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Abstract

In the study of fine art, provenance refers to the documented history of some art ob-
ject. Given that documented history, the object attains an authority that allows scholars
to appreciate its importance with respect to other works, whereas, in the absence of such
history, the object may be treated with some skepticism. Our IT landscape is evolving as
illustrated by applications that are open, composed dynamically, and that discover results
and services on the fly. Against this challenging background, it is crucial for users to be
able to have confidence in the results produced by such applications. If the provenance of
data produced by computer systems could be determined as it can for some works of art,
then users, in their daily applications, would be able to interpret and judge the quality of
data better. We introduce a provenance lifecycle and advocate an open approach based on
two key principles to support a notion of provenance in computer systems: documentation
of execution and user-tailored provenance queries.

Introduction
Provenance is already well understood in the study of fine art where it refers to the documented
history of some art object. Given that documented history, the object attains an authority that
allows scholars to understand and appreciate its importance and context relative to other works.
Art objects that do not have a proven history may be treated with some skepticism by those who
study them.

Such an idea, transposed into computer systems, has immediate, practical use: if the prove-
nance of data produced by computer systems could be determined as it can for some works of
art, then users would be able to understand how documents were assembled, how simulation
results were determined, or how financial analyses were carried out. Thus, to accomplish such
a vision, computer applications need to be transformed into what we term provenance-aware
applications, for which the provenance of data may be retrieved, analyzed and reasoned over.

The Oxford English Dictionary defines provenance as: “(i) the fact of coming from some
particular source or quarter; origin, derivation; (ii) the history or pedigree of a work of art,
manuscript, rare book, etc.; concretely, a record of the ultimate derivation and passage of an
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item through its various owners.” Hence, we can regard provenance as the derivation from a
particular source to a specific state of an item. The description of such a derivation may take
different forms, or may emphasize different properties according to interest. For instance, for a
work of art, provenance usually identifies its chain of ownership; alternatively, the actual state
of a painting may be understood better by studying the different restorations it underwent.

The above dictionary definition also identifies two distinct understandings of provenance:
first, as a concept, it denotes the source or derivation of an object; second, more concretely,
it is used to refer to a record of such a derivation. Against this background, a computer-based
representation of provenance is crucial for users to perform analysis and reasoning, and decide
whether they have confidence in electronic data.

In this article, we introduce the provenance lifecycle, summarising key principles under-
pinning existing provenance systems. We then examine an open data model for describing how
applications are executed; in this context, provenance is seen as a user query over such descrip-
tions. The vision of provenance-aware applications is illustrated over a concrete example in
healthcare management, before we contrast it with existing systems.

Lifecycle of Provenance in Computer Systems
Both the scientific and business communities [FKNT03, Bur00] have adopted the service-
oriented architectural (SOA) style, which allows services to be discovered and composed dy-
namically. SOA-based applications become more dynamic and open, but equally have to satisfy
new requirements, both in e-Science and business.

In an ideal world, e-Science end-users would be able to: reproduce their results by replaying
previous computations, understand why two seemingly identical runs with the same inputs
produce different results, and find out which data sets, algorithms, or services were involved in
the derivation of their results.

In business and e-Science, some users, reviewers, auditors, or even regulators have to verify
that the process that led to some result is compliant with specific regulations or methodologies;
they have to prove that results are derived independently of services or databases with given
license restrictions; and, they need to establish that data was captured at source by instruments
that possess some precise technical characteristics.

While some users need to perform such tasks today, they cannot do so, or they can do it
only imperfectly, because the underpinning principles have not been investigated, and systems
have not been designed to support such requirements. A key observation is that electronic
data does not typically contain the necessary historical information that would help end-users,
reviewers, or regulators make the necessary verifications. Hence, there is a need to capture extra
information — which we name process documentation — that describes what actually occurred
at execution time. Process documentation is to electronic data what a record of ownership is
to a work of art. Provenance-aware applications create process documentation and store it in a
provenance store, the role of which is to offer a long-term persistent, secure storage of process
documentation (cf. Figure 1). This logical role accomodates various physical deployments: for
instance, a provenance store can be a single, autonomous service or, to be more scalable, it can
be a federation of distributed stores.

Once process documentation has been recorded, the provenance of data results can be re-
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Figure 1: Provenance Lifecycle

trieved by querying the provenance store, and analyzed to suit the user’s needs. Finally, over
time, the provenance store and its contents may need to be managed, maintained, or curated.
In summary, the provenance lifecyle consists of four different phases: (i) creating, (ii)
recording, (iii) querying, and (iv) managing, all of which provenance systems should cater
for.

An Open Model for Process Documentation
For many applications, process documentation cannot be produced in a single, atomic burst,
but instead its generation must be interleaved continuously with execution. Given this, it is
necessary to distinguish a specific item documenting part of a process from the whole process
documentation. We see the former — referred to as a p-assertion — as an assertion made by
an individual application service involved in the process. Thus, the documentation of a process
consists of a set of p-assertions made by the services involved in the process.

In order to minimize its impact on application performance, documentation needs to be
structured in such a way that it can be constructed and recorded autonomously by services, on
a piecemeal basis. Otherwise, should synchronizations be required between these services to
agree on how and where to document execution, application performance may suffer dramat-
ically. To satisfy this design requirement, various kinds of p-assertions have been identified,
which we expect applications to adopt in order to document their execution. Figure 2 illustrates
a computational service sending and receiving messages, and creating p-assertions describing
its involvment in such activity.

In SOAs, interactions consist of messages exchanged between services. By capturing all
interactions, one can analyze an execution, verify its validity, or compare it with other exe-
cutions. Therefore, process documentation includes interaction p-assertions, where an inter-
action p-assertion is a description of the contents of a message by a service that has sent or
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Figure 2: Kinds of p-assertions made by a computational service

received that message.
Generally, whether a service returns a result directly or calls other services, the relationship

between its outputs and inputs is not explicitly represented in messages themselves, but can be
understood only by an analysis of the service’s business logic. To promote openness and gener-
ality, we do not make any assumption about the technology used by services to implement their
business logic (such as source code, workflow language, etc.). Instead, we place a requirement
on services to provide some information, in the form of relationship p-assertions: a relation-
ship p-assertion is a description, asserted by a service, of how it obtained output data sent in an
interaction by applying some function, or algorithm, to input data from other interactions. (In
Fig. 2, output message M3 was obtained by applying function f1 to input M1.)

With these two kinds of p-assertions, process documentation as a whole is greater than the
sum of its individual parts. Indeed, while p-assertions are simple pieces of documentation that
can be produced by services autonomously, interaction and relationship p-assertions taken to-
gether capture an explicit description of the flow of data in a process: interaction p-assertions
denote data flows between services, whereas relationship p-assertions denote data flows within
services. Such data flows capture the causal and functional data dependencies that occur in ex-
ecution and, in the most general case, constitute a directed acyclic graph (DAG). For a specific
data item, the data flow DAG indicates how it is produced and used. The data flow DAG is thus
a core element of provenance representation, but it is not the only one, as we now explain.

Beyond the flow of data in a process, internal service states may also be necessary to under-
stand non-functional characteristics of execution, such as performance or accuracy of services,
and therefore the nature of the result they compute. Hence, we define a service state p-assertion
as documentation provided by a service about its internal state in the context of a specific in-
teraction. Service state p-assertions can be extremely varied: they may include the amount of
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disk and CPU time a service used in a computation, its local time when an action occurred, the
floating point precision of the results it produced, or application-specific state descriptions.

In order for provenance-aware applications to be interoperable, it is crucial that the pro-
cess documentation they respectively produce be structured according to a shared data model.
Therefore, the novelty of our approach is the openness of the proposed model of documenta-
tion [GJM+06], which is conceived to be independent of application technologies [MGBM07].
Taken together, these characteristics allow process documentation to be produced autonomously
by application services, and be expressed in an open format, over which provenance queries
can be expressed.

Querying the Provenance of Electronic Data
Provenance queries are user-tailored queries over process documentation aimed at obtaining
the provenance of electronic data. In this context, a first challenge is to characterize the data
item that is of interest to the user. Indeed, since data can be mutable, its provenance, i.e. history,
can vary according to the point in execution from which a user wishes to find its provenance. A
provenance query, therefore, needs to identify a data item with respect to a given documented
event (i.e., sending or receiving a message).

The full details of everything that ultimately caused a data item to be as it is could poten-
tially be very large. For example, the full provenance of an experiment’s results would include
a description of the process that produced the materials used in the experiment, the provenance
of any materials used in producing those materials, the devices and software used in the exper-
iment and their settings, etc. Ultimately, should documentation be available, we would include
details of processes leading back to the beginning of time, or at least the epoch of provenance
awareness.

Thus, users need to be able to express the scope of interest in a process, by means of a
provenance query. Such a query then essentially performs a reverse graph traversal over the
data flow DAG and terminates according to the query-specified scope; the query output is a
DAG subset. Scoping can be based on types of relationships, intermediary results, services, or
subprocesses [GJM+06].

Example: Provenance in Healthcare Management
In order to illustrate the proposed approach, we consider a healthcare management application.
The Organ Transplant Management (OTM) system manages all the activities pertaining to or-
gan transplants across multiple Catalan hospitals and their regulatory authority [AVSK+06].
OTM consists of a complex process, involving the surgery itself, but also a wide range of other
activities, such as data collection and patient organ analysis, which all have to comply with
a set of regulatory rules. Currently, OTM is supported by an IT infrastructure that maintains
records allowing medical personnel to view (and edit) a given patient’s local file within a given
institution or laboratory. However, the system does not connect records, nor capture depen-
dencies between them. It does not allow external auditors or patients’ families to analyze or
understand how decisions are reached.
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By making OTM provenance-aware, powerful queries that were not possible before can
be supported, such as: find all doctors involved in a decision, find the blood test results that
were involved in a donation decision, find all data that led to a decision to be taken. Such
functionality can be made available not only to the medical profession but also to regulators or
families.

We limit ourselves to a small, simplified subset of the OTM workflow, namely the process
leading to the decision of donating an organ. As a hospitalized patient’s health declines and
in anticipation of a potential organ donation, one of the attending doctors requests the full
health record for the patient and sends a blood sample for analysis. Through a user interface
(UI), these requests are made by the attending doctor and passed to a software component
(Donor Data Collector) responsible for collecting all the expected results. After brain death
is observed and logged into the system, if all requested data and analysis results have been
obtained, a doctor is asked to make a decision about the donation of an organ. The decision,
i.e., the outcome of the doctor’s medical judgment based on the collected data, is explained in
a report that is submitted as the decision’s justification.
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Figure 3: Provenance DAG of Donation Decision

Figure 3 (top) displays the components involved in this scenario and their interactions. The
UI sends requests (I1, I2, I3) to the Donor Data Collector service, which gets data from the
patient records database (I4, I5) and analysis results from the laboratory (I6, I7), and finally
requests a decision (I8, I9).
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To make OTM provenance-aware, we augment it with a capability to produce an explicit
representation of the process actually taking place. This includes p-assertions for all inter-
actions (I1 to I9), relationship p-assertions capturing dependencies between data, and service
state p-assertions. In Figure 3 (bottom), we find the DAG that represents the provenance of
a donation decision, made of relationships p-assertions produced by provenance-aware OTM.
DAG nodes denote data items, whereas DAG edges (in blue) represent relationships such as
data dependencies (is based on, is justified by) or causal relationships (in response to, is caused
by). Each data item is annotated by the interaction in which it occurs. Furthermore, the UI
asserts a service state p-assertion, for each of its interactions, about the user who is logged into
the system.

Over such documentation, we can issue provenance queries that navigate the provenance
graph and prune it according to the querier’s needs. For instance, from the graph, we can derive
that users X and Y are both causing a donation decision to be reached. Figure 3 is small, but
in real life examples with vast amount of documentation, users benefit from a powerful and
accurate provenance query facility.

Existing Systems
The approach presented in this article has been derived from an extensive requirement anal-
ysis [MGBM07], which has resulted in a complete architectural specification [GJM+06]. It
is being used as the basis for writing a standardization proposal for data models and inter-
faces. Its open approach allows complex distributed applications, possibly involving multiple
technologies (such as Web Services, command line executables, monolithic executables), to be
documented. It also allows complex provenance queries to be expressed, identifying data and
scoping processes independently of technologies used.

The Virtual Data System (VDS) [CFV+07] and myGrid [ZGST07] are execution environ-
ments for scientific workflows, which also provide support for provenance. Their focus is on
producing documentation from a workflow enactor’s viewpoint, using data models that are
compatible with p-assertions. They assume their respective workflow language, which allows
them to obtain compact process documentation. By adopting an open data model for process
documentation similar to the one advocated here, such systems could be integrated into hetero-
geneous applications for which provenance queries could be executed seamlessly.

The database community has also investigated provenance [BKT01, CWW00] but consid-
ered different assumptions; in particular, the existence of a query language is assumed, for
which queries can be reversed to identify the origin of results. As in our approach, different
kinds of provenance are perceived to be of value (cf. why and where provenance [BKT01]),
which can be seen as specific specific instances of what we term provenance queries.

The Provenance Aware Storage System [SHBMR07] seeks to automatically produce doc-
umentation of execution by capturing file system events in an operating system. Like all other
approaches, capturing small granularity documentation presents scalability and performance
challenges, and deriving information at a suitable level of abstraction for the user can be diffi-
cult.
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Conclusion
The IT landscape is evolving: where we used to have closed monolithic applications, we now
face applications that are open, that are composed dynamically, and that discover results and
services on the fly. Against this challenging background, users must be able to decide whether
they have confidence in electronic data. Our vision is that such data must be accompanied by
their provenance, which describes the process that led to their production.

To realise this vision, we have proposed an open approach, by which applications, irrespec-
tive of their technology, document their execution in an open data model, which can then be
used to run provenance queries, tailored to user’s needs. As scholars can appreciate works of
art by studying their documented history, users will derive their confidence in electronic data
from provenance queries.
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