extensions

of Parry systems have been guided by inchoate notions of ‘concepts’ and ‘content.’ Being

guided by concepts from the realms of computation and linguistics has the benefit of casting

such concepts in a different light.

Many of the motivating themes that we have invoked are implicitly about a first-order

framework. For example, many of the motivations for the development of logics of nonsense

explicitly invoked the application of predicates to objects, e.g., the notion of a ‘category mis-

take’ presupposes such a framework. While the propositional languages we have considered

are capable of modeling theses concerning, e.g., meaningless statements or retrieving values

for sentences, they are insufficiently expressive to represent the problematic cases themselves.

There have been a number of attempts to develop a quantification theory for conceptivist

systems. For example, in (81), Fine briefly considers the matter of how to carry over Parry’s

intuitions from the propositional case to the first order case and, as mentioned, Daniels’

story semantics of (54) and Loptson’s discussion in (129) and (130) provide quantification

theories that are by and large harmonious with Parry’s intuitions.
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Especially salient is the question of whether the content of a universal sentence ∀xA

contains the content of each of its substitution instances A(x := a). From the perspective

of (54), it seems clear that a universal formula should not be thought of as containing

all ‘names’; the appearance of the line ‘Everyone was an accomplice’ (and, therefore, the

tacit endorsement of its truth) in a Sherlock Holmes tale should not entail that ‘Flash

Gordon was an accomplice,’ as this runs afoul of the prohibition against introducing ‘new

and unwanted names.’1 Fine himself provides a similar argument from our apparent ability

to grasp universal sentences, observing that ‘in order to understand ∀xA(x) I need not know

(or, at least possess names for) the objects in the domain of the quantifier.’ (81, p. 178)

Fine gestures towards some ways of looking at the content of a first order sentence in terms

of his semilattices of concepts, but he arrives at nothing definitive.

Furthermore, the interpretation of such systems in terms of computation might also yield

a natural way of extending the picture to quantified formulae. Seating the discussion in

terms of computation allows us to look at the question in a different light.

Rather than being forced into the question of whether the content of a universal sentence

contains all names, it may be fruitful to instead think of a formula ∀xA as being evaluated

by a routine for each name in the environment in parallel. Hence, if the algorithm does not

halt on evaluating ∀xA—and assigns it a value of 1—then for any name a recognized by the

environment, the algorithm evaluating A(x := a) can be run. Whether to accept or to reject

the inference ∀xA � A(x := a) if a function of whether one allows names not recognized by

the environment.

Likewise, considering the inference A(a) � ∃x(x := a) becomes rather straightforward, if

only we interpret ∃xA as being evaluated by a routine that runs on all names a and asks

1This description of the prohibition does not necessarily presuppose cases in which, e.g., all elements of
some domain are assigned names (or constants). Even if the name ‘Flash Gordon’ is not, e.g., expressible
within the bounds of a Sherlock Holmes story, Daniels’ position equally suggests that the proposition that
Flash Gordon was an accomplice is not part of the proposition expressed by the sentence ‘Everyone was an
accomplice.’
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whether A(x := a) is true. If we take names to be governed by the environment, then the

fact that A(x := a) can be successfully evaluated says nothing concerning whether a routine

evaluating A(x := b) will terminate.

In each case, the present approach may allow us to export the duties performed by

the machinery of Fine’s semilattices of concepts to valuation functions themselves. The

first-degree conceptivist systems described in Section 4.3.3 secure the Proscriptive Principle

without such a semantical apparatus; whether this can be extended to first order or higher

degree systems remains to be seen. Thoroughly applying the interpretations covered in this

dissertation to higher degree and first order systems is a matter for another day. Yet it seems

apparent that such approaches would recast the analysis of these formal matters and might

allow for a more intuitive way to extend conceptivist intuitions to these cases.

8.2 Related Deductive Calculi

Over the course of the foregoing material, we have succeeded in drawing together a number

of a priori disparate approaches to deduction. Much work still remains, however. There are

two families of deductive systems that we have largely ignored that deserve to be identified

as natural targets for further study: For one, there exist systems that are dual to Parry logics

in that their respective accounts of entailment require that content be introduced to—rather

than the decomposed from—that of the antecedent. Secondly, the constellation of extensions

to and subsystems of Parry’s PAI is far from mapped out.

8.2.1 Dual Systems

If it is tempting to read Parry’s Proscriptive Principle as the requirement that entailments be

analytic—so that the concepts of the consequent already appear in those of the antecedent—

then it seems just as natural to consider whether an analogous principle might correspond
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to something resembling Kantian ampliativity.

Now, such a property dual to Parry’s Proscriptive Principle has appeared as the ‘converse

Parry property’ by Kosta Dos̆en in (63) or as a property of ‘dual dependence’ by Epstein

in (71), according to which for any valid entailment A → B all atoms appearing in A also

appear in B.

Of course, if the legitimacy of Parry’s logic as a correct exegesis of Kantian analytic

reasoning is strained, then the suitability of this dual property as capturing ampliative rea-

soning seems even more problematic. But we aren’t beholden to a Kantian reading of this

dual property, either; one of the upshots of the foregoing chapters has been the availability

of many alternative readings of Parry’s criterion.

Such readings are available to converse Parry systems as well. In (70), Richard Epstein

remarks that his system DualD—effectively the dual system to the Dunn-Epstein system

DAI—was interpreted by Douglas Walton as a ‘logic of actions’ in (191). On Walton’s

interpretation, the validity of an entailment corresponds to the successful application of

an action in bringing about new information. One obvious problem is to provide analyses

that similarly act as dual, ‘ampliative’ counterparts to the systems in the neighborhood of

PAI. While Fine’s semantics can be adjusted without difficulty to allow only ampliative

entailments, much work remains, e.g., examining axiomatizations of these dual systems and

describing their properties.

Moreover, it seems that the techniques in this dissertation can be directly applied to

provide interpretations for systems like DualD. For example, Chapters 2 and 5 relied heavily

on the status of the Bochvar-Kleene nonsense logic Σ0 as ‘almost Parry.’ Not surprisingly,

Halldén’s C0, too, can be understood in similar terms and given an analogous characterization

in terms of classical validity and the containment of atoms. The feature that is cognate

with the failure of Addition in Σ0, for example, is the failure of Conjunctive Simplification,

i.e., the inference from A ∧̇ B to A. Most prominently, Roberto Ciuni in (44) and Ciuni
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and Massimiliano Carrara in (45) have considered interpretations and characterizations of

C0 (referred to as ‘PWK’ for ‘paraconsistent weak Kleene’) that are harmonious with the

foregoing interpretation of Σ0.

That such an analysis can induce converse Parry systems in the first-degree case has been

confirmed by Damian Szmuc. In (187), Szmuc dualizes the techniques found in Chapter 6 to

provide bilattice semantics for ‘track-down’ operations that give rise to the deductive calculi

FDEPWK and dAC, which are dual to Sfde (called ‘FDEWK’ by Szmuc) and AC, respectively.

In this setting, Fitting’s epistemic interpretation of cut-down operations on bilattices from

(91) immediately yields epistemic interpretations of ‘track-down’ operations and, in turn,

intensional interpretations of these converse Parry calculi.

8.2.2 Other Parry Systems

The literature contains a wider family of Parry logics than has been acknowledged in this

dissertation. Some of these systems were introduced with Parry’s PAI in mind and others

have been described wholly independently of Parry’s enterprise. While we have acknowledged

a number of these systems in the foregoing pages, many have been relegated to footnotes

and many systems have not been rigorously considered qua Parry logics. A full picture of

containment logic, of course, would require that these systems—outlined in Figure 8.1—be

given an analogous treatment and, because a full picture is ultimately desirable, we might

consider some of the regrettable omissions in outline.

First to be mentioned is the lack of sufficient analyses for the three subsystems of PAI

appearing in Figure 8.1.

Most conspicuous of the omitted subsystems is the lack of a semantical analysis of Parry’s

original system AI of (143). Recall that Fine’s (81) analyzes a proper extension by including

the axiom (A ∧̇ ¬̇B) → ¬̇(A → B). Because Parry claimed that he had endorsed this

axiom as far back as 1957 and ultimately endorsed Fine’s semantics as harmonious with
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PAI

AI

DAI

PAI→ = Mα

DAI→ = M1

M′
α

M2

S⋆

S0

AIN

AI-Q

Figure 8.1: Deductive Systems in the Neighborhood of PAI

his intuitions, the discovery of a semantics for AI would presumably have little worth as a

guide to Parry’s philosophy. As a formal matter, however, the lack of a semantics for AI is

a regrettable deficiency of this dissertation and it is worth investigating whether AI can be

given a Fine-style analysis by making subtle changes to Fine’s analysis.

A further deficiency is the lack of a Fine-style analysis of Daniels’ logic S⋆. The first-degree

fragment of the system has made many appearances over the course of this dissertation and

the intensional system—as Daniels notes—enjoys the Proscriptive Principle. Indeed, by a

brief inspection of the axiomatization found in (54), it can be confirmed that each theorem of

the system is a theorem of PAI. Now, the ‘story semantics’ Daniels provides in (54) bears little

resemblance to the Fine-style analysis of PAI, but it seems plausible that a correspondence

between the two frameworks can be provided. Due to the similarity between Daniels’ remarks

on implication and content and the foregoing Observation 5.4.3, my own suspicion is that

S⋆ is the system PFDEϕ defined semantically in Definition 5.4.4. The task of generating a
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correspondence governing the relationship between S⋆ and PFDEϕ—or at least an analysis

thereof—is unfortunately still outstanding but is well worth picking up in the future.

The final subsystem that has been set aside is Halldén’s system S0 described in (103). S0

is historically notable as—arguably—the first paraconsistent system introduced, appearing

in the same year as Jaśkowski’s (112). But in introducing S0, Halldén was not trying to codify

any freestanding intuitions concerning entailment, but rather he intended to make a formal

observation concerning Lewis’ logic of strict implication S1. In S1, the strict implication

connective is not primitive, but is defined in terms of ✸, so that

ϕ→ ψ =df ¬✸(ϕ ∧ ¬ψ)

appears in its axiomatization. S0 is defined as the deductive system determined by omitting

this definition from the rules and axioms of S1. What Halldén shows is that by taking the

implication connective as primitive and eliminating this definition, even if all the axioms of

S1 governing the behavior of the connective are retained, the resulting logic is quite different

than S1.

S0 seems to have been nearly forgotten until being resurrected by Parry in (145)—which

appears in full as (146)—in which Parry observes that the system S0 is properly contained

in AI. Hence, S0 is a →-Parry system and it would be desirable to analyze the system qua

containment logic.

While Sylvan and Meyer provided a semantical analysis of S0 in (167), the framework they

provide is intended to provide a semantics for every axiomatic deductive calculus. Hence,

Sylvan and Meyer’s semantics for S0 is not motivated by any set of features particular to S0.

Whether Halldén’s system can be given an analysis in line with Fine’s (81) is an interesting

question and one worth pursuing. It seems likely, for example, by adapting the content

semilattices to the case of Cresswell’s neighborhood semantics for S1 in (52) might provide

an appropriate account of S0.
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The dissertation has also stopped short of analyzing two extensions of PAI in which the

language is enriched by the addition of a unary necessity operator. Both systems—Loptson’s

AI-Q from (130) and Urquhart’s AIN from (188)—are interesting in their own rights from

both philosophical and formal perspectives and deserve to be reexamined in the future.

Loptson’s AI-Q, introduced in (130), enriches PAI by adding a modal operator whose

behavior is modeled after Arthur Prior’s modal logic Q. AI-Q is interesting as its introduction

is accompanied by a very detailed and reasonable philosophical argument for its legitimacy,

some of which was mentioned in Chapter 3. Although the question of whether an analysis

can be given along the lines of Fine’s analysis of PAI is a compelling one—and should, I think,

be taken up—Loptson’s (130) provides an axiom system for AI-Q and describes a semantics

with respect to which the axiom system is sound. Completeness with respect to Loptson’s

semantics is not demonstrated, however, so there remain open questions about the system

independent of this dissertation.

Urquhart was one of the three philosophers to contemporarily take up Parry’s system

anew in the 1970s and 1980s, joining Dunn’s (65) and Fine’s (81) with his own system AIN in

(188). While AI-Q adds to PAI a modality like that of Q, Urquhart enriches the demodalized

DAI with a modality corresponding to S4.

Especially interesting is a conjecture that Urquhart makes in the concluding remarks of

(188). Motivated by the Gödel-McKinsey-Tarski-style embeddings of intuitionistic logic into

S4 found in (100) and (133), Urquhart conjectures that a similar translation (✷) allows the

embedding of PAI into AI. More informally, the conjecture states that A is provable in PAI

if and only if A✷ is provable in AIN. To the best of my knowledge, this conjecture has been

neither proven nor refuted, and investigating Urquhart’s conjecture further appears to be a

worthwhile pursuit.

In contrast to AI-Q and AIN, which enrich the language of PAI, we have also neglected to

discuss a family of implicational systems in the language L→. In (138), Marek Nowak studies
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the implicational fragments PAI→ and DAI→—calling them ‘Mα’ and ‘M1,’ respectively—and

two extensions to these systems. The extensions themselves—M′
α and M2—are not terribly

interesting as sets of theorems. The theorems of the respective systems correspond to the set

of S4 and S5 validities that meet Parry’s criterion (what would be called ‘S4PP’ and ‘S5PP’

in the language of Chapter 2) and therefore are subject to Sylvan’s criticism of a ‘double-

barrelled analysis’ in the worst way. Nevertheless, Nowak’s axiomatizations are intriguing—it

is admittedly not obvious how one could provide a Hilbert-style account of M′
α and M2—and

studying Nowak’s axiom systems in more detail may well prove instructive.

8.3 Conclusion

Clearly, the work initiated by Parry in (143) is still far from finished. We leave unexplored

myriad avenues—avenues of both philosophical and formal interest—that lead from Parry’s

own work to frontiers not imagined by Parry.

It is painfully obvious, when the limitations of this dissertation are surveyed, that the

foregoing material makes little more than a dent in exploring the themes of Parry’s work.

But I think that, at the very least, I have succeeded in demonstrating that those who have

decried Parry’s work as nothing more than syntactical gimmickry were premature in their

assessment. We have surveyed a very wide range of occasions in which Parry’s intuitions

are relevant and the breadth of these applications reinforces a suspicion that the study of

Parry’s work proves to be a rewarding exercise.

It is my hope that the thoughts contained in this dissertation—however meandering they

may have been—succeed in kindling a new interest in Parry and his techniques, and that

the work left unfinished in the foregoing pages will be pursued.
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