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Abstract

The recently introduced proximal average of two convex functions is a convex function with
many useful properties. In this paper, we introduce and systematically study the proximal
average for finitely many convex functions. The basic properties of the proximal average with
respect to the standard convex-analytical notions (domain, Fenchel conjugate, subdifferential,
proximal mapping, epi-continuity, and others) are provided and illustrated by several examples.
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1 Overview

Let f1 and f2 be two functions that are convex, lower semicontinuous, and proper, and let λ1 and
λ2 be strictly positive real numbers adding up to 1. How can we average the two functions f1 and
f2 with respect to the weights λ1 and λ2 in a useful way? Perhaps the first approach is to consider
the arithmetic average λ1f1 + λ2f2. However, functions in convex analysis are allowed to take on
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the value +∞, for example to model constraints in optimization problems. Thus, the arithmetic
average can turn out to be +∞ everywhere and then carries little information about f1 and f2;
this happens whenever f1 and f2 are nowhere both finite. How could we possibly average such
functions? A second thought may suggest to construct the epigraphical average λ1 ✫f1 ✙ λ2 ✫f2

obtained by forming a convex combination of the epigraphs of f1 and f2. Unfortunately, if the
functions f1 and f2 lack coercivity, then the epigraphical average fails to be helpful: for instance,
if f1 and f2 are two distinct linear functions, then their epigraphical average is identically equal to
−∞, and hence of little use. The proximal average, first introduced in [6] in the context of fixed
point theory and recently studied in [4, 5, 7, 10, 15] from various viewpoints, avoids the mentioned
difficulties and possesses numerous properties that are attractive to Convex Analysts.

The aim of this paper is to provide the basic theory of the proximal average. In addition, we
extend it to more than two functions and we allow for an additional positive parameter. For the
reader’s convenience and the sake of completeness, the presentation of the theory is largely self-
contained. It is shown that the proximal average has many desirable properties in terms of its
domain, Fenchel conjugate, Moreau envelope, proximal mapping, subdifferential, epi-continuity,
and other convex-analytical notions. Moreover, the arithmetic and epigraphical averages turn out
to be limits of the proximal average, as the parameter tends to 0 and +∞, respectively. Various
examples illustrate our results. An interesting topic for future research is the extension to series
and integrals.

The rest of this paper is organized as follows. Section 2 collects the notation used throughout
this paper, and in Section 3 we collect and present results that simplify later proofs. The proximal
average is introduced in Section 4 where also its domain is characterized. In Section 5, we present
one very useful result (Theorem 5.1) which states that the Fenchel conjugate of the proximal average
is the proximal average of the Fenchel conjugates. An important consequence of this result is that
the proximal average is convex, lower semicontinuous and proper. In Section 6 we consider the
Moreau envelope and proximal mapping of the proximal average, in Section 7 its subdifferential
operator as well as essential smoothness and essential strict convexity. In Section 8, it is shown
that the arithmetic and epigraphical averages are pointwise limits of the proximal average. Epi-
convergence properties are discussed in the final Section 9, where the arithmetic and epigraphical
averages are shown to be limiting instances of the proximal average with respect to epi-convergence.

2 Standing Assumptions and Notation

Throughout this paper,

X is a real Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖ · ‖. (1)

Due to its repeated use, we abbreviate the quadratic energy function by

q = 1
2‖ · ‖

2. (2)

We set

Γ(X) =
{
f : X → ]−∞,+∞] | f is convex, lower semicontinuous, and proper

}
. (3)
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We assume throughout that
n ∈ {1, 2, 3, . . .}, (4)

that
f1, . . . , fn belong to Γ(X), (5)

that
λ1, . . . , λn are nonnegative real numbers such that λ1 + · · · + λn = 1, (6)

and that
µ is a strictly positive real number. (7)

The Fenchel conjugate of a function f is denoted by f∗. It will be convenient to set

f = (f1, . . . , fn), f∗ = (f∗
1 , . . . , f∗

n), and λ = (λ1, . . . , λn). (8)

Other notation not explicitly defined here or later is standard in Convex Analysis and as in,
e.g., [21, 22, 24]. Let f be a convex function and S be a set. Then we write dom f , epi f ,
∂f , cl f , inf f , min f , argmin f , dS , conv S, int S, ιS , and NS to denote the (effective) domain,
epigraph, subdifferential operator, lower closure, infimum value, minimum value if the infimum
value is attained, the set of minimizers, distance function, convex hull, interior, indicator function,
and normal cone operator, respectively. The identity operator is represented by Id.

3 Auxiliary Results

We start by reviewing the key notions of epi-multiplication and epi-addition, following the viewpoint
taken in [22, Section 1.H]. Let α ≥ 0, f ∈ Γ(X), g ∈ Γ(X), and h ∈ Γ(X). Then

α ✫f =

{
αf(·/α), if α > 0;

ι{0}, if α = 0.
(9)

The term “epi-multiplication” stems from the fact that epi(α ✫f) = α epi(f) when α > 0. Epi-
addition or infimal convolution is defined by

f ✙ g : X → [−∞,+∞] : x 7→ inf
y+z=x

(
f(y) + g(z)

)
; (10)

and the term “epi-addition” stems from the fact that the strict epigraph of f ✙ g is the Minkowski
sum of the strict epigraphs of f and g, i.e.,

{
(x, r) ∈ X × R | (f ✙g)(x) < r

}
=
{
(y, s) ∈ X × R |

f(y) < s
}

+
{
(z, t) ∈ X × R | g(z) < t

}
. The epi-sum of finitely many functions is defined analo-

gously.

To avoid excessive usage of parentheses, epi-multiplication and regular multiplication are given
precedence over epi- and regular addition, i.e., α ✫f + g = (α ✫f) + g, α ✫f ✙g = (α ✫f)✙g,
αf + g = (αf) + g, and αf ✙g = (αf)✙g. It will also be convenient to give epi-addition a higher
precedence than regular addition or subtraction, i.e., f ✙g+h = (f ✙g)+h and f ✙g−h = (f ✙g)−h.

The next three propositions are elementary. Proofs for the finite-dimensional case are in [22];
they extend without difficulty to the present Hilbert space setting.
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Proposition 3.1 Let f ∈ Γ(X), let α ≥ 0, and let β ≥ 0. Then the following hold.

(i) α > 0 ⇒ epi(α ✫f) = α(epi f).

(ii) dom(α ✫f) = α(dom f).

(iii) f ✙ ι{0} = f .

(iv) dom(f1 ✙ · · · ✙fn) = (dom f1) + · · · + (dom fn).

(v) α ✫(f1 ✙ · · · ✙fn) = α ✫f1 ✙ · · · ✙ α ✫fn.

(vi) α(f1 ✙ · · · ✙fn) = αf1 ✙ · · · ✙ αfn.

(vii) α ✫(β ✫f) = (αβ) ✫f .

(viii) (α + β) ✫f = α ✫f ✙ β ✫f .

(ix) α > 0 ⇒ α(β ✫(α−1f)) = β ✫f .

Proof. The conclusions all follow readily from the definitions; see also [22, Exercise 1.28(a)] for (i),
[22, page 25] for (v) and (vii), and [22, Exercise 2.24(c)] for (viii). �

Proposition 3.2 Let α ≥ 0. Then the following hold.

(i) (αf)∗ = α ✫f∗.

(ii) (α ✫f)∗ = αf∗.

(iii) (f1 ✙ · · · ✙ fn)∗ = f∗
1 + · · · + f∗

n.

Proof. The statements are simple consequences of the definitions; see also [22, page 475] for (i) and
(ii), and [22, Theorem 11.23(a)] for (iii). �

Proposition 3.3 Let f ∈ Γ(X) and let α ≥ 0. Then the following hold.

(i) q
∗ = q; in fact, q is the only function equal to its Fenchel conjugate.

(ii) α > 0 ⇒ α−1
✫ q = α q.

(iii) (α ✫ q)∗ = α q.

(iv) (α q)∗ = α ✫ q.

(v) (f ✙ q) + (f∗
✙ q) = q.

4



Proof. (i): See, e.g., [22, Example 11.11]. (ii): An immediate consequence of the definition of q.
(iii): Combine Proposition 3.2(ii) with (i). (iv): Combine Proposition 3.2(i) with (i). (v): See [19]
or [22, Example 11.26]. �

The next result is deep and stated as a fact.

Fact 3.4 The following hold.

(i) If int dom f1 ∩ · · · ∩ int dom fn−1 ∩ dom fn 6= ∅, then (f1 + · · ·+ fn)∗ = f∗
1 ✙ · · · ✙f∗

n and the
epi-sum is exact, i.e., the infimum in the definition of the epi-sum is attained.

(ii) If int dom f∗
1 ∩ · · · ∩ int dom f∗

n−1 ∩ dom f∗
n 6= ∅, then f1 ✙ · · · ✙ fn is exact and

epi(f1 ✙ · · · ✙ fn) = (epi f1) + · · · + (epi fn).

Proof. This is a consequence of [24, Theorem 2.8.7]. �

The following result on the conjugate of the difference will be useful.

Fact 3.5 Let g ∈ Γ(X) and let h ∈ Γ(X) such that both h and h∗ have full domain. Then

(
∀x∗ ∈ X

)
(g − h)∗(x∗) = sup

y∗∈X

(
g∗(y∗) − h∗(y∗ − x∗)

)
. (11)

Proof. This is a consequence of [11, Theorem 2.2]. �

Corollary 3.6 Let g ∈ Γ(X). Then

(g − µ ✫ q)∗ = µ( q − µ−1g∗)∗ − µ−1
✫ q. (12)

Proof. Set h = µ ✫ q. Then h∗ = µ q by Proposition 3.3(iii) and hence both h and h∗ have full
domain. Using Fact 3.5, we deduce that for every x∗ ∈ X

(g − h)∗(x∗) = sup
y∗∈X

(
g∗(y∗) − µ q(y∗ − x∗)

)

= sup
y∗∈X

(
g∗(y∗) − µ q(y∗) − µ q(x∗) + µ〈y∗, x∗〉

)

= −µ q(x∗) + sup
y∗∈X

(
〈y∗, µx∗〉 −

(
µ q(y∗) − g∗(y∗)

))

= −µ q(x∗) + µ sup
y∗∈X

(
〈y∗, x∗〉 −

(
q(y∗) − µ−1g∗(y∗)

))

= −(µ−1
✫ q)(x∗) + µ( q − µ−1g∗)∗(x∗). (13)

The proof is complete. �

Lemma 3.7
(
λ1 ✫(f1 + µ ✫ q)✙ · · · ✙λn ✫(fn + µ ✫ q)

)∗
= λ1(f

∗
1 ✙µ q) + · · · + λn(f∗

n ✙µ q).
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Proof. Using Proposition 3.2(iii), Proposition 3.2(ii), Fact 3.4(i), and Proposition 3.3(iii), we com-
pute that

(
λ1 ✫(f1 + µ ✫ q)✙ · · · ✙ λn ✫(fn + µ ✫ q)

)∗
=
(
λ1 ✫(f1 + µ ✫ q)

)∗
+ · · · +

(
λn ✫(fn + µ ✫ q)

)∗

= λ1(f1 + µ ✫ q)∗ + · · · + λn(fn + µ ✫ q)∗

= λ1

(
f∗
1 ✙ (µ ✫ q)∗

)
+ · · · + λn

(
f∗

n ✙ (µ ✫ q)∗
)

= λ1(f
∗
1 ✙µ q) + · · · + λn(f∗

n ✙ µ q). (14)

This completes the proof. �

Fact 3.8 Let (∀i) xi ∈ dom fi, and set x = x1 + · · · + xn. Then the following implications hold.

(i) (f1 ✙ · · · ✙ fn)(x) = f1(x1) + · · · + fn(xn) ⇒ ∂(f1 ✙ · · · ✙fn)(x) = ∂f1(x1) ∩ · · · ∩ ∂fn(xn).

(ii) ∂f1(x1) ∩ · · · ∩ ∂fn(xn) 6= ∅ ⇒ (f1 ✙ · · · ✙fn)(x) = f1(x1) + · · · + fn(xn).

Proof. See [24, Corollary 2.4.7]. �

Proposition 3.9 Let f ∈ Γ(X) and let α > 0. Then ∂(0 ✫f) = N{0} and ∂(α ✫f) = (∂f)◦(α−1 Id).

Proof. Since 0 ✫f = ι{0}, we deduce that ∂(0 ✫f) = ∂ι{0} = N{0}. Also, ∂(α ✫f) = ∂(αf ◦(α−1 Id));
the formula thus follows from Convex Calculus (see, e.g., [24, Theorem 2.8.3]). �

4 Definition, Reformulations, Domain and Exactness

In Section 1, we have seen that the idea of computing the averaged Minkowski sum is doomed in
general, due to the potential lack of coercivity properties of the terms. The proximal average can
be interpreted as a three-step remedy of this idea: First, each function is “coercified” by epi-adding
µ ✫ q. Second, the epi-average of the coercified terms is computed. The third step removes µ ✫ q

through subtraction. We are now ready to describe the proximal average.

Definition 4.1 (proximal average) The λ-weighted proximal average of f with parameter µ
is

pµ(f ,λ) = λ1 ✫(f1 + µ ✫ q)✙ · · · ✙ λn ✫(fn + µ ✫ q) − µ ✫ q, (15)

i.e., if I =
{
i ∈ {1, . . . , n} | λi > 0

}
, then

(∀x ∈ X) pµ(f ,λ)(x) =
1

µ

(
− 1

2‖x‖
2 + inf

P

i∈I xi=x

∑

i∈I

λi

(
µfi(xi/λi) + 1

2‖xi/λi‖2
))

. (16)

We also write p(f ,λ) if µ = 1, pµ(f) if all λi coincide, and p(f) if µ = 1 and all λi coincide.

Remark 4.2 Some immediate consequences of the definition are the following.
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(i) pµ(f1, 1) = f1.

(ii) If I =
{
i ∈ {1, . . . , n} | λi > 0

}
, f̃ = (fi)i∈I and λ̃ = (λi)i∈I , then pµ(f ,λ) = pµ(f̃ , λ̃).

(iii) If π is a permutation of I = {1, . . . , n}, f̃ = (fπ(i))i∈I and λ̃ = (λπ(i))i∈I , then pµ(f ,λ) =

pµ(f̃ , λ̃).

(iv) pµ(f ,λ) = µ−1p1(µf ,λ); equivalently, p(µf ,λ) = µpµ(f ,λ).

(v) If Λn−1 = λ1 + · · · + λn−1 > 0, then

p1(f ,λ) = p1

(
(f1, . . . , fn), (λ1, . . . , λn)

)

= p1

((
p1

(
(f1, . . . , fn−1),Λ

−1
n−1(λ1, . . . , λn−1)

)
, fn

)
, (Λn−1, λn)

)
. (17)

The identities in items (iv) and (v) may be useful if one wishes to develop the theory of results for
a general µ > 0 and a general n ≥ 2 from the simpler case µ = 1 and n = 2; however, the direct
approach favoured in this paper is not only self-contained but it also yields proofs that we found
much more readable. Nonetheless, (iv) and (v) may be convenient for the numerical computation
of the proximal average — especially when the simpler case is already implemented [15].

Proposition 4.3 (reformulations)

pµ(f ,λ) =
(
λ1(f

∗
1 ✙ µ q) + · · · + λn(f∗

n ✙µ q)
)∗ − µ−1

q (18)

=
(
λ1(f1 + µ−1

q)∗ + · · · + λn(fn + µ−1
q)∗
)∗ − µ−1

q (19)

and
(
∀x ∈ X

)
pµ(f ,λ)(x) = inf

P

λiyi=x

∑
λifi(yi) +

1

µ

((∑
λi q(yi)

)
− q(x)

)
. (20)

Proof. By Proposition 3.1(iv), (∀i) dom(f∗
i ✙µ q) = (dom f∗

1 ) + (dom µ q) = X. Fact 3.4(i), Propo-
sition 3.2(i), Proposition 3.2(iii), and Proposition 3.3(iv) imply that

(
λ1(f

∗
1 ✙µ q) + · · · + λn(f∗

n ✙ µ q)
)∗

= (λ1(f
∗
1 ✙ µ q))∗ ✙ · · · ✙ (λn(f∗

n ✙ µ q))∗

= λ1 ✫(f∗
1 ✙µ q)∗ ✙ · · · ✙λn ✫(f∗

n ✙ µ q)∗

= λ1 ✫(f∗∗
1 + (µ q)∗)✙ · · · ✙λn ✫(f∗∗

n + (µ q)∗)

= λ1 ✫(f1 + µ ✫ q)✙ · · · ✙λn ✫(fn + µ ✫ q). (21)

This and Proposition 3.3(ii) yield (18). In turn, Fact 3.4(i) and Proposition 3.3(iv) imply (19).
Changing variables, we see that (20) is equivalent to (16). �

Remark 4.4 (some history) In [6], the proximal average was considered for n = 2 and µ = 1,
and written equivalently as (

λ1(f
∗
1 ✙ q) + λ2(f

∗
2 ✙ q)

)∗ − q; (22)
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see (18). The function (22) was utilized in [6] to explicitly illustrate Moreau’s observation [19] that
the set of proximal mappings is convex. More recently, the proximal average was considered in [4],
again with n = 2 and µ = 1, though it was written as (see (19))

(
λ1(f1 + q)∗ + λ2(f2 + q)∗

)∗ − q. (23)

Example 4.5 (connection to means of numbers) Let α1, . . . , αn be strictly positive numbers
and suppose that (∀i) fi = αi q. Using (19), we see that

pµ−1(f ,λ) =

( n∑

i=1

λi(αi q+µ q)∗
)∗

−µ q =

( n∑

i=1

λi

αi + µ
q

)∗

−µ q =

( n∑

i=1

λi

αi + µ

)−1

q−µ q (24)

and thus

pµ(f ,λ) =

(( n∑

i=1

λi

αi + µ−1

)−1

− µ−1

)
q. (25)

Denote the coefficient of q in (25) by δ. Since δ is the difference of the weighted harmonic mean
of α1 + µ−1, . . . , αn + µ−1 and µ−1, the Harmonic-Arithmetic Mean Inequality implies that δ does
not exceed the weighted arithmetic mean

n∑

i=1

λiαi. (26)

As µ → +∞, we note that δ converges to the weighted harmonic mean

( n∑

i=1

λi

αi

)−1

, (27)

while a calculus exercise shows that δ approaches, as µ → 0+, the weighted arithmetic mean (26).
In Remark 8.6, we revisit this example from a more general point of view.

The next result locates the domain of the proximal average exactly; moreover, it strengthens [4,
Theorem 4.11], where equality was observed only for the closures and interiors.

Theorem 4.6 (domain) dom pµ(f ,λ) = λ1 dom f1 + · · · + λn dom fn.

Proof. Using Proposition 3.1(iv) and Proposition 3.1(ii), we obtain dom pµ(f ,λ) = dom(λ1 ✫(f1 +
µ ✫ q))+ · · ·+dom(λ1 ✫(f1 +µ ✫ q)) = λ1 dom(f1 +µ ✫ q)+ · · ·+λn dom(fn +µ ✫ q) = λ1 dom(f1)+
· · · + λn dom(fn). �

Corollary 4.7 Suppose that at least one function fi has full domain and that λi > 0. Then
pµ(f ,λ) has full domain.
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Example 4.8 Assume each λi > 0 and each fi = ιCi
, where Ci is a nonempty closed convex

subset of X. In Xn, set H =
{
(zi) | ∑

√
λizi = 0

}
and (∀x ∈ X) Dx is the Cartesian product

×(√
λiCi −

√
λix
)
. Then

pµ(f ,λ) : X → ]−∞,+∞] : x 7→ 1
2µ

d2
H∩Dx

(0). (28)

Proof. Fix x ∈ X. Using (16), we obtain

pµ(f ,λ)(x) = µ−1
(
− 1

2‖x‖2 + inf
P

i xi=x

∑
λi

(
µ ιCi

(xi/λi) + 1
2‖xi/λi‖2

))

= µ−1 inf
each ci ∈Ci
P

λici = x

∑
λi

(
1
2‖ci‖2 − 1

2‖x‖
2
)

= µ−1 inf
z = (zi)∈H ∩Dx

∑
λi

(
1
2

∥∥x + zi/
√

λi

∥∥2 − 1
2‖x‖

2
)

= µ−1 inf
z = (zi)∈H ∩Dx

∑
1
2‖zi‖2, (29)

which completes the proof. �

Remark 4.9 Consider Example 4.8 with n = 2, µ = 1, λ1 > 0, and λ2 > 0. Then (28) simplifies
to

pµ(f ,λ) : X → ]−∞,+∞] : x 7→ 1

2λ1λ2
d2
(λ1(C1−x))∩(λ2(x−C2))

(0), (30)

which is a formula first observed in [6, Theorem 6.1].

Theorem 4.10 (exactness) For every x ∈ dom pµ(f ,λ) there exist yi ∈ λi dom fi such that
x = y1 + · · ·+yn and pµ(f ,λ)(x) = (λ1 ✫(f1 +µ ✫ q))(y1)+ · · ·+(λn ✫(fn +µ ✫ q))(yn)− (µ ✫ q)(x).

Proof. Set (∀i) gi = λi ✫(fi + µ ✫ q). If λi = 0, then gi = ι{0} and hence g∗i = ιX has full domain.
If λi > 0, then using Proposition 3.2(i), Fact 3.4(i), and Proposition 3.3(iv), we see that

g∗i =
(
λi ✫(fi + µ ✫ q)

)∗
= λi(fi + µ ✫ q)∗ = λi(f

∗
i ✙ (µ ✫ q)∗) = λi(f

∗
i ✙ µ q); (31)

thus, g∗i also has full domain. Therefore, by Fact 3.4(ii), the epi-sum

pµ(f ,λ) + µ ✫ q = g1 ✙ · · · ✙ gn (32)

is exact. Since dom pµ(f ,λ) = λ1 dom f1 + · · ·+ λn dom fn by Theorem 4.6, the existence of the yi

is now clear. �
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5 Fenchel Conjugate

In this section, we compute the Fenchel conjugate of the proximal average. The explicit form
obtained has several interesting consequences. We begin with a reformulation of Lemma 3.7:

(pµ(f ,λ) + µ ✫ q)∗ = λ1(f
∗
1 ✙ µ q) + · · · + λn(f∗

n ✙µ q). (33)

We are now ready for a useful generalization of [6, Theorem 6.1] where n = 2 and µ = 1.

Theorem 5.1 (Fenchel conjugate)
(
pµ(f ,λ)

)∗
= pµ−1(f∗,λ).

Proof. Set
g = pµ(f ,λ) + µ ✫ q. (34)

By (33), we have
g∗ = λ1(f

∗
1 ✙ µ q) + · · · + λn(f∗

n ✙ µ q). (35)

In view of (6), (35), Proposition 3.1(vi), Proposition 3.3(v), and Proposition 3.2(i), we obtain that

q − µ−1g∗ = λ1

(
q − µ−1(f∗

1 ✙µ q)
)

+ · · · + λn

(
q − µ−1(f∗

1 ✙ µ q)
)

= λ1

(
q − (µ−1f∗

1 ✙ q)
)

+ · · · + λn

(
q − (µ−1f∗

1 ✙ q)
)

= λ1

(
(µ−1f∗

1 )∗ ✙ q
)

+ · · · + λn

(
(µ−1f∗

n)∗ ✙ q
)

= λ1

(
µ−1

✫f1 ✙ q
)

+ · · · + λn

(
µ−1

✫fn ✙ q
)
. (36)

Consequently, using Fact 3.4(i), Proposition 3.2(i), Proposition 3.2(iii), Proposition 3.2(ii), Propo-
sition 3.3(i), we see that

(
q − µ−1g∗

)∗
=
(
λ1

(
µ−1

✫f1 ✙ q
)

+ · · · + λn

(
µ−1

✫fn ✙ q
))∗

=
(
λ1

(
µ−1

✫f1 ✙ q
))∗

✙ · · · ✙

(
λn

(
µ−1

✫fn ✙ q
))∗

= λ1 ✫
(
µ−1

✫f1 ✙ q
)∗

✙ · · · ✙ λn ✫
(
µ−1

✫fn ✙ q
)∗

= λ1 ✫
(
(µ−1

✫f1)
∗ + q

∗
)

✙ · · · ✙λn ✫
(
(µ−1

✫fn)∗ + q
∗
)

= λ1 ✫
(
µ−1f∗

1 + q
)

✙ · · · ✙λn ✫
(
µ−1f∗

n + q
)
. (37)

Now Proposition 3.1(vi), Proposition 3.1(ix), and Proposition 3.3(ii) imply that

µ
(
q − µ−1g∗

)∗
= µ

(
λ1 ✫

(
µ−1(f∗

1 + µ q)
)

✙ · · · ✙ λn ✫
(
µ−1(f∗

n + µ q)
))

= µ
(
λ1 ✫

(
µ−1(f∗

1 + µ q)
))

✙ · · · ✙µ
(
λn ✫

(
µ−1(f∗

n + µ q)
))

= λ1 ✫(f∗
1 + µ q)✙ · · · ✙λn ✫(f∗

n + µ q)

= λ1 ✫(f∗
1 + µ−1

✫ q)✙ · · · ✙ λn ✫(f∗
n + µ−1

✫ q). (38)
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Combining (34), Corollary 3.6, and (38), we conclude that

(
pµ(f ,λ)

)∗
= (g − µ ✫ q)∗

= µ( q − µ−1g∗)∗ − µ−1
✫ q

= λ1 ✫(f∗
1 + µ−1

✫ q)✙ · · · ✙λn ✫(f∗
n + µ−1

✫ q) − µ−1
✫ q

= pµ−1(f∗,λ), (39)

as claimed. �

Corollary 5.2 (lower semicontinuity) pµ(f ,λ) is convex, lower semicontinuous, and proper.

Proof. Applying Theorem 5.1 twice, we deduce that (pµ(f ,λ))∗∗ = (pµ−1(f∗,λ))∗ =
p(µ−1)−1(f∗∗,λ) = pµ(f ,λ). �

The next result refines the corresponding two-function version [4, Proposition 4.8].

Example 5.3 p(f ,f∗) = q.

Proof. Theorem 5.1 readily implies that the p(f ,f∗) is equal to its conjugate; consequently, it must
be equal to q by Proposition 3.3(i). �

Theorem 5.4 (inequalities) (λ1f
∗
1 + · · · + λnf∗

n)∗ ≤ pµ(f ,λ) ≤ λ1f1 + · · · + λnfn.

Proof. The right inequality follows from (20) (by setting yi = x). Applying the right inequality to
f∗ and µ−1, we learn that

pµ−1(f∗,λ) ≤ λ1f
∗
1 + · · · + λnf∗

n. (40)

Taking the Fenchel conjugate of (40) and utilizing Theorem 5.1, we deduce that pµ(f ,λ) =(
pµ−1(f∗,λ)

)∗ ≥
(
λ1f

∗
1 + · · · + λnf∗

n

)∗
. �

Corollary 5.5 (infimum value)

λ1 inf f1 + · · · + λn inf fn ≤ inf pµ(f ,λ) ≤ inf(λ1f1 + · · · + λnfn). (41)

Corollary 5.6 (common minimizers) Suppose that
⋂

i : λi>0 argmin(fi) 6= ∅. Then

min pµ(f ,λ) =
∑

i : λi>0

λi min fi and argmin pµ(f ,λ) =
⋂

i : λi>0

argmin(fi). (42)

Proof. Combine Theorem 5.4 and Corollary 5.5. �
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6 Moreau Envelope and Proximal Mapping

Definition 6.1 Let f ∈ Γ(X). The Moreau envelope of f with parameter µ is eµf = f ✙ µ ✫ q.

Observe that
eµf = (f∗ + µ q)∗. (43)

Theorem 6.2 (Moreau envelope and its Fenchel conjugate)

(i) eµpµ(f ,λ) = λ1eµf1 + · · · + λneµfn.

(ii)
(
eµpµ(f ,λ)

)∗
= λ1 ✫(eµf1)

∗
✙ · · · ✙λn ✫(eµfn)∗.

Proof. Fix y ∈ X and set I =
{
i ∈ {1, . . . , n} | λi > 0

}
. Using (16), we obtain

(
eµpµ(f ,λ)

)
(y) = inf

x
pµ(f ,λ)(x) +

1

2µ
‖y − x‖2

= inf
x

inf
P

i∈I xi=x

∑

i∈I

λi

(
fi(xi/λi) +

1

2µ
‖xi/λi‖2

)
+

1

2µ
‖y‖2 − 1

µ
〈x, y〉

= inf
x

inf
P

i∈I xi=x

∑

i∈I

λi

(
fi(xi/λi) +

1

2µ
‖xi/λi‖2 +

1

2µ
‖y‖2 − 1

µ
〈xi/λi, y〉

)

= inf
x

inf
P

i∈I xi=x

∑

i∈I

λi

(
fi(xi/λi) +

1

2µ
‖y − xi/λi‖2

)

= inf
xi,i∈I

∑

i∈I

λi

(
fi(xi/λi) +

1

2µ
‖y − xi/λi‖2

)

=
∑

i∈I

λi inf
xi

(
fi(xi/λi) +

1

2µ
‖y − xi/λi‖2

)

=
∑

i∈I

λi

(
eµfi

)
(y). (44)

This implies (i), and (ii) follows by Fenchel conjugation. Alternatively, using Defini-
tion 6.1, Proposition 3.2(iii), Theorem 5.1, Proposition 3.3(iv), and Proposition 3.3(ii), one
may prove (ii) via

(
eµpµ(f ,λ)

)∗
=
(
pµ(f ,λ)✙µ ✫ q

)∗
=
(
pµ(f ,λ)

)∗
+ µ q = pµ−1(f∗,λ) +

µ−1
✫ q = λ1 ✫(f∗

1 + µ−1
✫ q)✙ · · · ✙λn ✫(f∗

n + µ−1
✫ q) = λ1 ✫(f∗

1 + µ q)✙ · · · ✙λn ✫(f∗
n + µ q) =

λ1 ✫(eµf1)
∗

✙ · · · ✙ λn ✫(eµfn)∗, and then deduces (i) by Fenchel conjugation. �

The following result is well known.

Proposition 6.3 Let f ∈ Γ(X). Then argmin eµf = argmin f .

Proof. argmin eµf = ∂(eµf)∗(0) = ∂(f∗ + µ q)(0) = (∂f∗ + µ Id)(0) = ∂f∗(0) = argmin f . �
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Corollary 6.4 (minimizers) argmin pµ(f ,λ) = argmin
(
λ1eµf1 + · · · + λneµfn

)
.

Proof. Combine Proposition 6.3 and Theorem 6.2(i). �

Example 6.5 (least squares solutions) Let C1, . . . , Cn be nonempty closed convex subsets of
X and suppose that (∀i) fi = ιCi

. Then argmin pµ(f ,λ) = argmin(λ1d
2
C1

+ · · · + λnd2
Cn

).

Proof. This is a consequence of Corollary 6.4 since (∀i) eµfi = eµιCi
= ιCi

✙µ ✫ q = µ−1ιCi
✙µ−1

q =
µ−1(ιCi

✙ q) = µ−1 1
2d2

Ci
. �

Definition 6.6 Let f ∈ Γ(X). The proximal mapping of f with parameter µ is Pµf =
(Id +µ∂f)−1.

Observe that
µ−1(Pµf)−1 = ∂f + µ−1 Id, (45)

that
Pµf =

(
∇(f + µ−1

q)∗
)
◦ (µ−1 Id), (46)

and that
(Pµf) ◦ (µ Id) = ∇(eµ−1(f∗)). (47)

We now show that the proximal mapping of the proximal average is simply the average of the
individual proximal mappings. This result, which also explains how the proximal average got its
name, was first proved in [6, Theorem 6.1] when n = 2 and µ = 1.

Theorem 6.7 (proximal mapping) Pµ

(
pµ(f ,λ)

)
= λ1Pµf1 + · · · + λnPµfn.

Proof. Theorem 5.1 and Theorem 6.2(i) (the latter applied to f∗ and µ−1) show that

eµ−1

(
(pµ(f ,λ))∗

)
= eµ−1

(
pµ−1(f∗,λ)

)
= λ1eµ−1(f∗

1 ) + · · · + λneµ−1(f∗
n); (48)

in turn, taking gradients yields

∇
(
eµ−1

(
(pµ(f ,λ))∗

))
= λ1∇(eµ−1(f∗

1 )) + · · · + λn∇
(
eµ−1(f∗

n)
)
. (49)

Using (47), we see that this is equivalent to

(
Pµ

(
pµ(f ,λ)

))
◦ (µ Id) = λ1(Pµf1) ◦ (µ Id) + · · · + λn(Pµfn) ◦ (µ Id). (50)

The result follows. �
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7 Subdifferential

Theorem 7.1 (subdifferential) Let (∀i) xi ∈ dom fi and set x = λ1x1 + · · · + λnxn. Then the
following hold.

(i) If pµ(f ,λ)(x) = (λ1 ✫(f1 + µ ✫ q))(λ1x1) + · · · + (λn ✫(fn + µ ✫ q))(λnxn) − (µ ✫ q)(x), then

∂pµ(f ,λ)(x) = −µ−1x +
⋂

i

∂(λi ✫(fi + µ ✫ q))(λixi) (51)

= −µ−1x +
⋂

i : λi>0

(
∂fi(xi) + µ−1xi

)
(52)

= −µ−1x +
⋂

i : λi>0

(
µ−1(Pµfi)

−1(xi)
)
. (53)

(ii) If
⋂

i : λi>0(Pµfi)
−1(xi) 6= ∅, then

pµ(f ,λ)(x) = (λ1 ✫(f1 + µ ✫ q))(λ1x1) + · · · + (λn ✫(fn + µ ✫j))(λnxn) − (µ ✫ q)(x). (54)

Proof. Set (∀i) gi = λi ✫(fi + µ ✫ q). Theorem 4.6, Theorem 4.10, and Proposition 3.3(ii) imply
that

g1 ✙ · · · ✙gn = pµ(f ,λ) + µ ✫ q = pµ(f ,λ) + µ−1
q (55)

is exact on dom(g1 ✙ · · · ✙gn) = λ1 dom f1 + · · · + λn dom fn = dom pµ(f ,λ). (i): (51), (52), and
(53) follow from Fact 3.8(i), Proposition 3.9, and (45), respectively. (ii): Use Fact 3.8(ii). �

Corollary 7.2 (∀x ∈ X)
⋂

i : λi>0 ∂fi(x) ⊆ ∂pµ(f ,λ)(x).

Proof. Take x∗ ∈ ⋂i : λi>0 ∂fi(x). Then (∀i) λi > 0 ⇒ µx∗ + x ∈ µ∂fi(x) + x = (Pµfi)
−1(x). By

Theorem 7.1(ii), pµ(f ,λ)(x) = (λ1 ✫(f1 + µ ✫ q))(λ1x) + · · · + (λn ✫(fn + µ ✫j))(λnx) − (µ ✫ q)(x).
Using Theorem 7.1(i), we deduce that x∗ = −µ−1x + µ−1(µx∗ + x) ∈ ∂pµ(f ,λ)(x). �

For the following results, it will be convenient to write x = x1 ⊕ · · · ⊕xn if x = x1 + · · ·+ xn and
xi⊥xj for i 6= j. We also write K1⊕· · ·⊕Kn =

{
x1 ⊕ · · · ⊕ xn | each xi ∈ Ki and xi⊥xj for i 6= j

}
.

Corollary 7.3 Let K1, . . . ,Kn be nonempty closed convex cones and set (∀i) Pi = PKi
, the or-

thogonal projector onto Ki. Suppose that

(∀x = x1 ⊕ · · · ⊕ xn ∈ K1 ⊕ · · · ⊕ Kn)(∀i) Pix = xi, (56)

that
(∀x ∈ X) x = P1x ⊕ · · · ⊕ Pnx, (57)

and that (∀i) fi = ιKi
and λi > 0. Then

(∀x ∈ X) pµ(f ,λ)(x) =
1

2µ

∑

i

(1 − λi)

λi
‖Pix‖2. (58)
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Proof. Observe that (∀i) Pµfi = (Id +µ∂ιKi
)−1 = (Id +∂ιKi

)−1 = Pi. Take x ∈ X and set

(∀i) xi = 1
λi

Pix = Pi

(
1
λi

x
)
. (59)

Using (57), we obtain that
x = λ1x1 ⊕ · · · ⊕ λnxn. (60)

Now set
z = x1 ⊕ · · · ⊕ xn. (61)

By (56), we have (∀i) Piz = xi. Thus z ∈ ⋂i(Pµfi)
−1(xi). Therefore, by (60) and Theorem 7.1(ii),

pµ(f ,λ)(x) = (λ1 ✫(f1 + µ ✫ q))(λ1x1) + · · · + (λn ✫(fn + µ ✫ q))(λnxn) − (µ ✫ q)(x)

= µ−1λ1 q(x1) + · · · + µ−1λn q(xn) − µ−1
q(x)

=
1

2µ

(
λ1‖x1‖2 + · · · + λn‖xn‖2 − ‖λ1x1 + · · · + λnxn‖2

)

=
1

2µ

∑

i

λi(1 − λi)‖xi‖2. (62)

The conclusion thus follows from (59). �

The following two examples are special cases of Corollary 7.3.

Example 7.4 Let K1, . . . ,Kn be closed subspaces that are pairwise orthogonal and such that
K1 ⊕ · · · ⊕ Kn = X and suppose that fi = ιKi

. Then pµ(f ,λ) = µ−1
∑

i(λ
−1
i − 1)( q ◦ PKi

).

Example 7.5 (See also [4, Example 4.9].) Let K be a nonempty closed convex cone in X and let
λ ∈ ]0, 1[. Then

(∀x ∈ X) p
(
(ιK , ιK⊖), (1 − λ, λ)

)
(x) =

1

2(1 − λ)λ

(
λ2‖PKx‖2 + (1 − λ)2‖PK⊖x‖2

)
, (63)

where K⊖ is the polar cone of K.

Remark 7.6 We are now in a position to show that the inequalities in Theorem 5.4 can be strict.
Suppose that n = 2, that f1 = ιK that f2 = ιK⊖ , where K is a nonempty closed convex cone in X,
and that λ2 = λ ∈ ]0, 1[. Using Example 7.5, we see that Theorem 5.4 becomes

(∀x ∈ X) ιX(x) ≤ 1

2(1 − λ)λ

(
λ2‖PKx‖2 + (1 − λ)2‖PK⊖x‖2

)
≤ ι{0}(x). (64)

The inequalities are strict for every x ∈ X r {0}.

Let f ∈ Γ(X). Following [3, Section 5], we say that f is essentially smooth if ∂f is at most
single-valued and int dom f is nonempty, that f is essentially strictly convex if f∗ is essentially
smooth, and that f is Legendre if f is both essentially smooth and essentially strictly convex.
These notions coincide in our (reflexive) Hilbert space setting with the well known notions of the
same name in Euclidean space (see [21, Section 26]).

The next three results extend corresponding results in [4, Section 6] considerably.
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Corollary 7.7 (essential smoothness) Suppose that at least one function fi is essentially
smooth and that λi > 0. Then pµ(f ,λ) is essentially smooth.

Proof. Since fi is essentially smooth, the set dom fi has nonempty interior. Thus λi dom fi and
dom pµ(f ,λ) = λ1 dom f1 + · · · + λn dom fn (see Theorem 4.6) both have nonempty interiors as
well. Now take x ∈ dom pµ(f ,λ) and let y1, . . . , yn be as in Theorem 4.10, say (∀i) yi = λixi,
where xi ∈ dom fi. By Theorem 7.1(i), ∂pµ(f ,λ)(x) ⊆ −µ−1x + ∂fi(xi) + µ−1xi. Because fi is
essentially smooth, the set ∂fi(xi) is either empty or singleton. Thus ∂pµ(f ,λ)(x) is either empty
or singleton. Altogether, pµ(f ,λ) is essentially smooth. �

Corollary 7.8 (essential strict convexity) Suppose that at least one function fi is essentially
strictly convex and that λi > 0. Then pµ(f ,λ) is essentially strictly convex.

Proof. Since fi is essentially strictly convex, its conjugate f∗
i is essentially smooth. By Corollary 7.7,

pµ−1(f∗,λ) is essentially smooth. Hence (pµ−1(f∗,λ))∗ is essentially strictly convex. This last
function is equal to pµ(f ,λ) (by Theorem 5.1) and the proof is thus complete. �

Corollary 7.9 (Legendre function) Suppose that at least one function fi is essentially smooth
and that λi > 0. Furthermore, suppose that at least one function fj is essentially strictly convex
and that λj > 0. (It does not matter whether j and i are identical or distinct.) Then pµ(f ,λ) is
both essentially smooth and essentially strictly convex, i.e., Legendre.

Proof. Combine Corollary 7.7 and Corollary 7.8. �

Before we formulate and prove the last result in this section, we briefly return to the Moreau
envelope and the proximal mapping. Let f ∈ Γ(X). Applying Proposition 3.3(v) to µf , we readily
deduce that (see also [22, Example 11.26(b)])

µ(eµf) + µ ✫(eµ−1(f∗)) = q. (65)

Taking gradients and recalling (47) yields Id = Pµf + µ(Pµ−1(f∗)) ◦ (µ−1 Id); equivalently, µ Id =
(Pµf) ◦ (µ Id) + µPµ−1(f∗) or

Id = µ−1(Pµf) ◦ (µ Id) + Pµ−1(f∗). (66)

The following result generalizes [5, Theorem 4.22], where n = 2, λ1 = λ2 = 1
2 , and µ = 1.

Theorem 7.10 Suppose that (a, a∗) ∈ X × X satisfies a∗ ∈ ∂f1(a) ∩ · · · ∩ ∂fn(a) and that
{1, 2, . . . , n} is the disjoint union of two sets of indices I and J . Set λJ =

∑
j∈J λj and sup-

pose that λJ > 0. Then for every z ∈ a +
(⋂

i∈I Ndom fi
(a) ∩⋂j∈J Ndom f∗

j
(a∗)

)
, we have

a∗ + µ−1(λ−1
J − 1)(z − a) ∈ ∂pµ(f ,λ)(z). (67)

Consequently, pµ(f ,λ) is differentiable on a + int
(⋂

i∈I Ndom fi
(a) ∩⋂j∈J Ndom f∗

j
(a∗)

)
, with gra-

dient z 7→ a∗ + µ−1(λ−1
J − 1)(z − a).
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Proof. Let z be as in the conclusion and set y = z − a. Fix i ∈ I. Now a∗ ∈ ∂fi(a) and
λ−1

J y ∈ Ndom fi
(a) = ∂ιdom fi

(a) = ∂ιdom µfi
(a). Hence µa∗ ∈ µ∂fi(a) = ∂(µfi)(a). Thus µa∗ +

λ−1
J y ∈ ∂(µfi)(a) + ∂(ιdom µfi

)(a) ⊆ ∂(µfi + ιdom µfi
)(a) = ∂(µfi)(a). It follows that

(∀i ∈ I) a = (Pµfi)(µa∗ + λ−1
J y + a). (68)

Next, fix j ∈ J . Then a + λ−1
J y ∈ ∂f∗

j (a∗) and µ−1a + µ−1λ−1
J y ∈ ∂(µ−1f∗

j )(a∗). Using (66), we

thus have a∗ = (Pµ−1f∗
j )(µ−1a+µ−1λ−1

J y+a∗) = µ−1a+µ−1λ−1
J y+a∗−µ−1(Pµfj)(a+λ−1

J y+µa∗).
Hence

(∀j ∈ J) a + λ−1
J y = (Pµfj)(a + λ−1

J y + µa∗). (69)

Now (68), (69), and Theorem 6.7 imply that

a + y = (Pµpµ(f ,λ))(a + λ−1
J y + µa∗); (70)

equivalently,
a∗ + µ−1(λ−1

J − 1)y ∈ ∂pµ(f ,λ)(a + y). (71)

This verifies (67). Denote the intersection of the n normal cones by N . On a+ int N , the mapping
z 7→ a∗ +µ−1(λ−1

J −1)(z−a) is thus a continuous selection of ∂pµ(f ,λ); therefore, ∇pµ(f ,λ)(z) =
a∗ + µ−1(λ−1

J − 1)(z − a) by [20, Proposition 2.8]. �

8 Pointwise Limits of the Proximal Average

Proposition 8.1 Let f ∈ Γ(X). Then eµ−1

(
f ◦ (µ Id)

)
= (eµf) ◦ (µ Id).

Proof. For every x ∈ X, we have eµ−1

(
f ◦ (µ Id)

)
(x) = infy

(
f(µy) + µ q(x − y)

)
= infy

(
f(µy) +

µ−1
q(µx − µy)

)
= infz

(
f(z) + µ−1

q(µx − z)
)

= eµf(µx). �

Proposition 8.2 [22, Example 11.26(c)] Let f : X → [−∞,+∞]. Then

(f + µ q)∗ = (µ q − eµ−1f) ◦ (µ−1 Id). (72)

Proof. For every x∗ ∈ X, we obtain that

(f + µ q)∗(x∗) = sup
x

(
〈x, x∗〉 − f(x) − µ q(x)

)

= sup
x

(
〈x, x∗〉 − f(x) − µ q(x − µ−1x∗) + µ−1

q(x∗) − 〈x, x∗〉
)

= µ−1
q(x∗) + sup

x

(
− f(x) − µ q(x − µ−1x∗)

)

= µ−1
q(x∗) − inf

x

(
f(x) + µ q(µ−1x∗ − x)

)

= µ−1
q(x∗) − (f ✙µ q)(µ−1x∗)

= µ q(µ−1x∗) − (f ✙ µ−1
✫ q)(µ−1x∗)

=
(
µ q − eµ−1f

)
(µ−1x∗). (73)
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The result follows. �

The following alternative expression of the proximal average was discovered by Warren Hare for
the case when n = 2 and µ = 1.

Theorem 8.3 [9] pµ(f ,λ) = −eµ

(
−(λ1eµf1 + · · · + λneµfn)

)
.

Proof. Set g = −(λ1eµf1+· · ·+λneµfn). Taking the Fenchel conjugate on both sides of (33) leads to
pµ(f ,λ) =

(
λ1(f

∗
1 ✙µ q)+ · · ·+λn(f∗

n ✙µ q)
)∗−µ ✫ q. On the other hand, (∀i) f∗

i ✙ µ q = (fi+µ ✫ q)∗

by Fact 3.4(i) and Proposition 3.3(iii). Altogether,

pµ(f ,λ) =
(
λ1(f1 + µ ✫ q)∗ + · · · + λn(fn + µ ✫ q)∗

)∗ − µ ✫ q. (74)

Using (74), Proposition 3.3(ii), Proposition 8.2, and Proposition 8.1 we deduce that

pµ(f ,λ) =
(
λ1(f1 + µ ✫ q)∗ + · · · + λn(fn + µ ✫ q)∗

)∗ − µ ✫ q

=
(
λ1(f1 + µ−1

q)∗ + · · · + λn(fn + µ−1
q)∗
)∗ − µ ✫ q.

=
(
λ1(µ

−1
q − eµf1) ◦ (µ Id) + · · · + λn(µ−1

q − eµfn) ◦ (µ Id)
)∗ − µ ✫ q

=
(
µ q + g ◦ (µ Id)

)∗ − µ ✫ q

=
(
µ q − eµ−1(g ◦ (µ Id))

)
◦ (µ−1 Id) − µ ✫ q

= µ−1
q −

(
eµ−1(g ◦ (µ Id))

)
◦ (µ−1 Id) − µ ✫ q

= −
(
(eµg) ◦ (µ Id)

)
◦ (µ−1 Id)

= −eµg. (75)

This verifies the result. �

The µ-proximal hull of a function g is defined by hµg = −eµ(−eµg); it satisfies eµg ≤ hµg ≤ g
and eµ(hµg) = eµg (see [22, Example 1.44]). Theorem 8.3 shows that pµ(f ,λ) can be interpreted
as some sort of weighted proximal hull of the functions f1, . . . , fn. We now turn to the proximal
hull of pµ(f ,λ).

Corollary 8.4 (proximal hull) hµpµ(f ,λ) = pµ(f ,λ).

Proof. By Theorem 6.2(i), eµpµ(f ,λ) = λ1eµf1 + · · · + λneµfn. Hence, using Theorem 8.3,
hµ(pµ(f ,λ)) = −eµ(−eµpµ(f ,λ)) = −eµ(−λ1eµf1−· · ·−λneµfn) = pµ(f ,λ). Since pµ(f ,λ)+µ ✫ q

is clearly convex and lower semicontinuous (by Corollary 5.2), the result follows alternatively from
[22, Example 11.26(d)]. �

Let us now determine the pointwise behaviour of pµ(f ,λ).

Theorem 8.5 (pointwise limits) Let x ∈ X. Then the function

]0,+∞[ → ]−∞,+∞] : µ 7→ pµ(f ,λ)(x) is decreasing. (76)
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Consequently, limµ→0+ pµ(f ,λ)(x) and limµ→+∞ pµ(f ,λ)(x) exist. In fact,

lim
µ→0+

pµ(f ,λ)(x) = sup
µ>0

pµ(f ,λ)(x) =
(
λ1f1 + · · · + λnfn

)
(x) (77)

and
lim

µ→+∞
pµ(f ,λ)(x) = inf

µ>0
pµ(f ,λ)(x) =

(
λ1 ✫f1 ✙ · · · ✙ λn ✫fn

)
(x). (78)

Proof. The fact that µ 7→ pµ(f ,λ)(x) is decreasing follows from (20); consequently, the two limits
exist and the supremum/infimum descriptions are clear. Now eµ

(
− (λ1eµf1 + · · · + λneµfn)

)
≤

−(λ1eµf1 + · · · + λneµfn). Thus, using Theorem 8.3, we deduce that λ1eµf1 + · · · + λneµfn ≤
−eµ

(
−(λ1eµf1+· · ·+λneµfn)

)
= pµ(f ,λ). On the other hand, Theorem 5.4 implies that pµ(f ,λ) ≤

λ1f1 + · · · + λnfn. Altogether,

λ1eµf1 + · · · + λneµfn ≤ pµ(f ,λ) ≤ λ1f1 + · · · + λnfn. (79)

It is well known that Moreau envelopes converge pointwise to the underlying function as the pa-
rameter approaches 0; see, e.g., [1, Theorem 2.64] or [22, Theorem 1.25 and Theorem 2.26]. Thus
(∀i) limµ→0+ eµfi = fi pointwise and (77) follows from taking the pointwise limit in (79) at x as
µ → 0+. Using (20), we deduce that

lim
µ→+∞

pµ(f ,λ)(x) = inf
µ>0

pµ(f ,λ)(x)

= inf
µ>0

inf
P

λiyi=x

∑
λifi(yi) +

1

µ

((∑
λi q(yi)

)
− q(x)

)

= inf
P

λiyi=x
inf
µ>0

∑
λifi(yi) +

1

µ

((∑
λi q(yi)

)
− q(x)

)

= inf
P

λiyi=x

∑
λifi(yi)

= inf
P′ xi=x

∑′
λifi(xi/λi)

= inf
P′ xi=x

∑′
(λi ✫fi)(xi)

=
(
λ1 ✫f1 ✙ · · · ✙ λn ✫fn

)
(x), (80)

where the indices in the
∑′ sums range over all i such that λi > 0. �

The following nice observation, which is based on the comments of an anonymous referee, builds
a bridge to [17].

Remark 8.6 (parallel sums) Suppose that X = R
N , let A1, . . . , An be positive definite N × N

matrices, and suppose that (∀i) fi(x) = 1
2〈x,Aix〉, i.e., identify each Ai with its quadratic form.

As µ → 0+, pµ(f ,λ) converges pointwise to λ1f1 + · · ·+λnfn and, as µ → +∞, pµ(f ,λ) converges
pointwise to λ1 ✫f1 ✙ · · · ✙ λn ✫fn. Using [17] (see also [12, Example IV.2.3.8], [14], and [16]), the
matrices corresponding to the quadratic forms λ1f1 + · · ·+λnfn, λ1 ✫f1 ✙ · · · ✙ λn ✫fn, and pµ(f ,λ)
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are, respectively, the arithmetic average λ1A1 + · · · + λnAn; the harmonic average (λ1A
−1
1 + · · · +

λnA−1
n )−1, i.e., the parallel sum of the matrices λ−1

1 A1, . . . , λ
−1
n An; and (λ1(A1 + µ−1 Id)−1 + · · ·+

λn(An + µ−1 Id)−1)−1 − µ−1 Id, i.e., a µ−1-shifted version of the harmonic average (in accordance
with the comment before Definition 4.1). Note that this provides another proof of Example 4.5
and that the theory for parallel sum extends to matrices that are only positive semidefinite.

9 Epi-Continuity and Epi-Limits of the Proximal Average

We now discuss the convergence behaviour of the proximal average with respect to the epi-topology.
Analogously to [4, Section 5], we assume throughout this section that

X is finite-dimensional. (81)

Definition 9.1 (epi-convergence and epi-topology) (See [22, Chapter 6].) Let g and (gk)k∈N

be functions from X to ]−∞,+∞]. Then (gk)k∈N epi-converges to g, in symbols gk
e→ g, if the

following hold for every x ∈ X.

(i)
(
∀ (xk)k∈N

)
xk → x ⇒ g(x) ≤ lim gk(xk).

(ii)
(
∃ (yk)k∈N

)
yk → x and lim gk(yk) ≤ g(x).

The epi-topology is the topology induced by epi-convergence.

Fact 9.2 Let g and (gk)k∈N be in Γ(X) such that gk
e→ g, and let h and (hk)k∈N be in Γ(X) such

that hk
e→ h. Let ρ and (ρk)k∈N be in [0,+∞[ such that ρk → ρ and let q : X → R be continuous.

Then the following hold.

(i) gk ± q
e→ g ± q.

(ii) ρ > 0 ⇒ ρkgk
e→ ρg.

(iii) ρ = 0 and dom g = X ⇒ ρkgk
e→ ρg.

(iv) g∗k
e→ g∗.

(v) 0 ∈ int(dom g − dom h) ⇒ gk + hk
e→ g + h.

Proof. (i): See [22, Exercise 7.8(a)]. (ii): See [22, Exercise 7.8(d)]. (iii): See [4] or verify this
directly. (iv): See [22, Theorem 11.34]. (v): See [22, Exercise 7.47(b)]. �

Lemma 9.3 Let g1, . . . , gn, h be in Γ(X) and let (g1,k)k∈N, . . . , (gn,k)k∈N, (hk)k∈N be sequences in

Γ(X) such that (∀i) gi,k
e→ gi and hk

e→ h. Let ρ and (ρk)k∈N be in [0,+∞[ such that ρk → ρ.
Suppose that dom g∗1 = · · · = dom g∗n−1 = dom h∗ = X and that (∀i ∈ {1, . . . , n−1})(∀k) dom g∗i,k =
X. Then the following hold.
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(i) g1,k ✙ · · · ✙gn,k
e→ g1 ✙ · · · ✙ gn.

(ii) ρk ✫hk
e→ ρ ✫h.

Proof. (i): Fact 9.2(iv)&(v) imply that g∗1,k + · · ·+ g∗n,k
e→ g∗1 + · · ·+ g∗n. Using Fact 9.2(iv), we see

that (g∗1,k + · · ·+ g∗n,k)
∗ e→ (g∗1 + · · ·+ g∗n)∗, which is equivalent to g1,k ✙ · · · ✙gn,k

e→ g1 ✙ · · · ✙ gn by

Fact 3.4(i). (ii): Fact 9.2(ii)–(iv) imply that ρkh
∗
k

e→ ρh∗. Using Fact 9.2(iv) once more, we deduce

that (ρkh
∗
k)

∗ e→ (ρh∗)∗, which is the same as the conclusion in view of Proposition 3.2(i). �

Remark 9.4 Using the horizon functions associated with g1, . . . , gn and [22, Proposition 7.56],
one may obtain a stronger version of Lemma 9.3 where the assumption on the functions g∗i,k is less
restrictive; however, this is not needed in the sequel.

The next result extends [4, Theorem 5.4].

Theorem 9.5 (epi-continuity of the proximal average) Let (fi,k)k∈N be sequences in Γ(X)

such that (∀i) fi,k
e→ fi, let (λi,k)k∈N be sequences in [0, 1] such that (∀k)

∑
i λi,k = 1 and (∀i)

λi,k → λi, and let (µk)k∈N be a sequence in ]0,+∞[ such that µk → µ. Then

pµk

(
(f1,k, . . . , fn,k), (λ1,k, . . . , λn,k)

) e→ pµ

(
(f1, . . . , fn), (λ1, . . . , λn)

)
= pµ(f ,λ). (82)

Proof. By Theorem 9.3(ii),
µk ✫ q

e→ µ ✫ q. (83)

Furthermore,
(∀i) fi,k + µk ✫ q

e→ fi + µ ✫ q (84)

by Fact 9.2(v) because (µ ✫ q)∗ = µ q has full domain. Using (84), Lemma 9.3(ii), and the fact that
(∀i) (fi +µ ✫ q)∗ = (f∗

i ✙ (µ ✫ q)∗)∗∗ = (f∗
i ✙µ q)∗∗ has full domain (and similarly for (fi,k +µk ✫ q)∗),

we deduce that
(∀i) λi,k ✫(fi,k + µk ✫ q)

e→ λi ✫(fi + µ ✫ q). (85)

Since (∀i)
(
λi ✫(fi + µ ✫ q)

)∗
= λi(fi + µ ✫ q)∗ = λi(f

∗
i ✙ µ ✫ q) has full domain (and similarly for

(λi,k ✫(fi,k + µk ✫ q))∗), (85) and Lemma 9.3(i) yield

λ1,k ✫(f1,k + µk ✫ q)✙ · · · ✙λn,k ✫(fn,k + µk ✫ q)
e→ λ1 ✫(f1 + µ ✫ q)✙ · · · ✙ λn ✫(fn + µ ✫ q). (86)

In turn, (83), (86) and Fact 9.2(i) imply (82). �

We now describe the behaviour of pµ(f ,λ) when µ approaches either 0 or +∞ while f and λ

are fixed.

Corollary 9.6 pµ(f ,λ)
e→ λ1f1 + · · · + λnfn as µ → 0+, and pµ(f ,λ)

e→ cl(λ1 ✫f1 ✙ · · · ✙λn ✫fn)
as µ → +∞.
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Proof. Theorem 8.5 shows that µ 7→ pµ(f ,λ) is pointwise increasing. In view of (77) and the lower
semicontinuity of pµ(f ,λ) (see Corollary 5.2), an application of [22, Proposition 7.4(d)] yields that

pµ(f ,λ)
e→ λ1f1 + · · · + λnfn as µ → 0+. Combining (78) with [22, Proposition 7.4(e)], we deduce

similarly that pµ(f ,λ)
e→ cl(λ1 ✫f1 ✙ · · · ✙λn ✫fn) as µ → +∞. �

Corollary 9.6 and (77) show that as µ → 0+, the pointwise and epigraphical limits of pµ(f ,λ)
coincide. When µ → +∞, the pointwise and epigraphical limits of pµ(f ,λ) may differ as we
illustrate next.

Example 9.7 Suppose that X = R
2, that n = 2, that λ1 > 0, that λ2 > 0, that f1 = ιC1

, and
that f2 = ιC2

, where C1 and C2 are nonempty closed convex subsets of X such that λ1C1 +λ2C2 is
not closed. Concretely, we may let C1 and C2 be the epigraphs of x 7→ exp(x) and x 7→ exp(−x),
respectively. Then the pointwise limit (see (78))

lim
µ→+∞

pµ(f ,λ) = λ1 ✫f1 ✙ λ2 ✫f2 = ιλ1C1+λ2C2
(87)

is not lower semicontinuous, and hence different from the epigraphical limit (see Corollary 9.6)
cl(λ1 ✫f1 ✙λ2 ✫f2), which is the indicator function of the closure of λ1C1 + λ2C2.

We now show that the limiting behaviour as µ → +∞ cannot be obtained by conjugation.

Example 9.8 Suppose that X = R
2, that n = 2, that f1 : (x, y) 7→ −x+ ι{0}(y), that f2 : (x, y) 7→

x + ι{0}(y), that λ1 > 0, and that λ2 > 0. Now fix (x, y) ∈ R
2. Using (16) and some calculus, we

calculate

pµ(f ,λ)(x, y) = (λ2 − λ1)x + ι{0}(y) − 2µλ1λ2 = (λ1f1 + λ2f2)(x, y) − 2µλ1λ2. (88)

Letting µ → 0+ in (88) and in accordance with (77), we observe that pµ(f ,λ) → λ1f1 + λ2f2

pointwise. Recalling (78) and letting µ → +∞ in (88), we see that

(λ1 ✫f1 ✙λ2 ✫f2)(x, y) = lim
µ→+∞

pµ(f ,λ)(x, y) =

{
−∞, if y = 0;

+∞, if y 6= 0.
(89)

Since f∗
1 (x, y) = ι{−1}(x) and f∗

2 (x, y) = ι{1}(x), we have dom(f∗
1 ) ∩ dom(f∗

2 ) = ∅ and thus
λ1f

∗
1 + λ2f

∗
2 ≡ +∞. Altogether,

λ1 ✫f1 ✙ λ2 ✫f2 6=
(
λ1f

∗
1 + λ2f

∗
2

)∗ ≡ −∞. (90)

Therefore, due to the absence of a constraint qualification on f∗
1 and f∗

2 , the epigraphical conver-
gence of pµ(f ,λ) to the epigraphical average of f1 and f2 as µ → +∞ could not have been obtained
by conjugating the epigraphical convergence of pµ−1(f∗

1 , f∗
2 , λ1, λ2) to λ1f

∗
1 + λ2f

∗
2 as µ → +∞.

In the presence of a constraint qualification, we can use the proximal average to construct a
homotopic curve with very nice properties.
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Remark 9.9 (epigraphical and arithmetic averages are homotopic) Suppose that
int dom f∗

1 ∩ · · · ∩ int dom f∗
n−1 ∩ dom f∗

n 6= ∅. By Fact 3.4(i) and Proposition 3.2(i), we have
(λ1f

∗
1 + · · · + λnf∗

n)∗ = λ1 ✫f1 ✙ · · · ✙λn ✫fn. Therefore,

cl(λ1 ✫f1 ✙ · · · ✙ λn ✫fn) = λ1 ✫f1 ✙ · · · ✙λn ✫fn (91)

and hence the pointwise and epigraphical limits of pµ(f ,λ) as either µ → 0+ or µ → +∞ coincide
by Theorem 8.5 and Corollary 9.6. Now set

(∀ρ ∈ [0, 1]) qρ : x 7→





(λ1f1 + · · · + λnfn)(x), if ρ = 0;

ptan(ρπ/2)(f ,λ)(x), if 0 < ρ < 1;

(λ1 ✫f1 ✙ · · · ✙ λn ✫fn)(x), if ρ = 1.

(92)

Then Theorem 8.5, Corollary 9.5, and Corollary 9.6 show that (qρ)ρ∈[0,1] is a decreasing, pointwise
convergent, homotopic (with respect to the epi-topology) curve between the arithmetic average
λ1f1 + · · · + λnfn and the epigraphical average λ1 ✫f1 ✙ · · · ✙ λn ✫fn.
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[12] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer,
New York, 1996.
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