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The protein threading problem with sequence amino acid
interaction preferences is NP-complete

Richard H.Lathrop

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

In recent protein structure prediction research there has
been a great deal of interest in using amino acid interaction
preferences (e.g. contact potentials or potentials of mean
force) to align ('thread') a protein sequence to a known
structural motif. An important open question is whether a
polynomial time algorithm for finding the globally optimal
threading is possible. We identify the two critical conditions
governing this question: (i) variable-length gaps are admit-
ted into the alignment, and (il) interactions between amino
acids from the sequence are admitted into the score func-
tion. We prove that if both these conditions are allowed
then the protein threading decision problem (does there
exist a threading with a score ^K?) is NP-complete (in the
strong sense, i.e. is not merely a number problem) and the
related problem of finding the globally optimal protein
threading is NP-hard. Therefore, no polynomial time algo-
rithm is possible (unless P = NP). This result augments
existing proofs that the direct protein folding problem is
NP-complete by providing the corresponding proof for the
'inverse' protein folding problem. It provides a theoretical
basis for understanding algorithms currently in use and
indicates that computational strategies from other NP-
complete problems may be useful for predictive algorithms.
Key words: contact potentials/inverse protein folding/NP-com-
plete/protein structure prediction/protein threading/sequence-
structure alignment

Introduction

The protein folding problem is to start from a string giving
the protein's amino acid sequence and compute its correctly
folded 3-D protein structure. It is an important problem because
proteins underlie almost all biological processes and their
function follows directly from their 3-D folded shape. Its
importance is escalating rapidly due to the rapid increase in
the number of sequences becoming available compared with
the slow growth in the number of experimentally determined
3-D protein structures. The direct approach to protein folding
seeks to find the folded conformation having minimum energy.
This is difficult because (i) a folded protein results from the
delicate energy balance of powerful atomic forces and (ii) the
vast number of possible conformations poses a formidable
computational barrier. The forces involved are often poorly
understood or difficult to model accurately, and include stabiliz-
ing and destabilizing terms making large contributions of
opposite sign summed over a very large number of atoms
(Creighton, 1983). The computational burden of the direct
approach has been shown to be NP-hard (widely assumed to
require an exponential amount of time) even on simplified
lattice models, with respect to either (i) finding minimum
energy conformations or (ii) meeting endpoint and conforma-
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tion (e.g. secondary structure) constraints (Ngo and Marks,
1992; Fraenkel, 1993; Unger and Moult, 1993).

One important alternative approach is to use the known
protein structures as (i) spatial folding templates, (ii) additional
knowledge about protein structure and (iii) constraints on
possible folds. This is a powerful strategy because folded
proteins exhibit recurring patterns of organization. Chothia
(1992) estimates that there are only -1000 different protein
structural families. In this approach, each known protein
structure (or family) 'recognizes' the protein sequences likely
to fold into a similar structure. Because it starts with structures
and predicts sequences instead of starting with sequences and
predicting structures, it is often referred to as the 'inverse'
folding problem. In its fully general sense it includes ab initio
design of protein sequences to achieve a target structure (Pabo,
1983), but we shall restrict attention to folding given native
sequences. The known structure establishes a set of possible
amino acid positions in 3-D space (perhaps the spatial locations
of its main-chain a carbons). 'Recognition' is mediated by a
suitable score function. An alignment between spatial positions
and sequence amino acids is usually a by-product of the
recognition step. The sequence is given a similar 3-D fold by
placing its amino acids into their aligned spatial positions.
[Further techniques are necessary to correctly place the variable
loop regions (Greer, 1990; Zheng et ai, 1993) and position
the side chains (Desmet et al., 1992), but the focus of this
paper is on predicting and placing the conserved fold.] The
process of aligning a sequence to a structure and thereby
guiding the spatial placement of sequence amino acids is
referred to as 'threading' the sequence onto the structure
(Bryant and Lawrence, 1993). 'A threading' means a specific
alignment between sequence and structure (chosen from the
large number of possible alignments). In this way 'threading'
specializes the more general term 'alignment' to refer specific-
ally to a structure (considered as a template) and a sequence
(considered as being arranged on the template).

Initially, such methods employed primary sequence string
similarity between the candidate sequence and the native
sequence of the structure to perform the threading ('homology
modeling' or 'homological extension'). Computing the
sequence similarity yields a direct alignment of amino acids
in the sequences of the candidate and structure (Sankof and
Kruskal, 1983), and hence their spatial positions. In cases
where the sequence similarity is high this is still the most
successful protein structure prediction method known, but it
is of limited general use because few sequences have high
primary sequence similarity to another whose structure is
known. Recently, however, researchers have been able to
extend the match process beyond primary sequence similarity
and align a sequence directly to a structure.

These new approaches exploit the fact that amino acid types
have different preferences for occupying different structural
environments (e.g. preferences for being in a-helices or (3-
sheets, or for being more or less buried in the protein interior).
Additionally, some of the new approaches also exploit the fact
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that there appear to be distinct preferences for side-chain
contact (e.g. contact potentials; Maiorov and Crippen, 1992),
or more generally for spatial proximity (e.g. potentials of mean
force; Sippl, 1990, 1993), as a function of those environments.
For example, a buried charged residue may be more likely to
be adjacent to another buried residue of opposite charge. These
interaction preferences have been quantitated statistically (e.g.
Miyazawa and Jernigan, 1985). They can be used to produce
a score function reflecting the extent to which amino acids
from the sequence are located in preferred environments and
adjacent to preferred neighbors. The known protein structures
can be represented in a way that makes explicit the structural
environments at each position, as well as the spatially adjacent
structural positions. This done, the sequence can be threaded
onto the structure by searching for a threading which optimizes
the score function and hence maximizes the degree to which
environment and adjacency preferences are satisfied. This has
been a very active area of recent research, in part because it
has been somewhat successful, and various scoring schemes
and threading algorithms have been proposed.

Before proceeding it is necessary to separate carefully the
different approaches to protein threading that have been
explored in the literature and to state clearly the problem we
address. The common theme to all threading proposals is the
supposition that: (i) the known structure provides a set of
positions in 3-D space; (ii) these will be filled by amino acids
from a sequence of unknown structure; (iii) different candidate
threadings arise from different structures, different sequences
and different possible alignments of structure positions and
sequence amino acids; and (iv) a score function (often statist-
ical) can distinguish good from bad threadings.

For the purposes of this paper we will assume that the
structure and the sequence are fixed in advance. We will
examine in detail the role of the different possible alignments
and the score function.

It will turn out that the critical conditions governing computa-
tional complexity are whether or not: (i) variable-length gaps
are permitted in the alignments; and (ii) the score for placing
a sequence amino acid into a given structural position depends
on the specific amino acid types from the sequence being
threaded that are placed into neighboring (interacting) structural
positions.

The variable-length gap condition arises if one wants to
reflect genetic insertions and deletions. The score function
condition arises if one wishes to reflect amino acid preferences
for side-chain contact or spatial proximity based on the
sequence amino acids proposed to actually occupy the spatial
positions.

We will show that any formulation of protein threading
which allows both these conditions is NP-complete and neces-
sarily leads to an NP-hard search for the optimal threading. It
is insufficient merely to observe that the problem's search
space is exponentially large (e.g. by counting the number of
arrangements of an ordered set of residues with possible gaps).
In their proof that the direct protein folding problem is NP-
complete, Ngo and Marks (1992) address in detail and lay to
rest this fallacy. Many problems which have an exponentially
large search space still have polynomial time solutions, and
the distinctions between polynomial time and NP-complete
problems are often extremely subtle. For example, the 3SAT
problem discussed here is known to be NP-complete; the
closely related 2SAT problem (identical except that each clause
has two literals instead of three) shares the same exponentially

large space of possible solutions (the 2
N possible truth value

assignments to A' Boolean variables), but is easily solved in
polynomial time by resolution techniques (Garey and Johnson,
1979). However, no polynomial time solution is known for
any NP-complete problem.

In the remainder of this section we categorize the different
threading approaches according to how they accommodate the
search problem. Some disallow either variable-length gaps or
interactions between amino acids from the sequence being
threaded, and can therefore find the optimal threading without
an NP-hard search problem. Others admit both conditions,
but these must choose between potentially finding only an
approximation to the optimal threading or coping with a
potentially exponential search.

Some approaches do not permit variable-length gaps in the
alignment at all. Instead they employ a fixed-length moving
window, equal in length to either the structure or the sequence
under analysis. This is used to extract from a database a large
number of subsequences or substructures of the same length
as the candidate. The lengths being equal, they evaluate the
score function at the alignment that pairs the ith sequence
amino acid with the <th structure position [Hendlich et ai,
1990; Sippl, 1990; Crippen, 1991; Maiorov and Crippen, 1992;
Sippl and Weitckus, 1992; and the sections of Bryant and
Lawrence (1993) discussing ungapped alignment]. This permits
the analysis to focus closely on the score function, without
being distracted by other complications. The results demon-
strate clearly that score functions can be devised to identify
the correct match from a large number of alternatives. However,
this method is of limited use in a predictive setting. Ignoring
variable-length gap regions means that the structure and a
novel sequence will almost invariably be partially out of
registration, perhaps grossly so. Where this occurs, the correct
alignment will not be found and consequently the spatial
locations predicted for sequence amino acids will be wrong.

Alternatively, some approaches do not reflect the interaction
preferences between amino acids from the sequence to be
threaded. In this case, the score for placing a sequence amino
acid of a specific type into a specific position in the structure
will be independent of sequence amino acid types placed into
other (neighboring) positions of the structure. For example,
the score for placing a charged residue from the sequence into
a position buried in the structure core will be independent of
whether a sequence residue of opposite charge is placed into
a spatially adjacent position. This leads to a much simpler
search for the optimal threading and often performs quite well,
but at the price of giving up a potentially richer source of
structural information. Such approaches include: (i) ignoring
contacts altogether to consider only the local environment of
an amino acid (Bowie et al., 1991; LUthy et al., 1992; Johnson
et al., 1993); (ii) taking all contacts and interactions to be to
generic bulk peptide instead of to specific amino acid types
(Ouzounis et al., 1993); or (iii) evaluating interaction prefer-
ences with respect to residues from the structure's original
native sequence instead of from the sequence being threaded
(Sippl, 1993; Wilmanns and Eisenberg, 1993). These are all
fundamentally equivalent. The crucial common condition is
that the score for placing any amino acid type into any
structural position does not vary as different amino acid types
from the sequence being threaded are placed into other
positions. Although the score function may have been para-
meterized by considering residue interactions or contacts (as
in Ouzounis et al., 1993; Sippl, 1993; Wilmanns and Eisenberg,
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1993), it never looks at more than one residue at a time from
the sequence being threaded. This satisfies the fundamental
assumption of the dynamic programming alignment method
(Sankof and Kruskal, 1983) which can be used without major
modification to find the optimal threading (alignment) between
sequence and structure. For these approaches, the search for the
optimal threading is easily accomplished in polynomial time.

For the remainder of this paper we will assume that variable-
length gaps are admitted and that the score function attempts
to reflect the interaction preferences between amino acid types
from the sequence being threaded. This greatly complicates
the search for the optimal threading, as proved below. The
essential reason is that the score achieved by placing a given
amino acid type into a given structural position now varies
depending on what amino acid types are placed into adjacent
positions, and consequently decisions are no longer purely
local. Here researchers are divided on whether to give up on
finding the optimal threading, or to give up on using a
polynomial time algorithm.

On the one hand, researchers who do not guarantee finding
the optimal threading have modified the dynamic programming
alignment method to yield an approximate solution in poly-
nomial time. Godzik et al. (1992) substitute the original
motif residues, or previously aligned sequence residues in
subsequent iterative steps, for the neighbors (their 'frozen
approximation'). These researchers characterize both pairwise
and triplet interactions among sequence amino acids; although
we will consider only pairwise interactions in this paper,
as discussed below pairwise interactions reduce to triplet
interactions as a special case. Finkelstein and Reva (1991) and
Goldstein et al. (1992) also use this iterative approach. Jones
et al. (1992) use a modified dynamic programming routine
from Taylor and Orengo (1989; see also Orengo and Taylor,
1990) that employs a secondary level of dynamic programming
to fix the neighbors for the first level.

On the other hand, researchers who guarantee the globally
optimal threading necessarily have used some form of search
which may take exponential time in the worst case. Bryant
and Lawrence (1993) used exhaustive enumeration to examine
all possible threadings (their 'gapped alignment'). They set
upper and lower bounds on the gap length considered, based on
the observed gap lengths from aligned homologous sequences.
Lathrop and Smith (1994) used a branch and bound search,
which heuristically prunes unpromising regions of the search
space. While it has found the globally optimal threading
at speeds equivalent to as many as 1024 threadings per hour
(most of which are pruned before they are ever examined
explicitly), it still exhibits exponential growth.

The twin horns of this dilemma, whether to give up
optimality or efficiency, lead to the questions which concern
this paper: Is it possible to have it all? Is it possible to
allow variable-length gaps, to exploit the additional structural
information potentially present in pairwise amino acid inter-
actions, and still to construct a polynomial time algorithm for
finding the optimal threading of a sequence onto a structure?
We will answer these questions in the negative (unless P =
NP) by showing that the task is NP-hard in the strong sense.

Methods

The method of choice for answering these questions is the
theory of computational complexity and NP-completeness.
An exhaustive review is beyond the scope of this paper, and
this section presents only enough material to motivate the

results below. The interested reader is referred to Garey and
Johnson (1979), Hopcroft and Ullman (1979) and Lewis and
Papadimitriou (1981) for formal treatment of the subject,
and to Fraenkel (1993), Ngo and Marks (1992) and Unger and
Moult (1993) for discussions of its biological relevance. The
reader already knowledgeable on the topic should skip to the
next section.

The analysis of computational complexity is concerned with
the question of how the running time of an algorithm grows
as the size of its input increases. For a given algorithm this is
made specific by naming some function, /, and asserting that
the algorithm's running time grows with inputs of increasing
size 'no faster' than / grows with arguments of increasing
magnitude. Formally, let #(A, I) denote the running time
(number of steps) of algorithm A when started with input /,
and let I / I be some reasonable measure of the size of /. Then
we write A = O(f), read 'A is order of/ ' (or 'A is O o f / ' ) ,
if there exists any positive constant C such that:

limm_>x[#(A,/)//(l/l)] « C

Algorithms whose computational complexity is the order of
some polynomial ('polynomial time algorithms') are con-
sidered to be formally efficient. All other algorithms have a
running time that grows faster than any possible polynomial
and are considered to be inefficient. It is possible, of course,
that an exponential time algorithm with a tiny exponent may
terminate rapidly on small and medium-sized inputs, or that a
polynomial time algorithm applied to a very large input may
not. Nonetheless, the distinction is valuable and important in
most practical cases.

A 'problem' is a class of computational tasks defined in
terms of a set of parameters (e.g. SEQUENCE is a parameter
of the protein threading problem). A problem 'instance' results
from replacing the parameters by actual values (e.g. replacing
SEQUENCE by a specific string). An algorithm solves a
problem if it terminates correctly on every instance of the
problem. It is customary to identify the computational com-
plexity of a problem with that of the most efficient algorithm
that solves it. The class of problems that can be solved by a
polynomial time algorithm is named 'P.' Problems which
belong to this class are formally tractable. The class of
problems whose solution, once found or guessed, may be
verified in polynomial time is named 'NP' Note that it may
not be possible to actually find a solution in polynomial time;
the condition refers only to the verification of a putative
solution. Problems in NP are solvable in 'non-deterministic
polynomial time', meaning that if one could somehow non-
deterministically guess and check all possible solutions simul-
taneously, the solution would be obtained in polynomial time.
The practical importance of this theoretical condition is that
the search for a solution, not the verification step, determines
whether a polynomial time solution is possible or not. Clearly,
P is a subset of NP; but it is unknown whether P = NP.

There is a curious class of problems which belong to NP
and have the property that an algorithm solving any problem
in the class can be transformed in polynomial time to solve
any other problem in NP. Therefore, a polynomial time
algorithm solving any problem in this class would yield
immediately a polynomial time solution for every problem in
NP. These problems are the hardest in NP and are known as
the 'NP-complete' problems. It is not known whether or not
they have a polynomial time solution (if so, then P = NP
because polynomials are closed under composition). They
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include many problems deeply central to computer science,
and so a great deal of effort by a great many talented people
has been expended searching for a polynomial time solution
to any one of them. Because so many people have failed, it is
widely accepted that no polynomial time algorithm is likely
to be found.

In some cases it is possible to prove directly from first
principles that a problem at hand is NP-complete, but this is
usually quite difficult. Most proofs proceed by constructing a
polynomial time transformation of another problem, already
known to be NP-complete, into an instance of the problem at
hand. It follows that if the problem at hand could be solved
in polynomial time, so could the other problem, and therefore
by extension all of the problems in NP. Consequently, the
problem at hand is NP-complete.

NP-complete problems are phrased as decision problems to
which the answer is either 'yes' or 'no.' For example, the
decision problem addressed by this paper is, 'Does there exist
a threading of this sequence onto this structure under this
score function, such that the threading score is «£#?' This
might be the case in which a candidate threading has already
been found and one wishes simply to ask whether or not
another threading with a better score exists. For many NP-
complete decision problems there is an associated optimization
problem for which the task is to produce an optimal solution.
For example, the associated optimization problem in this paper
is, 'Find the threading of this sequence onto this structure
under this score function having the optimal (minimum) score.'
It is easy to see that the optimization problem cannot be easier
than the decision problem. This is because a polynomial time
solution to the optimization problem could be transformed into
a polynomial time solution to the decision problem. Thus, if
the optimization problem is solvable in polynomial time, then
so is the decision problem. For example, if we could find the
optimal threading in polynomial time then it would be easy to
compute its score (also in polynomial time). This would let
us answer the decision question of whether there exists a
threading with a score «£*" by checking to see if the optimal
score was ^A .̂ Problems bearing this relationship to an NP-
complete problem are called NP-hard.

Finally, we note that problems can be NP-complete for
different reasons. In some cases a polynomial time solution
fails only because the numbers associated with the problem
can become exponentially large in magnitude (e.g. perhaps the
binary bits specifying an integer are used to encode some
other non-numeric information). In most cases these numbers
are integers; more complicated numbers are treated theoretic-
ally as composites of several distinct integers. If a problem is
NP-complete, and remains NP-complete when restricted to
problem instances for which the magnitude of the largest
integer is bounded by a polynomial in the problem instance
size, then the problem is called NP-complete in the strong sense.

Results

The principal technical result of this paper is a formal proof
that the protein threading problem is NP-complete if one
admits both variable-length gaps and pairwise interactions
between amino acids from the sequence being threaded (we
name this problem 'PRO-THREAD'). This section summarizes
the principal intuitions underlying the problem statement and
proof. Full mathematical details are given in Appendix. The
reader interested only in the practical implications of the proof
should skip to the next section.

We will state the protein (or motif) threading problem in
sufficient generality to cover a wide range of cases. The
problem and formalisms are equally applicable to threading
protein core motifs or super-secondary structure motifs. Our
general definition is similar to that of Bryant and Lawrence
(1993). Details are contained in Lathrop and Smith (1994),
from which many of the definitions here are drawn. A
probability analysis appears in White et al. (1994). Although
for generality the problem is stated in terms of core segments
of contiguous amino acids, the proof actually uses segments
of length exactly 1. Consequently, it applies equally well to
formulations that admit gaps between any pair of amino acids
(e.g. Godzik et al., 1992; Jones et al., 1992), provided that
they model explicit sequence amino acid interactions.
Informal problem motivation

All current threading proposals replace the 3-D coordinates of
the known structure by an abstract description in terms of
core elements and segments, neighbor relationships, distances,
environments and the like. This avoids the computational cost
of full-atom molecular mechanics or dynamics (Weiner et al.,
1984; Brooks et al, 1990) in favor of a much less detailed,
and hence much faster, discrete alignment between sequence
and structure. However, important aspects of protein structure
(such as intercalated side-chain packing, excluded volume,
constraints linking different environments, higher-order inter-
actions and so forth) may also be abstracted away. This
depends on the theory employed. The threading research
challenge, only partially met at present, is to devise a theory
of protein structure sufficiently information-rich to allow
accurate prediction yet sufficiently concise to retain the simpli-
city of discrete alignment.

Spatial core 'positions' (implying a specific 3-D location)
are abstracted to become spatially neutral core 'elements'
(implying only a discrete place-holder that may be occupied
by a residue from the sequence). The remaining abstractions
are driven by the requirements of the score function (which
in tum is driven by the underlying theory of protein structure).
We need record only information that the score function will
later use to assign scores to candidate threadings [e.g. Bryant
and Lawrence (1993) and Sippl (1990) both record discrete
distances]. Such information comprises the abstract 'structural
environment' as seen by the threaded residues. If the score
function quantitates individual residue preferences (e.g. for
being more or less buried, or for certain secondary structures),
we must record the (singleton) structural environment at each
element. This is easily carried out by labeling the element.
Pairs of elements are 'neighbors' if they interact for the given
score function. If the score function quantitates neighbor
preferences (e.g. for being a certain distance apart), we
must record the (pairwise) structural environment between
neighbors. Several equivalent data structures have been used;
the common theme is that certain pairs of elements are
distinguished as neighbors, and the pair is labeled in some
manner. For pairwise interactions this is fully general because
each label could (in principle) specify a different 20X20 table
with an arbitrary score for any possible pair. One common
data structure constructs a matrix with one row and one column
for each element. Each cell contains the corresponding pairwise
environment [e.g. a distance matrix (Sippl, 1990) results when
all elements are neighbors and the pairwise environment is
Euclidean distance]. An equivalent approach, the adjacency
graph used in this paper, constructs a graph with one vertex
for each element. Neighbor elements are connected by a
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(directed) edge, and the edge is labeled with the pairwise
environment. The edge in the graph corresponds to the cell in
the matrix, and the edge label corresponds to the label contained
in the cell. Related representations include adjacency matrix,
contact graph, and so on.

In this framework, a protein core folding motif, C, consists
of m core segments, C,-, each representing a set of contiguous
amino acid positions. Core segments are usually the pieces of
secondary structure comprising the tightly packed internal
protein core. As we make no restriction on core segment
length, they could equally well represent only a single amino
acid. The jih element of C, is the core element C^. Core
segments are connected by a set of loop regions which undergo
genetic insertions and deletions over evolutionary time and
are not usually considered part of the conserved core motif.
The loop regions might equally well be the 'gaps' (in a dynamic
programming alignment sense) used by some formulations.

The adjacency graph consists of a set V of vertices and a
set E of edges. Each core element CtJ corresponds one-to-one
to a graph vertex v € V. Consequently, the adjacency graph
vertices merely relabel the core elements. Those pairs of
vertices which interact in the score function (neighbors) are
connected by a graph edge e e E. Each vertex and each
edge is labeled by an environment. The vertex (amino acid)
environment labels, Lv, may describe local factors such as
degree of solvent exposure, local secondary structure type and
so forth. The edge environment labels, Le, may encode distance
or contact between amino acids, the local environments at
each end of the edge, and so forth. The edges are directed
because the local environments at the edge head and tail
may differ.

The protein sequence, a, consists of amino acids a,, each
from one of 20 naturally occurring amino acid types. A given
threading of a into C associates one amino acid from a with
each core element C,j, subject to the constraint that successive
amino acids in the sequence necessarily fall into successive
core elements in C, and that the core segments do not overlap.
A given threading of a into C may be described completely
by the primary sequence indices of the amino acids placed in
the first element of each core segment. This is compactly
specified by an m-tuple t = (j\, t-i, • • • , tm), where t, is the
primary sequence index of the amino acid that the threading
places in C, |.

For a specific core motif C and protein sequence a, the
score of a candidate threading is defined to be the sum of the
scores of the vertices and edges in the adjacency graph and
the bulk composition of the loop regions. By analogy to energy
minimization, lower scores are considered better. The vertex
score av(a, d) depends only on the vertex environment label
d and the amino acid type a threaded into the vertex. The
edge score Ge(a, b, d) depends only on the edge environment
label d and the amino acid types a and b threaded into the
vertices at the head and tail of the edge. For a, a subsequence
of a, the loop score o^§) depends only on the length and bulk
amino acid composition of a (thus, it could represent the 'gap
penalty' in a dynamic programming alignment sense). The
specific numeric values depend on the particular scheme chosen
to assign environments and scoring function.

Informal sketch of proof

The bulk of the proof consists of constructing an encoding from
ONE-IN-THREE 3SAT into PRO-THREAD. The remainder of
this section briefly and informally sketches the encoding. The

reader interested in formal details should turn to Appendix.
The canonical (and first) NP-complete problem is SATISFI-

ABILITY. A problem instance consists of a set of Boolean
variables plus a set of Boolean clauses (a clause is a disjunction,
i.e. logical OR, of a set of literals; a literal is either one of the
variables or the negation of one of the variables). The question
is whether any setting (truth-value assignment) of the variables
makes all of the clauses true simultaneously. 3SAT is a well-
known variant which restricts the clauses to contain exactly
three literals. ONE-IN-THREE 3SAT is a further variant of
3SAT which requires that each of the clauses be made true by
exactly one of the three literals. All these problems are known
to be NP-complete (Schaefer, 1978; Garey and Johnson, 1979,
p. 259).

The proof that PRO-THREAD is NP-complete proceeds by
showing that we can encode any arbitrary instance of ONE-
IN-THREE 3SAT (does there exist a setting of the Boolean
variables making all the clauses simultaneously true by exactly
one literal?) as an equivalent instance of PRO-THREAD.
Threadings with a score of 0 encode solutions of the original
ONE-IN-THREE 3SAT problem; threadings with positive
scores encode failures. The equivalent encoded PRO-THREAD
question is: Does there exist a threading with a score of 0 or
less? The answer to this question is 'yes' exactly when a
solution exists for the original ONE-IN-THREE 3SAT problem.

The essence of the proof is as follows.
(i) Amino acids from the sequence can encode whether a

Boolean variable is TRUE (by T, a threonine residue) or
FALSE (by F, phenylalanine); and also which literal makes a
Boolean clause true (Q, glutamine encodes the first literal; R,
arginine, the second literal; and S, serine, the third literal). In
the encoded problem, the sequence a to be threaded is a =
QRSQRSQRSQRS . . . QRSTF . . . TFTFTFTF, where we
allot one 'QRS' for each clause, and one 'TF' for each
Boolean variable.

(ii) By making each core segment exactly one element long,
it is threaded to exactly one amino acid. Consequently, any
given threading assigns every core segment to one of (Q, R,
S, T, F). (As discussed below, extensions that add 'GAP' to
this list are also NP-complete.)

(iii) We can use one core segment to encode each Boolean
clause and choose which literal makes it true by threading it
to Q (= the first literal), R (= the second literal), or S (= the
third literal) in the sequence a. Similarly, one core segment
encoding each Boolean variable is threaded to T (= TRUE)
or F (= FALSE), and thereby chooses truth values.

(iv) Pairs of core elements are taken as neighbors in the
core (and recorded as such in the adjacency graph) exactly
when the clause encoded by the first element contains a
literal naming the variable encoded by the second. The edge
environment label assigned is an ordered pair, d = (/', f), that
encodes which literal (/ = 1, 2 or 3) is involved and whether
the variable was negated or positive (/' = N or P).

(v) An edge score ce(a, b, d) can be written that is 0 when
the edge label d is consistent with the literal choice encoded
by amino acid a (as Q, R or S) and the truth-value encoded
by amino acid b (as F or T); and is 1 otherwise.

(vi) By summing oe(a, b, d) over all edges, a score function
can be written that is 0 when a candidate threading encodes a
truth-value and literal assignment correctly solving the original
problem, and positive otherwise. The question 'Does there
exist a threading with a score of 0 or less?' is now equivalent
to the original ONE-IN-THREE 3SAT question.
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(vii) Thus, if we could solve the general PRO-THREAD
problem in polynomial time, we could solve ONE-IN-THREE
3SAT in polynomial time. PRO-THREAD is NP-complete.

In fact, PRO-THREAD is NP-complete in the strong sense
(i.e. is not a number problem) because the only numbers used
in the construction are 0 and 1. The optimization problem, to
produce an optimal threading, is NP-hard.

Discussion

We identified the two critical conditions governing the compu-
tational complexity of protein threading as whether or not: (i)
variable-length gaps are permitted in the alignments; and (ii)
the score for placing a sequence amino acid into a given
structure position depends on the specific amino acid types from
the sequence being threaded that are placed into neighboring
(interacting) structure positions.

The condition of variable-length gaps plays a different role
to the condition of painvise interactions between amino acids
from the sequence being threaded. Allowing variable-length
gaps ensures that the search space of possible solutions is
exponentially large. This is necessary, but not sufficient, for a
problem to be NP-complete. Allowing pairwise interactions
between sequence amino acids, on the other hand, ensures that
the solution must take non-local effects explicitly into account;
decisions cannot be made merely by inspecting a single amino
acid at a time, and local changes can have a non-local
'ripple' effect.

We proved that if both these conditions are allowed, then
the protein threading decision problem (Does there exist a
threading with a score ^K?) is NP-complete in the strong
sense, and the related problem of finding the globally optimal
protein threading is NP-hard.

This fact imposes severe constraints on the design of protein
threading algorithms. Barring a significant breakthrough in
computational theory (i.e. a proof that P = NP), any protein
threading algorithm must adopt (at least) one of the following
four choices: (i) it must fail to admit variable-length gaps into
the alignment; (ii) it must fail to admit interaction preferences
between amino acids from the sequence being threaded into
the score function; (iii) it must fail to find the optimal threading
in some cases; or (iv) it must require an exponential amount
of time in some cases.

In our categorization of current protein threading algorithms
in the Introduction, we gave at least two examples from the
literature for each of these strategies.

One genera] strategy for coping with NP-complete problems
is to restrict the problem to a subclass having a polynomial
time solution. For example, the NP-complete problem SATIS-
FIABILITY has a subproblem 2SAT in which each clause is
restricted to exactly two literals, and which is solvable in
polynomial time. If one is fortunate, the restricted problem
will still cover the problem instances one actually encounters
in practice. This is more likely if one can identify and exploit
particular features and constraints about the problem instances
actually encountered. For example, the physical constraint of
packing amino acids into space restricts adjacency graphs in
native proteins to a subclass of all possible graphs. As another
example, native proteins requiring exponential time to fold
might be strongly selected against, even though some (possibly
artificial) sequences might require it. The hydrophobic core
(widely believed to drive folding) is an example of a native
feature which might enforce this constraint. If true, this
would result in a restricted class of sequences to consider. If

discovered, such restrictions could be reflected in specialized
threading and folding algorithms.

Failing this, protein threading (and folding) algorithms can
draw on a wealth of computational methods that have been
developed to cope with NP-complete problems. For example,
the knapsack problem (how to pack objects of different sizes
and values into a finite volume so as to maximize the total
contained value) is known to be NP-complete, but branch-
and-bound algorithms have been so successful that many
consider it to be an efficiently solvable problem, even though
the algorithms involved (of course) have a formal exponential
time complexity (Garey and Johnson, 1979, p. 9). Packing
objects into a knapsack is analogous to packing amino acids
into a protein core, and a branch-and-bound algorithm has
been employed successfully to find the globally optimal
threading in the general protein threading problem (Lathrop
and Smith, 1994). A number of other computational techniques,
such as simulated annealing and genetic algorithms, can be
used to find good approximate solutions to NP-complete
problems. As expected, researchers are actively pursuing each
of these avenues.

The basic proof can be used to prove that many threading
methodology extensions and generalizations are also NP-hard.
The general strategy in such cases is to first show that the
extended problem remains in NP (because a putative solution
can be checked in polynomial time), and then to show that
the problem has not been made easier (by exhibiting some
setting of the extended parameters for which the extended
problem can be made to solve PRO-THREAD). Consequently,
a polynomial time solution to the extended problem would
imply a polynomial time solution to the simpler PRO-
THREAD. Without producing formal proofs, we sketch this
for three cases of interest: (i) allowing a core element to be
unoccupied (threaded to a gap), as some dynamic programming
methods permit; (ii) the inclusion of triplet or higher-order
terms; and (iii) the presence of constraint equations on environ-
ment labels. Suppose we allow unoccupied elements. A method
for solving this problem can be made to solve PRO-THREAD
by using a score function that assigns any such threading a
positive score. Similarly, extensions including triplet or higher-
order terms can be made equivalent to PRO-THREAD by
employing a score function that assigns all such terms a
score of 0. Extensions which admit constraint equations on
environment labels can be made to solve PRO-THREAD by
adding tautologically true constraint equations to the original
PRO-THREAD problem. In general, any problem which
includes PRO-THREAD as a special case remains NP-hard.

Finally, one might ask whether it is necessary to find the
globally optima] threading at all. Might not a good approximate
solution be sufficient? In truth, it depends on one's goals.
Many threading studies seek only to pair sequences with the
structure into which they will fold, without attempting to
actually place the sequence amino acids in space. That is, they
undertake only the 'recognition' aspect of threading. For this
purpose, a good approximate estimate of the true optimal score
may be perfectly satisfactory, since it will only be used
for comparison with other approximate scores from other
structures. Alternatively, one often is interested in actually
placing amino acids in space. This is, after all, the eventual
goal of protein structure prediction. Each different threading
corresponds to a different structure assignment. Assuming a
perfect score function (a strong assumption!), only the globally
optimal threading will be placed correctly in space. Every
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approximate solution will correspond to a misfolded protein.
Whether finding the globally optimal threading is necessary
or not can only be answered relative to the goals that led one
to attempt the threading.
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Appendix

A formal problem statement and proof

Here we give a formal statement of the PRO-THREAD
problem and state a formal proof that it is NP-complete.

A formal problem statement (PRO-THREAD)

Table I summarizes the notational usage of this paper.
Let G be a labeled directed graph having a set of vertices
= (vb v2, vp), a set of edges E = (eu e2, eQ), a

set of vertex labels Ẑ , and a set of edge labels Le. Let s map
vertices to vertex labels and edges to edge labels. Let C =
(C|, Cj, • • •, Cm) be a partition of V. Let CtJ denote the y'th

Table I. NotaUonal usage of this paper

Notation Usage

a

3
AA
aB

a^
B

C
C,

C, j

c,
E
Et

F
/
fr

G
g
h
K

Le

Ly

m

n

Q, R,
s

t

U

V
z
a
n

a,

a;
0 V

S, T

a sequence of characters drawn from AA; the concatenation of
afl and a^
a subsequence of a
an alphabet of 20 characters (ammo acids)
g instances of the sequence (Q, R, S), concatenated together
h instances of the sequence (T, F), concatenated together
a set of Boolean clauses (disjunctions); b^ is the (tth clause
a set of core segments; a partition of V
a core segment; the ith element of C; a subset of V
a core element; the yth element of C,; another indexing of a
vertex of V
ICjl, the length of the ith core segment
the set of edges of the graph G; e, is the ith edge
a subset of E; those edges whose tail is vk

the amino acid phenylalanine
a function mapping an m-tuple of integers to a number
a function mapping an edge and an m-tuple of integers to a
number
a function mapping an integer and an m-tuple of integers to a
number
a function mapping a vertex and an m-tuple of integers to a
number
a labeled, directed graph
IB1, the number of Boolean clauses
It/I, the number of Boolean variables
a fixed number
the set of edge (environment) labels of the graph G

the set of vertex (environment) labels of the graph G
\O, the number of core segments
lal, the length of the sequence a
the amino acids glutamine, arginine, serine, threonine
a function mapping vertices to vertex labels and edges to edge
labels
a threading; an m-tuple of integers; /, is the ith coordinate
a set of Boolean variables; u, is the ith variable
the set of vertices of the graph G; Vj is the ith vertex
a literal from a clause of B
a, = Q, a-i = R, cc3 = S
a function mapping a vertex and an m-tuple of integers to a
character
a function mapping two characters and an edge label to a
number
a function mapping a subsequence of a to a number
a function mapping a character and a vertex label to a number
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element of C, (yielding a second indexing of V), and let c, =
IC,I. For e e £ let head (e) [respectively tail (e)] return the
vertex at the head (respectively tail) of e.

Let AA be an alphabet of 20 characters (amino acids) and
let » = (a\, a2, • . ., an) be a sequence of n characters drawn
from AA.

Let t = (?,, r2, . . ., tm) be an m-tuple such that 1 =s tu that
t; + c, =£ f, + ! for 1 =£ /' < m, and that fm + cm =S n + 1.
The m-tuple t specifies a threading.

Let TI(V, t) be a function that maps vertices to characters in
a according to t, defined for v = C,j as 7i(v, t) = aH +J_,. The
function n yields the sequence character (amino acid) threaded
into vertex v by t.

Let av(a, d) map the character a e AA and the vertex label
d e Lv to a number. Let ae(a, b, d) map the characters a, b e
AA and the edge label d e /,, to a number. If 3 is any
contiguous subsequence of a, let a^a) map 3 to a number.
These are score functions for vertices (amino acids), edges
(interacting amino acid pairs) and loop regions (gaps),
respectively.

Extend these functions to a score function/mapping t to a
number as follows. Let:
Uv, t) = OV(71(V, t), S(v)), (1)
Ue, t) = at(K(head (e), t), n(tail (e), t), s(e)), (2)
// ' , t) =

i, a2, • • ., an _ , ) ) , if / = 0,

, Cl, . . ., a,,, + ,, _ ,)), if 1 =£ i < m, (3)
(a , m + Cm, • • •> an)), if / = m.

Finally,
yW = Iv € i/v(v, t) + I , 6 ^{e, t) + I 7 = ofli, t). (4)

The decision problem is: For given C, s, C, a and /, and a
fixed number A", does there exist a t such that^t) =£ fC!

The ONE-/N-THREE 3SAT problem

SATISFIABILITY, which asks whether there exists a truth-
value assignment which satisfies an arbitrary Boolean
expression, was the first problem shown to be NP-complete
(Cook, 1971). The proof that SATISFIABILITY is NP-
complete is restated in Garey and Johnson (1979), along with
its transformations into 3SAT and ONE-IN-THREE 3SAT The
bulk of this section will show that ONE-IN-THREE 3SAT
(Schaefer, 1978) can be transformed into the protein threading
decision problem (PRO-THREAD). The transformation of
PRO-THREAD into the optimal protein threading problem,
the final result of this section, is then immediate. This sequence
is illustrated in Figure 1.

The well-known 3SAT problem is a variant of
SATISFIABILITY in which each clause in the Boolean
expression is constrained to have exactly three literals. The
ONE-IN-THREE 3SAT problem is a variant of 3SAT, differing
only in that each Boolean clause is required to be satisfied by
exactly one of the three literals. It is known to be NP-complete
(Schaefer, 1978; Garey and Johnson, 1979, p. 259).

Let B = (fc|, b2, . . ., bg) be a collection (a conjunction,
i.e. logical AND) of Boolean clauses (disjunctions, i.e. logical
ORs) with \b,i = 3, 1 s£ i « g, and let U = {«,, u2, . . ., uh]
be the set of Boolean variables mentioned in B.

The decision question is: Does there exist a truth-value
assignment for U that satisfies all the clauses in B (i.e. makes
the conjunction of all the disjunctions true), and such that each
clause in B has exactly one true literal?
PRO-THREAD is NP-complete
Theorem. PRO-THREAD is NP-complete.
Proof. It is easy to verify that PRO-THREAD is in NP since
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SATISFIABILITY

1
3SAT

I
ONE-IN-THREE 3SAT

I
Protein Threading Decision Problem (PRO-THREAD)

1
Optimal Protein Threading Problem

Fig. 1. The sequence of problem transformations we employ.

U = {U!,U2,U3,UA}

B = {(1*1,1*2, Us), («2,t*S,«4),(«l,«3,«4)}

Fig. 2. Example of the ONE-IN-THREE 3SAT problem.

a non-deterministic algorithm need only guess a particular
threading and check in polynomial time whether its score is
K or less.

We transform ONE-IN-THREE 3SAT to PRO-THREAD.
Figures 2-5 illustrate the transformation for a simple example.

Let B = {bu b2, . • ., bg) be a collection of clauses with
\b/\ = 3, 1 s£ (' =£ g, and let U = [uu u2, . . ., uh) be the set
of Boolean variables mentioned in B. These make up an
arbitrary instance of ONE-IN-THREE 3SAT

Let a be an amino acid sequence with lal = 3g + 2/i. Let
a consist of two concatenated subsequences: afl, with lafll =
3g, which corresponds to the clauses and literals of B; and a^,
with la l̂ = 2h, which corresponds to the truth-value
assignments of U. aB is composed of g repetitions of the
subsequence of three amino acids (Q, R, S). Let O| = Q, a2 =
R and oc3 = S. Each Q (respectively each R and each S)
corresponds to some b, being satisfied by the first (respectively
the second and the third) literal in &,, 1 =s i =£ g. a^ is
composed of h repetitions of the subsequence of two amino
acids (T, F). Each T (respectively each F) corresponds to a
truth-value assignment of TRUE (respectively of FALSE) to
some variable u,, I =£ i

: =£ h. Although we have provided one
subsequence (Q, R, S) for each clause in B and one subsequence
(T, F) for each variable in U, this is only to ensure that there
are sufficient amino acids for any possible ONE-IN-THREE
3SAT instance. Nowhere do we restrict particular clauses or
variables to particular subsequences, and consequently there
generally will be several admissible threadings solving any
given ONE-IN-THREE 3SAT instance.

Let C = {C|, C2. . . ., Cg + /,} be a collection of core
segments each one element long (consequently, overlapping
core segments are not a problem provided they are assigned
distinct indices by the threading). Core segment C,, 1 =e ;' « g,
corresponds to clause b, and the choice of whether the first,
second or third literal in b, satisfies b,. Core segment Cg + p

1 ^ j =s h, corresponds to variable Uj and the choice of truth-
value assignment to u}.

Let V = {vb v2,. . ., vg +,,} be the vertices of the adjacency
graph. Identify vertex v, with core element C,, , , ] « ; «
g + h. Let E = (e,, e2, . . ., e3g} be the set of edges in the
adjacency graph. Edges will connect vertices corresponding to
clauses of B (tail) to vertices corresponding to variables of U
(head). Consequently the resulting graph will be bipartite. If
M, is the variable mentioned in the j'th literal z of bk, then let
edge eMk_ 1} +J connect vertices vt (tail) and v̂  + , (head), and
let edge e%k _ ,> +} be labeled by (j, A7) if z is negated and by
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U — {tii = False, u2 = True,u3 = True,uA = True}

B = {(False, False, True), (False, True, False), (False, False, True)}

Fig. 3. Truth-value assignments solving the example ONE-IN-THREE 3SAT problem
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The equivalence between ONE-EN-THREE 3SAT clauses and variables and their corre-
sponding PRO-THREAD vertices is

Fig. 4. PRO-THREAD problem equivalent to the example ONE-IN-THREE 3SAT problem.

t = (3,5,9,11,12,14,18)

The threading t corresponds to the placement of Vi in Figure 4. The truth-values in
Figure 3, which solve the ONE-IN-THREE 3SAT problem in Figure 2, can be read
directly from this threading. Note that other threadings (e.g., (3,8,9,11,12,14,16))
would yield the same truth-values.

Fig. 5. Threading solving the equivalent PRO-THREAD problem.

(/', P) if positive, 1 =£ j =s 3 and 1 =s k =£ g. Let all vertex
labels be null.

Let the score functions o^ and O; (and hence /„ and //) be
identically 0. Let ae(a, b, d) be defined by:
ae(a, b,d) =

O,\fd= (j, P) and a = T and b = a, and 1 =s j =£ 3,
0, if d = (j, P) and a = F and b e ( a b a2, a3) and

b * ttj: and 1 =£ j « 3,
0, if d = (j, N) and a = T and be {a,, a2, a3) and

b # a7 and 1 ^ y =: 3,
0, if d = (j, N) and a = F and b = a ; and 1 « j « 3,
1, otherwise. (5)
0, corresponds to the constraint that each clause in B be

satisfied by exactly one literal. It is non-0 whenever a i. (T,
F), b <t {Q, R, S( or d is not a valid edge (environment)

label. If d = (j, P), corresponding to the y'th literal being
positive, then a score of 0 corresponds to either: (i) b= a,
(selecting they'th literal to satisfy the clause) and a = T (the
variable it mentions is true); or (ii) b + a, and a = F (the
literal is not selected and the mentioned variable is false).
Symmetric remarks apply if d = (j, AO, corresponding to the
y'th literal being negated. The 'otherwise' term ensures a non-
zero score if any of these conditions are not met.

Hence the score function/is:
/W = 2; 6 i / e (e , t ) (6)

= I , e &Mhead (e), t), n(tail (e), t), s(e). (7)
The decision question is: Does there exist a t such that

fit) =£ 0? We show that this is equivalent to the original ONE-
IN-THREE 3SAT problem.

(=>) By construction, if the original ONE-IN-THREE 3SAT
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problem has a solution then the exhibited threading problem
has a threading with a score of 0. Let the variables in U be
assigned the solution truth values. We will show that y^t) = 0
where t = (tu t2, . . ., tg + h) and:

3(i - 1) + /, if 1 *£ / « g [where / e {1, 2, 3) is the index of
the unique literal which was satisfied in b,], (8)

3g + 2(; - g) - 1, if g < i =£ g + h and u, _ g = TRUE,
3g + 2(/ -g),ifg<i^g + handu,_g = FALSE.
Consider an arbitrary vertex, vk, such that 1 *£ k «£ g. By

construction, this corresponds to b^ Let / e {1, 2, 3} index
the unique literal satisfying bk under the truth values assigned
to U. Since tk = 3(k - 1) + / by assumption, n(vk, t) = a/ by
the structure of aB.

By construction, vk is the tail of exactly three edges. Consider
an arbitrary edge e such that vk = tail (e). By construction,
e = e3ik - \) + j for some 1 =£ j « 3. Let z be the yth literal
of bk and «, the variable mentioned by z. By construction,
head (e) = vg + ,. Four cases arise depending on whether z is
negated and whether) = /. By exhaustive case analysis,

z
negated ">

no
no
yes
yes

/ =

yes
no
no
yes

/? t.v. of u, tg +

TRUE 3g -

FALSE 3g -

TRUE 3g -

FALSE 3g -

h 2i -

1- 2/
1- 2 / -
h 2/

sit

o.

o.

•)

/>)N)

AO

71

T
F
T
F

„ t) (vt, t) = c

yes
no
no
yes

a

0
0
0
0

Under all cases oc{e, t) = 0, as seen from Equation 5. Since
e was arbitrary, all edges whose tail is vk must score 0. Since
v* was an arbitrary vertex such that 1 =£ k =£ g, and by
construction only such vertices are the tails of edges, all edges
must score 0. Since the vertex and loop scores were identically
0, we must have J{t) = 0.

(<=) Conversely, if the exhibited threading problem has a
threading t with fit) = 0 then a set of truth values for U
solving the original problem can be read directly from
n(vg + „ t), 1 =£ ; *£ h. This assignment sets:

TRUE, if K(vg + „ t) = T, (9)
FALSE, otherwise.

Let t be a threading such thaty^t) = 0. We will show that this
assignment solves the original ONE-IN-THREE 3SAT
problem.

Let bk be an arbitrary clause from B. By construction, it
corresponds to vertex vk. Let Ek = {e\tail (e) = vk) and order
Ek according to the order of the subscripts / for e, e Ek (i.e.
according to the order of the literals in bk). By construction,
\Ek\ = 3. We must have 7t(v*, t) = a ; for some 1 =£ / *s 3, as
otherwise fe(e, t) = 1 for every edge e e Ek, contradicting
the assumption that ^ t ) = 0. Likewise, we must have
n{head (e), t) e (T, F) for every edge e e Ek.

Consider the y'th edge e e Ek. By construction, e =
e
Xk- i) + j- l^t u

i be the variable mentioned by theyth literal
z in bk. Again, four cases arise depending on whether z is
negated and whether j = /. By exhaustive case analysis, and
noting that the values shown for Jt(v^ + „ t) follow from
Equation 5 and the assumption that/(t) = 0,

z
negated?

no
no
yes
yes

j = P

yes
no
no
yes

s(e)

(/. P)

(j, AO

(A AO

n(vt, t) = c

yes
no
no
yes

ip it(v

T
F
T
F

+ ,, t) t.v. of u,

TRUE
FALSE
TRUE
FALSE

t.v. of z

TRUE
FALSE
FALSE
TRUE

It is easy to see that z is true exactly when / = j . By
construction this is true for exactly one edge in Ek, and
consequently bk has exactly one true literal under this truth
value assignment.

(<=>) It is easy to verify that the transformation can be
accomplished in polynomial time. Consequently, the original
ONE-IN-THREE 3SAT problem is solvable in polynomial
time if and only if the corresponding PRO-THREAD problem
is. Because ONE-IN-THREE 3SAT is known to be NP-
complete, PRO-THREAD is NP-complete. •
Remark In fact, the proof shows that PRO-THREAD is NP-
complete in the strong sense, since the only numbers used are
0 and 1.

The optimal protein threading problem

The optimal protein threading problem is to find the minimum
scoring threading of a into C, given the other parameters as
described above.
Corollary. If the optimal protein threading problem has a
polynomial time solution then so does PRO-THREAD.
Proof. If the optimal protein threading problem has a
polynomial time solution, then we can find the minimum
scoring threading in polynomial time. This immediately
answers the decision problem of whether a threading exists
with a score of K or less. •
Remark. This corollary shows that the optimal protein threading
problem is NP-hard.
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