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Abstract

Background: Determining usefulness of biomedical text mining systems requires realistic task definition and data

selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics.

The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address

aspects including how the end user would oversee the generated output, for instance by providing ranked results,

textual evidence for human interpretation or measuring time savings by using automated systems. Detecting

articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where

participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus

was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant

PubMed abstracts labeled manually by domain experts and recording also the human classification times. The

Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than

3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the

PPIs reported in them.

Results: A total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a

total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task,

each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From

the 52 runs submitted for the ACT, the highest Matthew’s Correlation Coefficient (MCC) score measured was 0.55

at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods,

some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns,

some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against

manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R

achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall

(above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%.
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Conclusions: The results of the ACT task of BioCreative III indicate that classification of large unbalanced article

collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked

lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant

articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text

articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due

to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files,

and the heterogeneity and different granularity of method term concepts encountered in the ontology. However,

combining the sophisticated techniques developed by the participants with supporting evidence strings derived

from the articles for human interpretation could result in practical modules for biological annotation workflows.

Background

Providing access to information relevant to protein

interaction characterizations is of great importance both

in the field of experimental biology as well as from the

perspective of systems biology and bioinformatics analy-

sis. In case of experimental biology, a range of different

methodologies have been developed to detect protein

interactions, showing different degrees of reliability or

underlying properties of the interactions. To enable sys-

tematic analysis of interaction networks, the construc-

tion of interaction databases such as BioGRID [1],

MINT [2], or IntAct [3] - which store interaction anno-

tations in form of well structured database records using

standard formats - is essential. These databases rely on

specifically trained human curators who manually

extract protein interactions from scientific articles, mak-

ing use of controlled vocabulary terms (covering interac-

tion detection experiments) from the PSI-MI ontology

to qualify each interaction [4]. Through such a struc-

tured vocabulary, users are able to understand the gen-

eral conditions underlying a particular interaction

annotation, which can be used for selecting customized

interaction networks based on experimental qualifiers.

Manually generating literature annotations is very time

consuming and there are increasing concerns that such

approaches are only able to cope with a small fraction

of the relevant information published in the growing

amount of articles [5,6]. This has motivated a significant

amount of research in the biomedical text mining com-

munity devoted to the systematic extraction of protein-

protein interaction (PPI) information from scientific

articles, mainly focusing on the detection of binary asso-

ciations [7-13]. The detection of interacting protein

pairs using information extraction and literature mining

techniques has already been addressed carefully in both

the BioCreative II and II.5 challenges [14,15]. In order

to determine current bottlenecks in literature curation

and understand where text mining can actually be of

practical use, it is important to formalize the curation

using annotation workflows [16]. In case of protein

interaction annotation two important steps consist of

the initial selection of relevant articles and the

association of these to experimental interaction meth-

ods. When associations between proteins are retrieved

automatically from the literature, determining the corre-

sponding experimental qualifier is crucial in order to

characterize whether it actually corresponds to an

experimentally validated physical interaction or constitu-

tes general background knowledge or even some other

sort of relation (e.g. genetic/gene regulation interaction,

indirect association or phenotypic relationship).

Classification/ranking of articles: Article Classification Task

- ACT

Classification and ranking of articles according to a par-

ticular topic of interest, such as protein-protein interac-

tion (PPI) is not only useful to improve subsequent bio-

entity recognition and relation extraction approaches,

but is labeled in itself important for more general pur-

poses [17]. It has been used for prioritizing articles for

manual literature curation and can improve the selec-

tion of interaction characterizations described in articles

mentioning a particular protein or term of interest [18].

This motivated the construction of automated systems

able to classify and rank large sets of potentially relevant

abstracts for subsequent manual inspection [19-22].

Choosing relevant articles for manual examination in

order to derive biological annotations is a general step

across almost all biological annotation databases [23].

Potentially relevant collections of articles are often

represented by lists of PubMed entries resulting from

keyword searches or in lists of recent articles from jour-

nals of interest. For complex biological events like PPIs,

simple keyword queries are often inefficient in detecting

relevant articles. For instance the following evidence

sentence for an interaction event does not contain com-

monly used interaction terms like bind or interact: ‘A

complex containing Mus81p and Rad54p was identified

in immunoprecipitation experiments’ (PMID:10905349).

Using the term ‘complex’ as a query for interaction arti-

cles would retrieve over 700 thousand PubMed hits,

most of them not relevant for interactions. On the other

hand, detecting patterns used to express protein interac-

tions like: ‘complex containing PROTEIN and PROTEIN’
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together with a machine learning system that detects

that ‘immunoprecipitation’ is a feature of PPI articles

would be able to score such a record as protein interac-

tion relevant.

The evaluation of article retrieval algorithms for anno-

tation databases has been studied in detail in the context

of the former TREC Genomics tracks [24-27], and sev-

eral BioCreative challenges, namely BioCreative II [14]

and II.5 [15]. In case of Biocreative III, the purpose of

the (Interaction) Article Classification Task was to pro-

mote the development of automated systems that are

able to classify articles as relevant for protein-protein

interaction (PPI) database curation efforts. The resulting

text mining tools should be able to simplify the identifi-

cation of relevant articles for a range of journals known

to publish protein interaction reports.

These modifications included the use of PubMed

abstracts as opposed to full text articles as used in the

previous BioCreative II.5, as they do not have restric-

tions in terms of availability. A large range of journals

considered as relevant by biological databases have been

utilized, avoiding inclusion of those not being used for

curation. For this task, large manually classified training,

development and test data sets have been prepared to

facilitate the implementation of supervised learning

methods and to carry out a statistical sound evaluation.

Additionally, we considered a publication time range

selection criteria to focus on recent articles and provide

a more coherent data collection. Finally the sampling

used for articles in the development and test sets

reflects a more realistic class imbalance (proportion of

relevant and non-relevant articles) encountered for these

journals. The Gold Standard annotations were generated

by domain experts through inspection of a randomly

sampled set of abstracts following classification guide-

lines which were refined during several rounds of classi-

fication based on the feedback of the BioGRID and

MINT database curators (see additional file 1 for anno-

tation guidelines). Preparing these guidelines required

examining a substantial collection of initial example

records in order to specifically describe aspects for con-

sidering a particular record as PPI relevant. To support

this, a set of interaction evidence passages was analyzed,

and criteria for non-relevant articles were formalized.

Additional example cases for both relevant and non-

relevant records had to be discussed with domain

experts and feedback from PPI database curators was

requested.

Linking bio-ontology concepts to full text: Interaction

Method Task - IMT

In the domain of biomedical sciences, the experimental

context is crucial for the interpretation of biological

assertions as well as to determine the reliability of a

given biological finding [28]. An important aspect for

the annotation of protein interactions is to identify the

experimental techniques (’interaction detection meth-

ods’) described in an article to support the interactions

[29]. Annotation of experimental techniques or ‘evi-

dence’ is also common with other annotation efforts,

such as the Gene Ontology Annotations (GOA; in the

form of evidence codes) [30]. Knowing the experimental

method that provided the evidence for an interaction

serves as ‘credibility’ or likelihood indicator that the

reported interaction actually occurs in a living organism

(in vivo) or cell culture (in vitro). These types of text

classification tasks are based on associating standardized

terms from a controlled vocabulary to the text in ques-

tion. In the case of protein-protein interaction annota-

tions, efforts have been made to develop a controlled

vocabulary (’ontology’) about interaction detection

methods in order to standardize the terminology serving

as experimental evidence support. Database curators

spend a considerable amount of time determining which

experimental evidence supports interaction pairs

described in articles [31]. A relevant work in this respect

was the implementation of a system for detecting

experimental techniques in biomedical articles by

Oberoi and colleagues [32]. Also the construction of a

text mining system with a particular focus on interac-

tion detection methods using statistical inference techni-

ques has been explored recently [33], motivated by the

Interaction Method Task of the BioCreative II challenge

[14], where two different teams provided results [34,35].

Even the use of a particular list of affixes corresponding

to experimental tags used for labeling interactor proteins

(PPI affix dictionary - PPIAD) has been analyzed [36].

For instance the affixes ‘GST-’ and ‘TAP-’ show an asso-

ciation to the interaction detection methods ‘pull down’

and ‘tandem affinity purification’ respectively. For Bio-

Creative III, participants were asked to provide a list of

interaction detection method identifiers for a set of full-

text articles, ordered by their likelihood of having been

used to detect the PPIs described in each article. These

identifiers belong to the set of standardized experimen-

tal interaction detection method terms provided by the

PSI-MI ontology. The aim of the evaluation was to esti-

mate the facilitation of database curation efforts by pro-

viding a list of the most likely PSI-MI identifiers and

possibly increase a curator’s performance.

Methods and data

Data preparation

One important aspect of the Biocreative efforts is to

provide Gold Standard data collections that can be used

by system developers to implement and evaluate their

methods during the challenges as well as afterwards.

Preparing large enough and representative data samples
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is often difficult for the text mining community as it

requires the availability of dedicated domain experts to

carry out the annotation process. In order to offer prac-

tically relevant task data sets, we have collaborated with

experienced open access database curators from the Bio-

GRID and MINT databases as well as domain experts

from commercial database developers (Reverse Infor-

matics) especially trained for this task (see supplemen-

tary material section, additional file 1). All data

collections used for the PPI task are available at: http://

www.biocreative.org/resources/corpora/biocreative-iii-

corpus/.

ACT data

Three data collections have been prepared for ACT

participants; an overview of the main characteristics of

these data collections is illustrated in table 1. The

training set (TR) consists of a balanced collection of

2,280 recent articles classified through manual inspec-

tion using the MyMiner interface ([37] -http://mymi-

ner.armi.monash.edu.au), divided into PPI relevant and

non-relevant articles. The annotation guidelines for

this task were refined iteratively based on the feedback

from both annotation databases and specially trained

domain experts. A subset of the PPI relevant records

in the training set were selected articles already anno-

tated by PPI databases. In order to improve the practi-

cal relevance of the ACT task setting, we prepared the

development (DE) and test (TE) set taking into

account PPI annotation relevant journals based on the

current content of collaborating PPI databases. Ran-

dom samples of abstracts from these journals were

taken to generate a development set of 4,000 abstracts

in total and a test set of 6,000 abstracts, i.e., these two

disjoint sets were drawn from the same sample collec-

tion. Records from these data collections were manu-

ally revised, providing a class label for each record

along with the manual classification time. For this pur-

pose the MyMiner tool ‘File Labeling’ system was used.

This system improves manual classification time and

allows visualization of positive and negative highlighted

areas. Highlights permit users to spot words - or parts

of words - related to their topics of interest. Annota-

tors can stop the curation process at any moment by

saving the classified document. The time spent to

decide if a document is related or not to a topic is

recorded. Using this MyMiner file labeling tool - as

compared to simple unassisted baseline classification -

can reduce classification time by a factor of 10, with-

out altering the classification quality. This reduction

had been determined using a pilot study based on 3

annotators using 400 article abstracts. For labeling pur-

poses, the segregation into short notepads of 100

records each was carried out, and annotators were

requested to have enough pauses during the process to

avoid mislabeling due to fatigue.

IMT data

In order to associate interaction detection methods to

articles, full text papers need to be considered, as

detailed experimental characterizations are usually not

summarized in abstracts. We provided participants with

three basic data collections for this task (see table 2 for

a general overview). General data requirements included:

(1) The article should be annotated with valid interac-

tion detection methods by a trained PPI database cura-

tor following the PSI-MI standards. (2) Only articles

from journals belonging to publishers that granted the

necessary permissions to the organizers of this challenge

could be included.

During an initial analysis, we identified candidate jour-

nals that were the source of curated PPI annotations. (3)

Articles should be available as PDF files that can be

converted to plain text. Participants were supplied with

2,003 articles as training set and received an additional

587 articles as development set shortly before the test

phase. The annotations of these two collections were

derived from annotations of PSI-MI compliant data-

bases. Obsolete annotations were remapped and a set of

overly general terms that are not considered as useful

by annotation databases were filtered out. The final col-

lection of allowed interaction detection method terms

contained 115 terms. Team predictions were evaluated

using a test of 305 unseen publications, 223 of which

were annotation-relevant articles. Both the training and

test sets had a highly distorted representation of the 115

possible method detection terms, with only 4 methods

representing roughly half of all annotations made on the

articles. These 4 high-frequency terms are (from most

to least frequent): ‘anti bait coimmunoprecipitation’,

‘anti tag coimmunoprecipitation’ (these two represent 1/

3 of all annotations), ‘pull down’, and ‘two hybrid’.

Table 1 ACT data overview

Data set Tot. articles PPI not PPI Perc. PPI Years Journals

Training 2,280 1,140 1,140 50% 2007-2010 118

Development 4,000 682 3,318 17.05% 2009-2010 113

Test 6,000 910 5,090 15.00% 2009-2010 112

Total 12,280 2,732 9,548 - 2007-2010 121

Overview of the data collections provided for ACT
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Figure 1 shows the distribution of interaction methods

in the different data collections.

Evaluation metrics and result structure

The general evaluation setting of the PPI task was to

provide successively labeled data collections (first train-

ing and then development sets) to participating systems

(see table 3 for an overview on participant teams)

together with the corresponding evaluation software

which is available at: http://www.biocreative.org/media/

store/files/2010/bc_evaluation-2.3.1.tar.gz. During this

initial phase, teams could implement their systems and

improve them using the data sets provided. In case

some difficulties or unclear aspects were encountered,

registered participants could obtain feedback either by

directly contacting the organizers or through a special

BioCreative mailing list. During the test phase, teams

retrieved a data set for which the labels were held back.

They had to provide predictions in a specific format.

These predictions were evaluated by comparing them to

manual annotations. The actual evaluation scores used

are similar to metrics applied during BC II.5, and

included Accuracy, Sensitivity (Recall), Specificity, F-

Score, Matthews Correlation Coefficient (MCC; the

most stable of these evaluation function on unbalanced

sets) and the area under the (interpolated) Precision/

Recall curve (AUC iP/R). A detailed description of these

scores is provided in the BC II.5 overview paper [15].

In case of the ACT, for each article, participants had

to return a Boolean value (true/false) regarding its rele-

vance for PPI curation, together with a confidence score

for this classification (in the range (0,1]), and the overall

Table 2 IMT data overview

Data set Tot. articles Annotations PSI-MI IDs IDs/article Years Journals

Training 2,003 4,348 86 2.17 2006-2010 87

Development 587 1,316 71 2.24 2006-2010 17

Test 223 528 46 2.36 2008-2010 9

Overview of the data collections provided for IMT

Figure 1 IMT data set class distribution. Pie charts illustrating the most frequent methods encountered in the three IMT data collections.

Classes are ordered by their frequency in the test set. The most frequent training and development set classes are shown in shades of brown

that in total contribute more than 50% of all class assignments in those two sets. In blue is class MI:0114 (x-ray crystallography) that is not

frequent in the test set. In green are classes that are significantly more frequent in the test set than the others. MI:0018 (two hybrid) and MI:0114

are frequent in the training and development set, while MI:0416 (fluorescence microscopy) and MI:0019 (coimmunoprecipitation) are frequent in

the test set.
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(unique) rank of the article in the whole set of articles

with respect to its PPI relevance. The main utility mea-

sure of a system - i.e., the primary evaluation score for

this tasks - is based on measuring a system’s ability to

provide the best possible ranked list of relevant

abstracts, sorted from the most relevant (i.e., highest

ranked article that is classified as true) to the most irre-

levant article (i.e., highest ranked article classified as

false). To this end, the area under the (interpolated) Pre-

cision/Recall curve is measured (AUC iP/R score) by

using the results’ ranking. We also added the F-Scores

for comparison to the BioCreative II results.

In case of the IMT, for each article, participants had

to return zero or more PSI-MI detection method term

identifiers, and for each term annotation they had to

provide a confidence score (in the range (0,1]), and an

overall (unique) rank for each term annotated on an

article, from the most to the least relevant. In addition,

participants were asked to return the most decisive evi-

dence text passage that gave rise to their annotation -

data useful for human interpretation. The primary

metric used for the IMT was based on the average per-

article annotation performance (macro-averaging) given

its ranking: The area under the (interpolated) Precision/

Recall curve was measured (AUC iP/R) by averaging the

AUC from the individual scores on each article. (For

more general information evaluation metric calculations

please refer to the additional materials section).

Results

ACT

ACT inter-annotator and manual classification time analysis

A set of 649 articles has been annotated by contracted

domain experts as well as MINT curators (development

set, DE: 360; test set, TE: 289 articles), or by curators

from BioGrid (DE: 365; TE: 284 articles), and 200 of

these double-annotated articles were annotated by one

representative of all three groups - domain expert,

MINT, and BioGrid. Four annotations with curation

times significantly over 10 minutes were discarded as

outliers in the following analysis (PMIDs: 19517012,

19515822, 19718269, and 19774229) - the most extreme

outlier had a recorded annotation time of more than six

hours.

Over the entire set, the average curation time was 43

sec/article (median = 31; s.d. = 42). Splitting this com-

bined set into positive and negative labels made by the

annotators uncovers a large difference in the mean: 75

sec for articles that curators tagged as positive, and 37

sec for the negative case, a ratio of roughly 2:1 for cur-

ating negative articles (see Figure 2). The difference is

significant using Wilcoxon rank-sum test [38] for non-

normal distributions (p = 2.2e - 16). Additionally, a non-

parametric confidence interval (at 95%) for the differ-

ences in locations was computed [39], at 38.42 ± 1.85

sec (and matches the difference in means). This might

be an indicator that annotation time of positive articles

is significantly longer (double) than for negative articles,

even though it is only based on the curation time data

of ten individual curators (see Figure 3). To ensure this

ratio is persistent across all curators, the median time

spent curating positive articles was divided by the med-

ian time spent by the curator to label negative articles

(the median time was used to reduce the effect of out-

liers). The ratios were found as follows: IA = 1.7, IB =

4.1, IC = 2.8, ID = 3.1, BG = 3.9, MA = 1.0, MB = 0.9,

MC = 1.0, MD = 1.7, CO = 1.6. Overall, curation time

for positive articles tended to be about twice as long as

for negative articles, but this ratio was quite curator-

dependent. The expert curators are ordered by experi-

ence (IA: domain expert specially trained for this task,

IC and IB: domain experts with a previous experience of

Table 3 PPI task participating teams

TeamId Leader Institution Country ACT IMT URL

65 Fabio Rinaldi University of Zurich Switzerland 5 5 [75]

69 Robert Leaman Arizona State University USA 0 5 [76]

70 Sergio Matos Universidade de Aveiro, IEETA Portugal 5 5 -

73 W John Wilbur NCBI USA 5 0 [77]

81 Luis Rocha Indiana University USA 10 5 -

88 Ashish Tendulkar IIT Madras India 2 2 [78,79]

89 Shashank Agarwal University of Wisconsin-Milwaukee USA 10 10 [80,81]

90 Xinglong Wang National Centre for Text Mining UK 5 5 -

92 Keith Noto Tufts University USA 1 0 [66]

100 Zhiyong Lu NCBI USA 4 5 -

104 Jean-Fred Fontaine Max Delbrück Center Germany 5 0 [82]

Overview of teams that participated in the PPI tasks and availability of resulting systems. The numbers in the column ACT and IMT correspond to the number of

submitted runs by that team.
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6 months on similar tasks and ID: domain expert with

over 3 years experience on similar tasks). Expert curator

IA took more time in reading the complete abstract

whereas the more experienced curators (IB, IC, ID)

could read faster and it was easy for them to identify

the most irrelevant abstracts (e.g from other fields like

chemistry, ecosystem studies or database descriptions).

The MINT and BioGrid curators are all professional PPI

database annotators with a higher level of experience.

The CNIO annotator (CO) has a degree of training

equivalent to the expert curators IB and IC. Thus, there

seems to be a correlation between curator experience

and this proportion. More generally, an overall tendency

towards more curation time needed for positive articles

by less experienced curators can be observed, although

the exact property of this behavior will be hard to cap-

ture numerically.

Second, we investigated the correlation of article cura-

tion time and article word (token) length. A Pearson’s

correlation test was carried out for each curator. For the

expert curators and the CNIO annotator (CO), there

was a high correlation between the two variables (IA: t

= 14.5, df = 2594, p-value < 2.2e-16; IB: t = 7.4, df =

1392, p-value = 2.6e-13; IC: t = 8.9, df = 2977, p-value <

2.2e-16; ID: t = 9.8, df = 3001, p-value < 2.2e-16; CO: t

= 8.3, df = 997, p-value = 2.2e-16; df: degrees of free-

dom). Conversely, for the highly experienced curators

from MINT and BioGrid, this correlation was much

weaker (BG: t = 1.75, df = 248, p-value = 0.08; MA: t =

1.6, df = 46, p-value = 0.12; MB: t = 3.2, df = 45, p-

value = 0.0026; MC: t = 0.7, df = 51, p-value = 0.48;

MD: t = 0.17, df = 22, p-value = 0.86). This is likely due

to the fact that these curators are far more adept at

recognizing relevant keywords and passages in the

Figure 2 ACT manual classification time per class. (A) Box plot of the manual classification time distribution. (B) ACT development and test

set annotation time histogram for negative (non-PPI) abstracts and (C) for positive (PPI relevant) abstracts.
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MEDLINE abstracts, as can also be seen by the very

strong agreement on labels between the two databases

(overlap 96%, Cohen’s Kappa = 0.85).

Agreement with the expert curators was lower, as

expected, but within acceptable ranges (for MINT vs.

expert, 92% overlap, Kappa = 0.69; for BioGrid vs. expert,

91%, Kappa = 0.69). There was an overall agreement on

labels (true, false) between all three groups (MINT, Bio-

Grid, and expert) of 85.5% of all abstracts. This overlap

should be compared to the highest accuracy (TP + TN/

number of all articles) measured in the ACT, 89%.

Furthermore, BioGrid and MINT follow (similar) in-

house protocols for labeling the abstracts, while the

expert annotations were done using a special protocol

designed just for the challenge. This fact is likely to

explain the better agreement between database curators

than between the expert annotators and the curators.

ACT team results

In total, ten teams participated in this task. The indivi-

dual results of each run are shown in Table 4, the team

ID associations are show in table 3. For each of these

participation methods, teams could submit five runs for

a total of ten if they participated both offline and online.

The highest AUC iP/R achieved by any run was 68%,

the best MCC score measured was 0.55. The iP/R curve

of the best team (73, S. Kim and W. J. Wilbur) in the

ACT task is available in the supplementary material sec-

tion (additional file 2). By using the BioCreative Meta-

Server (BCMS) framework for participating online, we

were able to measure the time it took the systems to

report a classification.

A simple consensus prediction was generated using

majority voting (see results in table 4), generating a

ranking based on the percentage agreement derived

from the different runs. This combined system returned

the best MCC score (0.57), obtained a better AUC iP/R

result than the best single run (68.98) and reached the

best f-score (63.16).

The consensus prediction generates a ranking where

the top of the list is enriched in positive articles while

the end of the list has mostly negative articles. This

means that the proportion of articles confirmed to be

positive through manual curation following this ranking

will be higher at the start of the process, which leads to

Figure 3 ACT manual classification time per curator. Box plot of manual classification time spent by each individual curator. The labels

correspond to: four expert curators, ordered by experience (lowest = IA, highest = ID), a CNIO annotator (CO), a BioGRID curator (BG), and four

MINT curators (MA-MD).
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Table 4 ACT participant results

Team Run/Srvr Accuracy Specificity Sensitivity F-Score MCC AUC iP/R Time_half

TC RUN_1 89.03 93.87 61.98 63.16 0.56733 68.98 30.13

T65 RUN_1 88.68 97.64 38.57 50.83 0.48297 63.85 40.19

T65 RUN_2 87.93 93.07 59.23 59.82 0.52727 63.89 40.19

T65 RUN_3 67.05 64.19 83.08 43.34 0.34244 41.74 55.95

T65 RUN_4 73.68 74.13 71.21 45.08 0.34650 41.74 55.95

T65 RUN_5 88.00 94.40 52.20 56.89 0.50255 62.39 40.83

T70 RUN_1 56.45 49.70 94.18 39.62 0.31789 56.76 42.12

T70 RUN_2 87.41 96.11 38.79 48.32 0.43346 56.76 42.13

T70 RUN_3 81.92 83.61 72.53 54.91 0.46563 56.76 42.12

T70 RUN_4 47.77 39.04 96.59 35.95 0.27060 56.76 42.12

T70 RUN_5 86.84 98.62 20.99 32.62 0.34488 56.76 42.13

T73 RUN_1 87.55 91.81 63.74 60.83 0.53524 65.91 38.33

T73 RUN_2 89.15 94.95 56.70 61.32 0.55306 67.96 37.10

T73 RUN_3 87.78 92.61 60.77 60.14 0.52932 65.89 38.19

T73 RUN_4 88.88 94.34 58.35 61.42 0.55054 67.98 37.15

T73 RUN_5 87.62 92.18 62.09 60.33 0.53031 65.37 38.40

T81 RUN_1 59.03 58.76 60.55 30.96 0.13949 19.93 82.27

T81 RUN_2 58.47 57.86 61.87 31.12 0.14219 19.69 82.76

T81 RUN_3 25.37 14.72 84.95 25.66 -0.00344 15.66 102.73

T81 RUN_4 63.45 69.16 31.54 20.74 0.00538 16.20 104.95

T81 RUN_5 69.17 77.35 23.41 18.72 0.00645 15.63 98.72

T81 SRVR_9 84.88 99.98 0.44 0.88 0.05220 44.19 50.11

T81 SRVR_10 85.38 99.61 5.82 10.78 0.17771 50.25 45.11

T81 SRVR_11 84.73 99.86 0.11 0.22 -0.00272 46.02 48.23

T81 SRVR_12 84.30 98.86 2.86 5.23 0.05244 32.11 56.89

T81 SRVR_13 84.88 99.92 0.77 1.52 0.05791 18.59 113.11

T88 RUN_1 42.63 35.11 84.73 30.94 0.15238 21.97 84.90

T88 RUN_2 56.92 53.73 74.73 34.47 0.20417 26.04 75.33

T89 RUN_1 80.02 80.90 75.06 53.26 0.44911 61.29 41.31

T89 RUN_2 81.00 81.75 76.81 55.08 0.47242 62.13 40.99

T89 RUN_3 82.40 83.85 74.29 56.15 0.48180 60.48 41.72

T89 RUN_4 87.73 94.79 48.24 54.40 0.47967 43.76 43.09

T89 RUN_5 87.27 91.81 61.87 59.58 0.52082 48.47 44.57

T89 SRVR_4 77.80 77.84 77.58 51.46 0.43152 57.44 44.63

T89 SRVR_5 78.05 78.15 77.47 51.71 0.43424 57.56 45.20

T89 SRVR_6 79.90 81.00 73.74 52.67 0.44073 54.97 45.93

T89 SRVR_7 86.25 92.06 53.74 54.24 0.46156 41.58 45.94

T89 SRVR_8 86.87 90.39 67.14 60.80 0.53336 47.40 45.55

T90 RUN_1 88.73 95.15 52.86 58.73 0.52736 51.14 39.02

T90 RUN_2 88.70 94.97 53.63 59.01 0.52890 51.65 39.14

T90 RUN_3 88.32 93.93 56.92 59.64 0.52914 65.24 39.29

T90 RUN_4 88.93 96.03 49.23 57.44 0.52237 49.26 70.68

T90 RUN_5 88.60 95.05 52.53 58.29 0.52204 50.83 39.27

T92 RUN_1 86.22 90.77 60.77 57.22 0.49155 50.99 42.40

T100 RUN_1 88.77 96.82 43.74 54.15 0.50005 61.62 42.57

T100 RUN_2 88.27 93.89 56.81 59.49 0.52732 61.86 39.05

T100 RUN_3 81.13 82.69 72.42 53.80 0.45256 60.25 41.60
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a much greater manual curation yield when compared

to unsorted revision.

We have used the consensus predictions for the ACT

task to illustrate this idea on Figure 4A. To classify half

of the 910 relevant articles by examining randomly (i.e.

unranked) records from the 6000 abstract test set would

require reading 3000 abstracts, whereas when read in

the order suggested by the consensus prediction, it

would only require reading the top 7% (around 728, a

reduction to 24.27% when compared to the 3000 articles

that need to be read when not using ranking).

Consider Tc(d) the time required to classify a docu-

ment d into relevant or non-relevant. This time will in

fact depend on many features, including the curator per-

forming the classification, length of the document and

the underlying annotation guidelines (see the discussion

section for an analysis on curation times for different

curation). In our case, the manual classification timings

suggest that determining if an article is non-PPI relevant

can be significantly faster than determining that it is

relevant. This indicates that, although there is a great

time saving obtained by using ranked system outputs,

Figure 4 ACT consensus analysis. (A) The two black lines represent the number of relevant articles found while traversing the dataset. The

diagonal line represents a random traversal, the parabolic line above represents a traversal following the ranking proposed by the consensus

predictions. The green lines are bootstrap estimates for standard deviation. The horizontal red line represents half of the 910 articles. (B) Instead

of showing the traversal in articles read, this shows the time spent reading them. The diagonal line represents a random traversal, the parabolic

line above represents a traversal following the ranking proposed by the consensus predictions. The green lines represent traversals using the

scores provided by the systems. Note that some runs seen below the random traversal seemed to have provided the opposite ranking for the

negative documents than required, based on the submission format. TC: Team consensus prediction.

Table 4 ACT participant results (Continued)

T100 RUN_4 81.85 82.85 76.26 56.04 0.48270 63.75 38.41

T104 RUN_1 80.12 80.69 76.92 53.99 0.45999 53.67 48.21

T104 RUN_2 80.07 80.47 77.80 54.21 0.46370 53.67 48.21

T104 RUN_3 64.93 59.86 93.3049 44.66 0.38161 53.67 48.21

T104 RUN_4 69.78 66.25 89.56 47.34 0.40530 53.67 48.21

T104 RUN_5 86.27 98.47 18.02 28.47 0.30064 53.67 142.95

Evaluation results based on the unrefined Gold Standard, in terms of Accuracy, MCC Score and AUC iP/R. The highest score for each evaluation column is show

in bold typeface. Run/Srvr (RUN = offline run/SRVR = online run via the BCMS), MCC (Matthew’s Correlation Coefficient), AUC iP/R (Area under the interpolated

Precion/Recall curve). Time_half is the fraction of time needed to classify half of the positive abstracts using the output of that run when compared to unranked

results. Note that some runs submitted by mistake the opposite ranking as requested for the negative records, which explains higher classification time (e.g.

Team 104, RUN 5 with Time_half of 142.95), inverting in these cases the order of negative articles resulted in comparable time savings to the other systems.
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this is affected by both the proportion of relevant cases

as well as the difference in classification time between

relevant and non-relevant articles. Using the consensus

system predictions would require only 30.13% of the

time for finding half of the relevant documents in the

test set collection when compared to random ranking of

abstracts (no ordering/ranking). Figure 4B illustrates this

idea, showing the number of articles against the time

spent in classifying them (using the Tc(d) from the real

curators). This also shows the advantages over baseline

selection based for instance on the use of a set of expert

defined keywords for article selection, which moreover

obviously does not generate a proper relevance ranking

of the resulting hits. Using the presence a set of key-

words provided by MINT curators as a way of selecting

relevant articles resulted in a recall of 17.36%, a preci-

sion of 61.96% with F-score of 27.12%. Although the

precision of this keyword-based selection is relatively

acceptable, the overall performance is significantly lower

than the one obtained by participating teams in general.

Participant technologies used for ACT

Participants were asked to fill in a short questionnaire

after the test phase. Interestingly, four teams (73, 81, 92,

100) used other sources of training data than what was

provided through the challenge itself (e.g., data from

former BioCreative challenges or random likely-negative

articles). We also asked teams to evaluate the difficulty

of the task (easy, medium, hard); no team thought the

ACT task was easy, four (73, 81, 100, 104) said it was

hard, while the others classified it as ‘medium’. All

teams did some amount of lexical analysis of the text

(sentence splitting, tokenization and/or lemmatization/

stemming was done by all teams), and many included

Part-of-Speech-tagging (POS) (teams 65, 73, 89, 90, 104)

or even Named Entity Recognition (teams 65, 70, 73, 81,

and 90). Teams 65 and 73 used dependency parsing on

the abstracts. For generating their predictions all teams

relied on the title and abstract, half used the MeSH

terms, too, and one team was even also able to explore

full text information for some of the articles. For feature

selection or weighting purposes, approaches used by

participating teams include statistical methods like Chi-

Square, mutual information, frequency cut-off and Baye-

sian weights as well as other selection criteria such as

the restriction to particular Part-of-Speech types. Teams

81, 89, 100 and 104 also used dimensionality reduction

techniques on their features. A common characteristic

of most of the participating teams was the use of

machine learning techniques in general. Half of them

used Support Vector Machines (SVM) for the classifica-

tion (teams 81, 89, 90, 92, 100), and most of those com-

bined the SVM with other supervised methods (81:

(their own) Variable Trigonometric Threshold linear

classifier, 89: Naïve Bayes, 90: Logistic Regression, 100:

Nearest Neighbour). Team 70 used Nearest Neighbour,

104 Naïve Bayes, 73 Large Margin class with Huber loss

function, and team 65 used a Maximum Entropy classi-

fier. For ACT, Team 90 devised two independent sys-

tems one using SVM and the other using Logistic

Regression.

IMT

IMT annotation data

The annotations provided for the IMT task test set had

been produced by the BioGRID and MINT database

curators. Both follow a slightly different article selection

criteria. In case of MINT, they carry out an exhaustive

journal curation, examining each article for a specified

time period given a selected journal, while BioGRID is

primarily interested in curation of articles for a particu-

lar organism of interest. For this task, both databases

agreed to use the same curation standards. Due to the

considerable workload associated with producing the

requested interaction detection method annotations for

full text articles, the test set size was limited to 223 arti-

cles (see table 2). Nevertheless, for implementing their

systems we were able to compile a large collection of

training and development set articles with annotations,

enough to build supervised learning methods that basi-

cally consider this task as a multi-class classification sce-

nario. As only a small set of journals were used as test

set, there were some differences in the distribution of

methods across the three data collections provided, as

shown in Figure 1.

IMT team results

In total, eight teams participated in this task. The official

evaluation results of each run are shown in table 5,

measuring the performance on the documents for which

the system provided results (results averaged over the

per-document scores are called “macro-averaged”

results). The evaluation of the overall performance of

the systems on the whole test set is shown in table 6 (i.

e., calculated from the summed up true/false positive

and true/false negative counts over all documents -

“micro-averaged” results), while the corresponding team

information details can be obtained from Table 3. As

with the ACT, teams could participate offline, sending

the results via e-mail, as well as online via the BioCrea-

tive Meta-Server (BCMS) [40]. In case of the macro-

averaged results the highest AUC iP/R achieved by any

submission was 52.974%, obtained by run 3 of team 90

(with an F-score of 54.616). Run 3 of team 70 reached

the overall best precision of 80.00% at a recall of 41.50%

(F-score of 51.508, but predictions are only available for

30 documents). Run 5 of Team 65 was the only one to

achieve full recall (100%) while at the same time man-

taining an AUC of 50.11%, just marginally lower than

the best one. The most competitive F-score was of 55.06
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Table 5 IMT macro-averaged participant results

Team Run/Srvr Docs Precision Recall F-Score AUC iP/R

Base_Top4 RUN_1 222 28.60 47.75 33.78 0.32771

Base_Regex RUN_1 153 33.88 22.31 24.73 -

T65 RUN_1 222 9.35 83.21 16.32 0.47884

T65 RUN_2 222 2.45 100.00 4.75 0.44034

T65 RUN_3 222 9.99 79.38 17.16 0.47650

T65 RUN_4 222 33.48 42.88 35.40 0.30927

T65 RUN_5 222 2.44 100.00 4.74 0.50111

T69 RUN_1 214 54.87 57.91 52.39 0.52112

T69 RUN_2 211 57.01 57.35 53.42 0.51844

T69 RUN_3 203 60.24 56.41 54.45 0.51470

T69 RUN_4 199 62.46 55.17 55.06 0.51013

T69 RUN_5 190 64.24 52.44 54.35 0.49390

T70 RUN_1 143 51.78 35.01 37.84 0.31402

T70 RUN_2 72 71.76 36.81 45.61 0.36215

T70 RUN_3 30 80.00 41.50 51.51 0.41500

T70 RUN_4 205 31.65 38.72 31.75 0.32295

T70 RUN_5 159 36.36 21.26 24.75 0.18976

T81 RUN_1 222 4.44 63.91 8.19 0.22022

T81 RUN_2 221 9.39 41.92 14.12 0.19766

T81 RUN_3 222 13.51 28.35 17.41 0.17010

T81 RUN_4 222 13.21 29.57 17.34 0.20388

T81 RUN_5 209 21.93 24.64 21.34 0.18733

T88 RUN_1 219 29.10 45.04 33.60 0.38590

T88 RUN_2 220 28.67 45.53 33.35 0.38373

T89 RUN_1 200 54.78 53.37 50.91 0.46061

T89 RUN_2 200 54.95 53.23 50.76 0.46423

T89 RUN_3 201 54.05 53.25 50.23 0.45330

T89 RUN_4 199 54.48 54.18 51.25 0.47211

T89 RUN_5 201 55.30 56.12 52.38 0.47807

T89 SRVR_4 200 55.33 55.61 52.11 0.47636

T89 SRVR_5 199 54.09 54.00 50.96 0.47650

T89 SRVR_6 201 55.14 56.12 52.35 0.48047

T89 SRVR_7 203 50.46 55.66 50.06 0.47392

T89 SRVR_8 199 54.04 54.05 50.84 0.47534

T90 RUN_1 200 56.11 51.59 50.72 0.44687

T90 RUN_2 203 56.37 53.19 51.20 0.47159

T90 RUN_3 217 55.29 59.90 54.62 0.52974

T90 RUN_4 177 63.98 46.89 51.36 0.44118

T90 RUN_5 164 66.26 46.78 52.02 0.44458

T100 RUN_1 213 47.26 54.97 47.06 0.43312

T100 RUN_2 222 41.19 54.61 44.18 0.43238

T100 RUN_3 222 35.29 45.53 37.50 0.32459

T100 RUN_4 222 35.29 45.53 37.50 0.32459

T100 RUN_5 125 56.40 30.65 37.01 0.29387

Macro-averaged results when evaluating only documents for which the system reported results (i.e., measuring the average per-document performance only on

the documents each run produced annotations for). The highest score for each evaluation column is show in bold typeface, the lowest in italics. Run/Srvr: RUN =

offline run, SRVR = online server run via BCMS; Docs: number of documents annotated; AUC iP/R: Area under the interpolated precision/recall curve. Base Top4:

baseline system that assigns the four most frequent classes ordered by their frequencies in the training/development set. Base Regex: simple matching strategy

based on regular expressions.
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Table 6 IMT micro-averaged participant results

Team Run/Srvr Precision Recall F-Score MCC AUC iP/R

Base_Top4 RUN_1 28.60 48.20 35.90 - 0.15924

Base_ Regex RUN_1 32.45 22.34 26.46 - -

T65 RUN_1 8.77 84.82 15.89 0.23552 0.27588

T65 RUN_2 2.45 100.00 4.78 0.06259 0.24484

T65 RUN_3 9.42 81.78 16.89 0.24172 0.27727

T65 RUN_4 33.48 42.32 37.39 0.36166 0.14169

T65 RUN_5 2.44 100.00 4.76 0.06193 0.29016

T69 RUN_1 52.07 55.03 53.51 0.52519 0.34302

T69 RUN_2 54.34 53.51 53.92 0.52958 0.33824

T69 RUN_3 57.36 50.29 53.59 0.52796 0.32539

T69 RUN_4 59.25 48.01 53.04 0.52456 0.31711

T69 RUN_5 61.33 43.64 51.00 0.50896 0.29373

T70 RUN_1 48.61 23.15 31.36 0.32617 0.12949

T70 RUN_2 70.00 11.95 20.42 0.28419 0.08731

T70 RUN_3 80.65 4.74 8.96 0.19270 0.03826

T70 RUN_4 31.22 36.43 33.63 0.32216 0.15688

T70 RUN_5 32.69 15.94 21.43 0.21717 0.05734

T81 RUN_1 4.54 66.03 8.50 0.11406 0.07716

T81 RUN_2 8.71 42.13 14.43 0.15560 0.06239

T81 RUN_3 13.51 28.46 18.33 0.17168 0.04657

T81 RUN_4 13.20 27.70 17.88 0.16667 0.05601

T81 RUN_5 21.35 22.20 21.77 0.20090 0.05283

T88 RUN_1 28.44 45.16 34.90 0.34146 0.20244

T88 RUN_2 28.17 45.92 34.92 0.34263 0.20069

T89 RUN_1 52.52 49.53 50.98 0.49997 0.28202

T89 RUN_2 52.02 48.96 50.44 0.49451 0.28589

T89 RUN_3 50.78 49.34 50.05 0.49016 0.27238

T89 RUN_4 52.50 49.91 51.17 0.50181 0.29220

T89 RUN_5 52.58 52.18 52.38 0.51382 0.29980

T89 SRVR_4 52.71 51.61 52.16 0.51163 0.29926

T89 SRVR_5 52.28 50.10 51.16 0.50168 0.30046

T89 SRVR_6 52.28 52.18 52.23 0.51226 0.30049

T89 SRVR_7 49.55 52.56 51.01 0.49972 0.29303

T89 SRVR_8 51.76 50.29 51.01 0.49999 0.29766

T90 RUN_1 53.33 47.06 50.00 0.49113 0.26805

T90 RUN_2 52.56 48.77 50.59 0.49625 0.28386

T90 RUN_3 52.30 58.25 0.5512 0.54201 0.35423

T90 RUN_4 61.09 38.14 46.96 0.47436 0.25209

T90 RUN_5 64.24 35.10 45.40 0.46707 0.24270

T100 RUN_1 44.59 51.61 47.85 0.46794 0.26055

T100 RUN_2 39.86 54.84 46.17 0.45448 0.26982

T100 RUN_3 35.29 44.59 39.40 0.38240 0.15734

T100 RUN_4 35.34 44.59 39.43 0.38271 0.15758

T100 RUN_5 54.86 18.22 27.35 0.30847 0.11109

Micro-averaged results when evaluating all documents (i.e., measuring the overall performance of each run on the whole document set). The highest score for

each evaluation column is show in bold typeface, the lowest in italics. Run/Srvr: RUN = offline run, SRVR = online server run via BCMS; MCC: Matthew’s

Correlation Coefficient; AUC iP/R: Area under the interpolated precision/recall curve (micro- averaged by iterating over the precision/recall values of the highest

ranked annotation of all articles, then all second ranked annotations, etc.). Base_Top4: baseline system that assigns the four most frequent classes ordered by

their frequencies in the training/development set. Base_Regex: simple matching strategy based on regular expressions.
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(62.46% precision, 55.17% recall, based on 199 docu-

ments), obtained by Team 69 run 4. With respect to the

micro-averaged results, the best prediction corresponded

to run 3 of team 90. It obtained a precision of 52.30%,

recall of 58.25%, F-score of 55.117, MCC of 0.5420, and

AUC iP/R of 0.3542. By using the BCMS framework for

participating online, we were able to measure the time it

took the systems to report interaction method identifiers

for full-text articles. However, there was only one team

(89) participating online in this task, albeit with 5 ser-

vers and quite competitive results. This team annotated

a full-text article on average in 3.7 seconds (sd: ±0.35

sec), and achieved a maximum F-Score score of 52%

with an AUC iP/R of 48%.

In order to interpret the performance scores it is

important to put them into context. As already men-

tioned, some of the interaction methods appear more fre-

quently in the training and development sets. This might

lead to the assumption that such a distribution can be

used to derive a sort of statistical baseline prediction,

using the most frequent classes in the test/development

set (brown colored classes in Figure 1) to establish a

baseline qualifier. A simple statistical baseline was gener-

ated by assigning the four most frequent classes, consti-

tuting more than 50% of all assignments in the training/

development set, to every test set articles, ranked/ordered

by their frequency in the training/development set. The

resulting scores are shown in tables 5 and 6. The

improvement over this distribution baseline when con-

sidering submitted runs is +0.21283 (163%, from 0.33777

to 0.55060) in case of F-score and +0.20203 (162%) in

case of AUC iP/R (from 0.32771 to 0.52974) from macro-

averaged scores. As for micro-averaged scores, evaluated

team runs improve the F-score by +0.1922 (154%, from

0.35901 to 0.55117) and AUC iP/R by +0.1950 (222%,

from 0.15924 to 0.35423). However, the statistical base-

line is not associated to any evidence text passages; The

annotations cannot be interpreted by human curators,

and thus have only limited practical value.

A very common approach to link lexical entries to free

text is by using term-lookup strategies, often by using

either string matching or more competitive matching stra-

tegies (e.g., regular expressions). To compare the value of

the resulting tools to such a baseline regular expression

method, an additional comparative analysis has been car-

ried out. For the Regex baseline system, a regular expres-

sion is formed for each of the method names (concept

name, not synonyms). The text is matched against each of

the regular expressions, and if there is a successful match,

the association to the corresponding method is reported.

This baseline system was included in the distribution files

on the BioCreative web page. The improvement of the

best run over the Regex baseline in terms of macro-aver-

aged f-score was +0.2128 and for the micro-averaged f-

score even +0.2865. Aspects related to the method ranking

(AUC iP/R) were not examined, as this system does not

produce a proper ranking.

Participant technologies used for IMT

The participants were asked to fill in a short question-

naire, and all participants responded. Only one team

(81) used other sources of training data than what was

provided through the challenge itself, one team made

use of the UMLS (69) and two of MeSH terms (90,

100). Most teams relied on the provided text we

extracted using the UNIX tool ‘pdftotext’, while Team

100 made use of the PDFs directly. Most teams incorpo-

rated lexical analysis of the text (sentence splitting, toke-

nization and/or lemmatization/stemming), quite a few

looked at n-gram tokens (teams 81, 89, 90, 100), but

only one also included Part-of-Speech-tagging (team

90), and, interestingly, some teams omitted a specialized

Named Entity Recognition approach (NER; teams 81,

89, 100; instead using regex matching). Team 90 even

made use of shallow parsing techniques. All teams

except 81 relied on Bag-of-Word vectors, and teams 70

and 88 did not use any supervised classifiers. Teams 90

and 69 were the only teams to use a Logistic Regression

classifier trained on each term, team 90 also applied a

Support Vector Machine, and team 69 used MALLET

for NER. Other than that, no team reported use of exist-

ing BioNLP libraries, instead relying mainly on in-house

tools. Only teams 90 and 65 applied gene/protein men-

tion detection. In order to weight unigrams and bigrams

features, team 89 calculated mutual information and chi

square values. This team reported that these features

were ranked the highest for them after feature selection,

and that an additional feature for node popularity was

very useful for this task. Chi square statistics were also

used to score collocations and bigrams in case of team

65. We also asked teams to evaluate the difficulty of the

task (easy, medium, hard); No team thought the task

was easy, half (70, 89, 90, 100) said is was hard, while

the other four (65, 69, 81, 88) classified it as ‘medium’.

Online participation

In addition to offline participation (sending the system

results by email), the BioCreative Meta-Server (BCMS)

[40] framework was provided to participants, using

exactly the same setup as for BC II.5 [15]. This enabled

online participation, submitting results via web service

calls. This online submission allows measuring the time

it takes systems to report results for the articles they

annotate. However, there was only one team (89) parti-

cipating online in the method sub-task (IMT) and only

two (81 and 89) in the article classification sub-task

(ACT). Team 89 annotated full-text articles (IMT) on

average in a surprisingly short period of time - 3.7 sec-

onds (sd: ±0.35 sec) - achieving a maximum F-Score
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score of 52% with an AUC iP/R of 48%. Team 81 anno-

tated ACT Medline abstracts on average in 20 seconds

(sd: ±12 sec) and although the maximum MCC score

was only 0.11, their best AUC iP/R was 50% (Server 10).

The second team, 89, did even better in the online ACT

with an average of 1.9 seconds (sd: ±0.57 sec) per

abstract, achieving a maximum MCC score of 0.61 (Ser-

ver 8); their best AUC iP/R score was 58% (Server 5).

The timing results match fairly well with the results

found during BC II.5, although the combined time and

performance of team 89 is an slight advancement over

BC II.5 (best online ACT team in BC II.5, by MCC

score: Team 9, Server 29, with MCC 0.583, average time

22 seconds/article). However, the results are not neces-

sarily comparable, as the BC II.5 ACT was carried out

on full-text articles, while for BC III Medline abstracts

were used. Moreover, in BC II.5, a single journal with a

different class imbalance was used as opposed to the

range of curation relevant journals utilized in BC III. On

the other hand, timing of annotating full-text IMT arti-

cles compared to the interacting protein normalization

task (INT) of BC II.5 - also on full-text - can be seen as

comparable on the basis of article sizes if one disregards

the fact that the namespace of proteins (INT, II.5) is

probably much larger than that of method names (IMT,

III). The fastest server in BC II.5 (T42, S20), performed

at 14 sec/article - compared to 3.7 sec/article by T89

(see above), a nearly 4-fold improvement.

Individual system descriptions

All participating teams were requested to provide a

short technical summary on the strategy used for parti-

cipation in the PPI task. Team summaries are ordered

based on the team identifier.

Team 65: Gerold Schneider and Fabio Rinaldi (ACT, IMT)

Team 65 (OntoGene) included the following members:

Fabio Rinaldi, Gerold Schneider, Simon Clematide, Mar-

tin Romacker, Therese Vachon. The OntoGene research

group at the University of Zurich has developed compe-

titive tools for the extraction of mentions of protein-

protein interactions (PPI) from the scientific literature

through participation in previous BioCreative editions

[11,41]. While Team 65 had previously obtained good

results in the task of extracting supporting information

about the interactions, such as experimental methods

[42], this team never considered before participation to

the ACT task, which appears at first sight a pure docu-

ment classification task where an NLP-rich approach

would not be able to provide a significant contribution.

The participation to the ACT task of BioCreative III

was motivated by the desire to dispel this negative

assumption through enrichment of a traditional machine

learning (ML) approach with features derived from their

PPI pipeline. Three of the Team 65 runs apply

Maximum Entropy optimization (using the MEGAM

tool [43]). Features include lexical items, MeSH annota-

tions, plus crucially a score delivered by their PPI detec-

tion pipeline. Two runs used only results of their

protein-protein interaction detection pipeline (as devel-

oped for BC II.5), for comparison.

The feature weights used for the test set were drawn

from the development set only. Including the balanced

(but therefore biased) training set degraded the results

on the development set. To keep training efficient and

prevent over-training, Team 65 used frequency thresh-

olding and feature selection to cut the set of features to

20,000. The submitted runs optimize for different eva-

luation metrics. The results proved to be competitive,

reaching 3rd or 4th rank for each of the measures

selected by the organizers.

It is interesting to notice that the best system used a

similar approach, based on a dependency parser. How-

ever, that team made a richer use of the features deliv-

ered by the parser. These results prove that an NLP-

based pipeline for PPI extraction definitely provides a

positive contribution towards the solution of the ACT

task.

For the PPI-IMT task, the OntoGene group developed

two statistical systems (called system A and system B

here). Both are based on a Naïve Bayes approach but

use different optimizations and heuristics. System B is a

very generic Naïve Bayes multiclass classifier, whereas

system A was optimized for IMT, taking into account

terminological information obtained from the PSI-MI

ontology.

For each of the two systems, two runs aiming at maxi-

mizing AUC and F-score were submitted. Additionally, a

fifth run combining the max AUC runs of both systems

was submitted. Best precision can always be obtained by

taking only the best ranked method for each article, so

no specific run aiming at optimizing precision was

submitted.

Nearly all of the runs have very high recall, two of

them even reaching 100% (no other participant system

could reach full recall, the next best result was 66.03%).

Run 5 is particularly remarkable as it combines full

recall with high AUC iP/R (0.501), which is only mar-

ginally less than the best results in the competition -

0.5297, which however has much lower recall. For a

semi-automated curation application, the configuration

of near-total recall with good ranking is probably opti-

mal. More details of this approach can be found in

Schneider et al, same volume.

Team 69: Robert Leaman and Graciela Gonzalez (IMT)

Team 69 included the following members: Robert Lea-

man, Ryan Sullivan, Graciela Gonzalez. The system of

team 69 modeled the detection of interaction methods

in a document as a set of document-level classification
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problems. For each interaction detection method Team

69 trained one machine learning classifier to detect

whether the method was mentioned at least once in an

entire document. Each interaction detection method was

classified independently, without regard for any subtypes

or supertypes of the method. System input consisted of

the pdftotext version of each article, and system output

consisted primarily of the probability that each interac-

tion detection method was mentioned somewhere in the

document according to the classifier for that interaction

method. This system also found support statements by

applying the classifiers trained at the document level to

each sentence in the document, then taking the sen-

tence from the document with the highest probability

output by the classifier as the support for the corre-

sponding interaction detection method.

Preprocessing steps performed by this system include

sentence-breaking, tokenization, normalizing case and

Unicode characters, stop word removal [44] and stem-

ming [45]. All classifiers used the same feature set, con-

sisting of term and lexicon membership features. Term

features are binary-valued and indicate the presence or

absence of a single stemmed token within the document.

Strict lexicon membership features are also binary-valued

and indicate whether there was a sentence within the

document that contained all of the tokens from any of

the names of the detection method being located. Fuzzy

lexicon membership features are similar to strict lexicon

membership except that they are real-valued, represent-

ing the proportion of the tokens of the interaction detec-

tion method name that the sentence contains. Their

lexicon of interaction detection method names was com-

piled primarily from the name, synonyms and unique

identifiers (e.g. ‘MI:0006’) from the PSI-MI ontology [46].

Team 69 added approximately 40 additional synonyms

by locating concepts in the UMLS Metathesaurus [47]

from semantic types such as ‘Laboratory Procedure’

which share a name with a concept in the PSI-MI ontol-

ogy. All names in the lexicon were preprocessed in the

same manner as the document text.

Logistic regression, as implemented by MALLET [48],

was used for all classifiers. Documents from the training

data annotated with a given interaction detection

method were taken as positive instances of that method,

and all other documents were considered negative

instances of the method. No data was used for training

other than the data provided for the task. The classifiers

were trained using L1 regularization, via the orthant-

wise limited memory quasi-Newton algorithm (OWL-

QT) [49]. L1 regularization typically creates a sparse

model, meaning that the weight of most parameters is

set to zero. This is in contrast to L2 regularization,

which usually learns many weights that approach zero

asymptotically. L1 regularization therefore has many of

the same advantages as feature selection, such as

increased interpretability and allowing faster inference.

In addition, L1 regularized models have been shown to

be more robust to irrelevant features than L2 regularized

models, since the amount of training data needed rises

only logarithmically in the number of irrelevant features

present [50]. Team 69 found in their experiments that

training with L1 regularization resulted in approximately

3.3% higher F-measure and 4.9% AUC iP/R than train-

ing with L2 regularization.

Team 70: Sérgio Matos (ACT, IMT)

Team 70 included the following members: Sérgio Matos,

David Campos, José L. Olivera. The proposed method of

Team 70 for the ACT subtask makes use of the domain

terminology in a vector-space classification approach

[51]. Basically, the documents in the training set are

represented as vectors of biologically relevant words, to

which the unclassified documents are compared. The

underlying lexicon includes a list of interaction methods

from the Interaction Method Ontology (PSI-MI) [46],

distributed by the organizers for the PPI-IMT task, and

biologically relevant words, extracted from the BioLexi-

con resource [52]. Document vectors are stored as a

Lucene [53] index with the following structure: the

document identifier, for referencing purposes, the docu-

ment classification (1 for relevant; 0 for non-relevant),

and two text fields, one for the textual occurrences of

the lexicon terms and the other for the corresponding

lemmas. The use of lemmas allows normalizing related

terms to a single lexical entry. In this case, the BioLexi-

con terms are normalized to the infinitive form of the

verb (for example, ‘interacts’, ‘interacting’ and ‘interac-

tion’ are all normalized to ‘interact’).

During the classification of a new document, each

occurrence of a lexicon term (or the corresponding

lemma) is added to the query string, which is then used

to search the index. From this search, the top M docu-

ments are retrieved, together with the corresponding

classifications and Lucene similarity scores. The class

probability for the new document is then calculated as

the sum of the similarity scores for each class, normal-

ized by the sum of the scores for the M documents. A

threshold, corresponding to the operating point of the

classifier, is then used by Team 70 to select the class for

that document. Term normalization, by using lemmas,

allowed improvements in AUC iP/R between 3% (for M

= 50) and 6% (for M = 500), compared to the use of the

textual occurrence of the lexicon terms.

For the IMT subtask the approach followed by Team

70 was to find mentions of methods names and syno-

nyms in the texts and apply a very simple heuristic to

validate and rank the classifications. To facilitate

approximate string searches, all documents in the test

set were added to a Lucene index. This index is then
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searched for each entry in the dictionary of methods

names - provided by the task organizers - and the top

100 documents for each search are retrieved. For syno-

nyms of the same method (same PSI-MI identifier), the

document scores are added together. Finally, a method

ID is assigned to a document if that document/method

score is above a preset threshold.

The use of domain terminologies and vector-space

models for classification of PPI relevant documents pro-

vided encouraging results. The use of other lexical and

ontological resources (e.g. Gene Ontology terms) may

help improve the results obtained. Comparing to the use

of classification models, such as SVMs, the proposed

approach has the advantage that adding more classified

documents as new information to the classifier only

involves adding those documents, with the correspond-

ing classification, to the index.

Team 73: Sun Kim and W. John Wilbur (ACT)

Team 73 included the following members: Sun Kim, W.

John Wilbur. Protein-protein interactions (PPIs) in bio-

medical literature can be interpreted as a series of

dependency relationships between words. Hence, captur-

ing this information is key in detecting PPI information

at both the article and sentence level. The main focus of

Team 73 in the ACT task was to explore the usefulness

of the syntactic information in addition to conventional

approaches. The system proposed by Team 73 has three

different modules, gene mention detection, feature

extraction, and classifiers. The feature extraction module

consists of two parts, word-based and relation-based fea-

ture extraction. Word-based features include the com-

mon feature sets such as n-grams and strings. Relation-

based features are basically a set of dependency relation-

ships between words at the sentence level.

As the first step of the filtering process, gene and pro-

tein names are tagged using the Priority model [54].

This step is essential because, in PPI events, protein

names are the most important words triggering PPI

descriptions. The Priority model was developed in the

group of Team 73 to overcome the pitfall of other sta-

tistical approaches by emphasizing the right-most words

in a candidate phrase. Next, gene-tagged articles are

further processed to obtain features for a data-driven

classifier. The highlighted feature in word-based extrac-

tion is MeSH terms. MeSH is a thesaurus for indexing

and searching biomedical literature, hence this con-

trolled vocabulary is a good indicator of an article’s

topic. Relation-based features investigate the dependency

relationships between words. By using a dependency

parser [55], a head word and a dependent word are

determined as a two-word combination. Furthermore,

gene names are alternatively anonymized by replacing a

specific gene name with a common tag, e.g., ‘PROTEIN’,

which reduces the total number of features while leaving

dependency information intact. Another aspect of fea-

tures considered by Team 73 is to extract higher-order

patterns by evaluating a set of feature combinations.

This process adds combination features that are

detected as useful for the classifier. The last step of PPI

article filtering is to learn to classify articles based on

the extracted features. The constraint here is to mini-

mize computational cost and processing time with rea-

sonable classification performance. To achieve this

purpose, a large margin classifier with Huber loss func-

tion [56] was adopted by Team 73. The Huber classifier

is a linear predictor using a simple gradient descent

learning algorithm, which results in excellent perfor-

mance competitive with support vector machine

classifiers.

Although the current approach has room for improve-

ment, it produced the top-ranked performance in the

BioCreative III ACT task by achieving 89.15% accuracy,

0.55306 MCC, 61.42% F-score, and 67.98% AUC in dif-

ferent data/feature combinations. As a result, Team 73

found that syntactic patterns along with word features

can effectively help distinguish between PPI and non-

PPI articles, in particular, with a limited training corpus.

More details of this approach can be found in [57].

Team 81: Luis Rocha (ACT, IMT)

Team 81 included the following members: Luis M.

Rocha, Anália Lourenço, Michael Conover, Azadeh

Nematzadeh, Fengxia Pan, Andrew Wong, Hagit Shat-

kay. For the ACT Team 81 participated in both the

online submission via the BioCreative MetaServer plat-

form, as well as the offline component of the Challenge.

Team 81 used three distinct classifiers: (1) the pre-

viously developed Variable Trigonometric Threshold

(VTT) linear classifier [58,59] which employs word-pair

textual features and protein counts extracted using the

ABNER tool [60], (2) a novel version of VTT that

includes various NER features as well as various sources

of textual features [61], and (3) a Support Vector

Machine that takes as features various entity count fea-

tures from the NER tools team 81 tested. In addition to

testing the power of available NER tools for classifica-

tion of documents relevant for Protein-Protein Interac-

tion, members of Team 81 were interested in

investigating the advantages of using full-text data on

the classification. Team 81 utilized the following NER

tools and dictionaries: ABNER, NLProt, Oscar 3, ChEBI

(Chemical names), PSI-MI, MeSH terms, and BRENDA

enzyme names. Team 81 also used the output of their

Interaction Methods Task pipeline as an additional

annotation tool. While their submitted results suffered

from many errors due to NER pipeline integration,

Team 81 has since fixed the errors and obtained excel-

lent classification results on training data, even when

using simply feature counts (e.g. number of methods
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identified by PSI-MI in a document) from a few NER

tools [61]. To address the IMT, Team 81 employed a

statistical approach. Unlike most teams, which used

NLP and/or classification of documents into the many

different possible classes - corresponding to the many

candidate methods - team 81 looked directly within the

text for experimental evidence. That is, Team 81 looked

within the text for candidate short passages likely to

indicate experimental methods, used simple pattern

matching to identify the method within the passage, and

ranked candidate matches according to statistical con-

siderations. To find candidate passages in text, Team 81

used classifiers they have developed independently [62],

which were trained on a corpus of 10,000 sentences

from full-text biomedical articles, tagged along five

dimensions: focus (methodological, scientific or generic),

type of evidence (experimental, reference, and a few

other types), level of confidence (from 0 - no confi-

dence, to 3 - absolute certainty), polarity (affirmative or

negative statement), and direction (e.g. up-regulation vs.

down-regulation). This corpus is available at: http://

www.ncbi.nlm.nih.gov/pmc/articles/PMC2678295/bin/

pcbi.1000391.s002.zip. While this corpus was not con-

cerned with protein-protein interactions, the classifier

trained on the Focus dimension showed high sensitivity

and specificity in identifying Methods sentences. Using

the text files provided by the BioCreative organizers,

Team 81 broke the corpus into sentences (modifying

the Lingua-EN-Sentence Perl module [63]), and elimi-

nated bibliographic references using simple rules. The

remaining sentences were represented as term vectors

and classified according to their Focus, utilizing an SVM

classifier [62], thus identifying candidate sentences that

may discuss methods. Method Identifiers were then

associated with the latter sentences by simple pattern-

matching to PSI-MI ontology terms. The matches were

then scored using a strategy described later in this

volume, and high-scoring methods were reported along

with the sentences as evidence.

Team 88: Ashish V Tendulkar (ACT, IMT)

Team 88 included the following members: Ashish V

Tendulkar, Aniket Rangrej, Vishal Raut. Team 88 devel-

oped a maximum entropy classifier for PPI abstract clas-

sification task. The goal was to develop a classifier that

takes biologically relevant clues as features while classi-

fying the abstract. Team 88 used PSI-MI ontology for

extracting features from the abstract and the title. They

developed a dictionary based tagger for tagging men-

tions of PSI-MI concepts from different levels. In addi-

tion to these features, Team 88 used MESH terms

provided along with the abstract. On training data,

Team 88 obtained 35% precision and 55% recall. They

believe that this is an interesting direction of classifying

abstracts by constructing biologically relevant features.

The ACT classification system will be available at the

following URL: http://www.cse.iitm.ac.in/~ashish/

research/ACT/

Team 88 developed dictionary based NER for detec-

tion of interaction method mentions from text con-

verted PDF files as provided by the organizers. The

system has the following components: (i) Dictionary

construction; (ii) Pre-processing of scientific article,

which includes sentence splitting and division into var-

ious sections; (iii) Interaction method NER; (iv) Post-

processing. The dictionary was constructed by extending

PSI-MI ontology to incorporate common variations of

interaction methods used in scientific literature. The

common variations include lower case lexicons, repla-

cing space with hyphen, etc. The analysis of training

data revealed that the interaction methods are definitely

mentioned in the experimental method section and at

times in the abstract and title of the research papers.

Team 88 further observed that the extraction from title

and abstract gives the best precision partly due to their

original availability in text form and hence does not

contain noisy characters as introduced in other parts

due to PDF to text conversion. Thus, detecting these

mentions reduces the number of false positives that

would have been obtained from other sections of the

paper. Further, Team 88 also observed that detecting all

mentions in experimental methods section is sufficient

to ensure high recall of the system. In order to take

advantage of these observations, Team 88 first divided

the article into different parts along the section bound-

aries. The standard division included abstract, introduc-

tion, results, discussion and experimental method. The

main challenge here is to detect section headings from

the article in text format obtained via PDF to text

(pdftotext) conversion. Team 88 used several clues for

detecting them: (i) The section header is usually in

upper case or capitalized; (ii) they have standard names,

which vary from journal to journal. Ideally, Team 88

would like to detect these names independent of jour-

nals, but in this implementation, Team 88 relied on a

manually constructed dictionary of journal-specific sec-

tion headers. They first obtain the journal in which the

paper has appeared and use the appropriate section

headers. Team 88 ignored the list of references and

other sections like acknowledgements, but notes that

the acknowledgement section contains strong clues

about interaction detection method, since it contains

references to certain facilities used for conducting the

protein-protein interaction detection experiments. Team

88, however, has not exploited these clues in their cur-

rent implementation. Team 88 then divided each article

into sentences and each sentence is assigned a tag

denoting the section in which it is appearing. Team 88

implemented a dictionary based NER system for
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detecting interaction method mentions. They first

detected the mentions from the section describing

experimental procedure, then title and abstract, and

then from the remaining sections. The mentions from

abstract and experimental procedure section were

assigned highest confidence score. During the post-pro-

cessing step, Team 88 disambiguated between the inter-

action methods with overlapping tokens. They chose the

interaction method with longest match and discarded

the mention subsumed in the larger entity. The IMT

extraction system will be made available at the following

URL: http://www.cse.iitm.ac.in/~ashish/research/IMT/

Team 89: Shashank Agarwal and Feifan Liu (ACT, IMT)

Team 89 included the following members: Shashank

Agarwal, Feifan Liu, Hong Yu. Team 89 participated in

both PPI tasks. For the article classification task (ACT),

supervised machine learning algorithms Support Vector

Machines (SVMs) and multinomial Naïve Bayes (NB)

algorithms were trained on the training data. Unigrams

(individual words) and bigrams (two consecutive words)

were used as features for the classifier. The mutual

information between each feature and the class label

was used to rank those features and either the top 400

or top 1000 features were selected. For training, the

training corpus of 2280 articles was combined with the

development corpus of the 4000 articles. As the distri-

bution of articles in the development corpus was the

same as the distribution expected in the test data, for

some runs, only the development corpus was used for

training. The classifiers were trained using the freely-

available Simple Classifier program https://sourceforge.

net/projects/simpleclassify/ that was also developed by

Team 89, which is based on the Weka1 framework.

The interaction methods task (IMT) was also

approached as a binary classification task. Each node in

the PSI-MI sub-ontology was considered to be indepen-

dent of other nodes in the ontology, and an article-node

pair was considered as positive if the corresponding

interaction method was detected in that article, and

negative otherwise. The nodes were preprocessed; for

some nodes, synonyms were added manually, for exam-

ple, ‘anti bait immunoprecipitation’ for ‘anti bait coim-

munoprecipitation’. The concept name of a node and all

synonyms of the node were normalized (lowercased and

lemmatized) and used separately. From each node’s con-

cept name and synonym names, unigrams and bigrams

were extracted. For each unigram and bigram, the

mutual information score and chi-square score were cal-

culated. Machine learning classifiers were trained for

IMT using 21 features. The features included checking

if the node’s concept or synonym name appears in the

article, checking if the node’s concept or synonym

names’ unigrams or bigrams appear in the article, and

the sum of the mutual information score and chi-square

score of the unigrams and bigrams that appear in the

article. The frequency with which a node appears in the

training data was also used as a feature. Using these fea-

tures, the OntoNorm framework https://sourceforge.net/

projects/ontonorm/ was developed for this task, where

machine learning algorithms Random Forest, Random

Committee, Naïve Bayes Tree and J48 were explored.

OntoNorm is based on the Weka [64] framework as

well.

Team 90: Xinglong Wang and Rafal Rak (ACT, IMT)

Team 90 included the following members: Xinglong

Wang, Rafal Rak, Angelo Restificar, Chikashi Nobata, C.

J. Rupp, Riza Theresa B. Batista-Navarro, Raheel Nawaz,

Sophia Ananiadou. Pre-processing: Both IMT and ACT

documents in plain-text format were pre-processed

using a number of linguistic processors, including toke-

nisation, lemmatisation, part-of-speech tagging and

chunking. The documents enriched by the linguistic fea-

tures were then processed with a named entity recogni-

ser, the same as used in our semantic search engine

Kleio [65], which exploits dictionaries and machine

learning methods to tag the following types of entities:

genes, proteins, metabolites, organs, drugs, bacteria, dis-

eases, symptoms, diagnostic/therapeutic procedures and

phenomena.

Additionally, for each IMT and ACT document, Team

90 retrieved its MeSH headings. The information of

interest included descriptor names and identifiers, in

both their atomic and hierarchical form, with the latter

more closely representing the underlying structure of

MeSH. For IMT, Team 90 also manually constructed a

mapping from the 10 most frequent MI IDs (Molecular

Interaction Ontology concept identifiers) as found in the

training data to their corresponding MeSH descriptors.

IMT: Team 90 approached IMT from two different

angles. One was based on a commonly used multi-class,

multi-label document classification framework. The

other one involved translating the multi-class, multi-

label classification to a binary classification problem by

classifying an exhaustive set of pairs of PSI-MI syno-

nyms and text phrases (chunks) found in the docu-

ments. Team 90 experimented with Logistic Regression

(LR) and SVMs as underlying machine-learning methods

for the former and SVM only for the latter, which we

refer to hereafter as m-LR, m-SVM, and b-SVM, respec-

tively. For m-LR and m-SVM they trained a series of

binary classifiers, each corresponding to a single interac-

tion method, using the one-vs-all strategy. For each

model the positive instances constitute the documents

that are assigned the interaction method for which the

model is being built. The feature set used in training

included the type and text of named entities, words sur-

rounding the entities and the title of the section in

which the entities occurred, as well as information
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about whether word unigrams and character n-grams

from the MI definition and synonyms match those in

the surrounding context of the entities.

During classification, a document is scored by all the

models and the decision whether it should be assigned

an interaction method is based on a thresholding strat-

egy. Team 90 primarily experimented with two thresh-

olding strategies, the local (class-specific) score-based

optimisation strategy, as well as its more commonly

used variant, the global (one for all classes) strategy.

Both strategies assign a class to a document based

purely on the score between the two and a given (local

or global) threshold. Team 90 observed that the perfor-

mance of their systems was improved considerably using

the thresholding strategies when compared to applying

the nominal threshold (probability equal to 0.5 in the

case of LR, and distance to a hyperplane equal to 0.0 in

the case of SVM).

The b-SVM approach first explores noun phrases (NP)

and verb phrases (VP) in a document and collects those

that are approximately similar to an interaction method

name in the PSI-MI ontology. The strength of similarity

is determined by a string similarity measure. An

instance - a pair chunk-method - is considered positive

if the document the chunk is coming from is assigned

the interaction method in the pair. Team 90 trained an

SVM model by extracting a rich set of features from

each pair in the training data.

The features included the string similarity score, the

chunk’s adjacent words and named entities, information

about whether the named entities occur in the definition

of the method, the title of the section where the text

chunk occurs, and information whether the document’s

MeSH headings match the interaction method based on

the manually created mapping. The analysis showed that

the most valuable features were named entities.

Team 90 also created simple ensemble systems by tak-

ing combinations of unions and intersections of classifi-

cation outcomes produced by the above-mentioned

systems. As tested in a cross-validation setup, the three

highest performing ensemble systems were the union of

m-SVM and b-SVM, the intersection of m-LR and b-

SVM, and the intersection of all the three systems.

ACT: To get a better understanding of the task at

hand, Team 90 analysed a few randomly chosen positive

and negative sample abstracts from the training dataset,

in terms of whether the presence of certain attributes in

an abstract correlates with the assigned class (either

positive or negative). The attributes included protein

names, verbs or nominalised verbs around protein

names that signify protein interaction (involving more

than one participant), verbs or nominalised verbs near

protein names signifying protein modification (involving

only one participant), as well as protein-related and bio-

chemical-process-related MeSH headings.

The features used in machine learning included the

bag of words, named entities, protein context words (in

sentences that contain at least one protein) with posi-

tion information, and MeSH headings associated with

the document. Similarly to IMT, Team 90 adapted LR

and SVM classifiers. The analysis showed that the most

discriminative features were the bags of words followed

closely by protein contextual features and MeSH head-

ings, especially their hierarchical representation.

Team 92: Keith Noto and Charles Elkan (ACT)

Team 92 included the following members: Keith Noto,

Charles Elkan. The submission for the ACT of team

92 was the output from a system named PMAC

(PubMed Article Classifier) [66] that classifies and

ranks biomedical articles based on features extracted

from PubMed, and based only on positive training

examples. Because the submission was the result of a

fully automated system that needs no tuning of para-

meters, only one run was submitted. The PMAC sys-

tem is currently available free for public use at http://

www.cs.tufts.edu/~noto/pmac. It is based on a tool

developed with NIH funding to help maintain and

expand TCDB, the Transporter Classification Database

http://www.tcdb.org[67].

The PMAC system has wide utility because in many

article classification tasks, the only available labeled

examples are positive. Biomedical databases typically do

not provide examples of articles that are not representa-

tive of their domains of interest. PMAC uses a super-

vised classification algorithm to distinguish between

positive and unlabeled articles. The system then adjusts

the trained model mathematically to account for the

fact that a small fraction of unlabeled articles are actu-

ally positive; for details see Elkan and Noto, KDD 2008

[68]. The features that PMAC extracts from PubMed are

• Words in an article’s abstract,

• Words in its title,

• Author names and affiliations,

• Journal name and publication type,

• Chemical substances mentioned in the paper, and

• MeSH descriptor and qualifier names.

Users may select some of these feature groups to

exclude if desired, and they may select a subset of

journals from which to present articles. For each arti-

cle, the output of the classifier is the probability that

the article is relevant. For classification, one may

choose a threshold probability. Or, if the class imbal-

ance is known, PMAC returns the appropriate percen-

tage of test set articles (this is what Team 92 did for
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BioCreative III, ACT). Currently, PMAC uses an SVM

classifier with a linear kernel function, strength of reg-

ularization selected using cross-validation on training

data, and Platt scaling to estimate probabilities if

necessary. Feature weighting and feature selection are

not used. However, PMAC is compatible with any

supervised classifier that is capable of ranking articles.

The classification and ranking time of PMAC is custo-

mizable to a degree, because it depends on the size of

the training set and in particular on how many unla-

beled articles are included; the user may choose to

limit this number. In the BioCreative III article classifi-

cation task, Team 92 used approximately 10,000 unla-

beled articles and the classification and ranking was

done in about 17 minutes (not including article down-

load and feature extraction time, which may take

about 1-2 seconds per article, but need only be exe-

cuted once per article, and can be done separately

beforehand). The process of retraining and reclassify-

ing articles can take place periodically (e.g., overnight),

so that PMAC users can look for relevant articles

instantly as needed. Team 92 discusses the running

time further and show the superior accuracy of this

approach, in terms of precision and recall, compared

to hand-crafted rules in Sehgal et al., 2011 [69].

The PMAC system automatically extracts article fea-

tures from PubMed, so the only input needed is a set of

PubMed ID numbers. Users of PMAC do not need to

provide any features, nor do they need to understand

the features used by PMAC. Compared to other submis-

sions, there were two significant differences in the way

Team 92 used the training data provided for the Bio-

creative III article classification task. First, they did not

use the provided negative training instances (although

they did note the class imbalance). Second, they ignored

all the given training features, and used only features

extracted from PubMed by PMAC.

These differences presumably put the PMAC system

at a disadvantage, since it ignored a large amount of

relevant information. However, PMAC performed better

than the majority of participating systems, and achieved

F-score within a few percent of the F-score of the best

submitted run. Therefore Team 92 can recommend

with confidence that biomedical researchers looking for

an easy-to-use solution for classifying and ranking arti-

cles should try PMAC.

Team 100: Zhiyong Lu and Rezarta Islamaj Doğan (ACT,

IMT)

Team 100 included the following members: Zhiyong Lu,

Rezarta Islamaj Doğan, Aurelie Neveol, Minlie Huang,

Yi Yang. This team used machine learning for predicting

whether or not an article is about PPI in the ACT task.

In addition to the training and development data sets of

BioCreative III, Team 100 used similar data sets from

BioCreative II and II.5. A noticeable aspect of their

work is that in response to the class imbalance issue

(ratio of positive/negative instances was roughly 1 to 5

in the BioCreative III development set), they recruited

additional negative instances by including MEDLINE

articles that are similar to the existing negatives using

PubMed related articles [70,71]. Their principle learner

for machine learning is an SVM like classifier that uses

modified Huber loss function for handling large-scale

data [56]. In terms of features Team 100 experimented

with various kinds, ranging from words to neighborhood

documents. They first learned separate models for each

feature type and then merged the results of different

features when making final predictions. Team 100 sub-

mitted a total of four offline runs. They investigated

three types of word-based features with or without fea-

ture selection. In addition to the traditional bag-of-

words and bigrams (two consecutive words), this team

extended bigrams to any two co-occurring words in the

same sentence (co-occurring words). The 4th feature

type is a set of character strings of length 8 generated

by shifting an 8-character window from the beginning

of a sentence to the end. For all these feature types,

stop words were retained. In particular, stop words were

found useful in bigram features (e.g. interacting with).

When feature selection was applied, Team 100 itera-

tively evaluated the importance of each individual fea-

ture through examination of their weights and

subsequently removed 1,000 features with the lowest

weights (i.e. closest to zero). In the 1st run, only the

bag-of-words feature was used along with feature selec-

tion. In their 2nd and 3rd runs, the bigrams, co-occur-

ring words and strings-of-length-8 features were used

individually to yield three separate prediction results. In

making the final prediction, a test article was predicted

to be PPI relevant if and only if all three individual pre-

dicted classes were positive. Feature selection was used

in the 3rd run, but not in the 2nd. In the 4th run, Team

100 combined 4 scores, two of which were produced by

the machine learner using the bag-of-words and bigrams

features. Two additional scores were computed: One is

based on the similarity scores of a test document to its

10 closest neighbors. Specifically, the 10 scores were

separated into two groups, indicating either a positive or

negative relation to PPI among those neighboring docu-

ments. This team summed the scores of each group and

used their difference as a score in the 4th run. The

other score is based on the pattern matching method

previously developed for detecting PPI methods (e.g.

pull down) in the IMT task. Pattern matching was

applied to an article’s title and abstract and the number

of PPI methods retrieved was used as a feature score.

All four scores were fed to a log-linear model in produ-

cing a final prediction in the 4th run. Their results on
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the official test set show that they achieved the highest

F-score of 59.49% and MCC of 0.527 in Run 2 while the

best AUC iP/R of 63.75% was achived in Run 4.

Team 100 used two separate approaches (knowledge-

and learning-based) for the IMT task. They designed

and conducted their experiments mainly on the Bio-

Creative III data. This group also used BioCreative II

data and additional annotations from the MINT data-

base, resulting in a total of 3,764 additional articles with

PSI-MI codes. For all these articles, title and abstract

text were extracted. Furthermore, when full text was

freely available from PubMed Central, figure captions

and text from material and methods sections were also

extracted. In the knowledge-based approach, Team 100

investigated three individual methods and their perfor-

mance on different text sections when applicable. The

three methods are respectively based on directly match-

ing PSI-MI terms and synonyms (Pattern Matching), on

retrieving similar PSI-MI codes from neighboring docu-

ments (Nearest Neighbors), and on inferring PSI-MI

codes from corresponding Medical Subject Headings

(MeSH) indexing terms (MeSH to PSI-MI). Based on

the results on the BioCreative III training data, Team

100 observed that prediction performance varied signifi-

cantly from method to method for a given PSI-MI code.

Therefore, their knowledge-based approach is code-spe-

cific: for each code Team 100 selected the best-perform-

ing method. For instance, the pattern matching method

was selected for molecular sieving (MI:0071) while near-

est neighbors method for two hybrid (MI:0018). Their

novel learning-based approach formulates the prediction

of PSI-MI task as a ranking problem such that the rele-

vant codes should be ranked higher than those irrele-

vant ones. In the IMT task, for a target document Team

100 first obtained a pool of candidate codes from its

similar neighboring documents. Next, for ranking, each

code was represented by a vector of features, which ran-

ged from word features (e.g. name feature indicating if a

code name can be found in an article) to neighborhood

features (e.g. how many neighboring documents are

assigned a particular code). The ranking algorithm they

applied is a listwise learning-to-rank algorithm named

ListNet [71] because it naturally fits the problem in that

each article typically contains a list of relevant codes (as

opposed to one per document). Team 100 optimized the

learning function by conducting cross validation experi-

ments on the BioCreative III training and development

sets. Finally, the ListNet algorithm produced a score for

each candidate code and they empirically determined

the top K ranked codes to be the answers of the target

document. This team submitted five offline runs. The

first run was based on the knowledge-based approach.

In the second run, they combined the pattern matching

and nearest neighbor methods by selecting PSI-MI

codes from neighboring documents if the PSI-MI codes

were also retrieved by pattern matching. The third and

fourth runs were both based on the learning approach

with the minor difference in K (K is always 3 for run 3;

K varied depending on a score threshold in run 4). Run

5 of this group was optimized for precision by combin-

ing the results of Runs 2 and 3. Official results on the

test set show that their first run yielded the best perfor-

mance from all submissions of Team 100 (0.478 in F1-

score when evaluated on the whole document set), indi-

cating that it is somewhat helpful to choose methods

based on individual PSI-MI codes.

Team 104: Jean-Fred Fontaine and Miguel A. Andrade-

Navarro (ACT)

Team 104 included the following members: Jean-Fred

Fontaine, Miguel A. Andrade-Navarro. Medline Ranker,

implemented by Team 104, is a fast document retrieval

tool that classifies the biomedical scientific bibliography

in the MEDLINE database according to any selected

topic. It applies a linear Naïve Bayesian classifier

(LNBC) on scientific abstracts with a high processing

speed (approximately 18000 abstracts per second) and a

high precision [72]. The Medline Ranker web server

http://cbdm.mdc-berlin.de/tools/medlineranker offers

alternative query mechanisms through PubMed queries,

MeSH terms or custom PubMed identifier (PMID) lists.

In particular, it allows the selection of a training set, a

background set, and a test set represented as PMIDs,

which Team 104 used for the PPI abstracts classification

task (ACT) of the BioCreative III challenge. To favour

the speed and flexibility of the Medline Ranker system

Team 104 focused its implementation on data pre pro-

cessing and storage [72]. The complete XML version of

MEDLINE is stored locally and weekly updated. English

abstracts are stored in a MySQL database after part-of-

speech processing used to define an abstract’s profile as

its set of nouns. A stop word list is used to remove

common and non meaningful terms. Multiple occur-

rences of nouns in a single abstract are not taken into

account [72,73]. A user’s request for classification of a

query set of abstracts requires the definition of a train-

ing set of abstracts and to choose a background set of

abstracts. Upon a query, first, a LNBC is trained on the

training set of abstracts by comparing their profiles to

those of the background set of abstracts. Secondly, the

abstracts in the query set are scored with the trained

LNBC and P-values (based on a simulation on 10 000

randomly chosen abstracts) are associated to abstracts

representing the confidence in classification. For the

BioCreative III challenge, P-values were transformed in

scores by subtracting the P-value to 1, after truncation

of the P-value to ]0,1[. Medline Ranker uses for abstract

classification only words from abstracts and therefore it

does not depend on the quality or comprehensiveness of
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external data or annotations (i.e. MeSH or Gene Ontol-

ogy terms). To produce fair results, Medline Ranker was

used to process BioCreative III PPI ACT task data by

training its algorithm and tuning the parameters only on

the provided training set. Even if not as accurate as

SVM classifiers, training a LNBC is significantly faster

and it allows the tool to process millions of abstracts

with comparable performance in a practical time [73].

For the PPI ACT task, the mean Medline Ranker run

total duration was 1.29 seconds to process 8280

abstracts. Notably, the running time also depends on

the MySQL search engine used for data access. Even if

not specialised in the topic of PPI (e.g. using specific

information extraction methods), the tool may be of

interest in this task because it is freely available on the

Internet and it can scan the ever growing scientific lit-

erature in a few minutes.

Discussion

ACT

Given the performance of systems, for example high-

AUC-iP/R servers, it is likely that humans could make

use of the results to quickly identify the most relevant

articles in a set. Therefore, the time spent by the text

mining pipelines should be put in contrast to the time a

human would need to select relevant articles. This exact

time will be established in future work with the annota-

tors and curators who provided the Gold Standard. We

have shown reasonable indications that online, auto-

mated systems could have a strong impact on reducing

the time required to locate relevant articles. This aspect

of quantifying automated versus manual classification

effort constitutes a complementary approach to mea-

sures of performance explored in the popular TREC

Genomics tracks, such as the mean average precision

(MAP), which measures precision after each relevant

document is retrieved for a given query [24].

As described in the data preparation section, during

the manual classification of abstracts, the MyMiner sys-

tem allowed the use of positive and negative keyword

highlighting to improve text visualization. These terms

were generated through inspection of instances during

the training set construction and contained 374 negative

and 73 positive terms. In order to determine whether

they are actually present in the test set, we used all

words in the test set collection, stemmed them, removed

stopwords and generated unigrams and bigrams. Then

the occurrences of each term (both unigrams and

bigrams) were computed and their their frequencies

using the Kullback-Leibler (KL) divergence were com-

pared (smoothing 0 to 0.000001 and 1 to 0.999999). The

corresponding formula is calculated by: pos · log(pos/

neg) + neg · log(neg/pos); where pos and neg are the fre-

quencies of documents containing the term in the

negative and positive sets. When analyzing the 3,000

most significant terms resulting from this computation

and comparing them to the set of terms used for man-

ual highlighting, only 17.0% (361) of the manually

defined negative terms were encountered in the top

3,000 terms as opposed to 61.5% (52) of positive terms.

This illustrates that in general there is a greater textual

diversity within the non-PPI relevant articles and that

finding positive keywords and features that could be

used for highlighting to improve manual inspection is of

greater practical value.

Additionally, we examined articles that were difficult

to classify correctly by automated systems. This analysis

was based on the number of runs predicting incorrect

labels on an article and shows how the agreement

between automatic runs could actually be useful to

detect wrong manual classifications. A total of 99

records had been predicted by more than 80% of the

runs incorrectly, out of which 74 records corresponded

to false negative records (labeled true by the annotators)

and 26 corresponded to false positive cases (labeled

false). Examining the latter showed that 16 of these 26

cases were incorrectly labelled by the annotators, and

were in fact true PPI articles as indicated by the run

agreements. Some of these wrongly labeled cases corre-

sponded to abstracts describing oligomerization of DNA

binding proteins and other cases where it was difficult

to distinguish between an actual macromolecular struc-

ture (e.g. some channel) and an individual protein form-

ing this structure. Also, cases of very specific subtypes

of interactions (phosphorylation, acetylation and ubiqui-

tination) were more difficult for manual labeling. In case

the predictions were real false positives (i.e., correctly

labeled), they could be assigned to some general exam-

ple cases: (1) interactions between proteins and RNA, e.

g. PMID:19447915, (2) between proteins and cellular

structures (especially cell membrane, e.g.

PMID:19690048), (3) complexes of proteins with inhibi-

tor molecule compounds, e.g. PMID:19458048, (4) pro-

tein-DNA binding, e.g. PMID:19605346, (5) protein-

compound binding (e.g. lipopolysaccharide), (6) men-

tions of components of a complex but without detailing

PPIs, (7) genetic interactions and transcriptional activa-

tion, e.g. PMID:19596907, (8) interaction of a particular

residue with some ion, (9) regulatory relations (phos-

phorylation dependent on certain protein) where it is

not clear if an actual direct PPI is described and (10)

relations between a pathway or signaling process and a

phosphorylation event. Sometimes, several of these

topics were found in a single abstract. In addition,

among the false positives were abstracts dealing with

descriptions of the spliceosome and general ubiquitina-

tion events. Interestingly, a number of these types of

false positives were precisely the cases that had to be
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refined when preparing the annotation guidelines and

had been specifically added as criteria for classifying

abstracts as non-relevant for manual annotation during

the initial rounds of annotation refinement. Looking at

the records classified as false negatives (by at least 80%

of the runs) it became clear that many of these records

corresponded to abstracts discussing aspects related to

host-pathogen interactions, inflammation and immune

mechanisms. Unclear cases, even for humans, included

associations of proteins with lipoproteins, certain types

of breakdown or cleavage of proteins, descriptions of

chimeric proteins and experimentally tagged fusion pro-

teins. Commonly missed records included cases of a

receptor protein binding to a ligand protein. This parti-

cular topic was also added during the annotation guide-

line refinement upon a request made by the expert

curator, where a specific question was whether the men-

tion of ‘insulin receptor’ corresponds to an implicit

interaction of insulin with the insulin receptor. Among

the false negative set are ambiguous cases that mention

a heterodimer but where it was not very clear who the

binding partner is, or records with very limited context

information requiring domain expert knowledge to

determine that a given protein pair mentioned is

involved in a complex.

Overall participating teams used a variety of different

features, many of them for training machine learning

approaches. Among the explored features one can point

out:

1) Word token features: unigrams (Bag-of-words),

multi-word n-grams (mainly bigrams and trigrams), col-

locations/co-occurring words (word-to-word

relationships).

2) Lexical features: exploiting the presence of particu-

lar term lists such as MeSH, PSI-MI, UMLS, BioLexi-

con, or in house term lists, or filtering a set of words

using stop word lists.

3) Textual pattern features: use of particular patterns

for expressing protein interactions, some of which had

been also applied for finding protein interaction pairs in

BioCreative II and II.5 (e.g. ‘interacts with’, ‘binds to’).

4) String features: using character strings of particular

length like strings-of-length-8 tokens used by team 100.

5) Syntactic features: using dependency parser output,

grammatical patterns or shallow parsing derived phrases

as features.

6) POS tags as features: selecting words with a particu-

lar POS tag as features for a classifier (as done by team

104).

7) Article metadata features: metadata provided for

each PubMed record (journal, MeSH annotation, author

name or affiliation fields).

8) Semantic features (NER): Named entity recognition

has been used to identify mentions of genes and

proteins, which can be used as features or serve as con-

straints for grammatical patterns. This feature seemed

to be particularly important for specificity.

IMT

In case of the interaction method task, considerable

complexity lies in differentiating between cases where a

particular method supports a protein interaction event,

as opposed to some other experimental setting where

that method is being used, and therefore goes far

beyond simple term look-up. Providing more detailed

training data in form of representative collections of tex-

tual evidence passages or marked method mentions

would be important to facilitate further the improve-

ment of performance of text mining tools for associating

correctly full text article to interaction detection method

terms from a list of 115 potential candidate terms.

Under this scenario the overall performance of the best

result on the entire set of articles (F-Score 55%, AUC

iP/R 35%, MCC 0.54) is quite promising, but also points

out that totally automated annotation of interaction

methods is not yet solved, and that the resulting strate-

gies would be more appropriate as systems aiding in the

manual curation process by suggesting method terms

based on highlighting of potential evidence passages.

The short time needed by the servers makes it seem

reasonable that online, automated systems could be

used for this task.

A considerable fraction of the allowed method terms

appear with low frequency in all three data sets. This

makes it particularly difficult to detect such methods by

supervised methods due to the lack of sufficiently large,

representative training data. On the other hand, some

methods are more relevant for the curation process and

account for a considerable amount of annotations. We

therefore carried out a more granular analysis, examin-

ing the performance of each run with respect to indivi-

dual methods, determining those runs (systems) that are

most competitive for each of the relevant interaction

detection methods (see Figure 5, a more detailed plot

on the method distributions is provided in the supple-

mentary material section - additional file 3). When look-

ing at the average F-scores obtained for each method

across all runs, it becomes clear that the identification

of some methods is more difficult than others. Among

the ‘easier’ methods terms across all runs are MI:0107

(surface plasmon resonance, average F-score of 61.6%),

MI:0055 (fluorescent resonance energy transfer, average

F-score of 54.2%) and MI:0018 (two hybrid, average F-

score of 50.7%). In case of the maximum F-score

obtained by participants, the most competitive results

were obtained also for MI:0107 (maximum F-score

90.0% by team 89, run 1), followed also by MI:0055

(maximum F-score of 87.0% by team team 70 run 2)
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and MI:0676 (tandem affinity purification, maximum F-

score of 80.0% by team 70, run 1). On the other side,

some of the method terms seemed to be especially diffi-

cult to detect, including MI:0029 (cosedimentation

through density gradient, average F-score of 0.780% and

maximum F-score of 14.0%), MI:0405 (competition

binding, average F-score of 3.10%, maximum F-score of

23.1%) and MI:0004 (affinity chromatography technol-

ogy, average F-score of 3.93%, maximum F-score of

40.0%). For all of these three methods, the best runs

obtained results that are considerably better than the

average. Note that all of these methods are actually

types of experiments that can be also mentioned in

other contexts not related to PPI characterizations. This

implies that they are only supporting PPI experiments

under special contextual circumstances. Improvements

of predictions for some of the methods are still neces-

sary, but notably for 9 out of the 19 most relevant

method terms there was at least one run with an F-

score over 70%.

Examining in more detail those strategies used by runs

that outperformed other predictions (see Figure 5), we

can see that their success heavily depended on the

actual (a) interaction method type, (b) the specificity of

the method for characterizing PPI versus other experi-

mental settings, and (c) how representative the lexical

resources provided by the PSI-MI ontology were for

referring to the method in the articles. It is possible to

summarize these approaches into the following

strategies:

1. Dictionary expansion strategies

1.1 Lexical enrichment by integrating additional ter-

minology based on manual inspection of the training

data This approach was used in case of the best predic-

tion for method MI:0416, where in addition to the offi-

cial PSI-MI concept ‘fluorescence microscopy’ and the

Figure 5 IMT predictions for relevant method terms. This figure shows the average F-score (blue) across all runs obtained for test set

predictions using PSI-MI interaction detection method terms with at least 5 annotations. Also the best F-score (red) obtained by an individual

run is provided.
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synonym ‘fluorescence imaging’ commonly known syno-

nyms were included in the PSI-MI dictionary, such as

the term ‘immunofluorescence staining’. Some teams

also relied on domain experts to add manually addi-

tional synonyms based on their background knowledge.

1.2 Lexical enrichment by cross ontology mappings In

order to generate a lexical expansion of the original

interaction method ontology, one strategy was manually

mapping between PSI-MI terms and MeSH identifiers,

using the resulting relations as features to train super-

vised classifiers. Another approach consisted of first

selecting a particular subset of UMLS concept types,

and then finding those concepts that shared a name

with a term in the PSI-MI ontology and adding the

resulting UMLS concept synonyms to the interaction

method term dictionary.

1.3 Rule based lexical expansion independent of

training data A range of teams tried to improve the

recall of their methods by automatically adding typogra-

phical and lexical variants to the original set of method

terms, considering alternative use of hyphenation, capi-

talization, uppercase/lowercase usage, alternative equiva-

lent numeric expressions (arabic, roman and word

numerals), substitution by synonymous words, and con-

sideration of acronym and expanded long forms.

2. Feature generation, extraction and selection strategies

2.1 Detection of words, bigrams and collocations asso-

ciated to ontology terms derived from training data

Another approach to increase the recall of detecting

associations between documents and MI ontology terms

was based on the initial extraction of n-grams and collo-

cations from the collection of training documents, fol-

lowed by the calculation of the probability of a method

given a particular n-gram or collocation. This strategy

seemed to help boosting the results obtained by team 65

in case of the terms MI:0405 (competition binding) and

MI:0029 (cosedimentation through density gradient).

2.2 Exploitation of exact and partial word tokens

found in the method terms For many methods there is

only a relatively poor association between the exact or

partial name of the interaction detection method and

whether the name indicates that the detection method

was used in a PPI context. Nevertheless in some cases,

exact, partial or merged tokens building the method

term can be used by machine learning algorithms as fea-

tures for scoring method-document associations. For

instance in case of MI:0006 (anti bait coimmunoprecipi-

tation) and MI:0096 (pull down), team 69 could detect

several features with a strong positive correlation to

these methods corresponding to both the exact and par-

tial name of the method. In case of MI:0006 positive

features included the partial stemmed tokens ‘precipit’

and ‘immunoprecipit’ while for MI:0096 the merged

token ‘pulldown’ and the exact token ‘pull’ show a

relatively strong positive association. Team 90 on the

other hand exploited the usage of matches between

word unigrams and character n-grams (n={2,3,4}) from

the PSI-MI definition and synonyms.

2.3 Use of machine learning approaches exploiting

features with strong positive or negative correlation

with respect to a particular method Machine learning

systems are not only able to exploit tokens forming

method terms, but also tokens derived from documents

provided as training data in order to predict ontology

terms for a given input article. Considering the predic-

tion of team 69 for MI:0424 (protein kinase assay), the

strongest notable positive features are the stemmed

tokens ‘vitro’, ‘phosphoryl’, ‘kinase’ and ‘juxtamembrane’.

The token ‘kinase’ is the only feature that relates to the

name of the detection method, and all but ‘juxtamem-

brane’ are relatively common terms. The only notable

negative features for this interaction method are the

stemmed tokens ‘monom’ and ‘migrat’, which are also

relatively common terms. These results also show that

sometimes the significance of some features is not parti-

cularly transparent in terms of human interpretation.

3. Pattern matching and rule based approaches

Capturing variations of interaction method expressions

can be addressed by using regular expression matches

and heuristics. In case of team 100, their prediction for

MI:0004 (affinity chromatography technology) required

that both their pattern-matching and kNN method gen-

erated a positive hit. In case of the pattern-based

approach a set of additional tokens were required to be

not co-mentioned in order to distinguish this term from

MI:0676 (tandem affinity purification). Their pattern for

extracting MI:0004 was:

IF sentence contains “affinity” AND

“chromatography” AND “purification”

IF sentence contains “tandem” OR

“tap”

assign MI:0676 ELSE assign

MI:0004

Our database curator collaborators have suggested

that it could be meaningful to carry out a grouping of

equivalent methods that are experimentally related. For

instance the terms MI:0006 (anti bait coimmunoprecipi-

tation), MI:0007 (anti tag coimmunoprecipitation),

MI:0019 (coimmunoprecipitation), MI:0858 (immunode-

pleted coimmunoprecipitation) and MI:0676 (tandem

affinity purification) could be grouped under the term

MI:0004 (affinity chromatography technology) for analy-

sis purposes, or MI:0028 (cosedimentation in solution)

and MI:0029 (cosedimentation through density gradient)

could be grouped under MI:0027 (cosedimentation).

Unfortunately, the ontological structure of PSI-MI itself

does not directly provide sensible groupings and it

would require extensive manual classification and
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discussions among different curators to generate a

proper consensus on accurate method groupings.

Conclusions

The PPI tasks of BioCreative III tried to address relevant

aspects for both database curators as well as general

biologists interested in improving the retrieval of inter-

action relevant articles and association of ontology

terms and experimental techniques to full text papers.

Large training, development and test set collections

were provided to participating teams and these publicly

available corpora should represent a valuable resource

for future implementations and evaluations of biomedi-

cal text mining. From the results obtained, it seems that

classification of PPI relevant abstracts using participating

systems is able to improve the selection of relevant arti-

cles for database curators and biologists, both in terms

of number of items that need to be reviewed as well as

in terms of time saving. In order to derive practically

useful applications from this task, the systems need to

be at least accessible online. Combining the different

runs for the ACT resulted in a consensus system with

better performance than the best individual run, an

aspect that already motivated the implementation of the

BioCreative Meta-Server infrastructure [40]. We pre-

sented a detailed analysis of curator classification times

and agreement between human annotators for the arti-

cle classification task, which allows to estimate better

the theoretical performance limit of text mining systems.

It remains for the future to carry out this type of analy-

sis in more complex scenarios, for instance, based on

the individual steps followed in biological annotation

workflows like the one used by interaction databases,

and quantify the effect of integrating text mining mod-

ules in terms of curation efficiency measured in time

units or annotation records over some baseline manual

annotation. To focus in the future on particular types of

interactions such as phosphorylation relations, or parti-

cular protein functional types (kinases or phosphatases)

could be interesting for data consumers.

In summary, current state-of-the-art systems are likely

to have a significant impact on simplifying (but not

completely automating) the manual process of article

selection and could potentially be adapted not only to

score individual articles, but also to determine the most

relevant journals for each biocuration type. The initial

setting of this task had to be slightly modified to make

resulting systems more practically relevant. Analyzing

records from one month of PubMed abstracts with links

to free full text articles (which can be considered the

first level approach) resulted in a collection that only

covered a minor fraction of PPI relevant journals. Far

less than 5% of the records were PPI relevant in general,

and even a smaller set was PPI annotation relevant, as

most articles are related to the clinical domain.

In case of the IMT, participating systems did signifi-

cantly better than a baseline term-lookup approach. The

main difficulties for this second task arise from the

many different ways of describing a given experimental

method, handling PDF articles, and the heterogeneous

journal composition. From the analysis of strategies

used for the IMT and the performance obtained for

individual methods, it seemed that certain techniques

were more efficient for certain terms, which makes

sense under the assumptions that some of the terms can

be better identified using pattern based approaches,

while others can be better detected using machine learn-

ing or using some sort of expanded lexical resources.

Moreover, some method terms are very general and can

be used in other contexts that are not PPI relevant.

Note that a number of method terms/acronyms are also

highly ambiguous (e.g. ‘2H’ or ‘CD’). Providing more

complete lexical resources of method terms by the PSI-

MI ontology developers could also have a positive

impact on automated systems. Another challenging

aspect, even for database curators, is the complexity in

mapping annotations to the right granularity of terms in

the ontology. The distances in the ontological structure

can not be used to produce meaningful scores for calcu-

lating semantic similarities between terms in the PSI-MI

ontology. A proposal to overcome this issue is based on

grouping method concepts together that are equivalent

in terms of annotation purposes. This interesting strat-

egy of a more coarse-level annotation nonetheless

requires a considerable manual effort in deriving such

method groupings, which illustrates that having evidence

passages derived from the text for the annotations

would aid the human interpretation of the assigned

experimental qualifiers for PPIs. Additional file 4 pro-

vides an overview of external tools used by participating

teams.

Performance will certainly increase with the amount of

readily available training data and as more interest in

this particular area of entity types is raised. Further

improvements of the task data settings would require to

provide participating teams with data at the level of

large representative collections of support textual state-

ments (e.g. individual evidence sentences) and true

negative statements, in addition to a better set of syno-

nyms for the concepts, both of which could in principle

be provided as byproduct of the biocuration process.

Another option for future settings would be to distin-

guish between closed and open predictions, i.e. those

that only use the provided training data and those that

make use of external resources for generating their pre-

dictions respectively, something that had been
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considered in BioCreative I [74]. Carrying out the article

classification task on the same collection of abstracts vs.

full text articles could illustrate the advantage of using

one document type versus the other.

On the positive side, the relatively good performance

(with respect to the global results) of the online team

(89) combined with their very competitive server anno-

tation times (3.7 sec/article) clearly demonstrates that

online, high-quality BioNLP can be implemented in

ways where processing times are acceptable to serve

end-users on demand. Other systems were also able to

provide predictions in a competitive time frame, for

instance for the ACT, team 104 completed the predic-

tions in 1.29 seconds, while team 89 required only 2

seconds per article. In case of the IMT, predictions took

on average 120 seconds per full text article for team 69,

but their system is designed to allow batch processing

on a multi-CPU server which would improve their effi-

ciency. Team 89 needed approximately 4 seconds per

article for the same task.

The PPI databases BioGRID and MINT contributed to

the data preparation of BCIII with the aim of promoting

the development of more efficient text-mining tools

that, taking advantage of ad hoc curated datasets and

databases, would in return result in systems that could

assist their biocuration workflows. The development of

such tools will be critical for the future of biological

databases to keep up the pace with information pub-

lished in the literature. Text-mining tools should thus

be able to help in the selection of the relevant literature

and in the annotation process itself. It is also clear that

successful integration of such systems into database

annotation pipelines can be achieved only by close colla-

boration with biological databases, tuning the systems

towards particular specifications demanded by curators,

ultimately serving the general biological community in

terms of improved information access. In case of the

PPI tasks of BioCreative III, it would be valuable for

biologist end users to have a customizable e-mail alert

system of PPI relevant abstracts for user specified

queries or journals as well as a system that allows

uploading PDF full text articles, returning a ranked list

of interaction detection methods together with evidence

passages. A closer examination of the evidence sen-

tences provided by participating teams for the IMT

would be interesting in the future, in combination with

some highlighting within the article context to make

human interpretation easier.

Table 7

Name Type URL Summary

MALLET ML [48] Framework for feature extraction, logistic regression models and inference

SVMPerf ML [83] Support Vector Machine software for optimizing multivariate performance measures

Weka ML [64] Collection of machine learning algorithms for data mining, useful for feature selection

LIBSVM ML [84] Software for support vector classification

Matlab ML [85] Data analysis, and numeric computation software

Liblinear ML [86] Linear classifier software

MEGAM ML [87] Software for maximum entropy model implementation

C&C CCG
parser

NLP [55] Parser and taggers are written in C++

TreeTagger NLP [88] Part-of-speech tagger (trained on PENN treebank)

SNOWBALL NLP [89] Stemming program

NooJ NLP [90] Corpus processing and dictionary matching

Lucene NLP [53] Full-featured text search engine library

LingPipe NLP [91] Tool kit for processing text using computational linguistics

PSI-MI Lexical [46] Molecular Interaction Ontology used by PPI databases

UMLS Lexical [47] Unified Medical Language System which contains a large vocabulary database about biomedical and health-related
concepts

MeSH Lexical [92] Vocabulary thesaurus used for indexing PubMed

ChEBI Lexical [93] Chemical Entities of Biological Interest

BioLexicon Lexical [52] Terminological resources integrating data from various bioinformatics collections

Stop words Lexical [44] Collection of words that are filtered out prior to processing of natural language data

NLProt BioNLP [94] SVM-based tool for recognition of protein-names in text

OSCAR3 BioNLP [95] Tool for recognition of chemical name mentions in text

ABNER BioNLP [60] Bio-Named entity recognition (proteins, genes, DNA, etc.)
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Additional material

Additional file 1: ACT annotation guidelines. Basic classification

criteria for PPI abstracts.

Additional file 2: ACT example run. iP/R curve of the best team (73, S.

Kim and W. J. Wilbur) in the Article Classification Task. Circle 1: Of the top

2% (130) of all results, approx. 90% (120) are relevant abstracts. Circle 2:

To find half (295) of all relevant abstracts (Recall around 50%), a human

going over the ranked list only has to look at the first 7% (421) of all

results; and approx. 2/3 (Precision around 70%) of those abstracts will be

relevant.

Additional file 3: IMT method distribution. Distribution of interaction

detection methods across the different IMT data sets.

Additional file 4: Overview of tools and resources. Collection of

external tools and resources used for the PPI tasks by participating

teams.
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