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THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE
CARLO COMPUTATIONS
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We introduce a powerful and flexible MCMC algorithm for stochastic
simulation. The method builds on a pseudo-marginal method originally intro-
duced in [Genetics 164 (2003) 1139–1160], showing how algorithms which
are approximations to an idealized marginal algorithm, can share the same
marginal stationary distribution as the idealized method. Theoretical results
are given describing the convergence properties of the proposed method, and
simple numerical examples are given to illustrate the promising empirical
characteristics of the technique. Interesting comparisons with a more obvi-
ous, but inexact, Monte Carlo approximation to the marginal algorithm, are
also given.

1. Introduction. We are interested in the problem of simulation from a prob-
ability distribution π(dθ, dz) which, for now, we shall assume admits a den-
sity π(θ, z) with respect to some σ -finite measure (which we shall just write as
dθ ×dz). The variables θ and z are elements of essentially arbitrary spaces, � and
Z, respectively. We partition the state space in this way because, either:

1. interest lies mainly in the marginal law π(dθ) of the variable θ ∈ � [which we
shall assume, for now, admits density π(θ) with respect to dθ ]; or

2. exploration of π(θ) by MCMC methods is more convenient by appropriate aux-
iliary simulation.

In a Bayesian framework, for example, θ could represent a parameter of interest
and z a set of missing data or latent variables; this includes, among others, hidden
Markov models and their continuous generalizations, but also mixture models, and
as we shall see in the application section, model selection problems in general [8].
Often the variable z is introduced for convenience, in particular in cases where the
marginal density π(θ) is of sole interest. Indeed π(θ), or expectations with respect
to it, might be analytically intractable or too complex to evaluate, whereas the
introduction of z might lead to an analytical expression, or ease the implementation
of numerical methods.

A relatively generic way of numerically approximating such expectations con-
sists of simulating an ergodic Markov chain {(θi, zi)} which admits π(θ, z) as in-
variant probability density: such techniques are known under the acronym MCMC
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(Markov chain Monte Carlo). A typical sampling scheme will alternate sampling
from the conditionals π(θ |z) and π(z|θ), or more generally ergodic Markov transi-
tion probabilities with these conditionals as invariant distributions. Although such
so-called data augmentation schemes can very often ease programming and lead
to elegant algorithms, it is well established that in numerous situations they can
result in strongly positively correlated samples {(θi, zi)} (see, e.g., [5, 9]), which is
an undesirable property when efficiency is sought. On the other hand, if π(θ) was
known analytically or cheap to compute, it would often be possible to generate
“more efficient” samples {θi} from a Markov chain with a transition probability P ,
typically a Metropolis–Hastings (MH) transition with invariant density π(θ) and
proposal density q(θ,ϑ). This celebrated MCMC update consists, given that the
Markov chain is currently at θ , of proposing θ∗ ∼ q(θ, ·) and set the next value
of the chain ϑ = θ∗ with probability α(θ, θ∗) which depends on the values of the
densities π(θ) and π(θ∗); otherwise we set ϑ = θ . More details are given below in
the form of pseudo-code (note that, in our context, we shall term such an algorithm
a marginal algorithm).

These general remarks have lead to the development of MCMC algorithms that
try to combine the benefits of both approaches: possible statistical and compu-
tational efficiency of sampling directly from π(θ), and implementational ease of
augmented, or auxiliary, schemes. A natural approach consists of approximating
the intractable density values π(θ) and π(ϑ) required for the computation of the
acceptance probability of the MH update with importance sampling estimates [8],
that is for some integer N ≥ 1 and some importance probability density qθ (z) (sat-
isfying the usual support assumption) one can consider the estimators

π̃N(θ) := 1

N

N∑
k=1

π(θ, z(k))

qθ (z(k))
with z(k)|θ i.i.d.∼ qθ (·)

and

π̃N (ϑ) := 1

N

N∑
k=1

π(ϑ, z(k))

qϑ(z(k))
with z(k)|ϑ i.i.d.∼ qϑ(·),(1.1)

and simply plug these estimates in the expression for the marginal acceptance
ratio (2.6). Note that here and hereafter we frequently omit the dependency on
Z := (z(1), z(2), . . . , z(N)) and Z := (z(1), z(2), . . . , z(N)) for notational simplic-
ity. We will denote qN

θ (Z) and qN
ϑ (Z) the densities of Z and Z.

There are, however, several possible implementations of this idea, and we now
review two of them. Before embarking on a more formal presentation in Section 2,
it can be helpful to give a comparative pseudo-code description of MCWM and
GIMH (the acronyms are explained later in the text) and the marginal algorithm
(see Table 1).

The first approach considered here, which corresponds to the middle column, is
to attempt to approximate P , independently at each iteration using the importance
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TABLE 1
Comparison of the marginal, MCWM and GIMH algorithms

Step Marginal MCWM GIMH

0. Given: θ and π(θ) θ and π(θ) θ,Z and π̃N (θ)

1. Sample: θ∗ ∼ q(θ, ·) θ∗ ∼ q(θ, ·) θ∗ ∼ q(θ, ·){
Z ∼ qN

θ (·),
Z∗ ∼ qN

θ∗ (·) Z∗ ∼ qN
θ∗(·)

2. Compute: π(θ∗)

{
π̃N (θ),

π̃N (θ∗)
π̃N (θ∗)

3. Compute: r = π(θ∗)q(θ∗,θ)
π(θ)q(θ,θ∗)

π̃N (θ∗)q(θ∗,θ)

π̃N (θ)q(θ,θ∗)
π̃N (θ∗)q(θ∗,θ)

π̃N (θ)q(θ,θ∗)
4. With prob. 1 ∧ r: ϑ = θ∗ ϑ = θ∗

{
ϑ = θ∗,

Z = Z∗
otherwise: ϑ = θ ϑ = θ

{
ϑ = θ,

Z = Z

ratio averages given in equation (1.1). More precisely both Z and Z∗ are “re-
freshed” at each iteration independently of previously sampled auxiliary variables
given θ and θ∗. This algorithm is referred to as the Monte Carlo within Metropolis
(MCWM) in [1] following the terminology of [7]. Due to the fact that the Z’s are
independent at each iteration, one can easily see that {θi} is still a Markov chain
with transition probability denoted P̃ MCWM

N hereafter.
However MCWM and the marginal algorithm P are not equivalent. In particu-

lar, π(θ) is typically not the invariant distribution density of P̃ MCWM
N and therefore

will not produce samples from π(θ) even in steady state. However, intuitively, pro-
vided that P̃ MCWM

N is ergodic, the samples generated by this procedure will asymp-
totically be distributed according to an approximation of π(θ), which should be
all the more precise that N is large. Furthermore, we would like to know whether
for sufficiently large N , the transition probability P̃ MCWM

N does indeed inherit the
convergence properties of P , as this was our initial motivation.

An interesting variation of MCWM could consist of using a single Z, sampled
from some probability density qN

θ,θ∗(Z), to compute both π̃N(θ) and π̃N (θ∗). We
do not pursue this here, but rather focus on the following.

In [1], Beaumont proposes a very interesting variation on the idea above, called
grouped independence MH (GIMH), which corresponds to the rightmost column
above. The MH transition probability of GIMH, as presented by Beaumont is sim-
ilar in spirit to MCWM, but differs in that no fresh Z is sampled at every iteration.
Rather, GIMH can be interpreted as a form of MCWM where Z is “recycled” from
the previous iteration; as a result Z is in general not distributed according to qN

θ ,
as is the case when the MCWM algorithm is used. Note that in addition {θi} is not
a Markov chain anymore, but that {θi,Zi} defines a Markov chain; we hereafter
denote P̃ GIMH

N the transition probability of this Markov chain.
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The remarkable property noticed by Beaumont is that the acceptance ratio of
GIMH can be rewritten as

π̃N (θ∗)q(θ∗, θ)

π̃N(θ)q(θ, θ∗)

= [1/N
∑N

k=1 π(θ∗, z∗(k))
∏N

l=1;l �=k qθ∗(z∗(l))]q(θ∗, θ)qN
θ (Z)

[1/N
∑N

k=1 π(θ, z(k))
∏N

l=1;l �=k qθ (z(l))]q(θ, θ∗)qN
θ∗(Z∗)

,

which suggests that P̃ GIMH
N is, to complete Beaumont’s argument, a MH algorithm

with proposal density q(θ,ϑ)qN
ϑ (Z) and target density given between the brackets

above, denoted π̃N(θ,Z) hereafter. Hence, as soon as GIMH defines an irreducible
and aperiodic Markov chain it will produce samples {θi} distributed in the limit as
i → ∞ according to the marginal π(θ). Given this interpretation, it is important to
point out that updates of the type P̃ GIMH

N are not the only available to sample from
π̃N(θ,Z), a point apparently missed in the literature. For example, it is possible
to update “Z given θ ,” which is crucial to address some of the weaknesses of this
approach, see Section 5. This distinction between target distribution and update
also motivates the pseudo-marginal terminology adopted here.

The dual interpretation of GIMH as an approximation of a MH with target den-
sity π(θ) or an MH with target distribution density π̃N(θ,Z) therefore opens the
possibility for the design of algorithms that inherit the potential efficiency of P

while still being able to produce samples from π(θ), and not an approximation.
However one can reiterate the questions asked earlier about the convergence prop-
erties of P̃ MCWM

N and their relation to the ideal transition probability P .
Before giving some answers to these questions, we first show how the approach

can be easily generalized in order to allow for more sophisticated transitions, lead-
ing to potential “local adaptation” schemes for example and also suggest new ap-
plications, such as model selection and applications to reversible jump MCMC
algorithms [3]. Sections 3–5 are dedicated to the theoretical properties of gen-
eralizations of GIMH. Our main results are: Theorem 1, where we show that if
the marginal chain is irreducible and aperiodic then generalizations of GIMH also
converge; Theorem 6 shows that under very mild and intuitive conditions, mainly
(A2) and (A3), generalizations of GIMH have finite horizon convergence prop-
erties very similar to those of the marginal algorithm, provided that N is large
enough; in Theorem 8, under more stringent assumption, we investigate the geo-
metric and uniform convergence of generalizations of GIMH. Section 6 is dedi-
cated to some theoretical properties of generalizations of MCWM which turn out
to be much simpler to establish than for generalizations of GIMH. In particular we
show in Theorem 9 that if the marginal algorithm is uniformly ergodic, then gener-
alizations of GIMH can inherit this property with arbitrary precision. We conclude
with Section 7 where we show how the ideas developed in this paper can be used
in order to design efficient reversible jump MCMC algorithms to perform model
selection using very simple mechanisms.
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2. Set up and notation. Hereafter we will need the following notation.
For some integer N ≥ 1 let Z := (z(1), z(2), . . . , z(N)) ∈ ZN denote a generic
vector of ZN with coordinates z(k), k = 1, . . . ,N . For any Z ∈ ZN and k =
1, . . . ,N we will denote Z−k := (z(1), . . . , z(k − 1), z(k + 1), . . . , z(N)) ∈ ZN−1

with obvious conventions. For any Z ∈ ZN and Z = (z(k1), . . . , z(kl)) (for
l ∈ {1, . . . ,N − 1} and k1, . . . , kl ∈ {1, . . . ,N}) a subvector of Z, we define
Z \ {Z} := (z(1), . . . , z(k1 − 1), z(k1 + 1), . . . , z(k2 − 1), z(k2 + 1), . . .) and Zl :=
(z(1), . . . , z(l)) ∈ Zl , with the notational convention Z0 = ∅.

2.1. The pseudo-marginal. Let (�,B(�)) and (Z,B(Z)) be two measur-
able spaces. Let π(dθ, dz) be a probability distribution on the space (� ×
Z,B(�)×B(Z)), let π(dθ) be its marginal distribution and let us denote for any
θ ∈ �, πθ(dz) the associated conditional (on θ ) distribution. Let {QN

θ (dZ), θ ∈
� and N ∈ N} be a family of probability distributions, the “proposals,” defined on
(ZN,B(ZN)), {(wN

1 ,wN
2 , . . . ,wN

N ) ∈ [0,1]N, N ∈ N :
∑N

k=1 wN
k = 1} be a family

of weights and let {ZN
k , k = 1, . . . ,N and N ∈ N} be a family of subvectors of

arbitrary sizes of vectors of the type Z−k as defined above. Before defining the
pseudo-marginal and its associated joint model, we require the following assump-
tion. Denoting for any A ∈ B(Z), QN

θ (zk ∈ A|ZN
k ) the conditional distribution or

zk given ZN
k ,

We assume that for our choice of {QN
θ }, {wN

k } and {ZN
k }, for all N ≥ 1, any(A1)

θ ∈ � and k = 1, . . . ,N , πθ(·) 
 QN
θ (·|ZN

k ).

(A1) allows one to define for any N ∈ N the following linear combination of
Radon–Nikodym derivatives for (θ,Z) ∈ � × ZN (the importance weights)

γ N(θ) :=
N∑

k=1

wN
k

πθ(dz(k))

QN
θ (dz(k)|ZN

k )
,(2.1)

the dependence on Z being implicit. Whenever γ N(θ) > 0, we define λN(θ) :=
| logγ N(θ)| and by convention we let λN(θ) := +∞ when γ N(θ) = 0. In turn we
can define the following probability distribution on (� × Z,B(�)×B(Z)),

π̃N(dθ, dZ) := π(dθ)QN
θ (dZ)γ N(θ),(2.2)

which, as we shall see, is a generalization of the underlying target distribution
identified in equation (1.2). Hereafter for any θ ∈ � we will denote

π̃N
θ (dZ) := QN

θ (dZ)γ N(θ),(2.3)

the conditional probability distribution of Z given θ in equation (2.2) and we in-
troduce for any Z ∈ Z,

π̃N(dθ) := π(dθ)γ N(θ)
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the “pseudo-marginal.” Note that whenever π(dθ) has a density π(θ) and provided
that Z|θ ∼ QN

θ , then the associated probability density π̃N (θ) := π(θ)γ N(θ)

is an unbiased importance sampling estimator of π(θ) a fundamental property
which ensures that π(dθ) is the marginal of π̃N (dθ, dZ). It can indeed be easily
checked that for any θ ∈ �, QN

θ (γ N(θ)) = 1. Note that in practice the variability
of π(θ)γ N(θ) [and hence QN

θ (dZ)] for any θ ∈ � is expected to have an important
influence on the performance of the algorithm an illustration is given in Theorem
8. We will frequently use the following identities:

π̃N (dθ, dZ) = π̃N (dθ)QN
θ (dZ) = π(dθ)π̃N

θ (dZ).(2.4)

We conclude this section with various examples of choices of {wN
i } and {ZN

i }
introduced in the general framework presented earlier.

EXAMPLE 1 (Classical importance sampling). The case where wN
i = 1/N

and QN
θ (dZ) is factorizable and exchangeable, that is,

QN
θ (dZ) =

N∏
i=1

Qθ(dz(i)),

leads to Beaumont’s GIMH algorithm.

EXAMPLE 2 (Sequential sampling). A choice of great practical interest, as
illustrated later on in Section 7, consists of the case where ZN

i = Zi−1, which
allows for sequential sampling of {z(i)}, hence offering the possibility to adapt the
sampling strategy in light of already sampled z(i)’s. This sequential framework
encompasses the case where {z(i)} is a realization from a Gibbs sampler with target
distribution πθ(dz) for some θ ∈ �. In such situations nondecreasing sequences
{wN

k } might be preferable in order to discount the “burn-in” period.

EXAMPLE 3 (Gibbs sampler type). In some situations we might have good
reasons to believe that the analytically intractable marginal distributions of
QN

θ (dZ) for θ ∈ � are good approximations of πθ(dz). In this case one can sug-
gest the application of the algorithm with ZN

i = Z−i , which can be interpreted as
a random scan Gibbs sampler to sample from QN

θ (dZ), and hence its marginals.

2.2. Pseudo-marginal based algorithms. We now introduce a formal descrip-
tion of the transition probabilities of the marginal algorithm and the two variants
of the pseudo-marginal approach, which can be seen as generalization of MCWM
and GIMH. The transition probability of the marginal algorithm, a standard MH
algorithm, targets π(dθ) and uses Q(θ, dϑ) as proposal distribution is defined for
any θ,ϑ ∈ � as

P(θ, dϑ) := α(θ,ϑ) Q(θ, dϑ) + δθ (dϑ)

[
1 −

∫
�

α(θ,ϑ)Q(θ, dϑ)

]
,(2.5)
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where α(θ,ϑ) := 1 ∧ r(θ,ϑ) with (a)

0 < r(θ,ϑ) := π(dϑ)Q(ϑ,dθ)

π(dθ)Q(θ, dϑ)
< +∞,(2.6)

on a symmetric set R ⊂ � × � (see [11], Proposition 1 and Theorem 2),
(b) r(θ,ϑ) := 0, π(dθ)Q(θ, dϑ)-almost everywhere on the complement Rc of
R and (c) r(θ,ϑ) := 1 on measurable subsets of Rc of π(dθ)Q(θ, dϑ)-zero prob-
ability.

The transition probability of the generalization of MCWM is not a standard MH
algorithm. It consists of proposing ϑ ∼ Q(θ, ·), Z ∼ QN

θ and Z ∼ QN
ϑ , compute an

acceptance probability α̃N (θ,ϑ) defined below, and accept or reject the proposal
according to α̃N (θ,ϑ). More formally the transition probability is defined for any
θ,ϑ ∈ � as

P̃
noisy
N (θ, dϑ) := QN

θ ⊗ QN
ϑ (α̃N(θ,ϑ))Q(θ, dϑ)

(2.7)

+ δθ (dϑ)

[
1 −

∫
�

QN
θ ⊗ QN

ϑ (α̃N(θ,ϑ))Q(θ, dϑ)

]
,

where ⊗ indicates the product for measures and α̃N (θ,ϑ) := 1∧ r̃N (θ,ϑ), with (a)

r̃N (θ,ϑ) := π̃N(dϑ)Q(ϑ,dθ)

π̃N(dθ)Q(θ, dϑ)
,(2.8)

on an appropriate set R̃ ⊂ (�×ZN)2, (b) r̃N (θ,ϑ) := 0, π̃N (dθ)Q(θ, dϑ)-almost
everywhere on the complement of R̃ and (c) 1 otherwise. Note that r̃N (θ,ϑ) can
be computed even in situations where the normalizing constant of π̃N (dθ, dZ) is
unknown but that, on the other hand, the normalizing constant of QN

θ (dZ) might
be required.

The transition probability of the GIMH variant of the pseudo-marginal ap-
proach is of the MH type and is defined on the extended space � × ZN . It targets
π̃N (dθ, dZ) and uses the proposal distribution Q(θ, dϑ)QN

ϑ (dZ)

P̃ exact
N (θ,Z;dϑ,dZ)

= α̃N (θ,ϑ) Q(θ, dϑ)QN
ϑ (dZ)(2.9)

+ δθ,Z(dϑ, dZ)

[
1 −

∫
�×ZN

α̃N(θ,ϑ)Q(θ, dϑ)QN
θ (dZ)

]
,

with α̃N (θ,ϑ) as above equation (2.8). This expression for the acceptance proba-
bility of the exact pseudo-marginal algorithm relies on an identity, which we will
frequently use later on, between the marginal acceptance ratio (2.6) and its exact
pseudo-marginal counterpart,

r̃N (θ,ϑ) := π̃N (dϑ, dZ)Q(ϑ, dθ)QN
θ (dZ)

π̃N(dθ, dZ)Q(θ, dϑ)QN
ϑ (dZ)

= γ N(ϑ)

γ N(θ)
r(θ,ϑ)(2.10)
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for any (θ,Z,ϑ,Z) ∈ R̃ := {(θ,Z,ϑ,Z) : (θ,ϑ) ∈ R, Z ∈ Zθ , Z ∈Zϑ } with
Zθ := {Z ∈ Z : γ N(θ) > 0}. For any N ∈ N and (θ,Z) ∈ � × ZN we will denote
α(θ,Z) [resp. ρ(θ,Z)]

α(θ,Z) := 1 − ρ(θ,Z) :=
∫
�×ZN

α̃N(θ,ϑ)Q(θ, dϑ)QN
ϑ (dZ),(2.11)

the probability of leaving (resp. staying in) state (θ,Z). Note that we do not here
make the dependence of this quantity on N explicit for notational simplicity. Sim-
ilarly we will denote α(θ) [resp. ρ(θ)] the probability of leaving (resp. staying in)
state θ for transition P .

In the next two sections we study the Markov chain {θi,Zi} started at (θ0,Z0) ∈
� × ZN and with transition probability P̃ exact

N (which will be denoted P̃N for sim-
plicity, when no ambiguity is possible) as given in equation (2.9) that is a MH
with target distribution π̃N (dθ, dZ) and proposal distribution Q(θ, dϑ)QN

ϑ (dZ)

and acceptance ratio given by equation (2.10). In order to analyze the perfor-
mance of the Markov chain generated by P̃N we will embed the exact marginal
Markov chain with transition P as in equation (2.5) defined on (�N,B(�N)) into
a Markov chain defined on ((�× ZN)N, (B(�)×B(Z))N) as follows. We define a
Markov chain which is generated by a MH transition probability P̄N , with invari-
ant distribution π̃N(dθ, dZ) and proposal distribution Q(θ, dϑ)π̃N

ϑ (dZ) [instead
of Q(θ, dϑ)QN

ϑ (dZ) for P̃N ], leading to the transition probability,

P̄N(θ,Z;dϑ,dZ) := α(θ,ϑ)Q(θ, dϑ)π̃N
ϑ (dZ)

(2.12)

+ δθ,Z(dϑ, dZ)

[
1 −

∫
�

α(θ,ϑ)Q(θ, dϑ)

]
,

with α(θ,ϑ) := 1 ∧ r(θ,ϑ), where r(θ,ϑ) is as in equation (2.6). Our analysis
will rely upon a comparison of P̃N and P̄N , which live on a common space.

Finally, we will hereafter use the following standard notation for probabil-
ities and Markov chain transition probabilities. For a space (E,E) we define
for f :E → R: for μ a measure on (E,E) μ(f ) := ∫

E f (x)μ(dx); ‖μ‖ :=
1
2 sup|f |≤1 |μ(f )|; for any A ∈ E μ(A) = μ(I{x ∈ A}), where I{· ∈ A} = I{A}
denotes the indicator function of set A; for a transition probability � :E × E →
[0,1] �f (x) := ∫

E �(x, dy)f (y) and �if (x) := �(x,�i−1f ) for i ≥ 1 with
�0f (x) := f (x).

3. A simple convergence result for exact algorithms. The theory of
ψ-irreducible Markov chains has proved to be a very powerful tool in order to
analyze classical MCMC algorithms, and in particular the MH algorithm. More
precisely, since MCMC deal with the situation where πP = π , then if in addition
P is ψ-irreducible and aperiodic, it can be shown that ‖P k(θ0, ·) − π(·)‖ → 0 as
k → ∞ π -a.s. [4]. This motivates the following theorem.
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THEOREM 1. Assume (A1) and that P defines a ψ-irreducible and aperi-
odic Markov chain such that πP = π . Then for any N ∈ N such that for any
(θ,Z) ∈ � × ZN , ρ(θ,Z) > 0 [with ρ(θ,Z) as in equation (2.11)], P̃N is also
ψ-irreducible and aperiodic, and hence π̃N -a.s. [in (θ0,Z0) ∈ � × ZN ],

lim
k→+∞‖P̃ k

N(θ0,Z0; ·) − π̃N (·)‖ = 0.

PROOF. We here drop N for simplicity. First notice that by construction if
P is ψ-irreducible and aperiodic, then so is P̄ [defined in equation (2.12)] and
consequently P̄ defines an ergodic Markov chain with invariant distribution π̃N .
We will show that under the assumptions the accessible sets of P̄ are included
in those of P̃ , which will allow us to conclude. More precisely we show by in-
duction that for any k ∈ N, (θ,Z) ∈ � × ZN and A × B ∈ B(�) × B(ZN) such
that P̄ k(θ,Z;A × B) > 0, then P̃ k(θ,Z;A × B) > 0. For any θ ∈ � recall that
Zθ := {Z :γ N(θ) > 0} and for notational simplicity we will use the convention
1 ∧ γ N(ϑ)/γ N(θ) = 1 whenever γ N(θ) = 0 below. First notice that from (2.10),
for any (θ,Z) ∈ � × ZN and A × B ∈ B(�) × B(ZN),

P̃ (θ,Z;A × B) ≥
∫
A

QN
ϑ

(
1 ∧ γ N(ϑ)

γ N(θ)
I(Z ∈ B ∩ Zϑ)

)
α(θ,ϑ)Q(θ, dϑ)

+ I{(θ,Z) ∈ A × B}ρ(θ,Z)
(3.1)

≥
∫
A

π̃N
ϑ

(
1

γ N(ϑ)
1 ∧ γ N(ϑ)

γ N(θ)
I(Z ∈ B ∩ Zϑ)

)
α(θ,ϑ)Q(θ, dϑ)

+ I{(θ,Z) ∈ A × B}ρ(θ,Z).

Consequently, since for any θ ∈ � and B ∈ B(ZN) we have π̃N
θ (B) = π̃N

θ (B ∩
Zθ ), we deduce that the implication is true for k = 1. Assume the induction
assumption true up to some k = n ≥ 1. Now for some (θ,Z) ∈ � × ZN let
A × B ∈ B(�) × B(ZN) be such that P̄ n+1(θ,Z;A × B) > 0 and assume that∫

�×ZN
P̃ n(θ,Z;dϑ,dZ)P̃ (ϑ,Z;A × B) = 0 ,

which implies that P̃ (ϑ,Z;A × B) = 0, P̃ n(θ,Z; ·)-a.s. and hence that P̄ (ϑ,Z;
A × B) = 0, P̃ n(θ,Z; ·)-a.s. from the induction assumption for k = 1. From this
and the induction assumption for k = n, we deduce that P̄ (ϑ,Z;A × B) = 0,
P̄ n(θ,Z; ·)-a.s. (by contradiction), which contradicts the fact that P̄ n+1(θ,Z;A×
B) > 0. �

4. Performance of the pseudo-marginal approach. For the purpose of our
analysis we introduce the following subsets of �. For any ε > 0, N ∈ N and de-
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noting for any random variable X with probability distribution μ, μ(X > ε) :=
μ({X :X > ε}),

T (ε,N) := {
θ ∈ � :QN

θ

(
λN(θ) > ε

) ≤ ε
}
,(4.1)

S(ε,N) := {θ ∈ � :Q(θ,T (ε,N)) ≥ 1 − ε},(4.2)

R(ε,N) := S(ε,N) ∩ T (ε,N),(4.3)

with λN(θ) as defined below equation (2.1). For a set A ⊂ � we will denote Ā its
complement in �.

The main result of this section is Theorem 6 and relies, in addition to (A1), on
the following mild assumptions.

For any θ0 ∈ �, limk→∞ ‖P k(θ0, ·) − π(·)‖ = 0.(A2)

For any θ ∈ � and any ε > 0,(A3)

lim
N→∞QN

θ

(
λN(θ) > ε

) = 0.

Assumption (A3) is fundamental to our analysis, and implies the following two
lemmata. First, it is a sufficient condition to control the total variation distance
between π̃N

θ and QN
θ .

LEMMA 2. Assume (A1) and (A3). Then for any θ ∈ �, N ∈ N and ε ∈ (0,1],
‖π̃N

θ (·) − QN
θ (·)‖ ≤ (3 + e)ε + 2QN

θ

(
λN(θ) > ε

)
I{θ ∈ T̄ (ε,N)}.

PROOF. For any θ ∈ �, from equation (2.3)

‖π̃N
θ (·) − QN

θ (·)‖ = QN
θ

(|γ N(θ) − 1|I{λN(θ) > ε})
(4.4)

+ QN
θ

(|γ N(θ) − 1|I{λN(θ) ≤ ε}).
On the one hand

QN
θ

(|γ N(θ) − 1|I{λN(θ) ≤ ε}) ≤ exp(ε) − 1 ≤ eε,(4.5)

and on the other hand

QN
θ

(|γ N(θ) − 1|I{λN(θ) > ε}) ≤ QN
θ

(
γ N(θ)I{λN(θ) > ε})

(4.6)
+ QN

θ

(
λN(θ) > ε

)
.

Notice that

(1 − ε)QN
θ

(
λN(θ) ≤ ε

) ≤ exp(−ε)QN
θ

(
λN(θ) ≤ ε

) ≤ QN
θ

(
γ N(θ)I{λN(θ) ≤ ε}).
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This, together with the fact that for any θ ∈ �, QN
θ (γ N(θ)) = π̃N

θ (1) = 1, leads to

QN
θ

(
γ N(θ)I{λN(θ) > ε}) = 1 − QN

θ

(
γ N(θ)I{λN(θ) ≤ ε})

≤ 1 − (1 − ε)
(
1 − QN

θ

(
λN(θ) > ε

))
(4.7)

≤ ε + QN
θ

(
λN(θ) > ε

)
.

Now combining equations (4.4)–(4.7), we have for any θ ∈ �,

‖π̃N
θ (·) − QN

θ (·)‖ ≤ (1 + e)ε + 2QN
θ

(
λN(θ) > ε

)
(4.8)

≤ (3 + e)ε + 2QN
θ

(
λN(θ) > ε

)
I{θ ∈ T̄ (ε,N)}. �

Assumption (A3) also implies the following important intermediate results.

LEMMA 3. Let ε > 0 and S(ε,N),T (ε,N) and R(ε,N) be as in (4.1)–(4.3).
Assume (A1) and (A3). Then for any probability measure μ on (�,B(�)),

lim
N→∞μ(T (ε,N)) = 1,(4.9)

lim
N→∞μ(S(ε,N)) = 1,(4.10)

lim
N→∞μ(R(ε,N)) = 1.(4.11)

PROOF. For any ε > 0 and θ ∈ �, limN→∞ I{θ ∈ T (ε,N)} = 1 from (A3).
Equation (4.9) follows from the dominated convergence theorem. To prove equa-
tion (4.10), note that equation (4.9) implies that for any θ ∈ �,

lim
N→∞Q

(
θ, I{ϑ ∈ T (ε,N)}) = 1.

Consequently for any θ ∈ �, limN→∞ I{θ ∈ S(ε,N)} = 1 and for any probability
measure μ, we have limN→∞ μ(I{θ ∈ S(ε,N)}) = μ(1) = 1. Equation (4.11) is
immediate. �

As we shall see, our results heavily rely on an estimate of the distance between
P̄N and P̃N under (A3).

LEMMA 4. Assume (A1) and (A3). Let ε ∈ (0,1] and (θ,Z) ∈ S(ε,N) × ZN

with Z such that λN(θ) ≤ ε [S(ε,N) being defined in (4.2)]. Then for P̄N as de-
fined in equation (2.12) and for any ψ :� × ZN → [−1,1],

|P̄Nψ(θ,Z) − P̃Nψ(θ,Z)| ≤ 24ε.

PROOF. For simplicity we here drop N in the notation for the transition prob-
abilities. Let (θ,Z) ∈ � × ZN and ψ :� × ZN → [−1,1]. We have, by definition
of P̄ ,

P̄ψ(θ,Z) − P̃ψ(θ,Z) = S1 + S2,
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with

S1 := P̄ψ(θ,Z) − P̂ψ(θ,Z),

S2 := P̂ψ(θ,Z) − P̃ψ(θ,Z),

where P̂ is the MH transition probability with invariant distribution π(dθ)QN
θ (dZ)

and proposal distribution Q(θ, dϑ)QN
ϑ (dZ), that is

P̂ (θ,Z;dϑ,dZ) := α(θ,ϑ)Q(θ, dϑ)QN
ϑ (dZ)

(4.12)

+ δθ,Z(dϑ, dZ)

[
1 −

∫
�

α(θ,ϑ)Q(θ, dϑ)

]
.

From this and the definition of P̄ in equation (2.12), the first term writes

|S1| ≤ ∣∣Q(
θ, (π̃N

ϑ − QN
ϑ )α(θ,ϑ)ψ

)∣∣
(4.13)

≤ 2Q
(
θ,‖π̃N

ϑ (·) − QN
ϑ (·)‖)

.

From this, Lemma 2 and since θ ∈ S(ε,N)

|S1| ≤ 2
[
(3 + e)ε + 2Q

(
θ,QN

ϑ

(
λN(ϑ) > ε

)
I{ϑ ∈ T̄ (ε,N)})]

(4.14)
≤ 2(5 + e)ε.

The second term writes

S2 =
∫
�×ZN

ψ(ϑ,Z)

[
1 ∧ r(θ,ϑ) − 1 ∧ γ N(ϑ)

γ N(θ)
r(θ,ϑ)

]
Q(θ, dϑ)QN

ϑ (dZ)

− ψ(θ,Z)

∫
�×ZN

[
1 ∧ r(θ,ϑ) − 1 ∧ γ N(ϑ)

γ N(θ)
r(θ,ϑ)

]
Q(θ, dϑ)QN

ϑ (dZ),

and we therefore focus on the quantity

S0 :=
∫
�×ZN

∣∣∣∣1 ∧ r(θ,ϑ) − 1 ∧ γ N(ϑ)

γ N(θ)
r(θ,ϑ)

∣∣∣∣Q(θ, dϑ)QN
ϑ (dZ)

=
∫
�×ZN

∣∣∣∣1 ∧ r(θ,ϑ) − 1 ∧ γ N(ϑ)

γ N(θ)
r(θ,ϑ)

∣∣∣∣I{λN(ϑ) > ε}Q(θ, dϑ)QN
ϑ (dZ)

+
∫
�×ZN

∣∣∣∣1 ∧ r(θ,ϑ) − 1 ∧ γ N(ϑ)

γ N(θ)
r(θ,ϑ)

∣∣∣∣I{λN(ϑ) ≤ ε}Q(θ, dϑ)QN
ϑ (dZ).

Noting that for any (x, y) ∈ R
2,

|1 ∧ exp(x) − 1 ∧ exp(y)| = 1 ∧ | exp(0 ∧ x) − exp(0 ∧ y)| ≤ 1 ∧ |x − y|,
we deduce that for θ ∈ S(ε,N),

S0 ≤ Q
(
θ,QN

ϑ

(
I{λN(ϑ) > ε}))

+ Q
(
θ,QN

ϑ

(
1 ∧ | log(γ N(θ)) − log(γ N(ϑ))|I{λN(ϑ) ≤ ε})),
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and consequently since γ N(θ) depends on θ and Z only,

|S2| ≤ 2
(
1 ∧ λN(θ)

) + 2Q
(
θ,QN

ϑ

(
I{λN(ϑ) > ε}))

(4.15)
+ 2Q

(
θ,QN

ϑ

(
1 ∧ λN(ϑ)I{λN(ϑ) ≤ ε})).

Consequently since θ ∈ S(ε,N),

|S2| ≤ 2
(
1 ∧ λN(θ)

) + 2Q
(
θ,QN

ϑ

(
I{λN(ϑ) > ε}I{ϑ ∈ T̄ (ε,N)}))

+ 2Q
(
θ,QN

ϑ

(
1 ∧ λN(ϑ)I{λN(ϑ) ≤ ε})I{ϑ ∈ T̄ (ε,N)})

+ 2Q
(
θ,QN

ϑ

(
I{λN(ϑ) > ε}I{ϑ ∈ T (ε,N)}))(4.16)

+ 2Q
(
θ,QN

ϑ

(
1 ∧ λN(ϑ)I{λN(ϑ) ≤ ε})I{ϑ ∈ T (ε,N)})

≤ 2(ε + ε + ε + ε) = 8ε.

One concludes by combining (4.14) and (4.16). �

We now combine Lemmata 3 and 4 to prove the following proposition.

PROPOSITION 5. For any ε ∈ (0,1] and any probability measure μ on
(�,B(�)), there exists N(ε,μ) such that for any N ≥ N(ε,μ) and any ψ :� ×
ZN → [−1,1], ∣∣μ(

π̃N
θ

(
(P̄N − P̃N)ψ(θ,Z)

))∣∣ ≤ ε.

PROOF. Let ε ∈ (0,1], μ be a probability distribution on (�,B(�)) and
ϕ :� → [−1,1]. We have, with R(ε,N) defined in equation (4.3),

|μ(ϕ)| ≤ ∣∣μ(
ϕI{θ ∈ R(ε,N)})∣∣ + μ(R̄(ε,N)).

By Lemma 3 there exists N0(ε,μ) ∈ N (independent of ϕ) such that for N ≥
N0(ε,μ),

|μ(R̄(ε,N))| < ε.(4.17)

For any ψ :� × ZN → [−1,1], we have

μ
(
I
(
θ ∈ R(ε,N)

)
π̃N

θ

(
(P̃ − P̄ )ψ

)) = T1 + T2,(4.18)

with

T1 = μ
(
I
(
θ ∈ R(ε,N)

)
π̃N

θ

(
I
(
λN(θ) ≤ ε

)
(P̃ − P̄ )ψ

))
,

T2 = μ
(
I
(
θ ∈ R(ε,N)

)
π̃N

θ

(
I
(
λN(θ) > ε

)
(P̃ − P̄ )ψ

))
.

We apply Lemma 4 to T1 and conclude that

|T1| ≤ 24ε.(4.19)
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We now turn to T2. First recall from equation (2.3) that for any θ ∈ �,

π̃N
θ

(
λN(θ) ≤ ε

) = QN
θ

(
γ N(θ)I{λN(θ) ≤ ε}),

and, since QN
θ (λN(θ) > ε) ≤ ε for θ ∈ T (ε,N), we conclude that for any θ ∈

T (ε,N)

(1 − ε)2 ≤ (1 − ε)QN
θ

(
λN(θ) ≤ ε

)
≤ QN

θ

(
exp(−ε)I{λN(θ) ≤ ε}) ≤ π̃N

θ

(
λN(θ) ≤ ε

)
.

Hence, from the definition of R(ε,N),

|T2| = ∣∣μ(
I{θ ∈ R(ε,N)}π̃N

θ

(
I{λN(θ) > ε}(P̃ − P̄ )ψ

))∣∣
≤ 2

∣∣μ(
I{θ ∈ R(ε,N)})∣∣(1 − (1 − ε)2)

(4.20)

≤ 4ε.

Now we choose ε = ε/30 and conclude with N(ε,μ) = N0(ε,μ) and by combin-
ing (4.17) (for 2ϕ), (4.19) and (4.20). �

Our main result is as follows and provides us with a bound � on the loss of
efficiency of the approximating chain compared to the ideal chain, which can be
made arbitrarily small for large N ’s. Define for any θ ∈ � and any ε ∈ (0,1],
k(ε, θ) := inf{k :‖P k(θ, ·) − π(·)‖ ≤ ε} and recall that for any θ ∈ �, ρ(θ) :=
1 − ∫

� α(θ,ϑ)Q(θ, dϑ) is the probability of not leaving θ for P .

THEOREM 6. Assume (A1), (A2) and (A3). Let ε, � > 0 and θ0 ∈ �. Then
there exists N(ε, �, θ0) ∈ N such that for any N ≥ N(ε, �, θ0) and Z0 ∈ � × ZN

such that λN(θ0) < �ε/(24k(ε, θ0)) we have for any k ≥ k(ε, θ0),

‖P̃ k
N(θ0,Z0; ·) − π̃N (·)‖ ≤ (1 + �)ε + ρk(θ0).

COROLLARY 7. Under the assumptions of Theorem 6, for any ε, � > 0 and
θ0 ∈ �, there exists N(ε, �, θ0) ∈ N such that for any N ≥ N(ε, �, θ0) and Z0 ∈
� × ZN such that λN(θ0) < �ε/(24k(ε, θ0)) we have for any k ≥ k(ε, θ0) and any
ϕ :� → [−1,1],

1
2 |P̃ k

N(θ0,Z0;ϕ) − π(ϕ)| ≤ (1 + �)ε + ρk(θ0).

PROOF. Dropping N for notational simplicity, we have that for any k ≥ 1,
(θ0,Z0) ∈ � × ZN and any ψ :� × ZN → [−1,1],

P̃ kψ(θ0,Z0) − π̃ (ψ) = S0(k) + S1(k) + S2(k),(4.21)

with [π̃N
θ (ψ) := π̃N

θ (ψ(θ, ·)) hereafter for notational simplicity]

S0(k) = P̄ kψ(θ0,Z0) − P k(π̃N
θ (ψ))(θ0),

S1(k) = P k(π̃N
θ (ψ))(θ0) − π(π̃N

θ (ψ)),

S2(k) = P̃ kψ(θ0,Z0) − P̄ kψ(θ0,Z0),
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where the magnitude of S1(k) can be controlled thanks to the properties of the
transition probability P , S0(k) and S2(k) correspond to the bias introduced by the
approximation to the “ideal” chain. As we shall see, for a fixed k this bias can be
made arbitrarily small for N sufficiently large. Let ε > 0 and (θ0,Z0) ∈ � × ZN

such that λN(θ0) < ε. By a coupling argument or induction |S0(k)| ≤ 2 ρ(θ0)
k .

Since π̃N
θ (ψ) :� → [−1,1], by (A2) we have

k(ε, θ0) < +∞ and |S1(k(ε, θ0))| ≤ 2ε.(4.22)

From now on we set k0 := k(ε, θ0) and use the following telescoping sum decom-
position:

S2 := S2(k0) =
k0−1∑
l=0

P̄ lP̃ k0−lψ(θ0,Z0) − P̄ l+1P̃ k0−(l+1)ψ(θ0,Z0)

=
k0−1∑
l=0

P̄ l(P̃ − P̄ )P̃ k0−(l+1)ψ(θ0,Z0).

Let ε ∈ (0,1]. Noticing for any l > 1 we have for any ψ̄ :� × ZN → [−1,1]
P̄ lψ̄(θ0,Z0) = ρ(θ0)

lψ̄(θ0,Z0)

+
l∑

j=1

P̄ j−1{Q(θj−1, α(θj−1, θj )ρ(θj )
l−j π̃N

θj
(ψ̄(θj , ·)))}(θ0,Z0)

we apply Lemma 4 k0 times and Proposition 5 (k0 − 1) times (the result trivially
applies to any finite measure) to show that there exists N(ε, θ0) such that for any
N ≥ N(ε, θ0) and some C < �/(24k0)

|S2| ≤ 24Ck0ε + (k0 − 1)ε.(4.23)

We conclude by taking ε = 2ε(� − 24k0C)/(k0 − 1) in equation (4.23) and com-
bining with equation (4.22) in equation (4.21). �

5. Uniform and geometric ergodicity of exact algorithms. In this section
we illustrate the critical importance of the choice of a good importance sampling
distribution QN

θ to ensure that P̃N is uniformly ergodic. More precisely we show
that, for a given N ∈ N, if the importance weights γ N(θ) involved in the definition
of the pseudo-marginal π̃N (dθ) are unbounded for “too many” θ ’s, then P̃N cannot
be geometrically ergodic. As we shall see “too many” will be quantified in terms
of the measure of the set UN := {θ :∀M > 0, QN

θ (γ N(θ) > M) > 0} under π . In
addition, for a fixed N ∈ N, using the fact that it is most often possible to prove the
uniform ergodicity of the MH update P defined in (2.5) by establishing a minoriza-
tion condition for the sub-stochastic kernel K(θ, dϑ) := α(θ,ϑ)Q(θ, dϑ) [that is
there exists n0 ≥ 1, a constant ε > 0 and a probability measure ν on (�,B(�))
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such that for any (θ,A) ∈ �×B(�), Kn0(θ,A) ≥ εν(A)], we show that this prop-
erty is systematically inherited by P̃N whenever γ N∗ := supθ,Z∈�×ZN γ N(θ) <

+∞.

THEOREM 8. Assume (A1) and let N ∈ N. Then:

1. if π(UN) > 0, then P̃N cannot be geometrically ergodic;
2. if we assume that there exist n0 ≥ 1, a constant ε > 0 and a measure ν on

(�,B(�)) such that for any θ,A ∈ � × B(�), Kn0(θ,A) ≥ εν(A) (which
implies that P is uniformly ergodic) then if in addition γ N∗ < +∞ then P̃N is
uniformly ergodic.

REMARK 1. Concerning the second point of the theorem, it should be
noted that it is not possible in general to achieve the rate of convergence
of the marginal chain P , even when {γ N∗ } is bounded. Indeed, consider the
independent MH algorithm, in the discrete case for simplicity and densities
with respect to the counting measure. It is possible to characterize exactly the
second-largest eigenvalue of the transition probability. For P it takes the form
1 − (supθ∈�

π(θ)
q(θ)

)−1, while for Beaumont’s form of the pseudo-marginal algo-

rithm it will take the form 1 − (sup(θ,z)∈�×Z
π(θ,z)
q(θ,z)

)−1. In the particular case
where π(θ, z) = π(θ)π(z) and q(θ, z) = q(θ)q(z) this latter expression be-
comes 1 − (supθ∈�

π(θ)
q(θ)

)−1(supz∈Z
π(z)
q(z)

)−1 which in general will be larger than

1− (supθ∈�
π(θ)
q(θ)

)−1. As we shall see this is not the case for the MCWM algorithm
under appropriate assumptions (see Theorem 9).

PROOF OF THEOREM 8. We drop N in P̃N and prove the first statement. We
want to show that under the stated assumptions, for any ε > 0

π̃N (
I{α(θ,Z) ≤ ε}) = π

{
QN

θ

(
γ N(θ)I{α(θ,Z) ≤ ε})} > 0,

where α(θ,Z) is defined in equation (2.11). From [10], Theorem 5.1, this indeed
implies that P̃ cannot be geometric. For any (θ,Z) ∈ � × ZN with γ N(θ) > 0, by
Fubini’s theorem, Jensen’s inequality and since for any ϑ ∈ �, QN

ϑ (γ N(ϑ)) = 1,
we have

αN(θ,Z) =
∫
�×ZN

(
1 ∧ γ N(ϑ)

γ N(θ)
r(θ,ϑ)

)
Q(θ, dϑ)QN

ϑ (dZ)

≤
∫
�

(
1 ∧ r(θ,ϑ)

γ N(θ)

)
Q(θ, dϑ).

For any (θ,ϑ) ∈ UN × �, since r(θ,ϑ) < +∞ [see equation (2.6)] and

{Z :γ N(θ) > M} �= ∅
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for any M > 0, we have

lim
M→∞ sup

{Z : γ N(θ)>M}
1 ∧ r(θ,ϑ)

γ N(θ)
= 0.

Consequently, by the dominated convergence theorem,

lim
M→∞ sup

{Z : γ N (θ)>M}
α(θ,Z) = 0,

hence for any ε > 0 there exists M < +∞ such that

QN
θ

({Z :γ N(θ) > M,α(θ,Z) ≤ ε}) > 0

and hence

QN
θ

(
γ N(θ)I{α(θ,Z) ≤ ε}) ≥ MQN

θ

(
I{γ N(θ) > M, α(θ,Z) ≤ ε}) > 0.

We deduce that

π
{
QN

θ

(
γ N(θ)I{α(θ,Z) ≤ ε})} > 0.

We now turn to the proof of the second claim. We first show by induc-
tion that for any k ≥ 1 and A × B ∈ B(�) × B(ZN), P̃ k(θ,Z;A × B) ≥
γ −k∗

∫
A Kk(θ, dϑ)π̃N

ϑ (B). For k = 1,

P̃ (θ,Z;A × B) ≥
∫
A×B

α̃N(θ,ϑ)Q(θ, dϑ)Qϑ(dZ)

≥
∫
A×B

(
1 ∧ γ N(ϑ)

γ N(θ)

)
α(θ,ϑ)Q(θ, dϑ)QN

ϑ (dZ)

(5.1)
≥ γ −1∗

∫
A×B

QN
ϑ (γ N(ϑ))α(θ,ϑ)Q(θ, dϑ)

= γ −1∗
∫
A

K(θ;dϑ)π̃N
ϑ (B).

Assume the inequality is true for some k ≥ 1. Then from the induction assumption
and equation (5.1),

P̃ k+1(θ,Z;A × B) =
∫
�×ZN

P̃ k(θ,Z;dϑ,dZ)P̃ (ϑ,Z;A × B)

≥
∫
�

γ −k∗ Kk(θ, dϑ)π̃N
ϑ (ZN)γ −1∗

∫
A

K(θ;dϑ)π̃N
ϑ (B)

≥ γ −(k+1)∗
∫
A

Kk+1(θ, dϑ)π̃N
ϑ (B).

Hence the result. From this result for k = n0 and the minorization assumption on
K we deduce that for any (θ,Z,A × B) ∈ � × ZN × (B(�) × B(ZN))

P̃ n0(θ,Z;A × B) ≥ γ −n0∗
∫
A

Kn0(θ, dϑ)π̃N
ϑ (B)

≥ εγ −n0∗ ν(IA{ϑ}π̃N
ϑ (B)),
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and hence the second claim. �

6. Epilogue: MCWM. As pointed out earlier, the analysis of generalizations
of MCWM, defined in equation (2.7), is simpler than that of GIMH generalizations
and relies on more classical arguments. This is due mainly to the fact that in this
case Z ∼ QN

θ and Z ∼ QN
ϑ . However the existence of an invariant distribution for

P̃
noisy
N is not obvious in general (it is not a MH update). This is in contrast with

P̃ exact
N , for which the invariant distribution as well as its marginal distribution are

known to be π̃N(dθ, dZ) and π(dθ), respectively. We give here a result which
characterizes the invariant π̌N (dθ) when it exists, and the rate of convergence of
P̃

noisy
N (denoted P̃N in this section for simplicity), when P is uniformly ergodic,

and a simple uniform weak law of large numbers holds for λN(θ).

There exist C ∈ (0,+∞) and ρ ∈ (0,1) such that for any θ0 ∈ � and k ∈ N(A4)

‖P k(θ0, ·) − π(·)‖ ≤ Cρk.

We assume that for any ε > 0,(A5)

lim
N→∞ sup

θ∈�

QN
θ

(
λN(θ) > ε

) = 0.

THEOREM 9. Assume (A1), (A4), (A5) and that for any N ≥ 1 there ex-
ists a probability distribution π̌N on (�,B(�)) such that π̌N P̃N = π̌N , with
P̃N = P̃

noisy
N defined in equation (2.7). Then for any ε ∈ (0, ρ−1 − 1) there ex-

ists N(ε,ρ) ∈ N, ρ̃ ∈ (ρ,ρ(1 + ε)] ⊂ (ρ,1) and C̃ ∈ (0,+∞) such that for all
N ≥ N(ε,ρ), θ0 ∈ � and k ≥ 1,

‖P̃ k
N(θ0, ·) − π̌N(·)‖ ≤ C̃ρ̃k,(6.1)

‖π − π̌N‖ ≤ C
ε

1 − ρ
.(6.2)

PROOF. In some instances we here drop N for notational simplicity. First no-
tice that for any θ ∈ � and n ∈ N,

‖P̃ n(θ, ·) − P n(θ, ·)‖ ≤
n−1∑
i=0

∥∥P̃ n−i−1(
θ, (P − P̃ )(P i − π)(·))∥∥

≤ C sup
θ∈�

‖P(θ, ·) − P̃ (θ, ·)‖
n−1∑
i=0

ρi(6.3)

≤ C

1 − ρ
sup
θ∈�

‖P(θ, ·) − P̃ (θ, ·)‖.
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We bound the last term on the right-hand side. We have

P(θ, dϑ) − P̃ (θ, dϑ) = QN
θ ⊗ QN

ϑ

(
α(θ,ϑ) − α̃(θ,Z;ϑ,Z)

)
Q(θ, dϑ)

+ δθ (dϑ)

∫
�

QN
θ ⊗ QN

ϑ

(
α̃(θ,Z;ϑ,Z) − α(θ,ϑ)

)
× Q(θ, dϑ).

Let ε ∈ (0,1] and notice that since

{Z,Z ∈ ZN } ⊂ {Z,Z :λN(θ) > ε} ∪ {Z,Z :λN(ϑ) > ε}
∪ {Z,Z : λN(θ) ≤ ε,λN(ϑ) ≤ ε},

we have∣∣QN
θ ⊗ QN

ϑ

(
α(θ,ϑ) − α̃(θ,Z;ϑ,Z)

)∣∣ ≤ QN
θ

(
λN(θ) > ε

) + QN
ϑ

(
λN(ϑ) > ε

)
+ QN

θ

(
1 ∧ λN(θ)I

(
λN(θ) ≤ ε

))
+ QN

ϑ

(
1 ∧ λN(ϑ)I

(
λN(ϑ) ≤ ε

))
.

Following the proof of Lemma 4, and from (A5), we conclude that there exists
N(ε) such that for N ≥ N(ε) and any θ,ϑ ∈ �,∣∣QN

θ ⊗ QN
ϑ

(
α(θ,ϑ) − α̃(θ,Z;ϑ,Z)

)∣∣ ≤ 4ε.

Consequently for any ε ∈ (0,1] there exists N(ε) ∈ N such that for any N ≥ N(ε)

and θ ∈ �,

‖P(θ, ·) − P̃ (θ, ·)‖ ≤ 4ε.

As a result and from (A4) for any (θ,ϑ) ∈ � and n ∈ N,

‖P̃ n(θ, ·) − P̃ n(ϑ, ·)‖ ≤ ‖P̃ n(θ, ·) − P n(θ, ·)‖ + ‖P n(ϑ, ·) − P̃ n(ϑ, ·)‖
+ ‖P n(ϑ, ·) − P n(θ, ·)‖

≤ Cρn + 8Cε

1 − ρ
.

Define

ρ̃ := ρ
n

√
C

(
1 + 8ερ−n

1 − ρ

)
≤ ρ

n
√

C

(
1 + 1

n

8ερ−n

1 − ρ

)
.

Choose ε ∈ (0, ρ−1 − 1) and let n ∈ N be such that n
√

C ≤ √
1 + ε and ε (depend-

ing on n and ρ) be such that

1 + 1

n

8ερ−n

(1 − ρ)
≤ √

1 + ε.
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This implies that ρ̃ ≤ ρ(1 + ε) < 1 for N ≥ N(ε), and hence that equation (6.1)
follows. To prove equation (6.2) we notice that from equation (6.3), for any n ≥ 1
and N ≥ N(ε/4)

‖πP n − πP̃ n‖ ≤
n−1∑
i=0

∥∥π(
P̃ n−i−1(P − P̃ )(P i − π)(·))∥∥ ≤ Cε

n−1∑
i=0

ρi ≤ Cε

1 − ρ
,

and since ‖π − π̌N‖ = limn→∞ ‖πP n − π̃N P̃ n‖. We conclude the proof by taking
N(ε,ρ) = N(ε) ∨ N(ε/4). �

7. Examples: Reversible jumps. In this section we illustrate the potential of
the pseudo-likelihood approach to Monte Carlo computations developed in this
paper in the context of reversible jump MCMC [3] algorithms (RJMCMC here-
after), which are well known for their difficult implementation. We start with a
toy example, for which the true marginals are known exactly, hence providing a
simple ground truth, and illustrate the interest of the approach in a scenario, which
in our opinion reflects the difficulties encountered in practice when implementing
RJMCMC in more realistic and difficult scenarios. We then move on to a more
substantial example related to variable selection for generalized linear models. We
first show how an apparently reasonable RJMCMC applied to a seemingly sim-
ple nested models selection problem can easily fail to produce reliable results and
demonstrate how our methodology can easily circumvent this problem and render
the algorithm much more reliable.

7.1. Toy example. We consider here a toy transdimensional target distribution
defined on {1} × R ∪ {2} × R

2,

π(θ, z) = I(θ = 1)1
4N (z;0,1)

+ I(θ = 2)3
4N

(
z =

[
x

y

]
;
[

0
0

]
,� =

[
1 −0.9

−0.9 1

])
.

In a Bayesian setup this would correspond to an inference problem for which two
models M1 and M2 are considered to explain the data, the models being indexed
by θ . Obviously here π(θ = 1) = 1/4 and π(θ = 2) = 3/4. However in order
to illustrate our methodology we develop here a reversible jump algorithm [3] to
sample from this distribution, and compare our results with the exact distribution.
A simple marginal ideal chain can be defined through the transition

P(θ,ϑ) = 1 ∧ π(ϑ)

π(θ)
I(ϑ �= θ) + I(ϑ = θ)

[
1 − 1 ∧ π(ϑ ′)

π(θ)
I(ϑ ′ �= θ)

]
,(7.1)

that is in other words when in model M1 (resp. M2) we propose a jump to model
M2 (resp. M1) with probability 1. This chain is obviously uniformly ergodic,
which is often the case for finite discrete chains in practice. Now assume that
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we are given the algebraic expression for π(θ, z) up to a factor of 1/4 and that,
possibly with age, we fail to recognize 3 times a bivariate normal distribution
for model M2. For simplicity, we will assume that we successfully recognize a
univariate normal distribution for model M1. A standard approach in such situa-
tions consists of resorting to a RJMCMC algorithm that uses the (available to a
constant) density π(θ, z) for model M2 and requires one to propose a bidimen-
sional vector z ∼ Q(·) when attempting a move from model M1 to M2. Natu-
rally the effectiveness of the algorithm will, as we shall see, highly depend on
this proposal distribution whose choice might be far from obvious in more com-
plex scenarios. In order to improve this basic RJMCMC algorithm, we investi-
gate here a very simple strategy which relies on the pseudo-likelihood framework
described earlier more sophisticated and efficient approaches are possible and
currently being explored in other work. For any η > 0, let Nη(z;μ,�d) denote
the truncated normal distribution such that Nη(z;μ,�d) ∝ N (z;μ,�d) when-
ever (z − μ)T�−1(z − μ) ≤ η2 and Nη(z;μ,�d) = 0 otherwise. For θ = 2 we

define QN
θ (Z) = Q(z(1))

∏N
i=2 Nη(z(i); z(i − 1) + σ 2

2 ∇z logπθ(z(i − 1)), σ 2I2)

for some σ 2 
 1, that is we use a form of discretization of the Langevin dif-
fusion with drift 1

2∇z logπθ(z), and run a Markov chain with transition density

�(z, z) = Nη(z; z + σ 2

2 ∇z logπθ(z), σ
2) whose equilibrium distribution is an ap-

proximation of πθ(z). The algorithm proceeds as the marginal algorithm described
earlier in equation (7.1), except that for θ = 2, π(θ) is replaced with the estimator

π̃N (θ) = 1

N

[
π(θ, z(1))

Q(z(1))
(7.2)

+
N∑

i=2

π(θ, z(i))

Nη(z(i); z(i − 1) + σ 2/2∇z logπθ(z(i − 1)), σ 2)

]
,

where z(1), z(2), . . . , z(N) are sampled according to QN
θ above. Note that the case

N = 1 corresponds to the “standard” RJMCMC algorithm described above. For
the purpose of illustration we took Q(z) = N (z; [3,3]T, I2), which while being an
obviously bad choice ensures irreducibility, and hence (in theory) convergence for
the standard RJMCMC algorithm. We ran our algorithm for N = 1,5 and 10 for
450,000, 90,000 and 45,000 iterations, respectively, resulting in comparable com-
putational efforts. The respective empirical expected acceptance probabilities were
0.0121, 0.5206 and 0.5056 (note that the theoretical expected acceptance proba-
bility in the stationary regime for the marginal algorithm is 1/4 + 3/4 × 1/3 =
1/2). In Figure 1 we present the “instantaneous” model probability estimators
1/k

∑k
i=1 I(θi = 1) and 1/k

∑k
i=1 I(θi = 2) as a function of the iterations k. Note

the deceptive behavior observed for N = 1 which suggests that convergence has
occurred.
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FIG. 1. Instantaneous estimation of the model probabilities as a function of the iterations for
N = 1,5,10 from top to bottom.

7.2. Application to variable selection in GLMs. In this section we present an
application of the pseudo-marginal principle to model selection in generalized lin-
ear models, and focus here more particularly on the logit link. More precisely we
assume that we observe M ≥ 1 realizations (yi, xi) for i ∈ {1, . . . ,M} of a ran-
dom variable pair (Y,X) taking values in {0,1} × R

k for some k ≥ 1 and that
the dependence between Y and X is characterized by the conditional distribution
P(Y = 1|X,z), assumed to satisfy

log
(

P(Y = 1|X,z)

1 − P(Y = 1|X,z)

)
= Xz,



THE PSEUDO-MARGINAL APPROACH 719

for a column vector z ∈ R
k . Not all components X(l), l = 1, . . . , k, of X (the

“covariates”) might be relevant to sparsely explain the data and as a result we
might seek to compare models for which some of the components of z are set to
zero this is what we refer to as the model selection problem. In order to carry out
inference in a Bayesian setup it is convenient to introduce indicator variables θ(l) ∈
{0,1} for l = 1, . . . , k such that covariate X(l) is excluded whenever θ(l) = 0. This
allows us to index the 2k − 1 models (we exclude the model with no dependence)
with the vector θ := (θ(1), θ(2), . . . , θ(k)). Let C be the M × k matrix whose ith
row is xi , we then denote Cθ the submatrix of C that contains the columns C for
which θ(l) = 1 and likewise for zθ the subvector of z. It will be convenient to
denote θ̄ = ∑k

l=1 θ(l) the number of active covariates in model θ . We ascribe prior
distributions to k and zθ : Pr(θ̄ = k) ∝ λk/k! for some fixed λ > 0 and following
[6] we set zθ ∼ N (0, [CT

θ Cθ/4M]−1) a priori. Denoting pi(zθ ) := P(yi = 1|xi, zθ )

the joint posterior distribution is

π(θ, zθ ) ∝
N∏

i=1

pi(zθ )
θ(i)(1 − pi(zθ )

)1−θ(i)
N (zθ ;0, [CT

θ Cθ/4M]−1)λθ̄ /θ̄ !.

Variable selection in a Bayesian context typically relies on the marginal posterior
model probabilities π(θ), which are in the present situation intractable. One can
for example resort to MCMC and this is the route followed up here.

The basis of our algorithm is a reversible jump MCMC algorithm for the mar-
ginal model which consists of a birth/death update. We first describe a marginal
algorithm with transition P(θ, dϑ) which of course cannot be implemented. The
pseudo-marginal algorithm will be a simple variation of this algorithm. Given a
model θ , P(θ, dϑ) can be described algorithmically as follows. With probability
1/2, either:

• set θ+ = θ and if θ̄ < k,
1. choose uniformly among the k − θ̄ nonactive components’ indexes, say j ,

and set θ+(j) = 1,
2. set ϑ = θ+ with probability

1 ∧ π(θ+)

π(θ)

1/(θ̄ + 1)

1/(k − θ̄ )
,(7.3)

otherwise ϑ = θ ,
or
• set θ− = θ and if θ̄ > 0,

1. choose uniformly among the θ̄ active components’ indexes, say j , and set
θ−(j) = 0,

2. set ϑ = θ− with probability

1 ∧ π(θ−)

π(θ)

1/(k − θ̄ + 1)

1/θ̄
,(7.4)

otherwise ϑ = θ .
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This algorithm cannot be implemented, but it is nevertheless possible to im-
plement a reversible jump algorithm on the joint distribution π(θ, zθ ). A solution
suggested in [2, 6], which we will refer to as the standard RJ algorithm here, can
be understood as being a simple variation on the algorithm above, where in the
birth move the additional sampling of a new coefficient from a distribution Q is
required, resulting in the acceptance ratio

1 ∧ π(θ+, z+
θ+)

π(θ, zθ )

1

Q(z+(j))

1/(θ̄ + 1)

1/(k − θ̄ )
.

In [6] it is suggested to use as a proposal distribution for z+(j) the marginal of the
normal distribution with mean the maximum likelihood estimator zML

1111 of the sat-
urated model and covariance the corresponding Hessian. Our pseudo-likelihood
algorithm is very similar to the algorithm developed for the toy example in the
previous section, that is it relies on a discretized Langevin diffusion, and con-
sists formally of simply replacing π(θ+) and π(θ−) in the pseudo-code above
with an estimator of the form equation (7.2) for θ ∈ {θ+, θ−}. The following setup
was considered. We generated artificial data from the logit model as follows. We
chose M = 50, k = 4, a set of coefficients z∗ = [1 0.5 −2 0.01]T and gener-
ated covariates as follows: with Zi ∼ N (0, IM) we set Ci = Zi for i = 1,3,4
and C2 = 0.9 × Z1 + 0.1 × Z2. This resulted into two correlated covariates, num-
ber 1 and 2. The maximum likelihood estimate for z∗ was found to be zML

1111 =
[5.22445 −3.71672 −2.4011 −0.587472]T, suggesting (a) the presence of a main
mode for the saturated model around this value, significantly different from the
truth and (b) a mismatch between the modes and marginal modes of π(1111, z1111)

with those of π(1011, z1011) (zML
1011 = [1.73253 −2.30933 −0.648927]T) and

π(0111, z0111) (zML
0111 = [1.5968 − 1.98855 − 0.0922961]T) which might re-

sult in poor mixing of the standard “birth–death” RJMCMC algorithm described
above, a behavior likely to be reinforced here by the choice of the proposal
distribution. This is confirmed by our simulation. In Figure 2 we present the
estimated model probabilities (indexed by the decimal representation of θ ) for
N = 1,5,50,100,200. Note that for the case N = 1 the birth/death move was
complemented by 10 iterations of a within model one variable at a time random
walk MH for each sweep. We observe the large discrepancy between the results for
N = 1,5 and the results for N = 50,100,200 the latter being in agreement. Note
that this is despite the apparent convergence of estimators of the posterior inclu-
sion probabilities P(θ(j) = 1) for j = 1, . . . , k for the case N = 1 (Figure 3) and
that the results obtained after 20,000, 10,000 and 5,000 for N = 50,100 and 200
are much more reliable than for N = 1 after 1,000,000 iterations. The respective
expected acceptance probabilities are given in the table below. Note that using the
estimated model probabilities obtained for N = 200 one finds an acceptance rate
of 0.29592. Finally, in Figure 4 we present the trace of the z’s drawn with our dis-
cretized Langevin while attempting to jump between models, which together with
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FIG. 2. Model probabilities for N = 1,5,50,100,200 (from top to bottom).
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FIG. 3. Instantaneous estimation of the model probabilities as a function of the iterations for
N = 1,5,50,100,200.
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FIG. 4. Snapshots of the transitions for zθ between models for N = 100, together with their asso-
ciated importance weights (the horizontal lines correspond to the true values of z∗).
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the evolution of the values of the importance weights illustrates why our approach
might be of interest.

N /nb iter.×1000 1/1000 5/400 50/40 100/50 200/50
accept prob. 0.064293 0.16569 0.25885 0.28433 0.29371

8. Conclusion. The pseudo-marginal approach to stochastic simulation is a
highly versatile methodology which has diverse potential applications in a variety
of areas. The focus of this paper has been on some of the theoretical underpin-
nings of the method. Our main results describe ergodicity and uniform ergodicity
of GIHM and its exact generalizations suggested in this paper, and we also give
a comparison with an inexact variants, akin to MCWM. Empirical evidence in
[1] and in the present paper in the context of reversible jumps for model selec-
tion in generalized linear models suggests that the methodology has considerable
promise. Currently ongoing work confirms this.
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