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The Prospects of gene
introgression from crop wild
relatives into cultivated lentil for
climate change mitigation
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Rakesh Kr. Thakur 2, Mohd. Kamran Khan4, Anamika Pandey4,
Mehmet Hamurcu4 and Soom Nath Raina2*

1Department of Botany, Hansraj College, University of Delhi, Delhi, India, 2Amity Institute of
Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India, 3Department of Botany,
Kirori Mal College, University of Delhi, Delhi, India, 4Department of Soil Science and Plant Nutrition,
Faculty of Agriculture, Selcuk University, Konya, Türkiye
Crop wild relatives (CWRs), landraces and exotic germplasm are important

sources of genetic variability, alien alleles, and useful crop traits that can help

mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising

due to global climatic changes. In the pulse crop genus Lens, the cultivated

varieties have a narrow genetic base due to recurrent selections, genetic

bottleneck and linkage drag. The collection and characterization of wild Lens

germplasm resources have offered new avenues for the genetic improvement

and development of stress-tolerant, climate-resilient lentil varieties with

sustainable yield gains to meet future food and nutritional requirements. Most

of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and

resistance to diseases are quantitative and require the identification of

quantitative trait loci (QTLs) for marker assisted selection and breeding.

Advances in genetic diversity studies, genome mapping and advanced high-

throughput sequencing technologies have helped identify many stress-

responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop

traits in the CWRs. The recent integration of genomics technologies with plant

breeding has resulted in the generation of dense genomic linkage maps, massive

global genotyping, large transcriptomic datasets, single nucleotide

polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced

lentil genomic research substantially and allowed for the identification of QTLs

for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild

species genomes (~4Gbp) opens up newer possibilities for understanding

genomic architecture and evolution of this important legume crop. This review

highlights the recent strides in the characterization of wild genetic resources for
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useful alleles, development of high-density genetic maps, high-resolution QTL

mapping, genome-wide studies, MAS, genomic selections, new databases and

genome assemblies in traditionally bred genus Lens for future crop improvement

amidst the impending global climate change.
KEYWORDS

crop wild relatives (CWRs), lentils, climate change, crop improvement, biotic and abiotic
stresses, omics-approaches, gene introgression, molecular breeding
1 Introduction

Climate change is a global threat to food and nutritional

security (Leisner, 2020; Shahzad et al., 2021) as predicted by the

intergovernmental panel on climate change (IPCC) (Climate.gov,

2022). The expected average global temperature rise between 2°C

and 3°C by 2100 is anticipated to severely impact both abiotic and

biotic components of the environment (Tito et al., 2018; Juroszek

et al., 2020; Skendžić et al., 2021; Pielke et al., 2022), resulting in

impacts on soil nutrients and other ecological resources, as well as

the growth, abundance, distribution, physiology and phenology of a

wide range of species (Shao and Halpin, 1995; Tollefson, 2020).

Agriculture is particularly vulnerable to the effects of climate

change, with significant yield losses due to heat and drought

waves and the emergence of new diseases. The inconsistent

precipitation, water deficit, extreme temperatures and sodicity

have been among the most devastating stresses that have caused

enormous reduction in crop productivity (Rajpal et al., 2019a;

Rajpal et al., 2019b; Zeroual et al., 2023). Many modelling studies

conducted in multiple countries and agro-climatic zones have

predicted large-scale reduction in agricultural productivity,

habitat loss, distribution, range shifts and even extinction of

species coupled with climate change (Bellard et al., 2012; Iizumi

et al., 2018; Gupta and Mishra, 2019; Román-Palacios and Wiens,

2020; Zilli et al., 2020; Kadiyala et al., 2021; Lychuk et al., 2021;

Affoh et al., 2022; Ait-El-Mokhtar et al., 2022; Gordeev et al., 2022;

Nguyen and Scrimgeour, 2022; Ntiamoah et al., 2022) and the risks

being exacerbated in species with narrow distribution range and/or

genetic base (Dubos et al., 2022; Galushko and Gamtessa, 2022).

Besides mitigating commercial cultivars to adapt to the changing

climates, there is a pressing need to enhance crop productivity to

feed the world’s ever-growing population which is expected to reach

9 billion by the year 2050. This can be achieved by increasing the

rate of genetic gains using novel technologies enabling the crop

breeding reduction, increasing genetic gains accuracy and using

wide genetic diversity. Breeding climate-smart crop varieties that

can withstand multiple stresses in field conditions, therefore, is the

focus of modern plant breeding research worldwide. The

identification and availability of stress-responsive genes and loci,

which is a prerequisite for implementing these strategies has also

become a thrust area of research.

In this context, the crop wild relatives (CWRs), landraces and

exotic germplasm serve as important reservoirs of useful genes for
02
resistance to insect pests, diseases and various abiotic stresses. A

plethora of published reports has clearly demonstrated that a variety

of traits like increased resistance against late blight, grassy stunt

disease, drought and heat tolerance, increased nutritional value and

productivity (Brar and Khush, 1997; Bamberg and Hanneman,

2003; Sheehy et al., 2005; Song et al., 2014; Janzen et al., 2019;

Wang et al., 2019; Hao et al., 2020; Gramazio et al., 2021; Quezada-

Martinez et al., 2021) in diverse crops including wheat, potato,

soybean, mustard and rice have been achieved by introgressing

useful genes from the CWRs gene pools into the commercial

cultivars. Introgression breeding has given rise to improved

cultivars in many leguminous species also such as peanut, urd

bean, common bean mung bean, chick pea, pigeon pea and lentils

(Singh et al., 1997; Singh et al., 2013; Tullu et al., 2013; Kahraman

et al., 2015; Ogutcen et al., 2018; Kumar et al., 2021; Khan et al.,

2022). The importance of CWRs in the breeding of novel cultivars

with improved acclimatization ability to various biotic and abiotic

stresses, and in broadening the genetic base of modern crops has

been very well established. Therefore, efforts have been done

globally to characterize and conserve these important genetic

treasures for future crop protection and sustenance of agri-food

systems (Jarvis et al., 2008; Rajpal et al., 2016a; Coyne et al., 2020;

Dissanayake et al., 2020; Garcıá-Garcıá et al., 2021; Quezada-

Martinez et al., 2021; Pratap et al., 2021; Renzi et al., 2022;

Rajandran et al., 2022).

The genus Lens (2n=2x=14), an important source of food,

fodder and dietary protein is one of the most important members

of the family Fabaceae (Schaefer et al., 2012). The genus has

undergone many taxonomical revisions and according to the

most accepted classification system, it consists of seven taxa, viz.

L. culinaris ssp. culinaris; L. culinaris ssp. orientalis; L. culinaris ssp.

odemensis; L. ervoides; L. culinaris ssp. tomentosus; L. lamottei and

L. nigricans (Ferguson et al., 2000; Ferguson and Erskine, 2001). L.

culinaris ssp. culinaris commonly known as lentil is the only

cultivated species of the genus with L. culinaris ssp. orientalis and

L. nigricans being its most closely related and distant progenitors,

respectively (Wong et al., 2015).

Lentil (L. culinaris ssp. culinaris), an annual, herbaceous and

self-pollinated old world crop is believed to have been domesticated

around 8500 BC in Syria and Turkey (Hansen and Renfrew, 1978;

Cubero, 1981; Harlan, 1992; Bahl et al., 1993; Zohary and Hopf,

2000). It originated in the Near East and Asia Minor (Ladizinsky,

1979; Zohary and Hopf, 1988; Ferguson et al., 2000) and has since
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spread to other regions such as North Africa, South Asia, Central

and Southern Europe, North America, and Oceania after its origin

from Eastern Fertile Crescent (Duke, 1981; Ahmad et al., 1997).

Lentil is now widely cultivated in a range of climates and elevations

and is the 3rd most important grain legume after chickpea and pea.

It is a dual-purpose crop with its grains being a source of high

dietary protein and straw being a valuable livestock feed. There has

been a significant increase in global yield potential for lentil over the

past 25 years (FAOSTAT, 2019) leading to an increase in global

production from 0.85 to 6.53 metric tonnes (FAOSTAT, 2020).

Canada is world’s largest lentil producer (48% of world’s

production) and exporter (64%. of global lentil exports), while

India is the second largest producer (with 15.7% of world’s

production) but the largest importer of lentil due to high

consumption and low productivity (Dissanayake et al., 2020;

Rajendran et al., 2021; http://www.fao.org/faostat/en/#data/QC;

http://www.fao.org/faostat/en/#data/TP, Guerra-García

et al., 2021).

The successful breeding and genetic enhancement of crops

depend on the availability of genetic diversity in their gene pools,

identification and characterization of the novel alleles and detailed

crossability data for selecting relevant taxa as parents (Rajpal et al.,

2016a; Rajpal et al., 2016b). On the basis of crossability data, the

species of genus Lens have been grouped into three gene pools, with

the primary gene pool being represented by Lens culinaris ssp.

culinaris, L. culinaris ssp. orientalis, and L. odemensis. The

secondary, and tertiary gene pools are represented by two species

each L. ervoides, L. nigricans and L. lamottei and L. tomentosus,

respectively (Ladizinsky, 1999; Muehlbauer and McPhee, 2005;

Fratini and Ruiz, 2006). These gene pools are the reservoirs of

useful crop traits such as resistance to various pathogens and other

phenological and agronomic traits (Gupta and Sharma, 2006;

Cristobal et al., 2014) that can be transferred to cultivated lentils.

Traditionally, lentil breeding has been undertaken through

extensive germplasm screening which has allowed selection and

release of superior cultivars such as varieties BARI M4-M8

(Bangladesh) (Kumar et al., 2021) and ILL 404 (Nepal) (Materne

and McNeil, 2007) with improved yield and disease resistance for

commercial cultivation. An exotic variety ‘Percoz’ has resulted in

many improved Indian cultivars Angoori, Narendra M1, and VL

Masoor 507 (Kumar et al., 2013). However, intensive breeding and

domestication have led to a narrow genetic base and reduced yield

of local lentil cultivars, which limits the prospects of further

increasing crop productivity through selections. Based on

morphological differences, the cultivated lentil species L. culinaris

encompass the small-seeded (microsperma) and large-seeded

(macrosperma) groups (Singh et al., 2020). In India, traditionally

grown lentil belongs to ‘microsperma’ (pilosae type), which has a

narrow genetic base, low seedling vigor, pod set and harvest index

and increased rate of flower drop. It is also poor in dry matter

accumulation and lacks resistance to abiotic and biotic stresses

(Ferguson et al., 1998; Kumar et al., 2004; Khazaei et al., 2016;

Zeroual et al., 2023). To achieve enhanced genetic gains in lentil

breeding, the identification of new target traits from CWRs and

their introgression into cultivated taxa is desired in order to

broaden the genetic base of cultivars. This can be accomplished
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by deploying additional alleles from alien and secondary and

tertiary gene pools. Recent advances in large-scale genome

analyses, such as next generation sequencing (NGS), high

throughput genotyping (HTG) and high throughput phenotyping

(HTP) have added to the breadth of genetic diversity, development

of genomic resources databases and knowledge on phylogenetics in

the genus Lens. This information can be used for precise and

efficient molecular genetic improvement and enhancement

programs of lentils (Kumar et al., 2021; Pratap et al., 2021;

Hussain et al., 2022; Salaria et al., 2022; Salgotra and Stewart,

2022; Singh et al., 2022a; Tiwari et al., 2022; Civantos-Go´ mez

et al., 2022; Roy et al., 2023; Zeroual et al., 2023) similar to what has

been achieved in major crops such as rice, wheat and maize

(Yoshino et al., 2019; Mishra et al., 2021).

The present Review has compiled information on the available

genetic and genomic resources, genotyping efforts, genetic maps

and databases, marker-assisted and genomic selections,

identification of QTLs, ESTs, genes associated with desired crop

traits and genome assemblies in lentil and its CWRs. This collation

will aid in understanding the spectrum of diversity available for

introgression and the development of elite lentil germplasm with

desired productivity levels for future food and nutritional security

and adaptability to changing climates.
2 Gene Pools, phylogenetic
relationships, and domestication
of lentil

Lentil is a self-pollinated, diploid (2n=2x = 14) species with a C

DNA value of 4.2 pg (Arumuganathan and Earle, 1991; Singh et al.,

2018). The taxonomy of genus Lens at the species and subspecies

levels has been quite contentious (Van Oss et al., 1997; Ferguson

et al., 2000; Fratini and Ruiz, 2006; Suvorova, 2014; Koul et al.,

2017). The most recent classification system (Wong et al., 2015;

Koul et al., 2017) recognizes seven taxa in the genus grouped into

four genepools: L. culinaris, L. orientalis and L. tomentosus in the

primary genepool; L. odemensis, L. lamottei in the secondary

genepool; and one species each L. ervoides and L. nigricans in the

tertiary and the quaternary gene pools, respectively. Despite these

reorganizations at taxonomic level, it is generally agreed that L.

culinaris ssp. orientalis is the most closely related wild progenitor of

L. culinaris ssp. culinaris, while the most distantly related species L.

nigricans has a distinct gene pool (Reddy et al., 2009; Wong et al.,

2015; Liber et al., 2021). Although viable hybrid formation has been

reported between L. culinaris ssp. orientalis and L. odemensis

(Ladizinsky et al., 1984; Abbo and Ladizinsky, 1994; Fratini et al.,

2004; Fratini and Ruiz, 2006; Muehlbauer et al., 2006), the fertility

of the hybrids may be affected by chromosomal rearrangements

(Ladizinsky et al., 1984; Ladizinsky, 1979). Crosses are also possible

between the cultivated lentil, L. culinaris and the species belonging

to the other gene pools, but hybrids may be sterile owing to

chromosomal rearrangements that aborts the hybrid embryos at a

high rate (Abbo and Ladizinsky, 1991; Ladizinsky, 1993; Abbo and

Ladizinsky, 1994; Gupta and Sharma, 2005). In vitro embryo rescue
frontiersin.org
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methods are used to overcome these barriers (Fratini and Ruiz,

2006; Fratini and Ruiz, 2011; Kumar et al., 2014).

Studies have reported a close relationship between L. odemensis,

L. nigricans and L. culinaris ssp. orientalis based on morphological

markers (Fratini et al., 2006), however, other studies using

morphological features and molecular markers suggest the need

for revisions in the taxonomic status of L. culinaris ssp. odemensis

and L. tomentosus which have distinct morphological features and

karyotypes (Ladizinsky, 1997; Van Oss et al., 1997; Koul et al.,

2017). These differences in the karyotypes might contribute to the

reproductive isolation between Lens species, even though they share

the same diploid chromosome number (Muehlbauer and

McPhee, 2005).

Further, three major cultivated lentil groups have been

identified by Khazaei et al. (2016) based on studies on lentil

accessions from 54 countries reflecting the world’s Mediterranean,

northern temperate and south Asian (sub-tropical savannah) agro-

ecological zones. Four major clusters have also been revealed by

Dissanayake et al. (2020) with the taxa grouped as L. culinaris/L.

orientalis in cluster 1; cluster 2 with L. odemensis/L. lamottei; and

two species L. ervoides and L. nigricans clustered separately. Studies

by Pavan et al. (2019) showed correlation between assessment of

seed size and early flowering traits, genetic clustering and geography

in Mediterranean germplasm. Cultivated and wild lentil accessions

showed little correlation in their geographical origins. These reports

indicate that present-day lentil diversity has been articulated by

both natural and artificial selection (Liber et al., 2021).
3 World lentil genetic resources

Worldwide, gene banks hold a large number of 58,405 Lens

accessions spread across 103 countries. The International Centre for

Agricultural Research in the Dry Areas (ICARDA) maintains the

largest collection of 14,577 accessions, including 11,405 landraces,

2,580 breeding lines and 612 wild accessions from 26 countries
Frontiers in Plant Science 04
(Kumar et al., 2015; Guerra-García et al., 2021). Other large

germplasm collections of lentil are maintained by the Australian

Grains Gene (AGG) bank (6,218 accessions), the European

Cooperative Programme for Plant Genetic Resources (4,598

accessions), the USDA Agricultural Research Service, USA (3,247

accessions), the Seed and Plant Improvement Institute of Iran

(3,000 accessions), the Vavilov Institute, Russia (2,598

accessions), and Plant Gene Resources of Canada (1,150

accessions). In India, the ICAR-National Bureau of Plant Genetic

Resources (NBPGR) of India maintains 2537 accessions, while,

Indian Institute of Pulses Research (IIPR), Kanpur, maintains 71

accessions from wild species and 117 landraces of the cultigen from

the Mediterranean region (Kumar et al., 2015; Singh and Chung,

2016; Malhotra et al., 2019). The distribution of lentil world

collections is listed in Table 1.

Keeping in view the global mandate for lentil improvement,

accessions of different wild species of lentil are screened at various

research institutions such as ICARDA, and IIPR for various biotic

and abiotic stresses, as well as agro-morphological traits. Further,

hybridization programs involve crossing ‘microsperma’ and

‘macrosperma’ lentils (Erskine et al., 1998) to produce promising

germplasm for lentil breeding programs in South Asia (Sarker and

Erskine, 2006; Sarker et al., 2010). The introduction of exotic

germplasm of macrosperma variety ‘Precoz’ with early flowering

trait has led to the development of improved cultivars with large

seeds, short duration and rust resistance (Singh et al., 2006; Asghar

et al., 2010). There are many cultivars that have been developed and

released in India using promising breeding lines developed at

ICARDA (Dixit et al., 2009).

A recent initiative, INCREASE (Intelligent Collections of Food

Legumes Genetic Resources for European Agrofood Systems)

launched in 2020 by the European Union’s Horizon (https://

www.pulsesincrease.eu) aims to enhance the phenotypic and

genotypic characterization of four food legumes genetic resources

including lentil (García-García et al., 2019; Cortinovis et al., 2021;

Guerra-García et al., 2021; Kroc et al., 2021).
TABLE 1 List of World Germplasm Collections in Lentil.

Genebank/Institute Accessions

Total number Wild taxa Land races/
cultivars

International Centre for Agricultural Research in Dry Areas (ICARDA), Syria 14577 612 11405

Australian Temperate Field Crops Collection, Australian Grains Gene bank (AGG) 6218 250 3037

United States of Department of Agriculture,USA 3247 52 454

Seed and Plant Improvement Institute, Iran 3000 270 360

Vavilov Institute, Russia 2598 285 1740

National Bureau of Plant Genetic Resources, India 2537 108 1871

Plant Gene Resources of Canada 1150 195 644

Plant Genetic Resource Department Aegean Agricultural Research Institute, Turkey 1095 10 1084

General Commission for Scientific Agricultural Research, Syria 1072 75 407

Research Centre for Agro-Botany, Hungary 1061 42 31
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To manage a large number of accessions, concept of developing

‘core’ and ‘mini core’ collections has been used to represent

maximum variability in limited number of accessions (Brown,

1989). While a core collection represents 10-20% (Yonezawa

et al., 1995) of the total base collection of accessions in a species,

a mini core collection includes 1-2% of entire collection (Zhang

et al., 2012). Core collections are attractive as they represent a

sizeable genetic diversity in a manageable number of accessions and

have been developed in many crop species like rice, wheat, maize,

and many pulses (Upadhyaya et al., 2006; Mourad et al., 2020;

Vilayheuang et al., 2020; Raturi et al., 2022). In the genus Lens,

Singh et al. (2014) analysed 405 accessions of all seven taxa with

morphological and biotic resistance markers to construct a core set

of 96 lentil accessions using the statistical program ‘PowerCore’.

The core set was then screened for resistance to rust (Uromyces

fabae (Grev.) Fuckel) and Powdery mildew (Erysiphe polygoni DC.)

for three seasons under two agro-climatic conditions in India

(Singh et al., 2014). Another core set of lentil accessions

comprising of 170 accessions (137 Indian and 33 exotic) has been

constructed based on the agro-morphological data and geographical

distribution (Tripathi et al., 2021). Recently, Heineck et al. (2022)

screened a part of the lentil core collection derived from single seed

for resistance against Fusarium oxysporum. They found differences

in disease severity and biomass traits among lentil accessions.

Further, they used genome-wide association study (GWAS) and

SNP markers to identify 11 QTLs, two pairs of which were located

near putatively orthologous sequences linked to disease resistance.
4 Crop wild relatives (CWRs) as a
source of novel variation for
economically important traits

Conventional breeding has resulted in considerable genetic

improvement of lentils, but productivity has become stagnant in

the recent years. Utilization of divergent germplasm from crop wild

relatives, landraces and exotic germplasm can broaden the genetic

base with useful genetic variation and infuse the lost variability

which can result in improved productivity and introgression of

desirable characters in lentil (Doyle, 1988; Tanksley and McCouch,

1997; Gupta and Singh, 2009; Pratap and Gupta, 2009).

Domesticated lentil has revealed very poor genetic variability

compared to its related wild species L. culinaris ssp. orientalis in

multiple studies (Muench et al., 1991; Mayer and Soltis, 1994;

Alvarez et al., 1997; Ford et al., 1997; Alo et al., 2011). Many

studies have indicated that wild Lens taxa show resistance to various

biotic and abiotic stress conditions (Bayaa et al., 1994; Bayaa et al.,

1995; Hamdi et al., 1996; Hamdi and Erskine, 1996; Gupta and

Sharma, 2006). These species are a source of useful alleles for traits

like resistance to key diseases, parasitic weeds and insect pests. The

different sources of important crop traits in lentils are listed

in Table 2.

Lentil breeding has been laid around a systematic breeding

scheme where trait specific donors and recipient cultivars can be

selected (Kumar et al., 2014). Many studies have shown that alien
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gene introgression from exotic wild species has substantially

demonstrated higher variations for productivity and its associated

traits in new segregating F2 population (Gupta and Sharma, 2007;

Singh et al., 2013). Several agronomic and other potential traits like

disease resistance and biofortification have been introgressed from

L. orientalis and L. ervoides into pre-bred lines from various sources

by ICARDA. These improved lines are being tested in different

locations and exhibit more than 40% increase in yield compared to

the check (Bakaria) along with higher percentage of micronutrients

and 80–100 days of short-season cycle (Kumar et al., 2019).

Recently, a lot of research interest has shifted to wild Lens

relatives for identification of useful traits.
4.1 CWR Gene pool as a genomic reservoir
for abiotic stress tolerance

Climate change has resulted in the emergence of various abiotic

stresses such as drought, sodicity, extreme temperatures (heat, cold

and frost) and flooding (Rajpal et al., 2019b), which have a

significant impact on agricultural productivity. The changes in

temperature and rainfall together have shown about 30% yield

differences in major food crops in the last few years (Zhao et al.,

2017). In order to adapt to these changing conditions, it is

important to identify candidate genes and genetic loci that confer

the adaptive responses of plants to these stresses. CWRs have been

the main targets for hunting stress-responsive genes and loci.

Further, for understanding the mechanism of abiotic stress

adaptation which is quantitative in nature, identification of QTLs,

use of genome wide association mapping (GWAM) and

transcriptomic analysis are the main targets of future research

focussed on stress mitigation.

Recently, the use of genomics-assisted and molecular breeding

tools along with traditional breeding have been employed to

characterize the hidden diversity in lentil CWRs. Studies have

found that while L. nigricans showed maximum tolerance to

drought, L. orientalis may also provide sources of genes for

drought tolerance across African regions with low rainfall (Gupta

and Sharma, 2006). In addition, screening of wild Lens germplasm

has indicated resistance to drought in L. odemensis, L. ervoides, L.

lamottei, L tomentosus and L. nigricans (Gupta and Sharma, 2006;

Gorim and Vandenberg, 2017). Many accessions of L. odemensis, L.

ervoides and L. orientalis responded to drought by increased deep

rooting and some responded by delayed flowering. A reduction in

transpiration rates was also observed as a means of drought

tolerance in L. tomentosus. (Fang and Xiong, 2015; Gorim and

Vandenberg, 2017). Other reports have also highlighted the

potential of lentil CWRs with significant differences in

morphology of root traits for fine root distribution, variability in

the number of nodules, and root biomass proportion in each soil

layer (Gorim and Vandenberg, 2017). Omar et al. (2019) analysed

drought tolerance in elite lentil varieties crossed with the CWRs.

The drought tolerance was linked to cell membrane stability, root to

shoot ratio increment, pubescent leaves, relative leaf water content,

and reduced transpiration and wilting. Sanderson et al. (2019) with

a focus to study disease resistance and tolerance to drought analysed
frontiersin.org

https://doi.org/10.3389/fpls.2023.1127239
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


TABLE 2 Wild germplasm resources for economically important traits in lentil.

References

waldt et al., 2004; Shaikh et al., 2013

Kumar et al., 2015

Bayaa et al., 1994;
t al., 2010; Coyne et al., 2020; Singh et al., 2020; Dadu et al., 2021

paricio et al., 2009; Laserna-Ruiz et al., 2012

mdi et al., 1996; Singh et al., 2017a

bbo et al., 1992; Singh et al., 2014

94; Gupta and Sharma, 2006; Tullu et al., 2010;
2014; Singh et al., 2022a; Singh et al., 2022b;
oyne et al., 2020; Dadu et al., 2021

Omar et al., 2019

El-Bouhssini et al., 2008

Tullu et al., 2006a; Fiala et al., 2009; Tullu et al., 2010; Vail et al., 2012; Coyne
et al., 2020; Singh et al., 2020

Gorim and Vandenberg, 2017

El-Bouhssini et al., 2008;
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recombinant inbred lines (RILs) in crosses of lentil cultivars with

wild species L. orientalis, L. ervoides and L. odemensis, in the lentil

pre-breeding project at ICARDA. These studies aimed to develop

drought tolerance in lentils through identification of key drought

traits by generating genetic markers for mapping in lentil and

CWRs for breeding programs. This wide variation in responses to

drought across the lentils indicates that wild species relatives will be

important for future lentil development depending upon the

successful crossing resulting in viable hybrids between the wild

and cultivated species.

To understand the adaptation strategies to alkalinity stress

tolerance in lentil, the morphological, anatomical, biochemical

and transcriptomics features were compared between a tolerant

and sensitive cultivar to show that the secondary metabolism and

ABA signaling contributed towards alkalinity stress tolerance in

lentil (Singh et al., 2022a). The lentil variety PDL-1 shows

significant alkalinity tolerance and has the potential to be used in

genetic improvement programs of lentil (Singh et al., 2022a). Efforts

have also been done to identify the genes for cold tolerance (Hamdi

et al., 1996) and salinity tolerance (Singh et al., 2017b) in L. culinaris

ssp. orientalis. Rubio Teso et al. (2022) applied the predictive

characterization model approach in Lens species based on the

method of environmental filtering (Thormann et al., 2014) to

identify lentil populations potentially tolerant to multiple abiotic

stresses such as salinity, drought and water-logging in four wild taxa

of Lens (L. orientalis, L. ervoides, L. lamottei and L. nigricans).
4.2 CWR Gene pool for biotic
stress resistance

Climate change has resulted in the evolution of novel insects,

nematodes, herbivores, microbial pathogens, and weeds, which

limit the full potential of crop growth and reproduction, causing

heavy productivity losses. Understanding the complex arrays of

defense mechanisms and networks involving biotic stress resistance

requires further research efforts. The elucidation of the regulating

mechanisms is key to the identification of stress resistance genes.

Exploration of CWRs with advanced genome dissecting tools has

resulted in meaningful results in the form of identification of novel

stress-responsive genes.

Most of the wild Lens species are reservoirs of genes conferring

resistance to various pathogens and insects pests. L. lamottei and L.

ervoides have shown a high level of resistance toward Stemphylium

blight (Podder et al., 2013). Similarly, a significant level of resistance

is shown by L. odemensis followed by L. ervoides accessions against

Sitona weevil (El-Bouhssini et al., 2008). Some related wild Lens

taxa have also shown potential for their usefulness in cultivated crop

breeding programs exhibiting combined resistance to Fusarium wilt

or anthracnose diseases (Bayaa et al., 1995; Gupta and Sharma,

2006; Tullu et al., 2006a; Tullu et al., 2010; Polanco et al., 2019;

Singh et al., 2020).

To select resistant lentil population from wild taxa, a calibration

method was developed and applied for the selection of populations

of wild species for showing potential resistance to broomrape lentil
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rust and other rust diseases using a total of 204 and 351 Lens

accessions, respectively (Rubio Teso et al., 2022).
4.3 CWR Gene pool for other
agronomic traits

Lentil CWRs have been screened to reveal many other useful

traits that can serve as important genomic resources for future

breeding programs, allowing breeders to develop new culivars with

improved traits. A collection of 405 related wild Lens species

accessions were used to select promising 96 wild lentil accessions

and were validated for target traits under multiple locations for

establishing their use as stable donors in breeding programs (Singh

et al., 2020). L. ervoides has been identified as a promising source of

genes or alleles for traits such as growth habit, phenology, plant

biomass, and seed traits (Tullu et al., 2011; Tullu et al., 2013; Kumar

et al., 2014). A wide range of variation was observed for these

different traits in related wild species of Lens globally representing

various countries (Kumar et al., 2014). Quality traits like

micronutrients (Sen Gupta et al., 2016; Kumar et al., 2018)

raffinose and prebiotics among others (Tahir et al., 2011) also

showed significant diversity in wild Lens species. Furthermore,

interspecific populations generated from wide crosses between ‘L.

culinaris ssp. culinaris x L. ervoides’ resulted in major increase in

traits for yield contribution (Tullu et al., 2011). Accessions with

sources of genes for early growth have been identified in order to

induce earliness into lentil cultivars with required genetic

background. These include accessions of L. culinaris ssp. culinaris

and accession ‘ILWL 118’ of L. culinaris ssp. orientalis that can

potentially donate to the genetic enhancement program of lentil

(Tyagi and Sharma, 1995; Toklu et al., 2009). Similarly, potential

donors for yield traits, viz., number of pods per plant and weight of

the seed were observed in L. culinaris ssp. orientalis and L. lamottei.
5 Application of omics-technologies:
Landscape of lentil genomic
resources, developed lines and
genome assemblies

The productivity gains so far achieved in lentils are largely based

on the use of traditional breeding approaches. Developing climate-

resilient smart crop varieties with broad-spectrum tolerance to

withstand multiple simultaneous stresses in a short span of time

would not be possible by traditional crop breeding alone. Further,

since the economically important crop traits are mostly quantitative

in nature and get highly affected by their immediate environment,

such GxE interactions add another level of complexity to breeding

programs. The deployment of a multitude of advanced genomics

tools in integration with traditional breeding pipelines, however,

has made this task achievable in many important crop species

(Maghuly et al., 2022). These new genomic tools and technologies

including molecular DNA markers, cutting-edge sequencing

technologies, high-density genotyping and phenotyping platforms,
Frontiers in Plant Science 08
genome mapping, genome dissection, genomic selection,

predictions and editing methods have expedited the breeding of

improved varieties (Sihag et al., 2021; Kumar et al., 2021; Dhakate

et al., 2022). The availability of high quality reference genomes is

constantly growing due to the access to newer methods to sequence

large whole genomes with affordability. The advancement in allied

disciplines of bioinformatics, statistics, data science and modelling

strategies coupled with traditional breeding are assisting in realizing

enormous sustainable agricultural productivity gains much faster

than before. The integration of traditional breeding methods with a

new era of molecular breeding can tackle the challenges of changing

global climate and sustain the crop productivity for future food and

nutritional security (Huang et al., 2022; Yaqoob et al., 2023).

Although, limited efforts have gone into the genomics-assisted

breeding of lentil so far (Tiwari et al., 2022; Zeroual et al., 2023),

an accelerated development of genomic resources during the last

decade raises many hopes (Kumar et al., 2015; Kumar et al., 2021).

Lentil CWRs have been extensively studied for useful traits that

can serve as important genomic resources for future breeding

programs. Various molecular marker systems such as restriction

fragment length polymorphisms (RFLPs), inter simple sequence

repeats (ISSRs), simple sequence repeats (SSRs), randomly

amplified polymorphic DNAs (RAPDs), and amplified fragment

length polymorphisms (AFLPs) have been used to study the genetic

diversity and phylogenetic relationships within the genus Lens

(Havey and Muehlbauer, 1989; Abo-elwafa et al., 1995; Fratini

et al., 2004; Ferguson et al., 2000; Sharma et al., 1995; Sharma et al.,

1996; Fikiru et al., 2007; Babayeva et al., 2009; Hamwieh et al., 2009;

Toklu et al., 2009; Gupta et al., 2012a; Gupta et al., 2012b; Kumar

et al., 2014; Idrissi et al., 2015; Kushwaha et al., 2015; Mekonnen

et al., 2015; Wong et al., 2015; Dissanayake et al., 2020; Hussain

et al., 2022).

Many new marker systems like (DAMD- directed amplification

of minisatellite), (iPBS-transcriptase primer binding site), sequence-

related amplified polymorphism (SRAP) have also been used in

assessing genetic diversity and characterization of Lens species

(Bermejo et al., 2014). Based on all these marker systems, Lens

species can be readily distinguished from each other and support

the earlier reports that L. culinaris ssp. orientalis is the progenitor

species of the cultivated one (Alo et al., 2011; Liber et al., 2021).

Among all the above-mentioned DNA molecular markers, simple

sequence repeats (SSRs), have been most extensively utilized for the

construction of lentil linkage maps (Hamwieh et al., 2005; Verma

et al., 2014) and have been coupled with transcriptomic analysis as

well (Kaur et al., 2011; Kant et al., 2017).

More recently, the availability of large transcriptomic and

genomic data of lentils generated using cutting-edge sequencing

have facilitated the generation of high throughput marker systems

like expressed sequence tags (ESTs) and single nucleotide

polymorphisms (SNPs) that have been extensively used singly or

coupled with SSRs for lentil genotyping, genetic diversity,

phylogenetics and linkage mapping. (Cheung et al., 2006; Bouck

and Vision, 2007). Besides molecular markers, the access to suitable

mapping populations are a prerequisite for executing efficient

molecular breeding programs. To identify the genomic regions

associated with desired crop traits, many RIL mapping
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populations have been developed in lentil (Tullu et al., 2008;

Aldemir et al., 2017; Ma et al., 2020; Gela et al., 2021a). Further,

the availability of a reference genome is a prerequisite for modern

breeding programs as it allows comparison and identification of

allelic variants in different populations, their mapping followed by

establishing their connection with phenotypic variation, if any.

Genome sequencing of Lens species is challenging as they

possess large (approx. 4 Gbp; Arumuganathan and Earle, 1991)

and complex genomes. A draft genome of lentil, an exome capture

array based on the ‘CDC Redberry’ lentil cultivar was developed

using short read transcript resources (Ramsay et al., 2016). The

probes were designed to target both cultivated lentil and wild

species, and the phylogenetic analyses corroborated previous

conclusions of existence of 4 distinct gene pools (Ogutcen et al.,

2018). In the cultivar ‘CDC Redberry’ genome assembly was

generated covering 3.8 Gbp from genome size of 3.92-Gbp

(Ramsay et al., 2021; https://knowpulse.usask.ca/genome-

assembly/Lcu.2RBY). A long-read assembly of the lentil cultivar

‘PBA Blitz’ is also completed (Guerra-García et al., 2021). A

complete genome assembly is also generated from the related

species L. ervoides accession ‘IG 72815’ with estimated genome

size of 3.4-Gbp (Ramsay et al., 2021, https://knowpulse.usask.ca/

genome-assembly/Ler.1DRT) (Guerra-García et al., 2021).

Recently, efforts to develop genome assemblies have also been

extended to lentil CWRs. Genome assembly (Ramsay et al., 2021)

and complete chloroplast genome sequencing of wild L. ervoides

(Tayşi et al., 2022) and transcriptome assemblies of cultivated lentil

and its CWRs (Gutierrez-Gonzalez et a l . , 2022) are

quite encouraging.

The genome and transcriptome assemblies in cultivated lentil

and its CWRs will help in going beyond simple genetic maps for

dwelling upon the structural rearrangements that have shaped the

evolution of genus Lens and comparison across legume species to

earmark the genetic control of traits of common interest. With all

these developments, the genus lentil is picking pace with the omics

technologies gradually and steady growth is anticipated in the

coming years towards the molecular breeding of this important

pulse crop.
6 Genetic linkage maps and mapping
populations of lentil

The construction of detailed genetic linkage maps is essential

for localization of genes and/or QTLs linked to desirable traits,

map-based cloning and MAS (Semagn et al., 2006). The first lentil

genetic linkage map was constructed by Zamir and Ladizinsky

(1984) using isozymes and one morphological marker.

Subsequently DNA markers based genetic linkage maps have

been constructed by many workers (Table 3) using RFLPs, ISSRs,

SSRs RAPDs, AFLPs and SNPs. These maps have been used for

localization of genes and QTLs linked to desirable traits, map-based

coning and MAS. The first lentil linkage map was constructed using

morphological markers and isozymes (Zamir and Ladizinsky, 1984;

Havey and Muehlbauer, 1989; Vaillancourt and Slinkard, 1993;
Frontiers in Plant Science 09
Tahir and Muehlbauer, F., 1994) followed by the usage of PCR

markers (Eujayl et al., 1998; Rubeena and Taylor, 2003; Hamwieh

et al., 2005; Phan et al., 2007; Tullu et al., 2008; Saha et al., 2010a;

Verma et al., 2015) and SNPs (Fedoruk et al., 2013;.Gujaria-Verma

et al., 2014; Ates et al., 2018; Polanco et al., 2019) The length of these

maps varies from 333 centimorgans (cM) to 1868 cM with an

average density of 8.9 cM. These maps have been constructed using

interspecific crosses involving cultivated lentil and wild species L.

ervoides, L. odomensis and L. orientalis) and RIL populations

(Eujayl et al., 1998; Gujaria-Verma et al., 2014; Polanco et al.,

2019) and have revealed a direct macro-syntenic relationship

between L. culinaris ssp. culinaris and Medicago truncatula

genetic maps.

The first extensive genetic linkage map of lentil with molecular

markers was constructed by Eujayl et al. (1998) saturated with total

177 markers comprised of morphological and molecular (RAPD,

RFLP, and AFLP) markers using 86 RILs generated from an

interspecific cross. Rubeena and Taylor, (2003) generated a lentil

genetic map with 9 linkage groups (length 784.1cM) saturated with

3 RGA, 100 RAPD and 11 ISSR markers using a F2 population

developed from a cross of cultivars differing in resistance to

Ascochyta blight. Likewise, Hamwieh et al. (2005) constructed a

map using 283 markers linked to Fusarium wilt disease.

An F5 population of L. culinaris ssp. culinaris was used to

construct a gene-based genetic linkage map (928.4 cM long) with 7

linkage groups utilising 18 SSR and a high number of intron-

targeted amplified polymorphic (79 ITAP) markers (Phan et al.,

2007). The linkage groups detected in the above study comprised of

5–25 markers with 80.2 to 274.6 cM length variations. A direct

macro-syntenic relationship between L. culinaris ssp. culinaris and

Medicago truncatula genetic maps was revealed by analysing

mapped markers previously assigned to the M. truncatula genetic

and physical maps. Tullu et al. (2008) developed a lentil map (1868

cM long) for earliness and plant height traits using 207 markers

(AFLPs, RAPDs and SSRs), and revealed 12 linkage groups with an

average marker density of 8.9 cM. A molecular linkage map of

1396.3 cM length with 11 linkage groups was constructed using 166

markers (morphological, RAPDs, ISSRs and AFLPs) in an RIL

population (Tanyolac et al., 2010). A subset (420) of SNPs were also

selected for amplification and mapping in the F7 RIL population

(Precoz × WA8649041) along with 15 SSR, and 29 ISSR markers.

Interspecific populations were raised using wild and cultivated

taxa (L. culinaris and L. orientalis, L. odemensis and L. ervoides) for

the purpose of constructing genetic maps (Eujayl et al., 1998; Durán

et al., 2004; Gujaria-verma et al., 2014; Polanco et al., 2019). An F2
segregating intersubspecific population (L. culinaris ssp. culinaris

and L. culinaris ssp. orientalis), using 235 markers (SSR, ISSR and

RAPD) was mapped covering 3843.4 cM into 11 linkage groups

(LGs), with an average marker distance of 19.3 cM (Gupta et al.,

2012a). A previous Lens genetic map representing L. culinaris ssp.

culinaris × L. culinaris ssp. orientalis was improved by adding 31

new markers, reaching upto 190 markers that formed eight linkage

groups covering 2234.4 cM (de la Puente et al., 2013). Andeden et al.

(2013) constructed a linkage map using F2 population of the cross

between Karcadağ x Silvan cultivars using 47 SSR markers with 43

loci assigned to six linkage groups. A consensus linkage map
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TABLE 3 Genetic linkage maps with QTLs/associated genes.

Population Species Markers QTLs Traits Map
(cM) References

RIL
‘L.culinaris ssp. orientalis ×
L. culinaris ssp. culinaris’

RAPDs, RFLPs, AFLPs, and
morphological markers

– – 1073 Eujayl et al., 1998

F2
‘L. culinaris ssp. culinaris ×
L. culinaris ssp. orientalis’

RAPDs, ISSRs, SSRs, AFLPs,
CAPS, SRAPs, and

morphological markers
– – 2234 Durán et al., 2004

F2
‘L. culinaris ssp. culinaris ×
L. culinaris ssp. orientalis’

RAPDs, SSRs, ISSRs, AFLPs, and
morphological markers

23 QTLs
Plant growth habit and

plant yield
2172.4 Fratini et al., 2007

RIL ‘ILL5588 × L692-16-1’ SSRs and AFLPs QTLs Fusarium wilt 751
Hamwieh et al.,

2005

F2 ‘ILL5588 × ILL7537’ RAPDs, ISSRs, and RGAs – – 784.1
GorimVandenberg,

2017

F2
‘ILL5588 × ILL7537 and
ILL7537 × ILL6002’

RAPDs, ISSRs, AFLPs, and
morphological markers

5 QTLs Ascochyta blight resistance 412.5
GorimVandenberg,

2017

F5 ‘ILL5722 x ILL5588’ SSRs and cross genera ITAPs – – 928.4 Phan et al., 2007

RIL ‘Cv Eston × PI 320937’ AFLPs, RAPDs, and SSRs QTLs Anthracnose resistance 1868 Tullu et al., 2006a

RIL ‘Cv Eston × PI320937’ – 11 QTLs Earliness and plant height – Tullu et al., 2008

RIL
‘L. culinaris ‘Eston’ and L.
ervoides (Brign.) ‘Grande IG

72815’
Morphological markers – Anthracnose resistance – Tullu et al., 2013

RIL ‘Precoz × WA 8649041’
RAPDs, ISSRs, AFLPs, and
morphological markers

– – 1396 Tanyolac et al., 2010

RIL ‘ILL 6002 × ILL 5888’
RAPDs, SSRs, SRAPs, and
morphological markers

Many QTLs
Days to flowering, Seed
diameter, plant height

1565 Saha et al., 2013

RIL ‘ILL 6002 × ILL 5888’ RAPDs, SSRs, and SRAPs 1 QTL
Stemphylium blight

resistance
38.4 to
256.2

Saha et al., 2010a

RIL ‘WA8649090 × Precoz’ RAPDs, ISSRs, and AFLPs 5 QTLs
Cold winter hardiness,

leaf area
1192

Kahraman et al.,
2004; Kahraman

et al., 2010

RIL
‘Northfield (ILL5588) × cv.

Digger (ILL5722)’
SSRs, ESTs, and SSRs, 6 QTLs Ascochyta lentis resistance

1156 to
1392

Gupta et al., 2012a

F2

‘L830 × ILWL77’
(L. culinaris ssp. culinaris

and L. culinaris ssp.
orientalis)

RAPDs, ISSRs, and SSRs – – 3843 Gupta et al., 2012b

RIL ‘CDC Robin × 964a-46’ SNPs – – 834.7 Sharpe et al., 2013

RIL ‘CDC Robin × 964a-46’
SSRs, SNPs, and seed colour

genes
–

Cotyledon color, seed
thickness, seed diameter,

plumpness
697 Fedoruk et al., 2013

F2
‘L. culinaris ssp. culinaris ×
L. culinaris ssp. orientalis’

RAPDs, SSRs, CAPS and SRAPs –
TFL1 gene and other

markers
2234.4

de la Puente et al.,
2013

F2 ‘Karcadağ x Silvan’ SSRs markers – – – Andeden et al., 2013

RIL ‘Cassab × ILL 2024’ SSRs and SNPs – Boron Tolerance 1178 Kaur et al., 2014

RIL ‘Precoz × WA 8649041’ SNPs – – 540 Temel et al., 2014

RIL ‘Precoz × WA8649041’ SSRs, and ISSRs and SNPs – – 432.8 Temel et al., 2015

RIL ‘Precoz × L830’ SSRs 2 QTLs Seed weight and seed size 1183.7 Verma et al., 2015

RIL ‘Precoz × WA8649041’ RAPDs, ISSRs, SSRs and AFLPs 1 QTL Flowering time 1396.3
Kahraman et al.,

2015

(Continued)
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(977.47 cM long), has been made using diversity arrays technology

(DArT) markers with 3 RIL mapping population including

‘ILL8006’ x ‘CDC Milestone’, ‘PI320937’ x ‘Eston’ and ‘CDC

Redberry’ x ‘ILL7502’ (Ates et al., 2018). It covered a total of

9,793 markers with an average distance of 0.10 cM in between the

markers. With seven linkage groups the length of the map was

comparable with that of Sharpe et al. (2013).

Many lentil mapping populations have been raised using intra- and

interspecific crosses between such as drought sensitive ‘JL-3’ and

drought resistant ‘PDL-1’ and ‘FLIP-96-51’ cultivars, in order to

study the inheritance mechanism of drought tolerance and identify

the linked polymorphic markers. Bulk segregant analysis results have

shown the association of seven out of 51 SSR markers with drought

tolerance detected at the seedling stage (Singh et al., 2016). These seven

markers were screened andmapped (133.2 cM distance) in F2 mapping

population (JL-3×PDL-1) of 101 individuals. As evident, lentil linkage

map studies have benefitted a lot by application of SSR markers.

SNP markers have also been extensively utilized in lentil and

have contributed enormously to linkage mapping, genetic diversity

and trait association studies (Kaur et al., 2011 ;Gujaria-Verma et al.,

2014; Garcıá-Garcıá et al., 2019; Pavan et al., 2019; Wang et al.,

2020). Many studies have used SNP markers to identify genetic

markers associated with drought tolerance and devlop high-

resolution maps. About 377 SNPs were identified from TOG

sequences in L. ervoides and used to generate a map with seven
Frontiers in Plant Science 11
linkage groups (Gujaria-Verma et al., 2014). In another study,

Gupta et al. (2012b) used among other markers a set of 15 M.

truncatula EST-SSRs in an RIL population of ‘Northfield (ILL5588)

× cv. Digger (ILL5722)’ which clustered across 1156.4 cM map

length into 11 linkage groups. A genetic linkage map of 697 cM was

developed in Lens using 563 SNPs, 10 SSRs, and four loci of seed

color (Fedoruk et al., 2013). Another recent technique, genotyping

by sequencing (GBS) approach was used in the genus Lens to

generate a total of 266,356 SNPs across whole genome for use in

phylogenetic and population structure analysis (Wong et al., 2015).

A comprehensive characterization of SNPs has been achieved in L.

culinaris and wild L. ervoides genotypes (Khazaei et al., 2016).

Recently, GBS-based Diversity array technology (DArT) markers

were used in lentil for the identification of SNPs and development

of high-resolution genetic maps (Pavan et al., 2019; Dadu et al.,

2021). However, despite above efforts, MAS has not been widely

used in lentil breeding due to poor association of markers with the

desired genes and the poor resolution issues associated with

genetic maps.

Nevertheless, the availability of these genetic linkage maps,

along with the draft genome assemblies and high-throughput

marker systems, has greatly facilitated the genomics-assisted

breeding of lentil for the development of climate-resilient smart

crop varieties with broad-spectrum tolerance to withstand multiple

simultaneous stresses.
TABLE 3 Continued

Population Species Markers QTLs Traits Map
(cM) References

RIL ‘ILL 8006 × CDC Milestone’ SSR, AFLP, and SNPs 21 QTLs
Iron concentration in

seeds
497.1 Aldemir et al., 2017

RIL ‘PI 320937 × Eston’ SNPs and SSRs 4 QTLs Selenium uptake 4060.6 Ates et al., 2016

RIL
Indianhead×Northfield;,
Indianhead×Digger;
Northfield×Digger

SNPs, SSRs and EST-SSRs QTLs Ascochyta blight resistance
1461.6,

1302.5 and
1914.1

Sudheesh et al., 2016

RIL ‘ILL6002×ILL5888’ SNPs and SRAPs –
Drought tolerance related

root and shoot traits
– Idrissi et al., 2016

RILs
“CDC Redberry” x

“ILL7502”
DArTs 6 QTLs Manganese uptake 977.47 Ates et al., 2018

RIL ‘ILL2024×ILL6788’ SNPs and SSRs 1 QTL Boron tolerance 1057 Rodda et al., 2018

RIL
‘L. culinaris cv. Alpo × L.

odemensis accession
ILWL235’

SNPs 10 QTLs Agronomic traits 5782.19 Polanco et al., 2019

RIL ‘WA8649090 x Precoz’ RAPDs, SSRs and ISSRs 6 QTLs Early Plant vigour 809.4 Mane et al., 2020

F2 ‘L-4147 × PDL-1’ SSRs –
Salinity stress tolerance at

seedling stage
133.02 Singh et al., 2020

RIL
‘L. culinaris cv. Lupa and L.

orientalis BGE 016880’
SNPs 13 QTLs Flowering time 5923.3 Yuan et al., 2021

RIL
‘L. culinaris cv. Eston × L.
ervoides cv. IG 72815’

SNPs 2 QTLs Anthracnose resistance 3252.8 Gela et al., 2021b

RIL
‘ILWL 180 (L. orientalis) ×
ILL 6002(L. culinaris)’

SNPs
QTLs and
candidate
genes

Ascochyta blight resistance 545.4 Dadu et al., 2021
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7 QTL and association mapping

The rapid development of an array of molecular markers in the

past few decades has enabled the identification of many useful QTLs

linked to agronomic traits in many crops. QTL mapping is based on

linkage mapping and genotypic data and has been utilized for

marker-trait association or marker-assisted breeding in many crops

including lentil.

Genetic mapping studies have helped in identifying many genes

and QTLs controlling abiotic and biotic stress tolerance, growth,

development and nutritional parameters have been mapped in lentil

(Eujayl et al., 1998; Tullu et al., 2003; Tullu et al., 2006b; Durán

et al., 2004; Kahraman et al., 2004; Hamwieh et al., 2005; Gupta

et al., 2012a; Saha et al., 2013; Kaur et al., 2014; Ates et al., 2016;

Idrissi et al., 2016; Sudheesh et al., 2016; Rodda et al., 2017; Ates

et al., 2018; Polanco et al., 2019; Ma et al., 2020; Mane et al., 2020;

Gela et al., 2021a, b). The details about genetic linkage maps

constructed with QTLs governing the traits of interest have been

listed in Table 3. Lately, mapping of quantitative traits like mineral

concentration in seeds, days to flower, desirable seed characters and

Aphanomyces root rot has been carried out by association mapping

(Khazaei et al., 2017; Khazaei et al., 2018; Neupane, 2019; Ma

et al., 2020).

The flowering time and seed characteristics are important

productivity-related crop traits. In this regard, five QTLs each for

the height of first ramification and flowering time, seven for pod

dehiscence, three for plant height, and one each for number of shoot

and seed diameter were detected in inter-subspecific genetic map in

Lens (Durán et al., 2004). Many QTLs for plant height and earliness

were identified from RILs using cross between ‘Eston × PI320937’

(Tullu et al., 2008). RILs derived from a cross between genotypes

‘WA 8649090 × Precoz’ were used to detect QTLs for winter

survival and injury (Kahraman et al., 2004). For seed diameter

and weight, three and five QTLs respectively were identified (Saha

et al., 2013). Further, in 78 RIL populations derived from a cross

between a cultivar ‘Alpo’ of L. culinaris and L. odemensis accession

‘ILWL235’, three QTLs for seed size and one each QTL for stem

pigmentation, spotting on the seed coat, the color of flower and

timing of flowering were identified. QTLs for the seed weight and

seed size traits were identified in an RIL derived from cross between

L. culinaris cultivars ‘Precoz x L830’ which generated one QTL each

for the traits (seed weight and size) present on the same linkage

group (Verma et al., 2014).

Among the biotic stresses, Ascochyta blight, Stemphylium blight,

anthracnose and rust diseases represent the most potent pathogens that

limit lentil productivity worldwide. Many QTLs associated with these

pathogens have been identified. These genomic resources can be

extremely helpful in lentil breeding for biotic resistance and

productivity gains. RIL population developed from a cross between

L. culinaris ‘Eston’ and ‘PI 320937’ was used to identify markers

associated withAscochyta blight resistance, using a QTL analysis (Tullu

et al., 2003; Tullu et al., 2006b). Further, three more QTLs were

detected for Ascochyta blight resistance at seedling and pod maturity

stages againstAscochyta lentis (Gupta et al., 2012a). Similarly, Sudheesh

et al. (2016) identified multiple QTLs associated with A. lentis in 112

and 117 RILs obtained between crosses ‘IH (Indian Head) x DIG
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(Digger)’ and ‘IH x NF (Northfield)’, respectively. In yet another F2
population derived from ‘ILL7537 × ILL6002’, three QTLs accounting

for 47% (QTL-1 and QTL-2) and 10% (QTL-3) of Ascochyta blight

resistance variation were mapped. Further, QTLs conferring resistance

to Stemphylium blight and rust diseases (caused by Uromyces vicia-

fabae) using RIL populations were also identified (Saha et al., 2010a;

Saha et al., 2010b). The RIL population for Stemphylium blight

resistance (‘ILL5888 × ILL-6002’), showing contrasting agro-

morphological traits, were used to detect three QTLs related to days

to 50% flowering. Composite interval mapping from an RIL population

(F9) between two L. ervoides accessions, revealed 11 QTLs with

associated resistance to Colletotrichum lentis resistance at different

stages against anthracnose, and three QTLs for Stemphylium

botryosum resistance against blight disease (Bhadauria et al., 2017).

LAB C01 resistance at BC2F3:4 generation was screened for the race 0

of anthracnose (C. lentis) and Stemphylium blight (S. botryosum) and

identified QTLs on chromosomes 3 and 7 (Gela et al., 2021b). 15

putative genes associated with resistance to Aphanomyces root rot (Ma

et al., 2020) have been identified on seven QTL clusters using QTL and

association mapping. Differential expression of three of these genes at

the early stages of infection was correlated with ARR resistance (Ma

et al., 2020).

Climate change-inflicted abiotic stresses have affected yield and

lentil productivity substantially, hence, identification of genomic

resources can be really helpful in developing stress-tolerant varieties.

In an RIL population of a cross between lentil accessions ‘ILL6002 and

ILLL5888’, Idrissi et al. (2016) identified eighteen QTLs with different

root and shoot traits under drought stress. Sodicity represents one of

the most important abiotic stresses responsible for reduction in crop

yields. By crossing lentil salt-sensitive ‘L-4076 and L-4147’ and salt-

tolerant genotypes ‘PDL-1 and PSL-9’, Singh et al. (2020) identified a

QTL linked to seedling survival under salinity conditions. Further,

efforts to link a QTL to cold hardiness have resulted in the

identification of a stable QTL, that expressed uniformly in different

cold conditions. This QTL can be pipelined for MAS (Kahraman et al.,

2004). Although the above reports highlight the usage of lentil

genotypes harboring the stress-tolerant QTLs, efforts must be

extended to CWRs to explore more useful genomic resources which

can be used in appropriate breeding strategies to improve

lentil productivity.

Plant growth depends on many factors and alterations in

minerals and/or micronutrient uptake plays a key role in

determining plant growth in changing climate scenarios. Studies

on mineral ion uptake in lentils identified a few QTLs linked to

boron, selenium, manganese and other ions uptake (Kaur et al.,

2014; Ates et al., 2016; Khazaei et al., 2017; Ates et al., 2018; Khazaei

et al., 2018). Further studies in this direction can lead to breeding of

biofortified micronutrients rich lentil.

For realizing the full potential and applications of identification

of QTLs and other genomic resources in the lentil improvement,

association and mapping studies are extremely important so that

these resources can be effectively utilized in MAS. Some useful

attempts have been made in this direction. For instance, Kaur et al.

(2014) identified QTLs in ‘Cassab × ILL2024’ mapping population

related to boron tolerance. The authors used transcriptome

sequencing generated SNPs and EST-SSRs for simple interval
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mapping (SIM) and composite interval mapping (CIM). A

comparison of the flanking markers to genome sequences with

model species like M. truncatula could identify many candidate

genes associated with micronutrient (Boron) tolerance that might

become useful in marker assisted breeding. Similarly, Fedoruk et al.

(2013) used SNPs, SSRs and seed coat color markers in RIL

population of lentil to identify QTLs for seed dimension.

Significant QTLs on 6 linkage groups were identified like linkage

group 2 with seed coat color pattern and linkage group 1 with

cotyledon color locus (Fedoruk et al., 2013). Polanco et al. (2019)

analysed F7 RILs (L. culinaris x L. odemensis) and identified a single

QTL controlling ‘time to flowering’ and three QTLs for ‘seed size

regulation’. QTLs were also mapped in lentil for Ascochyta blight

resistance in chromosome 6. Further, Neupane (2019) observed 4

QTLs for ‘days to flowering’ after evaluating 324 lentil accessions in

multiple locations in different parts of the world. The mapping

population was a cross between accessions ‘IPL 220 and ILWL 118’

of wild species L. orientalis (Kumar et al., 2019). A QTL hotspot was

observed consisting of six QTLs for lengths of root, shoot and

seedling within a map distances of 56.61-86.81 cM range on LG1

using F10 RIL population of cross ‘WA8649090 x Precoz’ (Mane

et al., 2020). Likewise, a total of 143 accessions were analysed by

GWAS to establish associations between prebiotic carbohydrates

and candidate genes (Johnson et al., 2021). The study identified

many SNPs and associated genes controlling useful traits. This

study can further guide the molecular breeding programs based on

prebiotic carbohydrates in lentil.

In summary, many studies have used transcriptome profiling and

QTL mapping to identify genes and genic regions associated with

abiotic and biotic stress tolerance, growth, development and nutritional

parameters in lentils. The studies have involved use of RIL populations

and various methods such as transcriptome sequencing, SNPs, EST-

SSRs, SSRs, seed coat color markers, GWAS and more. The studies

have identified a wide range of QTLs associated with boron tolerance,

proline metabolism, membrane proteins, defense-related functions,

and phytohormones, as well as QTLs for traits such as plant height,

flowering time, seed characteristics, time to flowering, cold hardiness,

Ascochyta and Stemphylium blight resistance, rust resistance, salinity

and drought tolerance. These findings have important implications for

marker-assisted breeding and the development of more stress-tolerant

lentil cultivars.
8 Transcriptomic profiling to dissect
the functionality of abiotic and
biotic stresses

Transcriptomic studies provide information about functionality

and regulation of genes and show how reprogramming at

transcriptional level can modulate innate physiological parameters in

plants to withstand external stresses. Transcriptomic studies in lentil

have resulted in identification of many candidate genes/loci linked to

useful agronomic traits (Kaur et al., 2011; Sudheesh et al., 2016; Cao

et al., 2019; Garcıá-Garcıá et al., 2019; Morgil et al., 2019; Singh et al.,

2019; Wang et al., 2020; Dadu et al., 2021; Kumar et al., 2021; Tiwari
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et al., 2022). ESTs-based methods coupled with NGS are widely used

for transcriptome studies. In lentil, 33,371 ESTs are currently publicly

available (Kumar et al., 2021). A high quality of 847,824 sequence reads

and 84,074 unigenes transcriptome assemblies were generated as a

result of massive transcriptome sequencing in lentil (Sharpe et al., 2013;

Verma et al., 2013). Further, an EST library was developed using lentil

cultivars with varying seed phenotypes by Vijayan et al. (2009), while

Kaur et al. (2011) revealed 2,393 loci for EST-SSTmarkers upon cDNA

sequencing of six lentil genotypes. Interestingly, 47.5% polymorphism

was revealed among 13 different lentil genotypes screened with 192 out

of these markers. Immediately after, a large number of ESTs were

generated using tissues of leaves infected with C. truncatum in lentil

(Bhadauria et al., 2011; Kumar et al., 2014).

Many studies have tried to unravel the mode of action of various

biotic and abiotic stresses with the help of transcriptome profiling in

lentil. To study the transcriptome profiling during cold stress,

Barrios et al . (2017), performed a Deep Super-SAGE

transcriptome analysis on RIL populations of a cross between

‘cold tolerant WA8649041 and susceptible genotype Precoz’ to

identify around 300 differentially expressed tags mainly associated

with expressing proline rich, dormancy related membrane proteins.

Similarly, to understand the functionality of drought stress

response, Singh et al. (2017b) revealed that 11,435 transcripts were

up- and 6,934 were down-regulated to study the effect of drought stress

in a resistant (PDL-2) and sensitive (JL-3) cultivar in comparison with

the control. Further, DEG (Differentially expressed gene) analysis

showed upregulation of genes involved in electron transport chain,

glucose metabolism, TCA cycle and down regulation of photosynthetic

functions and photorespiration in the tolerant cultivar (Singh et al.,

2017a; Morgil et al., 2019). The latter study further showed that the

number of DEGs in roots of L. culinaris cultivar ‘Sultan’ increased from

2,915 to 18,237 in short-term and long-term drought conditions,

respectively (Morgil et al., 2019). A similar transcriptomic profiling

has been done by Singh et al. (2019) to study the mechanism of heat

stress tolerance. Heat stress is one of the major abiotic challenges for

reduced crop production under changing climate scenarios. By

comparing the heat tolerant lentil cultivar ‘PDL-2’ with heat sensitive

‘JL-3’ cultivar, Singh et al. (2019) could identify as many as 16,817 heat

responsive DEGs, with their number being higher in heat tolerant

cultivar. Functionally, the observed DEGS were mostly correlated with

secondary metabolism, wax deposition, cell wall deposition enzymes

and many transcription factors (Singh et al., 2019). A transcriptome

annotation with 26,449 EST-SSR markers in six lentil genotypes

followed by a selection of 276 screened markers to circumscribe 94

accessions showed 125 markers to be polymorphic among the analysed

accessions (Wang et al., 2020)

The biotic stresses in the form of Ascochyta and Stemphylium

blights, anthracnose and rust contribute to major losses ranging

upto 70% in lentil production across the world (Singh et al., 2017a;

Cao et al., 2019). The transcriptomic studies (Cao et al., 2019; Singh

et al., 2019; Mishra et al., 2021; Tiwari et al., 2022) have largely

focussed on foliar diseases caused by the two most potent lentil

pathogens A. lentils and S. botryosum. The transcriptome profile

was studied in two L. ervoides cultivars ‘LR-66-637’ (resistant) and

‘LR-66-577’ (susceptible) to S. botryosum. A total of 8,810 disease

responsive genes along with 1,284 DEGs were identified and as
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many as 712 genes were upregulated in resistant cultivar as

compared to 572 in the susceptible one (Cao et al., 2019).

Similarly, Khorramdelazad et al. (2019), studied the transcriptome

profiling of ‘ILL7537’ (resistant) and ‘ILL6002’ (susceptible) lentil

cultivars infected with A. lenti, after 2, 6 and 24 hours after the

infection to reveal upregulation of two genes involved in defense-

related functions namely calmodulin domain protein kinase-like

(CDPK) genes, and LRR-receptor like kinase (LRR-RLKs)

(Khorramdelazad et al., 2019). Interestingly, some common DEGs

expressed during infection with both the above pathogens

correlated with genes associated with phytohormones, E3

ubiquitin protein, LRR-RLKs, CDPK indicate the prevalence of a

common defence mechanism against both these lentil pathogens

(Tiwari et al., 2022).

In nutshell, transcriptomic studies in lentils have been widely used

to understand themechanisms of biotic and abiotic stress tolerance and

have resulted in identification of many candidate genes and loci linked

to useful agronomic traits. The studies have revealed the up- and down

regulation of genes involved in different processes such as proline rich

dormancy-related and membrane proteins, electron transport chain,

glucose metabolism, TCA cycle, photosynthetic functions,

photorespiration, and secondary metabolism during cold, drought

and heat stress in lentils. Many studies have identified DEGs

associated with stress tolerance responses. In addition, transcriptomic

studies have been conducted to understand the resistance mechanism

to foliar diseases caused by pathogens such as Ascochyta and

Stemiphylium and have revealed the upregulation of defense-related

genes such as calmodulin domain protein kinase-like (CDPK) and

LRR-receptor like kinase (LRR-RLK) in resistant cultivars. Overall,

these studies have provided valuable insights into the molecular

mechanisms of stress tolerance and resistance in lentils and have

potential applications in breeding programs aimed at improving the

crop’s stress tolerance and disease resistance.
9 Phenomics, Proteomics and
Metabolomics: Recent emerging areas
in modern breeding of lentil

The large-scale genomics datasets can result in practical

applications once they are correlated with the phenotypes or the

phenome (Mir et al., 2019). The conventional manual phenotypic

approaches are lately getting replaced by through-put sensor-based

phenotypic methods that use ‘artificial intelligence’ and ‘machine

learning’ approaches to increase precision and speed of phenotyping

(Singh et al., 2016; Tiwari et al., 2022). For example, a comparison of

conventional phenotyping with high throughput (HTP) digital red-

green-blue (RGB) imaging followed by fluorescence scanning revealed

that the latter method had better precision and consistency

(Dissanayake et al., 2020). Proteomics studies involving translational

and post-translational studies on peptides and proteins, once the

candidate genes and loci get identified by genomics studies are

important parts of the larger process of crop trait improvement.

Likewise, metabolomics signifies the culmination of all the

aforementioned genomics technologies and shows a direct
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correlation with the phenotypes. Researchers have begun to look into

the drought and salinity stress management by analysing contrasting

lentil genotypes (Scippa et al., 2008; Caprioli et al., 2010; Scippa et al.,

2010; Muscolo et al., 2015; Skliros et al., 2018; Shaheen et al., 2022),

although more research is needed in this area.

Recent efforts have tried to identify genomic regions that are

associated with markers and traits in lentils. For instance, Tiwari

et al. (2022) found 19 common metabolites in lentils that belong to

phenolic and organic acids, saccharides, and flavan/flavanol and

flavaone derivatives. This study suggests that there is a dynamic

cross-talk during stress management in plant systems, and it

highlights the need for comprehensive integrated future

investigations in lentil and other crop species. It is important to

identify pan-stress-ameliorating genes and/or loci and common

stress mitigation pathways, if any, as in the natural field conditions

crops are exposed to multiple simultaneous biotic and abiotic stresses.

This will be very useful for external stress management and will help to

ease the pressure off the agricultural productivity issues. Additionally,

the identification of signature peptides and metabolites as markers

associated with useful agronomic traits will be helpful in lentil breeding.
10 Conclusions and future prospects

Understanding the evolutionary and domestication processes in

crop species requires knowledge about the genetic and phenotypic

characteristics of available genetic resources such as accessions,

landraces and genotypes as well as understanding the genetic basis

of divergence. The documented variability serves as the foundation

of all crop improvement programs aimed at increasing productivity,

disease resistance, stress mitigation and climatic adaptations. The

genetic and genomic analysis of crop wild resources (CWRs) across

cereals, legumes, oils and other diverse groups of plants has

demonstrated that the CWRs possess high heterozygosity and

many useful crop traits that can be used in crop breeding

programs. The availability of enormous CWRs and land races

offers interesting opportunities for wild gene introgression into

the cultivated gene pools of legumes and other crop species.

The last few decades have seen an unprecedented growth in the

development of methods for genetic research and breeding in

plants. Plant breeding exercises have advanced greatly from the

usage of a plethora of molecular markers to next generation

sequencing to genotyping-by-sequencing. At the same time,

assembly of large and complex genomes, development of high-

density genetic maps for high resolution QTL mapping, genome-

wide association studies, development of genomic resources in the

form of mini and/or core populations, trait-specific mapping

populations, multi-parent advanced generation inter-cross

(MAGIC) and nested association mapping (NAM) populations,

and the development of pan or super-pan genomes of cultivated

species and CWRs through whole genome sequencing (WGS) have

substantially modernized the crop breeding programs. These

technologies have enabled the identification and characterization

of genes associated with important agronomic traits such as disease

resistance, drought tolerance and yield, which can be used to

develop new cultivars with improved traits.
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The legume agricultural production system including lentils has

inherently been constrained by cultivation in limited geographical

habitats, poorly defined breeding histories, genetic bottleneck and

erosion, intensive agricultural systems and novel pathogens under

global climatic changes. Since the genetic diversity locked in CWRs

is considered to offer viable solutions to food productivity problems,

intensive efforts should be undertaken to collect, characterize and

protect CWRs of grain legumes. Recently, a shift has been noted

during the germplasm characterization exercises towards cataloguing

diversity at the desirable gene level rather than the phenotype level.

Furthermore, since the characterization of genetic diversity and

dissection of complex traits are pivotal to the idea of genetic

improvement, a centralized data base management system should be

put in place to host the collated information about the wild alleles

controlling specific traits.

Overall, in the small genus Lens, an important plant-based protein

source, which was once considered an orphan species, significant wild

germplasm characterization efforts have taken place. These efforts have

led to advancements in understanding the genomic relationships

between the wild and cultivated lentil genomes, identification of

genes, QTLs and traits associated with desired crop traits and stress

management, and the development of genetic maps and databases,

global genotyping, the use of marker assisted and genomic selection

techniques, draft genomes’ assemblies, complete chloroplast genome

sequencing and transcriptome assemblies of cultivated lentil and its

CWRs (Gutierrez-Gonzalez et al., 2022). These developments have

assisted in unravelling the intricacies of genome architecture and the

landscape of variability available in the gene pools of cultivated lentil

and its wild relatives and evolutionary and domestication history of the

species. However, there is still a need for better management of various

biotic and abiotic stresses associated with the global climatic changes

and to maintain the desired productivity levels for the future food

security. One key area of focus is to characterize lentil germplasm

resources in their centres of origin, where they are most diverse, in

order to identify genes and traits that can help mitigate the effects of

climate change andmaintain productivity levels for future food security

(Chen et al., 2017; Singh et al., 2018). Additionally, it is important to

characterize the genetic and phenotypic diversity at individual

accession level rather than just at the genotype level that represents a

pool of accessions. To achieve genetically enhanced and biofortified

lentil, data should be integrated frommultiple omics technologies, such

as robust marker association studies, machine and AI-assisted

phenomics studies, advanced proteomics and metabolomics and

biofortification studies carried out in CWRs and the cultivated lentil

(Tiwari et al., 2022). All these findings should be represented in a

centralized curated data base repository for information sharing to aid

future breeding efforts.

The development and use of MAGIC populations has been

quite beneficial for gene mapping and function analysis, detection

of QTLs, dissection of stress and yield related traits and genetic

resource development in the form of elite breeding near isogenic

lines (NILs) and recombinant inbred lines (RILs) in legumes such as

chickpea, faba bean, pigeonpea, cowpea, soybean and groundnut.

These important genomic resources’ development needs attention

of lentil breeders.
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Most genomic and transcriptomic studies in the genus Lens have

involved commercial accessions of L. culinaris. Recent efforts to

develop genome assemblies of L. culinaris and wild L.ervoides

(Ramsay et al., 2021), complete chloroplast genome sequencing of

wild L. ervoides (Tayşi et al., 2022) and transcriptome assemblies of

cultivated lentil and its CWRs (Gutierrez-Gonzalez et al., 2022) are

quite encouraging and will help researchers better understand the

genomic relationships between wild and cultivated lentil genomes to

tap into the unexploited variability lying hidden in CWRs. Many

specific legume databases such as Pulse crop data base (https://

www.pulsedb.org/), Legume information system (LIS; https://

legumeinfo.org; Dash et al., 2016) and KnowPulse (https://

knowpulse.usask.ca) are really helpful for accessing useful genetic

data for lentil breeding. The future efforts should aim at

comprehensive linking of genetic datasets to phenotypes and also

connecting these data pipelines under the umbrella of a centralized

curated database management system. The implementation of

dedicated large scale global legume improvement projects like

EVOLVES (https://knowpulse.usask.ca/study/2691111) and European

Union’s Horizon 2020 research and innovation program INCREASE

(https://www.pulsesincrease.eu/crops/lentil) (Guerra-García et al.,

2021) are important strategic policy decisions that will help in the

conservation and sustainable use of crop agro-biodiversity in pulse crop

species including lentil. These projects provide a way forward to

consolidate global efforts in addressing the challenges of

climate change.
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