
The Protéǵe OWL Plugin:
An Open Development Environment

for Semantic Web Applications

Holger Knublauch, Ray W. Fergerson, Natalya F. Noy and Mark A. Musen

Stanford Medical Informatics, Stanford School of Medicine
251 Campus Drive, Stanford, CA 94305-5479

holger@smi.stanford.edu

Abstract. We introduce the OWL Plugin, a Semantic Web extension of the Protéǵe
ontology development platform. The OWL Plugin can be used to edit ontologies
in the Web Ontology Language (OWL), to access description logic reasoners, and
to acquire instances for semantic markup. In many of these features, the OWL
Plugin has created and facilitated new practices for building Semantic Web con-
tents, often driven by the needs of and feedback from our users. Furthermore,
Prot́eǵe’s flexible open-source platform means that it is easy to integrate custom-
tailored components to build real-world applications. This document describes
the architecture of the OWL Plugin, walks through its most important features,
and discusses some of our design decisions.

1 Introduction

Efficient development tools are a prerequisite for the wide adoption of a new technol-
ogy. For example, visual Web design tools like DreamWeaver have significantly reduced
the development costs of Internet content, and have brought Web technology to the fin-
gertips of people who are not familiar with the details of HTML. The concept of the
Semantic Web [3] is often regarded as the next “big” technology leap for the Internet.
Now that the Web Ontology Language (OWL) [16] has been officially standardized, it
is the task of tool builders to explore and provide suitable infrastructures that help make
the Semantic Web vision a reality. This document reports on our work and results in the
construction of such a tool.

Our goal was to build an extensible tool with support for the most commonly needed
features for the development of Semantic Web applications.Ontologiesplay a central
role in the Semantic Web: They provide formal models of domain knowledge that can
be exploited by intelligent agents. As a result, a development tool for Semantic Web
applications should provide services to access, visualize, edit, and use ontologies. Fur-
thermore, since ontologies may be notoriously hard to build [13], a tool should provide
intelligent assistance in ontology construction and evolution. Finally, since the Seman-
tic Web is open to so many potential application areas, a tool should be customizable
and extensible.

We have developed the OWL Plugin, an extension of Protéǵe. Prot́eǵe [4, 8] is an
open platform for ontology modeling and knowledge acquisition. The OWL Plugin can



2

be used to edit OWL ontologies, to access description logic (DL) reasoners, and to
acquire instances for semantic markup. As an extension of Protéǵe, the OWL Plugin
profits from the benefits of a large user community, a library of reusable components,
and a flexible architecture. The OWL Plugin therefore has the potential to become a
standard infrastructure for building ontology-based Semantic Web applications.

This document describes the main features of the Protéǵe OWL Plugin and illus-
trates how it can be used and customized to build real-world Semantic Web applica-
tions. Section 2 lists requirements and design goals that motivated the development of
the OWL Plugin. Section 3 provides background on the Protéǵe platform and architec-
ture. Section 4 describes how Protéǵe has been extended with support for OWL, and
how other components can be built on top of it. Section 5 shows how the OWL Plu-
gin can be used to edit OWL classes and properties. Section 6 describes features that
help evolve, test and maintain ontologies, including intelligent reasoning based on de-
scription logics. Section 7 shows how Protéǵe can serve as an editor of Semantic Web
contents (e.g., OWL individuals). Section 8 discusses our results and points at ongo-
ing and future work. This paper assumes that the reader is familiar with OWL, but not
necessarily with Protéǵe.

2 Requirements and Design Goals

The nature of the Semantic Web and its languages has implications for tool builders. A
rather well-known aspect is that the cryptic and error-prone RDF syntax of OWL [16]
makes it extremely hard to build valid OWL ontologies manually. Graphical ontology
editing tools with a simple syntax and built-in validation mechanisms could signifi-
cantly improve this situation.

A more critical aspect is that the Semantic Web is based on ontologies, and ontolo-
gies are notoriously difficult to build [13]. One reason for this difficulty is that ontolo-
gies are formal models of human domain knowledge. While human knowledge is often
tacit and hard to describe in formal models, there is also no single correct mapping
of knowledge into discrete structures. Although some rules of thumb exist that facil-
itate selected ontology-design tasks (e.g., [13, 15]), there are hardly any comprehen-
sive ontology development methods in routine use. As an alternative to systematic and
comprehensive guidelines, development tools should at least support rapid turn-around
times to encourage ontology evolution and iteration. User interfaces should simplify
and accelerate common tasks and at the same time encourage best practices and design
patterns. Furthermore, tools should expose somewhat intelligent assistance for ontol-
ogy builders, and point out obvious modeling errors. Another important criteria is that
ontologies can become very large, so that tools need to be scalable, and should support
the coordination of efforts among multiple people.

A final issue for Semantic Web development tools is that they should beopen. First,
they should be open-source so that interested people can more easily try and understand
them. Second, tools should also be open to project-specific customizations and exten-
sions. Nobody knows where the Semantic Web will be in the future, and it may offer
boundless opportunities for innovative services, methods, and applications. An open
tool that allows for the integration of these future components more easily may sig-



3

nificantly reduce development costs. For example, developers of OWL reasoners could
integrate their reasoning component into an OWL editor so that they can much easier
experiment with different ontologies. Also, developers of Web services could reuse the
tool’s infrastructure without having to write their own base platform first.

3 Protéǵe

Prot́eǵe is an open-source tool developed at Stanford Medical Informatics. It has a com-
munity of thousands of users. Although the development of Protéǵe has historically
been mainly driven by biomedical applications [4], the system is domain-independent
and has been successfully used for many other application areas as well.

Like most other modeling tools, the architecture of Protéǵe is cleanly separated
into a “model” part and a “view” part. Protéǵe’s model is the internal representation
mechanism for ontologies and knowledge bases. Protéǵe’s viewcomponents provide a
user interface to display and manipulate the underlying model.

Prot́eǵe’s modelis based on a simple yet flexible metamodel [11], which is compa-
rable to object-oriented and frame-based systems. It basically can represent ontologies
consisting of classes, properties (slots), property characteristics (facets and constraints),
and instances. Protéǵe provides an open Java API to query and manipulate models. An
important strength of Protéǵe is that the Protéǵe metamodel itself is a Protéǵe ontol-
ogy, with classes that represent classes, properties, and so on. For example, the default
class in the Protéǵe base system is called:STANDARD-CLASS, and has properties
such as:NAMEand:DIRECT-SUPERCLASSES. This structure of the metamodel en-
ables easy extension and adaption to other representations [12]. For example, we have
extended this metamodel to handle UML and OWL.

Using theviewsof Prot́eǵe’s user interface, ontology designers basically create
classes, assign properties to the classes, and then restrict the properties’ facets at cer-
tain classes. Using the resulting ontologies, Protéǵe is able to automatically generate
user interfaces that support the creation of individuals (instances). For each class in
the ontology, the system creates oneform with editing components (widgets) for each
property of the class. For example, for properties that can take single string values, the
system would by default provide a text field widget. The generated forms can be further
customized with Protéǵe’s form editor, where users can select alternative user interface
widgets for their project. In addition to the predefined library of user interface widgets,
Prot́eǵe has a flexible architecture that enables programmers to develop custom-tailored
widgets, which can then be plugged into the core system. Another type of plugin sup-
ports full-size user interface panels (tabs) that can contain arbitrary other components.
In addition to the collection of standard tabs for editing classes, properties, forms and
instances, a library of other tabs exists that perform queries, access data repositories,
visualize ontologies graphically, and manage ontology versions.

Prot́eǵe currently can be used to load, edit and save ontologies in various formats,
including CLIPS, RDF, XML, UML and relational databases. Recently, we have added
support for OWL. Our decision to build our system on top of Protéǵe was driven by
various factors. Since ontologies play such an important role in Semantic Web applica-
tions, it was straight-forward to take an existing ontology development environment as



4

a starting point. Extensions to Protéǵe can benefit from the generic services provided by
the core platform, such as an event mechanism, undo capabilities, and a plugin mech-
anism. By basing the OWL Plugin on top of Protéǵe, we could also reuse Protéǵe’s
client-server-based multi-user mode that allows multiple people to edit the same on-
tology at the same time. Protéǵe also provides a highly scalable database back-end,
allowing users to create ontologies with hundreds of thousands of classes. Also, there is
already a considerable library of plugins which can be either directly used for OWL or
adapted to OWL with little effort. Furthermore, the fact that Protéǵe is open-source also
encourages plugin development. Last but not least, Protéǵe is backed by a large com-
munity of active users and developers, and the feedback from this community proved
to be invaluable for the development of the OWL Plugin.

Our decision to base the OWL Plugin on Protéǵe also had some risks. In order to
be able to reuse as much of the existing Protéǵe features as possible, we had to create
a careful mapping between the Protéǵe metamodel and OWL that maintains the tra-
ditional Prot́eǵe semantics where possible. Furthermore, none of the generic Protéǵe
widgets and tabs is optimized for OWL, and not all of the editing metaphors for frame-
based systems are appropriate for OWL. In particular, OWL’s rich description logics
features such as logical class definitions required special attention. The following sec-
tions will show how we have addressed these issues.

4 The Architecture of the OWL Plugin

The OWL Plugin is a complex Protéǵe extension that can be used to edit OWL files and
databases. The OWL Plugin includes a collection of custom-tailored tabs and widgets
for OWL, and provides access to OWL-related services such as classification, consis-
tency checking, and ontology testing.

4.1 OWL Plugin Metamodel

As illustrated in Figure 1, the OWL Plugin extends the Protéǵe model and its API with
classes to represent the OWL specification. The OWL Plugin supports RDF(S), OWL
Lite, OWL DL (except for anonymous global class axioms, which need to be given a
name by the user) and significant parts of OWL Full (including metaclasses).

In order to better understand this extension mechanism, we need to look at the differ-
ences between the Protéǵe metamodel and OWL. OWL is an extension of RDF(S) [7].
RDF has a very simple triple-based model that is often too verbose to be edited directly
in a tool. Fortunately, RDF Schema extends RDF with metamodel classes and proper-
ties which can be mapped into the Protéǵe metamodel. As a result, the extensions that
OWL adds to RDF(S) can be reflected by extensions of the Protéǵe metamodel.

Although this extension has been successfully implemented for the OWL Plugin,
not all aspects of the metamodels could be mapped trivially. It was straight-forward to
represent those aspects of OWL that just extend the Protéǵe metamodel. For example,
in order to represent disjoint class relationships, it was sufficient to add a new property
:OWL-DISJOINT-CLASSES to Prot́eǵe’s owl:Class metaclass. It was also rela-
tively easy to represent OWL’s complex class constructors that can build class descrip-



5

Protégé API
(Classes, properties,

individuals, etc.)

Protégé OWL API
(Logical class definitions,

restrictions, etc.)

Protégé GUI
(Tabs, Widgets, Menus)

Protégé OWL GUI
(Expression Editor,

Conditions Widget, etc.)

DB
Storage

OWL File
Storage

Jena API
(Parsing, Reasoning)

OWL Extension APIs
(SWRL, OWL-S, etc.)

OWL GUI Plugins
(SWRL Editors, ezOWL,
OWLViz, Wizards, etc.)

P
ro

té
gé

 C
or

e 
S

ys
te

m
O

W
L 

P
lu

gi
n

Fig. 1.The OWL Plugin is an extension of the Protéǵe core system.

tions out of logical statements. For example, OWL classes can be defined as the comple-
ment of other classes, using theowl:complementOf constructor. In the OWL Plu-
gin, complements are represented by instances of a metaclass:OWL-COMPLEMENT-CLASS
that inherits from other Protéǵe system classes. As illustrated in Figure 2, the other types
of OWL class constructors such as restrictions and enumerated classes, and the various
kinds of properties are mapped into similar metaclasses.

Other aspects of OWL required some work to maintain a maximum of backward
compatibility with traditional Prot́eǵe applications. There is a semantic difference be-
tween Prot́eǵe and OWL if multiple restrictions are defined at the same time. In partic-
ular, Prot́eǵe properties with multiple classes as their range can take as values instances
of all classes (union semantics), whereas OWL properties with multiple classes in their
range can only take values that are instances of all classes at the same time (inter-
section semantics). In order to solve this mismatch, the OWL Plugin uses an internal
owl:unionOf class if the user has defined more than one range class. The same ap-
plies to a property’s domain. Another difference is that OWL does not have the notion of
facets, which in Protéǵe are used to store property restrictions at a class. While a max-
imum cardinality restriction at a class in Protéǵe is represented by a single quadruple
(class, property, facet, value), the same is stored as an anonymous superclass in OWL.
OWL even supports attaching annotation property values to such anonymous classes,
and therefore it would be insufficient to map OWL restrictions into facets only. We
have implemented a mechanism that automatically synchronizes facet values with re-
striction classes, so that the traditional semantics of Protéǵe are maintained while using
the syntax of OWL.



6

Fig. 2. The OWL metaclasses are implemented as subclasses of the Protéǵe system classes. As
shown here, they can be browsed with Protéǵe as well.

4.2 OWL Plugin API

Reflecting the Protéǵe metamodel extensions, the OWL Plugin also provides an ex-
tended Java API to access and manipulate OWL ontologies. While the core API al-
ready provides access to ontology classes, properties, and instances, the OWL Plugin
extends this API with custom-tailored Java classes for the various OWL class types.
This API basically encapsulates the internal mapping and thus shields the user from
error-prone low-level access. It is possible to further extend this API to define custom-
tailored classes for OWL extensions like OWL-S and the Semantic Web Rule Language
(SWRL) [6]. For example, individuals of the SWRL classAtomList could be rep-
resented by instances of a corresponding Java class such asAtomListInstance .
Algorithms for SWRL could then operate on more convenient objects than with the
generic classes, while non-SWRL-aware Protéǵe components would handle these ob-
jects as normalInstances . We are currently working such a SWRL library.

The OWL Plugin provides a comprehensive mapping between its extended API and
the standard OWL parsing library Jena1. After an ontology has been loaded into a Jena
model, the OWL Plugin generates the corresponding Protéǵe objects. It then keeps the
Jena model in memory at all times, and synchronizes it with all changes performed by
the user. Thus, if the user creates a new Protéǵe class, a new Jena class with the same
name is created as well. The presence of a secondary representation of the ontology in

1 http://jena.sourceforge.net



7

Fig. 3.A screenshot of the classes tab in the OWL Plugin (displaying the OWL-S ontology). The
screenshot shows the logical definition of the selected classCompositeProcess , its proper-
ties, disjoints and annotations.

terms of Jena objects means that the user is able to invoke arbitrary Jena-based services
such as interfaces to classifiers, query languages, or visualization tools permanently.
The mapping into Jena also makes it much easier to embed existing and future Semantic
Web services into the OWL Plugin. Also, when the ontology is saved, it is sufficient
to call the corresponding Jena API method to serialize the Jena objects to a file. The
immediate Jena mapping is not available in the OWL Plugin’s database or multi-user
modes, where it is replaced with a conventional, monolithic translation.

4.3 OWL Plugin User Interface

Based on the above mentioned metamodel and API extensions, the OWL Plugin pro-
vides several custom-tailored graphical user interface components for OWL. When
started, the system displays the five tabs shown in Figure 3. Most ontology design-
ers will focus on theOWL classesandPropertiestabs which are described in sections 5
and 6. TheFormsandIndividualstabs are mostly geared for the acquisition of Semantic
Web contents (instance data, detailed in Section 7), while theMetadatatab allows users
to specify global ontology settings such as imports and namespaces.



8

Note that the generic architecture of Protéǵe and the OWL-specific extensions make
it relatively easy to add custom-tailored components. For example, optimized editors for
SWRL or OWL-S could be added to the system. Likewise, description-logic reasoners
could be directly implemented on top of the Protéǵe OWL API or Jena. In fact, sev-
eral developers from around the world have already developed extensions of the OWL
Plugin, some of them even without interacting with us. In the remainder of this docu-
ment, we will focus on the standard set of user interface components and features of the
OWL Plugin. Since all of these components are available as open-source, it is possible
to extend and customize them.

5 Editing OWL Ontologies

In this section we will walk through some of the forms and tabs for editing classes and
properties. Further details on the user interface (including a comparison with similar
tools such as OilEd) can be found in complementary publications [10, 9].

A screenshot of the OWL classes tab is shown in Figure 3. The main class hierarchy
is shown on the left, and the details of the currently selected class are shown in a form
on the right. The upper section of the class form displays class metadata such as names
and annotations. Annotation properties are ignored by OWL DL reasoners. Instead, they
are very suitable to manage metadata about a class, such as versioning information,
comments, relationships to other external resources, and labels in multiple languages.

5.1 Displaying and Editing OWL Expressions

A key question for developers of an OWL tool is how to represent and edit logical
class descriptions in a way that makes them easy to read and, at the same time, efficient
to enter. With OWL’s RDF-based syntax [16], expressions quickly become extremely
verbose and hard to read. The OWL Abstract Syntax [17] is much more user-friendly,
but still quite verbose. Although Protéǵe also has some support for the Abstract Syntax,
we chose to develop an expression syntax based on standard DL symbols [1] such as
∀ andt as the primary display format. These symbols (Table 1) allow the system to
display complex nested expressions in a single row.

This notation is used consistently throughout the user interface and is supported by a
comfortable expression editor. Using this editor, users can rapidly enter OWL class ex-
pressions either with mouse or keyboard. The special characters are mapped onto keys
known from languages such as Java (e.g.,owl:intersectionOf is entered with the
& key). To simplify editing, keyboard users can exploit a syntax completion mechanism
known from programming environments, which semi-automatically completes partial
names after the user has pressedtab . For very complex expressions, users can open a
multi-line editor in an extra window, which displays the expression using indentation.

The OWL Plugin helps new users to get acquainted with the expression syntax.
English prose text is shown as a “tool tip” when the mouse is moved over the expression.
For example, “∃ hasPet Cat ” is displayed as “Any object which has a cat as its pet”.



9

OWL element Symbol Key Example expression in Prot́eǵe

owl:allValuesFrom ∀ * ∀ hasChildren Female
owl:someValuesFrom ∃ ? ∃ hasHabitat University
owl:hasValue 3 $ hasGender 3 male
owl:minCardinality ≥ > hasChildren ≥ 1 (at least one value)
owl:maxCardinality ≤ < hasDegree ≤ 5 (at most five values)
owl:cardinality = = hasGender = 1 (exactly one value)
owl:intersectionOf u & Student u Parent
owl:unionOf t | Male t Female
owl:complementOf ¬ ! ¬Parent
owl:oneOf { ... } { } {yellow green red }

Table 1. Prot́eǵe uses traditional description logic symbols to display OWL expressions. In this
table, property names such ashasChildren appear in italics. A common naming convention
is to use uppercase names such asParent to represent classes, while individuals likeyellow
should be written in lower case.

5.2 Editing Class Descriptions

Traditional Prot́eǵe users are accustomed to an object-centered view to the interface
that has required some effort to adapt to OWL. In the Protéǵe metamodel, classes are
typically only related through simple superclass/subclass relationships, and therefore
a simple tree view was enough to edit classes. OWL on the other hand not only dis-
tinguishes between necessary conditions (superclasses) and necessary and sufficient
conditions (equivalent classes), but furthermore allows users to relate classes with arbi-
trary class expressions. As shown in Figure 3, the OWL Plugin’s class editor addresses
this complexity by means of a list of conditions, which is organized into blocks of
necessary & sufficient, necessary, and inherited conditions. Each of the necessary &
sufficient blocks represents a single equivalent intersection class, and only those inher-
ited conditions are listed that have not been further restricted higher up in the hierarchy.
In addition to the list of conditions, there is also a custom-tailored widget for entering
disjoint classes, which has special support for typical design patterns such as making
all siblings disjoint. This rather object-centered design of the OWL classes tab makes it
possible to maintain the whole class definition on a single screen.

5.3 Editing Properties

The class form provides a listing of all properties for which instances of the selected
class can take values. This includes those properties which have the class in their do-
main, and those that don’t have any domain restrictions. The details of the properties
are edited by means of a separate form. Similar to the class form, the upper part of the
property form displays name and annotation properties. The lower part contains wid-
gets for the property’s domain, range, and characteristics such as whether a property is
transitive or symmetric.

Note that Prot́eǵe and OWL support user-defined metaclasses that extend the stan-
dard system classes. For example, ontologies can define a subclass ofowl:Object-
Property and then add other properties to it. This allows users to specify additional



10

property characteristics such ashasUnit . The system automatically creates widgets
for the additional properties of the metaclass.

6 Ontology Maintenance and Evolution

As mentioned in Section 2, ontology design is a highly evolutionary process. Ontology
developers almost certainly will need to explore various iterations before an ontology
can be considered to be complete. A development tool should assist in ontology evo-
lution, and (where appropriate) help the user to prevent or circumnavigate common
design mistakes. In the OWL Plugin, we are exploring some promising approaches for
ontology maintenance, partly comparable to modern tools for programming languages.
With programming tools, developers can get instant feedback using thecompilebutton.
Compiler errors are listed below the source code and enable the programmer to quickly
navigate to the affected area. Another very efficient means of detecting programming
errors is using so-calledtest cases, which have become popular in conjunction with ag-
ile development approaches such as Extreme Programming [2]. A test case is a small
piece of code that simulates a certain scenario and then tests whether the program be-
haves as expected. It is a good programming style to maintain a library of test cases
together with the source code, and to execute all test cases from time to time to verify
that none of the recent changes has broken existing functionality. To a certain extent,
the idea of test cases is related to the formal class definitions in description logics such
as OWL DL. For example, by formally stating that aParent is the intersection of
Person and a minimum cardinality restriction on thehasChildren property we
ensure that future statements aboutParents don’t contradict the original developer’s
intention. This is especially important in an open-world scenario such as the Semantic
Web. Thus, DL reasoners can help build and maintain sharable ontologies by revealing
inconsistencies, hidden dependencies, redundancies, and misclassifications [14]. How
the OWL Plugin integrates such reasoners is illustrated in Section 6.1. In addition to
reasoners, the OWL Plugin also adopts the notions of test cases and compile buttons
with an “ontology testing” feature, which is described in Section 6.2.

6.1 Reasoning based on Description Logics

The OWL Plugin provides direct access to DL reasoners such as Racer [5]. The current
user interface supports two types of DL reasoning: Consistency checking and classifi-
cation (subsumption). Support for other types of reasoning, such as instance checking,
is work in progress.

Consistency checking(i.e., the test whether a class could have instances) can be
invoked either for all classes with a single mouse click, or for selected classes only.
Inconsistent classes are marked with a red bordered icon.

Classification(i.e., inferring a new subsumption tree from the asserted definitions)
can be invoked with the classify button on a one-shot basis. When the classify button
is pressed, the system determines the OWL species, because some reasoners are unable
to handle OWL Full ontologies. This is done using the validation service from the Jena
library. If the ontology is in OWL Full (e.g., because metaclasses are used) the system



11

Fig. 4.The OWL Plugin can be used to invoke a classifier and to visualize classification results in
support of ontology maintenance. The asserted and the inferred hierarchy are shown side by side.

attempts to convert the ontology temporarily into OWL DL. The OWL Plugin supports
editing some features of OWL Full (e.g., assigning ranges to annotation properties, and
creating metaclasses). These are easily detected and can be removed before the data are
sent to the classifier. Once the ontology has been converted into OWL DL, a full con-
sistency check is performed, because inconsistent classes cannot be classified correctly.
Finally, the classification results are stored until the next invocation of the classifier, and
can be browsed separately. Classification can be invoked either for the whole ontology,
or for selected subtrees only. In the latter case, the transitive closure of all accessible
classes is sent to the classifier. This may return an incomplete classification because it
does not take incoming edges into account, but in many cases it provides a reasonable
approximation without having to process the whole ontology.

OWL files store only the subsumptions that have been asserted by the user. However,
experience has shown that, in order to edit and correct their ontologies, users need to
distinguish between what they have asserted and what the classifier has inferred. Many
users may find it more natural to navigate the inferred hierarchy, because it displays the
semantically correct position of all the classes.

The OWL Plugin addresses this need by displaying both hierarchies and making
available extensive information on the inferences made during classification. As illus-
trated in Figure 4, after classification the OWL Plugin displays an inferred classifi-
cation hierarchy beside the original asserted hierarchy. The classes that have changed



12

Fig. 5.The OWL Plugin displays violations of test conditions at the bottom.

their superclasses are highlighted in blue, and moving the mouse over them explains
the changes. Furthermore, a complete list of all changes suggested by the classifier is
shown in the upper right area, similar to a list of compiler messages. A click on an
entry navigates to the affected class. Also, the conditions widget can be switched be-
tween asserted and inferred conditions. All this allows the users to analyze the changes
quickly.

6.2 Ontology Testing

The OWL Plugin provides a mechanism to execute small test cases. Users can press an
ontology test button, and the system will execute a configurable list of tests. These tests
are small Java programs that basically take a class, property, individual, or ontology
as its input, verify arbitrary conditions on them, and in case of failure, return an error
message. For example, one of the predefined tests ensures the invariant that the inverse
of a transitive property should also be transitive. As illustrated in Figure 5, if a property
in the ontology violates this conditions, then the system displays a warning. In some
cases it even provides a “repair” button, which attempts to remove the source of the
violation automatically.

The OWL Plugin provides a standard set of ontology tests for various best ontology
design practices. It also contains tests against OWL DL compliance (e.g., to warn the
user when OWL Full features such as metaclasses have been used). The ontology test
mechanism has also been exploited to implement a simple but powerful “to-do-list”
feature. For example, if a class has the value “TODO: Add German label” as its value
of the owl:versionInfo annotation property, then the ontology test button will



13

display a corresponding to-do item in the list of warnings. This simple mechanism helps
coordinate shared ontology design efforts.

The list of standard ontology tests can be easily extended by programmers, so that
the system will execute additional user-defined tests uniformly. These additional tests
could for example ensure the application of project-specific design patterns, naming
conventions, or other best practices.

7 Editing Semantic Web Contents

Ontologies provide Semantic Web agents with background knowledge about domain
concepts and their relationships. This knowledge can be exploited in various ways, for
example to drive context-sensitive search functions. Ontologies can also be instantiated
to create individuals that describe Semantic Web resources or real-world entities. For
example, individuals of an ontology for travel agents could represent specific holiday
destinations or activities. In such a scenario, a Semantic Web repository would provide
instance data about these individuals, and agents can use their ontological knowledge
to match user requests with available offers.

Prot́eǵe provides out-of-the-box support for editing individuals. The OWL Plugin’s
Individualstab can be used to instantiate classes from the ontology, and to edit the char-
acteristics of the individuals with comfortable forms. Users could import an ontology
into their project, create instances for its classes, and then store the instances into sepa-
rate files. These files can then be distributed on the Web, so that intelligent agents could
find them.

In another application scenario, Protéǵe could be used to associate existing Web
resources such as images to ontological concepts. In the context of another Protéǵe
plugin, we have implemented a convenient drag-and-drop mechanism that allows users
to drag a Web link or image from their Web browser into Protéǵe, and thus establish a
relationship between the external Web resource and the selected object in the ontology.
These relationships could be exploited by arbitrary Web Services. Thus, Protéǵe is not
only limited to being used as an ontology authoring tool, but also as a platform for
arbitrary other services thatusethe ontologies.

8 Discussion

While real Semantic Web applications are still in their infancy, there is a clear demand
for tools that assist in application development. The intention of the Protéǵe OWL Plu-
gin is to make Semantic Web technology available to a broad group of developers and
users, and to promote best practices and design patterns.

One of the major benefits of using Protéǵe is its open architecture. The system pro-
vides various mechanisms to hook custom-tailored extensions into it, so that external
components like reasoners and Web services can be integrated easily. Since the source
code is open and freely available as well, existing base components can be used as tem-
plates for customized solutions. Projects don’t need to spend time developing their own



14

base infrastructure with standard features such as loading and managing OWL ontolo-
gies. Instead, they can start with the OWL Plugin as it comes out-of-the-box and then
gradually adapt or remove the features that don’t completely match their requirements.

Since its first beta versions in late 2003, the OWL Plugin has been widely embraced
by OWL users around the world. Although we don’t have exact numbers and statis-
tics about our users, we know that Protéǵe has more than 20,000 registered users. Of
these, a significant portion is very interested in OWL and many use it routinely. The
protege-owl@smi.stanford.edu discussion list currently has more than 650
subscribed members. The traffic on this list is very large and provides useful critiques
for the developers, as well as encouraging feedback and success stories. There is al-
ready a considerable number of external plugins for the OWL Plugin, demonstrating
that the open architecture of Protéǵe provides a suitable platform for custom exten-
sions. Also, many existing Protéǵe Plugins either directly work in OWL mode, or are
being optimized for OWL.

The decision to implement the OWL Plugin as an extension to Protéǵe did not have
only advantages though. In particular, the Protéǵe core metamodel and API support
some functionality that does not have a default mapping into OWL, such as numeric
range restrictions, assigning duplicate values to a property, or stating that a class is ab-
stract (i.e., cannot have any instances). As a result, some existing widgets could not be
used in the OWL mode, and programmers should not use all low-level API functions.
We have made some efforts to simulate some Protéǵe-specific language elements with
OWL. For example, if users want to state that a class is abstract, then the system fills a
pre-defined annotation property. Furthermore, invalid API calls are rejected whenever
possible. We believe that the many advantages of reusing the functionality and compo-
nents of the Protéǵe platform clearly outweigh these inconveniences.

Another point to keep in mind is that the existing collection of user interface compo-
nents in the OWL Plugin should only be regarded as a core configuration. For example,
many users may be put off by the symbolic notation used to edit class expressions.
These users often don’t require the advanced description logic features of OWL but
simply want to define classes and properties similar to the conventional Protéǵe user
interface or object-oriented tools. These users may find it helpful to simplify their user
interface. This would allow them to use the advanced features later, once they are ac-
customed to the basics of OWL. We have recently added an alternative default mode
of the OWL Classes tab (called “Properties View”), which shows properties together
with their restrictions instead of the generic conditions widget. This view is closer to
the view that traditional Protéǵe users are accustomed to, but has some limitations on
the full expressivity of OWL.

The focus of our work on the OWL Plugin until now has been to provide a com-
plete, scalable and stable editor for most of the features of OWL (Full). Ongoing and
future work addresses the question of how to make ontology design more accessible to
people with limited formal training in description logics. In this context, we collaborate
with the University of Manchester to explore more intuitive visual editing components,
wizards, and debugging aids. We will also support additional design patterns, improve
reasoning capabilities, and build editors and APIs for OWL extensions such as SWRL.



15

Acknowledgements.This work has been funded by a contract from the US National
Cancer Institute and by grant P41LM007885 from the National Library of Medicine.
Additional support for this work came from the UK Joint Information Services Com-
mittee under the CO-ODE grant. Our partners from Alan Rector’s team and the OilEd
developers at the University of Manchester have made very valuable contributions.

References

1. F. Baader, D. Calvanese, D. McGuineness, D. Nardi, and P. Patel-Schneider, editors.The
Description Logic Handbook. Cambridge University Press, 2003.

2. K. Beck.Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.Scientific American,

284(5):34–43, 2001.
4. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson, N. Noy, and S. Tu.

The evolution of Prot́eǵe-2000: An environment for knowledge-based systems development.
International Journal of Human-Computer Studies, 58(1):89–123, 2003.

5. V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic Web. In2nd
International Workshop on Evaluation of Ontology-based Tools (EON-2003), Sanibel Island,
FL, 2003.

6. I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. InProc. of the
Thirteenth International World Wide Web Conference (WWW 2004), New York City, NY.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language.Journal of Web Semantics, 1(1), 2003.

8. H. Knublauch. An AI tool for the real world: Knowledge modeling with Protéǵe.JavaWorld,
June 20, 2003.

9. H. Knublauch, O. Dameron, and M. A. Musen. Weaving the biomedical semantic web with
the Prot́eǵe OWL plugin. In International Workshop on Formal Biomedical Knowledge
Representation, Whistler, BC, Canada, 2004.

10. H. Knublauch, M. A. Musen, and A. L. Rector. Editing description logics ontologies with
the Prot́eǵe OWL plugin. InInternational Workshop on Description Logics, Whistler, BC,
Canada, 2004.

11. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protéǵe-2000: Combining
interoperability and flexibility. In2nd International Conference on Knowledge Engineering
and Knowledge Management (EKAW’2000), Juan-les-Pins, France, 2000.

12. N. Noy, M. Sintek, S. Decker, M. Crubézy, R. Fergerson, and M. Musen. Creating Semantic
Web contents with Protéǵe-2000.IEEE Intelligent Systems, 2(16):60–71, 2001.

13. N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Technical Report SMI-2001-0880, Stanford Medical Informatics, 2001.

14. A. L. Rector. Description logics in medical informatics. Chapter in [1].
15. A. L. Rector. Modularisation of domain ontologies implemented in description logics and

related formalisms including OWL. InSecond International Conference on Knowledge Cap-
ture (K-CAP), Sanibel Island, FL, 2003.

16. World Wide Web Consortium. OWL Web Ontology Language Reference. W3C Recommen-
dation 10 Feb, 2004.

17. World Wide Web Consortium. OWL Web Ontology Language Semantics and Abstract Syn-
tax. W3C Recommendation 10 Feb, 2004.


