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Abstract. We report on a study of the electromagnetic response of three different families
of high-Tc superconductors that in combination allowed us to cover the whole doping range
from under- to overdoped. The discussion is focused on theab-plane charge dynamics in the
pseudogap statewhich is realized in underdoped materials below a characteristic temperature
T ∗, a temperature that can significantly exceed the superconducting transition temperatureTc.
We explore the evolution of the pseudogap response by changing the doping level, by varying the
temperature from above to belowT ∗, or by introducing impurities in the underdoped compounds.
We employ a memory function analysis of theab-plane optical data that allows us to observe
the effect of the pseudogap most clearly. We compare the infrared data with other experimental
results, including thec-axis optical response, dc transport, and angle-resolved photoemission.

1. Introduction

There is mounting evidence that the normal state of underdoped high-Tc superconductors
(HTSC) is dominated by a pseudogap. A number of physical probes show that below
a characteristic temperatureT ∗, which can be well above the superconducting transition
temperatureTc, the physical response of HTSC materials can be interpreted in terms of the
formation of a partial gap or a pseudogap by which we mean a suppression of the density of
low-energy excitations. This gap persists in the superconducting state.T ∗ decreases with
increasing doping in the underdoped regime and sinceTc rises with doping, the two curves
meet at the optimal doping level, as shown in the schematic phase diagram in figure 1.

The earliest experiments to reveal gap-like behaviour in the normal state were nuclear
magnetic resonance (NMR) measurements of the Knight shift [1, 2], which probes
the uniform spin susceptibility. In conventional superconductors and the cuprates at
optimal doping, the Knight shift is temperature independent in the normal state but drops
rapidly belowTc due to pairing of electronic spins into (singlet) superconducting Cooper
pairs. In underdoped cuprates, however, the Knight shift begins to drop well above the
superconducting transition temperature. Warrenet al concluded that in these materials spin
pairing takes place well above the bulk superconducting transition atTc, thus producing a
normal-state energy gap, referred to as a ‘spin gap’ [1].

Deviations from the well known linear temperature dependence of theab-plane
resistivity [3], ρab(T ), were observed in underdoped cuprates as well [4–7], with the slope
of ρab(T ) changing below a characteristic temperatureT ∗. As the doping is increased

0953-8984/96/4810049+34$19.50c© 1996 IOP Publishing Ltd 10049



10050 A V Puchkov et al

Figure 1. A schematic phase diagram of the cuprate superconductors. In the underdoped regime
a pseudogap state forms below a temperatureT ∗ > Tc. The curves forT ∗ andTc cross at optimal
doping where the pseudogap and the superconducting gap develop at the same temperature.T ∗
is determined from thec-axis conductivity and the doping level from the superfluid density
ω2

ps = ns/m∗ in the CuO2 planes.

towards the optimal level,T ∗ decreases and the near-optimal dopingρab(T ) is linear over
the range of temperatures fromTc to above 800 K [6, 5].

The magnitude ofT ∗ as well as its variation with doping suggest that the suppression of
the spin susceptibility observed in NMR measurements and the change of slope ofρab(T )

have a common physical origin. It has been suggested that if the scattering responsible for
the linear temperature dependence ofρab(T ) involves scattering on spin fluctuations, then
the spin gap seen in NMR belowT ∗ would naturally account for the depression ofρab(T )

below T ∗ as well. Similar evidence for the suppression of the spin susceptibility has been
extracted from neutron scattering experimental results [8]. Specific heat measurements on
underdoped YBa2Cu3Ox (Y123), however, show that there is a large decrease in entropy
below a temperature, closely related to theT ∗, which cannot be accounted for by assuming
that a gap in the spin degrees of freedom is solely responsible [9].

There is spectroscopic evidence of anomalies in the properties of HTSC that were
originally associated with the formation of the superconducting gap, but were found to
occur atT > Tc in underdoped samples. The shift in the position and width of Raman
frequencies of certain phonons, associated with the onset of superconductivity [10], were
shown to occur in the normal state of underdoped cuprates and it was suggested they were
related to the spin gap [11]. Similarly, broad peaks in the electronic Raman continuum,
also interpreted as an evidence for the formation of a superconducting gap [12], were found
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to occur well aboveTc in underdoped samples [13].
Indications of normal-state, gap-like anomalies in underdoped cuprates were observed

in infrared optical measurements as well. To a first approximation theab-plane optical
properties of HTSC are those of a metal where the charge carriers move coherently through
the lattice. Such coherent motion gives rise to a conductivity peak, centred at zero frequency,
called the Drude peak, whose width is a measure of the inverse lifetime of the carriers. In
this paper we call systems that have a conductivity peak at zero frequency coherent systems.
In contrast, transport in thec-axis direction does not show a peak a zero frequency and
we call this incoherent transport. On closer examination the reflectance of most high-
temperature superconductors was found to deviate from simple Drude behaviour which
predicts a reflectance decreasing monotonically with frequency. A structure in the form of
a ‘knee’ was found at approximately 500 cm−1. This structure was sometimes interpreted
as a manifestation of a conventional superconducting gap. It has been found, however,
that in underdoped materials the knee starts to develop already in the normal state [14–
21]. A comparison with other probes suggests that the knee structure and deviations
observed in the dc transport and NMR experiments all occur at a characteristic temperature
remarkably similar toT ∗. The corresponding changes in the complex optical conductivity
σ(ω) = σ1(ω) + iσ2(ω) involve a shift of part of theσ1(ω) spectral weight from 300–
700 cm−1 to lower frequencies, resulting in a marked narrowing of the Drude peak. This
behaviour is in accord with decreasing dc resistivity and was interpreted in terms of coupling
of electrons to the longitudinal optical (LO) phonons [22, 23] or as a manifestation of the
spin gap [16, 20, 21].

It should be emphasized that in the case of acoherentsystem, such as the underdoped
cuprates in theab-plane direction, there is no direct mapping between the electronic density
of states (DOS) and the shape of the real part of the conductivity,σ1(ω). For example, even
if there is a gap in the electronic DOS and its magnitude is larger than the characteristic
energy associated with theelasticscattering (clean limit [17, 24]), the gap will not manifest
itself in the σ1(ω) spectra. In the same way, a pseudogap in the electronic DOS of a
coherent system, that may appear due to strong interactions in the system, does not appear
as an obvious gap in the conductivity.

The charge dynamics along the interplanec-direction is incoherent, at least in the
underdoped materials. While both underdoped Y123 and YBa2Cu4O8 (Y124) compounds,
collectively referred as YBCO, exhibit a gap-like depression in thec-axis conductivity
as well [25–27], thec-axis conductivity shows no coherent peak at low frequencies; see
figure 2. In contrast to theab-plane response, as the temperature decreases from 300 K to
Tc the c-axisσ1(ω) spectral weight is transferred from the gap region tohigher frequencies
[25, 28]. This is inferred from the sum rule for the optical conductivity, or spectral
weight. The spectral weight lost at low frequency, as the gap develops, does not go to low
frequencies since the magnitude of the low-frequency conductivity is in good agreement
with the dc resistivity [29] which shows a ‘semiconducting’ behaviour (i.e. resistivity
increases at lowT ). Thus by default it must go to high frequencies and in the case of
La2−xSrxCuO4 (La214) the spectral weight has been shown to transfer to the 1 eV region
[30]. A number of mechanisms have been proposed that would result in an incoherent
conductivity spectrum [31–38]. Thec-axis conductivity depression in both Y123 and Y124
occurs at a temperature scale that matches the spin susceptibility determined from the NMR
measurements. This is shown in the inset of figure 2 where the Knight shift [39] is shown
along with the experimentalc-axis conductivity. The onset energy of thec-axis gap in
YBCO is ≈200 cm−1 and the half-value point is at≈300 cm−1. Above 500 cm−1, the
c-axis conductivity is both temperature and frequency independent [29].
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Figure 2. The c-axis conductivity of an underdoped Y123 crystal. Thec-axis conductivity is
temperature and frequency independent forT > T ∗ but develops a marked gap-like depression
below T ∗. As the temperature is lowered the pseudogap deepens. Inset: the NMR Knight shift
(normalized at 300 K) is plotted as a function of temperature for an underdoped Y123 crystal.
The circles show the low-frequencyc-axis conductivity for samples of the same doping level.
The curves suggest that the Knight shift, a conventional measure of the density of states at the
Fermi level, and thec-axis conductivity are depressed by the same process in the pseudogap
state.

A pseudogap has also been observed in thec-axis conductivity of La214 where for
x = 0.14 a very large gap has been reported [30] and forx = 0.12 a gap of the same
magnitude as in YBCO can clearly be seen [40]. The Pb2Sr2(Y/Ca)Cu2O8 material also
shows ac-axis pseudogap [41].

Recent angle-resolved photoemission (ARPES) results for Bi2Sr2CaCu2O8+δ (Bi2212)
show evidence of a normal-state gap-like depression of the electronic density of states of
underdoped cuprates as well [42–44]. The momentum dependence of this gap resembles
that of the dx2−y2 gap observed in the superconducting state [43]. This, and the fact that
no significant changes are observed upon crossing into the superconducting regime, have
led to the suggestion that the normal-state gap may be a precursor of the superconducting
gap. As the doping level is increased to near- and above optimal the normal-state gap-like
feature disappears.

In the following, we summarize the recent experimental optical results obtained from
several series of HTSC materials at doping levels ranging from underdoped to strongly
overdoped. We find that in the pseudogap state the optical response of underdoped cuprates
is marked by an increase in coherence of the electronic system. Since the coherence effects
are seen more clearly through the frequency-dependent charge-carrier scattering or memory
function analysis, we have chosen to use this approach. The essential features of this very
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general formalism are described in section 3. We will also restrict our survey to theab-plane
optical properties. Thec-axis optical data are less complete since the large, thick crystals
needed for this work are not available for all systems. We will, however, try to address the
question of the correlation between theab-plane and thec-axis pseudogap properties as we
change materials, doping and temperature.

2. The experimental technique

In order to cover a broad range of doping regimes we performed reflectivity measurements
upon three families of high-Tc cuprates: YBCO (including Y123 and Y124), Bi2212 and
Tl2Sr2CuO6+δ (Tl2201). This was necessary because, with the exception of La214, none of
the existing cuprates allows one to explore a full spectrum of doping regimes. For instance,
Y123 materials can be conveniently underdoped by reducing the amount of oxygen from
the optimally doped level atx = 6.95. However, these crystals are not suitable for strong
overdoping. On the contrary, Tl2201 samples could be only overdoped by introducing
interstitial O atoms between the TlO planes so thatTc is suppressed from about 90 K
in the stoichiometriccomposition down to less than 4 K in the overdoped composition.
Single crystals of Bi2212 can be both overdoped and underdoped, but the suppression of
the critical temperature is very limited on the overdoped side. We have also used Bi2212
crystals with 20% of Bi substituted for with Pb which allows one to achieve a higher degree
of overdoping. The influence of disorder on the infrared response of YBCO crystals was
studied by substituting Zn for the Cu atoms in the CuO2 planes [45].

The response of YBCO crystals was studied in three carrier-density regimes: in an
optimally doped Y123 crystal with the oxygen content set atx = 6.95 (Tc = 93.5 K), in
the samecrystal deoxygenated down tox = 6.6 (Tc = 59 K) [46] and in a double-chained
Y124 crystal withTc = 82 K [47]. The carrier density in the stoichiometric and naturally
untwinned Y124 corresponds to that of Y123 samples withx ' 6.85. The Y123 crystal was
mechanically detwinned so that botha- andb-axis components of the conductivity tensor
were obtained independently, allowing us to probe the response of the CuO2 planesonly
without any contribution from the charge reservoir structural blocks.

We have also performed reflectivity measurements on two underdoped (Tc = 67 K and
Tc = 82 K), one optimally doped (Tc = 90 K), and one overdoped (Tc = 82 K) Bi2212
single crystal. All of the Bi2212 crystals were prepared from the as-grown crystals by
annealing in argon and/or oxygen [48]. To achieve a higher degree of overdoping we have
performed measurements on Pb-doped Bi2212, Bi1.66Pb0.34Sr2CaCu2O8+δ ((Bi/Pb)2212),
with Tc = 70 K (optimum Tc = 88 K). The two T2201 single crystals used in the
measurements hadTcs of 90 K (the highestTc achievable) and 23 K (strongly overdoped).
The superconducting transition temperatures for all of the samples were measured in a
SQUID magnetometer.

The reflectivity was measured over a broad energy range: from 30–50 cm−1 up to
20 000 cm−1 for Y123, Y124, and Bi2212 samples; from 30–50 cm−1 up to 50 000 cm−1

for Tl2201 samples. The far-infrared reflectance measurements were carried out using
a rapid-scan interferometer with focused optics on a sample mounted in a continuous-
flow cryostat. For near-infrared and visible measurements, a grating spectrometer with
appropriate detector–filter combinations with overlapping frequency ranges was used. To
obtain the absolute value of the reflectance, geometrical scattering losses were accounted
for by in situ evaporation of a metallic film (Au or Al) onto the surface of the sample.
The coated sample was then remeasured and the absolute value of the reflectanceR is then
given by the ratio of spectra before and after plating, corrected for the absolute reflectance
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of the metallic film [49].
The complex optical conductivityσ1(ω) + iσ2(ω) of single-crystalline samples was

obtained from Kramers–Kronig analysis of the reflectivity. To perform the required
integrations it was necessary to extend the reflectance beyond the actually measured
range [50]. Below the lowest frequency measured we have tried different types of
reflectivity approximation, from the Hagen–Rubens formula to a straight line between
unity at zero frequency and the last experimental point. We found that in the frequency
region that will be of interest in this work (ω > 100 cm−1) the particular choice of low-
frequency approximation is not important. At high frequencies, the reflectivity of Y123
and Y124 samples was extended using the results of previous measurements [51] up to
300 000 cm−1. The reflectivity of Tl2201 was approximated by a constant between 50 000
and 200 000 cm−1. For Bi2212, the results of ellipsometric measurements [52] were used
between 20 000 and 50 000 cm−1 while above this frequency range a constant-reflectivity
approximation was used up to 200 000 cm−1. Above 200 000 cm−1 for Bi2212 and Tl2201
and above 300 000 cm−1 for YBCO the reflectivity was allowed to fall asω−4. In the case
of the Y123 material we compared the optical constants obtained using Kramers–Kronig
analysis with those obtained more directly by optical ellipsometry in the 2–5 eV range [53],
and excellent agreement was found. This attests to the reliability of the results obtained
through Kramers–Kronig analysis of the reflectance.

3. The extended drude formalism

3.1. The complex memory function

The classical Drude formula for the dynamical conductivityσ(ω) = σ1(ω)+ iσ2(ω) [50, 54]
can be obtained by using a standard Boltzmann equation and approximating the collision
integral with a single collision frequency 1/τ . The Drude formula describes the free-carrier
contribution toσ1(ω) as a Lorentzian peak centred at zero frequency with an oscillator
strength ofω2

p/8, whereω2
p = [e2/(3π2h̄)]

∫
v·dSF and v is the electron velocity andSF

is the element of Fermi surface. For a spherical Fermi surfaceω2
p = 4πne2/me, where

n is the free-carrier density andme is the electronic band mass. The Lorentzian width is
determined by a constant scattering rate 1/τ . The imaginary part ofσ(ω) is just the real
part multiplied byωτ :

σ(ω) = 1

4π

ω2
p

1/τ − iω
= ω2

p

4π

[
τ

1 + (ωτ)2
+ i

τ 2ω

1 + (ωτ)2

]
. (1)

A derivation of equation (1) by using the standard kinetic Boltzmann equation assumes
that the elementary system excitations are well defined. However, a description of a system
by using elementary excitations is possible, strictly speaking, only if the (energy) width of
the wave packet representing the electronic excitation is small compared to the energy of
the packet. In more formal language, for the approximations leading to equation (1) to be
valid, a spectral function of electronic excitations defined as

A(k, ω) = − 1

π
|Im G(k, ω)| = 1

π

Im 6(ω)

(ω − εk − Re6(ω))2 + (Im 6(ω))2
(2)

must be a narrow peak centred atω = εk + Re6(ω). HereG(k, ω) is a Green function of
electronic excitation and6(ω) is the self-energy part. The narrowness of the peak means
that the excitation energy must be much larger than the damping termγ (ω) = −2 Im6(ω).
This is certainly true in the case of standard Fermi-liquid theory, where Re6(ω) ∼ ω
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and Im6(ω) ∼ ω2 and thus the electronic excitations (quasiparticles) are well defined at
zero temperature and energies close to the Fermi energyEF [55]. It can also be shown
[56] that a weak electron–phonon coupling, although it violates the quasiparticle description
at energies very close toEF , does not drastically change the transport properties at low
temperatures, since in this case the number of electronic states where the quasiparticle
description is violated is small. Therefore, the Drude formula is applicable only for simple
metals at low frequencies and low temperatures where elastic scattering from impurities and
weak quasielastic scattering from thermally excited excitations such as phonons dominate
[50, 56].

On the other hand, following the original ideas of Anderson [57], it is now widely
accepted that the electronic system of HTSC materials represents a new kind of quantum
liquid and the simple Fermi-liquid quasiparticle description is not applicable to the normal-
state properties of these materials. For example, the key ingredient of the phenomenological
‘marginal’ Fermi-liquid theory [58], advanced to explain these properties, is the assumption
that the Im6(ω) ∼ ω and, consequently, Re6(ω) diverges logarithmically at the Fermi
energy, thus makingG(k, ω) entirely incoherent atEF . On a more microscopic level,
a similar result is expected for the quasi-one-dimensional Hubbard model, which was
identified by Anderson as an appropriate paradigm for the resonant-valence-bond (RVB)
description [57]. Even in more Fermi-liquid-like scenarios, sufficiently strong coupling of an
electronic system to a bosonic energy spectrum may result in a violation of the quasiparticle
description [56]. In addition, the Fermi energy is estimated to be onlyEF = 1–2 eV,
which is not much larger than the energies probed in infrared experiments (4–300 meV).
Such a lowEF may be another reason for violation of a quasiparticle description. Since
this implies the absence of well-defined elementary excitations, the approximations used to
obtain equation (1) are not justified. The breakdown of the quasiparticle description has
also been discussed by Emery and Kivelson in the context of abnormally short values of
the mean free path that lead to the violation of the Ioffe–Regel criterion [59].

However, the optical conductivity can be described in a much more general way
by making the damping term in the Drude formula complex and frequency dependent:
1/τ = M(ω) = M ′(ω) + iM ′′(ω), where M(ω) is called a memory function [60–62].
M(ω) satisfiesM ′(ω) = M ′(−ω) and M ′′(ω) = −M ′′(−ω). The consequences of this
formalism, usually referred to as the extended Drude model, have been derived for the
infrared conductivity of metals with a strong electron–phonon interaction by Allen [63] and
Allen and Mikkelsen [60] for the case of zero temperature. The analysis was later extended
for the case of finite temperatures by Shulgaet al [56]. It is also believed that the resulting
theory is valid in the case of the coupling of a Fermi liquid to any bosonic energy spectrum.
Some aspects of the extended Drude model were also examined in detail by Götze and
Wölfe [62]. We are not aware of any quantitative predictions regarding the extended Drude
model in the completely non-Fermi-liquid scenario, such as the Luttinger-liquid theory.
Therefore, in the following we will employ the Fermi-liquid terminology. The formalism
has been previously applied to transition metal compounds [60], heavy-fermion materials
[64, 65], and the HTSC cuprates [15, 66–69].

Rewriting the complex conductivityσ(ω) in terms of a complex memory function,
M(ω, T ) = 1/τ(ω, T ) − iωλ(ω, T ), one obtains [50, 61]

σ(ω, T ) = 1

4π

ω2
p

M(ω, T ) − iω
= 1

4π

ω2
p

1/τ(ω, T ) − iω[1 + λ(ω, T )]
. (3)

Although, in the case of a metal, equation (3) can be obtained using the Boltzmann-
equation formalism with a frequency-dependent scattering rate [60], this form has in fact a
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range of validity more general than the Boltzmann-equation approach [60, 61]. Adopting the
Boltzmann-type terminology, the quantities 1/τ(ω, T ) andλ(ω, T ) describe the frequency-
dependent scattering rate and mass enhancement of electronic excitations due to many-body
interactions.

Using the more general form of equation (3), one can check the range of validity of
the classical Drude formula of equation (1) by expanding the memory function into Taylor
series for small frequencies:

lim
ω→0

M(ω) = 1

τ(0)
− iλ(0)ω + O(ω2). (4)

Substituting this into equation (3) one finds

σ(ω, T ) = 1

4π

ω2
p

1/τ(0) − iω(1 + λ(0))
(5)

recovering equation (1). The classical Drude result is thus valid whenever expansion of
equation (4) makes sense andλ(0) is small compared to unity.

Equation (3) can be reduced to the familiar Drude form of equation (1) by introducing
the so-called renormalized scattering rate 1/τ ∗(ω, T ) = 1/[τ(ω, T )(1 + λ(ω, T ))] and the
effective plasma frequencyω∗2

p (ω, T ) = ω2
p/(1 + λ(ω, T )):

σ(ω, T ) = 1

4π

ω∗2
p (ω, T )

1/τ ∗(ω, T ) − iω
. (6)

As can be seen from this equation, the optical conductivity is now composed of an
infinite set of Drude peaks, each describingσ(ω) in the vicinity of a particular frequency
ω with a set of parameters 1/τ ∗(ω) and λ(ω) (for simplicity in the following we will
drop the temperature parameter when it is not relevant to a discussion). 1/τ ∗(ω) has the
phenomenological meaning of a width of the Drude peak local to a frequencyω while λ(ω)

represents the interaction-induced velocity renormalization. The renormalized scattering rate
1/τ ∗(ω) is not causal and, other than the local Drude width, does not have a real physical
sense as it includes both the velocity renormalization and the lifetime effects.

On the other hand, 1/τ(ω) is, up to a constant, the real part of 1/σ(ω):

1/τ(ω) = ω2
p

4π
Re

(
1

σ(ω)

)
(7)

that is, a real part of a physical response function. In the limit of zero frequency the normal-
state optical conductivity is completely real and equation (4) becomes 1/σdc(T ) = ρdc(T ) =
me/(τ(T )ne2), whereρdc(T ) is the dc resistivity. This is the same form as the relaxation-
time expression for the dc resistivity of a free-electron gas and thereforeτ(ω, T )|ω=0 may
be viewed as an electronic lifetime.

The mass enhancement factorλ(ω) is given as the imaginary part of 1/σ(ω):

1 + λ(ω) = −ω2
p

4π

1

ω
Im

(
1

σ(ω)

)
. (8)

The total plasma frequencyω2
p in equations (7), (8) can be can be found from the sum

rule
∫ ∞

0 σ1(ω) dω = ω2
p/8. Sinceσ(ω) is causal,λ(ω) and 1/τ(ω) are not independent and

are related by the Kramers–Kronig relation [50]. Using the relations 1/τ(ω) = 1/τ(−ω)

andλ(ω) = λ(−ω) we obtain

λ(ω) = 2

π
P

∫ ∞

0

1/τ(�)

�2 − ω2
d� (9)
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1/τ(∞) − 1/τ(ω) = 2

π
P

∫ ∞

0

�2λ(�)

�2 − ω2
d�. (10)

If 1/τ(ω) and λ(ω) have no poles atω = 0 one immediately obtains the following
useful relation:

1/τ(∞) − 1/τ(0) = 2

π

∫ ∞

0
λ(�) d�. (11)

We see that the complex memory functionM(ω) is a physical response function and
experimental data can be presented in terms ofM(ω, T ) or the complex optical conductivity
σ(ω, T ) equally well. The particular choice should be made judging from the situation at
hand. For example, the memory function analysis may be useful if one is interested in the
relaxation processes that determine a system response to electromagnetic radiation. Also, in
certain cases the memory function is easier to calculate analytically, thus making it easier
to analyse the physics behind the system behaviour using experimental results forM(ω).
For example, simple analytical formulae forM(ω) have been derived for electron–phonon
scattering while the optical conductivity has to be calculated numerically [56].

Finally, we would like to stress that, although equation (3) is very general, obviously
the interpretationof experimental results forM(ω, T ) in terms of scattering rate and mass
enhancement only makes sense when a (generalized) Boltzmann equation can be used.
For example, if the optical response is determined by two distinct charge-carrier systems
(two-component) so that the optical conductivity takes the form

σ(ω) = σ I (ω) + σ II (ω) (12)

the interpretation ofM ′(ω) and M ′′(ω) as a scattering rate and a mass enhancement is
meaningless, as can be seen from equations (7), (8). This is the case if an interband
transition is present in the same frequency region where there is an intraband response. We
note, however, that the form (12) can arise from a double-relaxation process (two different
scattering mechanisms) as well [60].

Since in the superconducting stateσ1(ω) is suppressed, the low-frequency optical
conductivity is dominated by the imaginary termσ2(ω) = ω2

ps/(4πω). In this case the
low-frequency mass-enhancement factor gives a ratio of the total plasma frequency,ω2

p, to
the plasma frequency of the superconducting carriers,ω2

ps : 1 + λ(ω) = ω2
p/ω2

ps .

3.2. Electron–boson scattering

Memory function analysis has been most extensively developed for the case of electron–
phonon scattering [60, 63, 56]. It can be shown in the limit of frequencies comparable
to the Debye frequency and/or high enough temperature that the quasiparticle description
breaks down [56]. Using more general many-body calculations Shulgaet al obtained the
following expression for 1/τ(ω, T ):

1

τ
(ω, T ) = π

ω

∫ ∞

0
d� α2

tr (�)F (�)

[
2ω coth

(
�

2T

)
− (ω + �)coth

(
ω + �

2T

)
+ (ω − �)coth

(
ω − �

2T

)]
+ 1

τimp

. (13)

Here α2
tr (�)F (�) is a phonon density of states weighted by the amplitude for large-

angle scattering on the Fermi surface andT is measured in frequency units. The last term in
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(13) represents impurity scattering. In the limit of zero temperature this reduces to Allen’s
result [63]:

1

τ
(ω) = 2π

ω

∫ ω

0
d� (ω − �)α2

tr (�)F (�) + 1

τimp

. (14)

The dc scattering rate is obtained in the limit ofω = 0 in equation (13):

1

τ
(0, T ) = π

∫ ∞

0
d� α2

tr (�)F (�)
�

T
sinh−2

(
�

2T

)
+ 1

τimp

. (15)

At temperatures much higher than the phonon spectrum upper-energy cut-off,T � �c,
the above expression reduces to

lim
T/�c→∞

1

τ
(0, T ) = 4πT

∫ ∞

0
d�

α2
tr (�)F (�)

�
+ 1

τimp

(16)

which is just the familiar result that the high-temperature electron–phonon contribution to
a dc resistivity is linear in temperature.

In the limit of high ω, ω � �c,

lim
ω/�c→∞

1

τ
(ω, T ) = 2π

∫ ∞

0
d� α2

tr (�)F (�)coth

(
�

2T

)
+ 1

τimp

(17)

which at high temperatures,T � �c, assumes the same value as the zero-frequency limit
(16). Therefore, at very high temperatures the scattering rate becomes frequency independent
and equation (6) reduces to the classical Drude expression (1).

We note that the effective scattering rate 1/τ(ω) is different from the quasiparticle
attenuationγ (ω). For example, at zero temperatureγ (ω) is given by [63, 70]

γ (ω) = −2 Im6(ω) = 2π

∫ ω

0
d� α2(�)F (�) + 1

τimp

. (18)

Here α2(�)F (�) is the isotropically weighted phonon density of states. One can see
from equations (14), (18) that atT = 0 the effective scattering rate 1/τ(ω) is, if the
difference betweenα2

tr andα2 is neglected, anaverageof γ (ω) over frequencies from 0 to
ω and thereforeγ (ω) enters into the effective scattering rate in a way non-local in frequency
[56, 61, 63]. As a consequence, 1/τ(ω) is actually equal to the quasiparticle attenuation
γ (ω) only atω = 0, where 1/τ(0) = γ (0) = 1/τimp. The two quantities also asymptotically
approach each other in the limit of high frequencies,ω � �c, where bothγ (ω) and 1/τ(ω)

become frequency independent. As the temperature is increased, the difference between
γ (ω) and 1/τ(ω) is smeared out, and in the limit ofT � �c they are asymptotically equal.
Generally, however,τ(ω, T ) deviates from the quasiparticle lifetimeγ −1(ω, T ).

Equations (13), (14), which have been derived for electron–phonon scattering, are
believed to be valid in the case of the coupling of an electronic spectrum to any bosonic
excitations [64, 65]. In this case the Eliashberg functionα2

tr (�)F (�) in equations (13), (14)
is replaced by the corresponding, suitably weighted, bosonic spectral densityAtr (ω). To
give a flavour of the results expected on the basis of equations (13), (14) we will perform
calculations for several model shapes ofAtr (ω): a δ-peak, a ‘square’-like spectrum and
Atr (ω) = 0ω/(02 + ω2). The last spectrum is believed to be appropriate for scattering of
electrons on spin fluctuations [71].

In the case ofAtr (ω) = ω0δ(ω − ω0) the integration of equation (13) can easily be
performed. The effective-mass enhancementλ(ω) can be calculated using the Kramers–
Kronig relation (9). As soon as both 1/τ(ω, T ) and λ(ω, T ) are known, the optical
conductivity can be calculated using equation (3). The impurity scattering has been set
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Figure 3. Electron–boson model calculations with the boson spectral densityAtr (�) =
ω0δ(ω−ω0). The top panel shows the optical conductivity, the middle panel shows the scattering
rate and the bottom panel shows the mass renormalization. The coupling constant is equal to 1.

to 1/(2πω0τimp) = 0.01. The results obtained are presented in figure 3 at five different
temperatures:T = 0, 0.125ω0, 0.25ω0, 0.5ω0, ω0.

For the two other choices ofAtr (ω), the integration of equation (13) was performed
numerically. We then used the Kramers–Kronig relation to obtainλ(ω, T ). The same
impurity scattering rate as in the case of theδ-function was used to calculateσ1(ω). The
results are presented in figure 4 and figure 5 at different temperatures, measured in units of
the characteristic frequency of the bosonic spectrumAtr (ω).

As was discussed above, if theAtr (ω) spectrum has a high-energy cut-off, 1/τ(ω, T )

saturates at frequencies that are much higher than the cut-off. The value of 1/τ(ω, T ) in
the saturation regime is strongly temperature dependent, and linear inT at high enough
temperatures according to (17). However, if there is no cut-off inAtr (ω), as in the case
of the magnetic spectrum in figure 5, there is no high-frequency saturation of 1/τ(ω, T )—
rather it continues to increase. The temperature dependence of the absolute value of the
scattering rate is, however, still strong.

In figure 3, the effective-mass enhancementλ(ω, T ) is larger at low frequencies and
decreases to zero at high frequencies. This has a simple physical interpretation that at
high frequencies the boson ‘cloud’ is not capable of following the charge carriers. The
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Figure 4. Electron–boson model calculations. The top panel shows the bosonic spectral density,
here a ‘square’ spectrum, the next shows the optical conductivity, the next shows the scattering
rate and the bottom panel shows the mass renormalization. The coupling constant is equal to 1.

sharp increase in the low-temperatureλ around the frequency of the bosonic excitation
ω0 corresponds to the onset of a boson-emission process, since only carriers with energy
greater than ¯hω0 can emit a boson. A similar onset can be seen in figure 4. In the case of
the magneticAtr (ω), this feature is not observed since bosons can be emitted by a carrier
with arbitrarily small energy. At high temperaturesλ asymptotically approaches zero, in
agreement with the frequency-independent scattering rate 1/τ .

The low-temperature conductivity in figure 3 shows a pronounced absorption band,
called a Holstein band, with a sharp onset atω0. The band corresponds to an additional
absorption channel associated with boson-emission processes. A similar absorption onset
can be seen in figure 4 but not in figure 5. The reason for this, as in the case ofλ, is
the large boson spectral density at all non-zero frequencies for the magneticAtr (ω). As
the temperature is increased, all sharp features inσ1 are smeared out and at very high
temperatures the conductivity can be described by the single Lorentzian of equation (1).
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Figure 5. Electron–boson model calculations. The top panel shows the bosonic spectral density,
the next shows the optical conductivity, the next shows the scattering rate and the bottom panel
shows the mass renormalization. The coupling constant is equal to 1.

4. Experimental results

This section is divided into three subsections: underdoped, optimally doped and overdoped
cuprates. In each of the subsections we first present the raw experimental results in the
form of absorptionA(ω) = 1−R(ω) for a selected material at many different temperatures.
Before we proceed to the memory function analysis, we will also present the results
for the same material in terms of more commonly used real optical conductivityσ1(ω).
However, we will focus the analysis on the real and imaginary parts of the memory function
M(ω) = M ′(ω)+ iM ′′(ω), that will be presented for several materials on a second diagram
in each subsection. While for a selected material in each subsection we will show many
different temperatures, to simplify the diagrams for others, only three temperatures will be
shown: T = 300 K, T ' Tc and the lowest (superconducting) temperature.

We note here again that we are fully aware that in most real situations, and especially
in HTSC, the real and imaginary parts ofM(ω) are not solely determined by the scattering
effects and the corresponding enhancement of an effective mass. Nevertheless, mostly for
historical reasons, we will refer to the effective scattering rate and to the effective mass
defined as 1/τ(ω) = M ′(ω) and m∗ = 1 + λ(ω) = 1 − M ′′(ω)/ω respectively. Keeping
this in mind, we will now present the experimental results and indicate the common trends,
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Figure 6. The absorptionA = 1 − R, top panel, and the optical conductivityσ1(ω) for
underdoped Bi2212 (Tc = 67 K). The absorption rises linearly at high temperatures but develops
a depression below 800 cm−1 due to the formation of the pseudogap. In the optical conductivity
the pseudogap shows up as a narrowing of the coherent Drude peak at low frequency.

leaving the interpretation for the discussion section. Since we will mainly be interested in
the evolution of the optical response in the pseudogap energy region we will present the
experimental data up to 2000 cm−1 only.

4.1. Underdoped cuprates

A typical plot of the temperature dependence of the raw absorption dataA(ω, T ) for an
underdoped HTSC is shown in figure 6, this particular example being underdoped Bi2212
material withTc = 67 K. In the temperature range 300–150 K the absolute value of the
low-frequency absorption decreases smoothly with decreasing temperature without any sharp
features. However, at a temperatureT < T ∗ ' 150 K, the absorption below 600–700 cm−1

starts to decrease faster than at higher frequencies, developing a threshold structure which
is characteristic for an underdoped HTSC in the pseudogap state.

The corresponding changes in the real part of optical conductivityσ1(ω) are also shown
in figure 6 at selected temperatures. The in-plane response of all samples is metallic,
i.e. the absolute value ofσ1(ω) decreases from the dc value with increasingω. However,
while the σ1(ω) spectra are quite broad at temperatures aboveT ∗, the rapid decrease of
the low-frequency absorption belowT ∗ results in an abrupt narrowing of the low-frequency
conductivity with substantial spectral weight being transferred towards zero frequency. As
temperature is reduced belowTc, no dramatic changes are observed in the optical response
of underdoped cuprates: the only change is just acontinuednarrowing of the intense low-
frequency peak, that has already been initiated in the normal state.

The scattering rate 1/τ and the effective massm∗/me = 1 + λ for the Bi2212
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Figure 7. The frequency-dependent scattering rate, top row, and the mass renormalization
for a series of underdoped cuprate superconductors, bottom row. The scattering rate curves
are essentially temperature independent above 1000 cm−1 but develop a depression at low
temperature and low frequencies. The effective mass is enhanced at low temperature and low
frequencies.

crystal with Tc = 67 K, calculated from the optical conductivity using the formulae
described in section 3, are shown in figure 7. We have used a plasma frequency value
of ωp = 14 300 cm−1, obtained by using the conductivity sum-rule analysis [50, 72] with
integration ofσ1(ω) over all frequencies up to 1 eV. We note that the value ofωp obtained
in this way is somewhat ambiguous since there is no clear separation between the frequency
regions of the free- and bound-carrier optical responses. However, a particular choice of
ωp only multiplies 1/τ(ω) and m∗(ω) by a constant. Since in this paper we are mostly
interested in thefrequency dependenceof these quantities, the exact value ofωp is not of
primary importance. To keep the absolute values consistent throughout the paper, in the
Bi2212 and Tl2201 series we will use plasma frequency values obtained by integrating the
real part of the optical conductivity up to 1 eV, which seems to be an energy below which
the conductivity is substantially changed by doping [16, 72]. In the YBCO series we will
use an energy of 1.5 eV as an upper integration limit since the reflectivity plasma minimum
is higher for these materials [50].

The scattering rate 1/τ(ω) of underdoped Bi2212 withTc = 67 K is linear at frequencies
from 800 cm−1 to at least 3000 cm−1 at all temperatures. While at room temperature the
low-frequency 1/τ(ω) deviates upwards from the high-frequency linear law, atT = 200 K
the spectrum is linear over the whole frequency range from 100 to 3000 cm−1. However,
as temperature is reduced belowT ∗, the scattering rate is suppressed more rapidly at low
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frequencies (ω < 700 cm−1) while it remains nearly unaffected at higher energies. A
result of this development is the appearance of a distinct threshold in the 1/τ(ω) spectra.
Another interesting phenomenon, that we will return to later, is the remarkable temperature
independence of the high-frequency 1/τ(ω).

Like other quantities, the effective massm∗(ω) displays a rapid change at frequencies
below 700 cm−1 as temperature is reduced belowT ∗. We note that the narrowing of the
low-frequency optical conductivity is a result ofboth a decrease of 1/τ(ω) and an increase
of m∗(ω) since heavy carriers are more difficult to scatter. The width of a conductivity
peak is determined by a renormalized scattering rate 1/τ ∗(ω) = me/(τ(ω)m∗(ω)). At low
temperatures the effective mass saturates atm∗(0) ' 3–4.

The experimental results obtained for several other cuprate materials at different doping
levels in the underdoped state are qualitatively similar. In the rest of figure 7. we show
the effective scattering rate and the carrier mass obtained for Y123 with oxygen content
x = 6.6 andTc = 58 K, naturally underdoped Y124 withTc = 80 K, and slightly underdoped
Bi2212 with Tc = 82 K. The in-plane plasma frequencyωp, related to the conductivity by
ω2

p/8 = ∫ ∞
0 σ1(ω) dω, scales withTc in accordance with earlier measurements [16, 72].

Integration of the conductivity up to 1.5 eV yields the following values of the plasma
frequency: 15 000 cm−1 in YBa2Cu3O6.6, 16 000 cm−1 in YBa2Cu4O8 and 15 600 cm−1 in
Bi2212. For clarity, only three temperatures are shown for each material: room temperature,
just aboveTc and well belowTc.

All of the samples show the same characteristic suppression of the amplitude of
the scattering rate atT < T ∗, which seems to increase as the doping level decreases.
Despite the differences in the values ofT ∗ in the different samples, the energy scale
associated with the suppression of 1/τ(ω), does not change significantly with doping.
In particular, a deviation from the linear behaviour in all of the samples studied occurs
at the same frequencyω < 700 cm−1. As the doping level is increased towards the
optimal, the normal-state depression of 1/τ(ω) becomes progressively shallower, while
in the superconducting state the depression remains almost unchanged. The net effect is
that the difference between the low-temperature normal-state and the superconducting-state
1/τ(ω) becomes more prominent as the doping level approaches the optimal. At the same
time, qualitatively, the shape of the normal-state 1/τ(ω) at T < T ∗ remains similar to that
in the superconducting state. With the exception of the Y124 sample, for all of the samples
the high-frequency 1/τ(ω) is linear up to at least 3000 cm−1 (2000 cm−1 for Y124) and
it is nearly temperature independent. The low-temperature effective massm∗(ω) becomes
enhanced at low frequencies when temperature is reduced belowT ∗. In all of the samples
m∗(ω) saturates at about the same value of≈3–4.

To summarize, the optical response of underdoped cuprates is characterized by the
following generic features. (i) The scattering rate is nearly linear withω at T > T ∗. (ii) At
T < T ∗ (the pseudogap state) the low-frequency scattering rate is suppressed corresponding
to the rapid narrowing of the Drude-like feature in the conductivity spectra. The energy
scale associated with the changes of 1/τ(ω) spectra was found to be the same in all of the
samples. The magnitude of the depression weakens as the doping is increased towards the
optimal level. (iii) The high-frequency 1/τ(ω) remains effectively temperature independent
and linear from 700 cm−1 up to at least 3000 cm−1 in most underdoped HTSC samples.

4.2. Optimally doped and lightly overdoped cuprates

A similar threshold structure in the raw absorption spectra is observed for the optimally
doped crystals as well. As an example, in figure 8 we show absorption and conductivity
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Figure 8. The absorptionA = 1 − R and the optical conductivity for optimally doped Y123
with x = 6.95 (Tc = 93.5 K). A depression ofA is seen below 800 cm−1 but only below the
superconducting transition temperatureTc. The same is true for the characteristic narrowing of
the optical conductivity.

data obtained from optimally doped Y123 material. The important difference from the
underdoped cuprates is that now a threshold inA(ω) develops only at temperatures belowTc.
The corresponding 1/τ(ω) andm∗(ω) spectra are plotted in figure 9. We have used a plasma
frequencyωp = 18 000 cm−1, obtained from the sum-rule analysis with integration up to
1.5 eV. All of the optical constants show the same characteristic features as in underdoped
cuprates but the onset temperature is determined now byTc. A remarkable feature of the
optimally doped samples is the similarity between the behaviour of the superconducting-state
optical response obtained in these crystals and the data obtained for the underdoped materials
at Tc < T < T ∗. This would be consistent with the notion that theTc- andT ∗-boundaries
in figure 1 cross at around the optimal doping level. As a result, the difference between the
normal-state and the superconducting-state spectra becomes dramatic in optimally doped
samples.

In the normal state, as the temperature is reduced from 300 K down toT ' Tc, both
the scattering rate and the renormalized effective mass, in optimally doped samples, show
relatively minor changes. These changes are mainly restricted to the decrease of the absolute
value of 1/τ(ω) in the low-frequency parts of the spectra. However, in contrast to what
occurs for the underdoped materials, the normal-state scattering rate in Y123 does not reveal
any sharp changes in the frequency dependence as the temperature is reduced.

In the rest of figure 9 we show data obtained on Bi2212 withTc = 90 K and Tl2201
with Tc = 90 K. We should note that although we assigned the material Tl2201 to this
section, the peak inTc as a function of doping has not observed for Tl2201 and some data
suggest that this material may be somewhat overdoped [72]. The plasma frequency used
for Bi2212 wasωp = 16 000 cm−1 and for Tl2201ωp = 15 300 cm−1. The normal-state
spectra of 1/τ(ω) are featureless. In the case of Tl2201 the threshold structure appears
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Figure 9. The scattering rate and the effective mass for samples close to optimal doping.
The scattering rate now has a degree of temperature dependence at low frequencies. In the
superconducting state the scattering rate is depressed at low frequencies.

only at T < Tc but in Bi2212 a weak structure can still be seen atT = 90 K. In fact, it
persists even in the lightly overdoped samples. Thus it is possible that the pseudogap state
in figure 1 can penetrate somewhat into the overdoped regime. Qualitatively, the depression
in 1/τ(ω) at T < Tc in the optimally doped cuprates is very similar to what is observed in
the 1/τ(ω) spectra in the pseudogap state of the underdoped cuprates. However, in contrast
with the case for the underdoped materials, the temperature dependence of the scattering
rate now seems to extend over a broader frequency range. In particular, in the Bi2212 and
Tl2201 samples the 1/τ(ω) spectra reveal some shift in the high-frequency part (above the
700 cm−1 threshold) whereas in the underdoped materials no temperature dependence was
observed at these frequencies.

Another weak feature that seems to be common for both the optimally doped Y123
and Tc = 90 K Tl2201 is an ‘overshoot’ of the superconducting-state 1/τ(ω) above the
spectrum of 1/τ(ω) for T ' Tc.

In summary, the response of the optimally doped high-Tc cuprates demonstrates the
following features: (i) a threshold feature in the 1/τ(ω) spectra atT > Tc is either strongly
suppressed or disappears completely when the doping level approaches optimal; (ii) the
high-frequency 1/τ(ω) remains linear but may acquire a weak temperature dependence in
lightly overdoped cuprates.
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Figure 10. The absorption of strongly overdoped Tl2201 (Tc = 23 K) is shown in the top panel
and the optical conductivity is shown in the lower panel. The absorption is strongly temperature
dependent but no threshold develops at low temperatures. The optical conductivity becomes
narrower as temperature decreases but does not show any sharp changes.

4.3. Overdoped cuprates

Since the strongly overdoped regime is not accessible in the Bi2212 or in the YBCO
materials, we have chosen Tl2201, (Bi/Pb)2212 and slightly overdoped Bi2212 in order to
study this doping regime. In figure 10 we show the data for a strongly overdoped high-Tc

superconductor (Tl2201 withTc = 23 K). The raw absorption spectra are qualitatively
different from those obtained in optimally doped or underdoped regimes.A(ω) is
temperature dependent over a much broader frequency range. The spectra shift down
uniformly as temperature decreases but no sharp features develop. Unfortunately, in this
crystal, absorption is already very small in the normal state atT = 35 K. It is difficult to
determine the exact shape ofA(ω) in the superconducting state. Thus it remains unclear
whether the absorption spectra of this crystal show the same threshold structure as those of
the less heavily doped materials.

The σ1(ω) spectra for the strongly overdoped Tl2201 are shown in the bottom panel of
figure 10 while 1/τ(ω) andm∗(ω) spectra are shown in figure 11. The plasma frequency
is ωp = 15 100 cm−1. Consistent with the behaviour of the absorption spectra there is
no sharp change in the frequency dependence in any of these response functions as the
temperature is decreased in the normal state. Instead, the 1/τ(ω) spectra scale downwards
almost parallel to each other. This is in a sharp contrast with the 1/τ(ω) behaviour in
the underdoped regime, where the scattering rate was found to be temperature independent
above 1000 cm−1. We also note that the frequency dependence of 1/τ(ω) for this strongly
overdoped material may become superlinear, flattening out at low frequencies. The effective
massm∗(ω) does not show any pronounced temperature dependence and remains largely
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Figure 11. In overdoped samples the scattering rate, shown in the top panels, shows
an increasingly strong temperature dependence. As a part of the high-frequency scattering
disappears at low temperatures, the low-frequency depression of 1/τ(ω) and the effective-mass
enhancement decreases in magnitude, even in the superconducting state.

flat over the whole frequency region shown. To show the continuity in the evolution of
the optical response of the cuprates from underdoped and optimally doped to the strongly
overdoped case we plot 1/τ(ω) andm∗(ω) spectra for other overdoped samples in the rest
of figure 11. These include Bi2212 (Tc = 82 K) and (Bi/Pb)2212 (Tc = 70 K) annealed
in oxygen (ωp = 15 600 cm−1 for Bi2212 and 16 500 cm−1 for (Bi/Pb)2212). As we
have noted in the previous section, the 1/τ(ω) spectrum for the slightly overdoped Bi2212
still shows a weak normal-state pseudogap feature atT = 90 K, defined as a downwards
deviation from the linear high-frequency behaviour. However, (Bi/Pb)2212 shows no sign
of a threshold formation aboveTc. While the scattering rate remains close to linear inω

at high frequencies, it seems to gradually pick up a temperature dependence as the doping
level is increased from the optimal to overdoped. Also, the absolute value of the scattering
rate is gradually suppressed with increased doping.

In the superconducting state the threshold structure seems to weaken as doping is
increased towards strong overdoping. Correspondingly, the superconducting-state mass
enhancement also becomes weaker. Unfortunately, as in the case of absorption, we cannot
unambiguously determine the exact nature of the changes that occur belowTc in either
1/τ(ω) or m∗(ω) for the Tl2201 sample withTc = 90 K.

In summary, as the doping level is increased above optimal to overdoped and strongly
overdoped levels: (i) no threshold is observed in 1/τ(ω) at T > Tc; (ii) the scattering
rate 1/τ(ω) acquires temperature dependence over a much broader frequency range than in
underdoped cuprates; (iii) the frequency dependence of 1/τ(ω) may become superlinear in



High-Tc superconductors: an infrared study 10069

0 1000
1

2

3

4

m
*(

)/
m

e

0 1000 0 1000 2000

Wave  Number,   (cm
-1

)

0

2000

4000

(c
m

-1
)

YBa2Cu4O8,  pure

Tc= 82 K

T = 300 K
       85 K
       10K

YBa2(Cu1-xZnx)4O8
x=0.00425, Tc= 45 K

YBa2(Cu1-xZnx)4O8
x=0.01275, Tc< 4 K

T=10K
     85 K
     300 K

T = 300 K
        50 K
        10K

T=10K
    50 K
    300 K

T = 300 K
       95 K
       10K

T=10K
    95 K
    300 K

Figure 12. The effect of zinc doping on theab-plane scattering rate for Y124. The left-hand
panels show a pure sample while in the middle and right-hand panels results for Y124 with
0.425% and 1.275% of Zn, respectively, are shown. Note the almost complete elimination of
the threshold structure at∼700 cm−1.

the strongly overdoped cuprates.

4.4. The effect of zinc doping

In figure 12 we show the spectra of the scattering rate and the effective mass for a pure
crystal of Y124 and for two samples containing 0.425% and 1.275% of Zn. As the result
of Zn substitution,Tc is suppressed from 82 K in pure crystal down to 45 K in the material
with 0.425% of Zn. In the sample with 1.275% Zn, superconductivity is not observed above
4 K. It is believed that Zn substitutes for Cu atoms primarily in the CuO2 planes.

In the crystals with Zn substitution the scattering rate is enhanced over the whole energy
scale. The frequency dependence of 1/τ(ω) is modified as well. In particular, the threshold
structure atω ' 600 cm−1 weakens with increasing Zn content. The behaviour of the non-
superconducting crystal is in fact very similar to what is observed in the optimally doped
samples atT > T ∗. The principle difference for the Zn-doped underdoped crystals and
optimally doped materials is that the threshold structure in 1/τ(ω) does not appear even
below Tc.

At low frequencies we observe an upturn for the 1/τ(ω) spectra. A similar upturn
is also observed for the disordered (Bi/Pb)2212 system and for Tl2201 [73]. It is likely
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that this behaviour of the scattering rate could be attributed to incipient localization in
the CuO2 planes initiated by impurities. The upturn becomes stronger as the temperature
decreases. We note that the dc properties of these materials, and in particular the temperature
dependence of the dc resistivity, are determined by 1/τ(ω) at ω → 0. Thus an obvious
consequence of the low-frequency upturn would be to reduce the slope of the dρ/dT

dependencies and to create a residual resistivity.

5. Discussion

5.1. General trends in1/τ(ω) data

With regards to the underdoped cuprates, two distinct features in the 1/τ(ω) spectra deserve
mentioning. First, it must be recognized that 1/τ(ω) is linear and almost temperature
independent at high frequencies. Second, a threshold structure develops at low frequencies
and temperatures belowT ∗. When the doping reaches the optimal level the threshold
structure in theab-plane scattering rate shows up only in the superconducting state. This
is accord with the phase diagram where the two curves—those for the pseudogap boundary
and the superconducting transition temperatureTc—cross at optimal doping (T ∗ 6 Tc).
In the overdoped cuprates the threshold structure appears only belowTc and seems to
become weaker even in the superconducting state as doping progresses. Unfortunately, the
limitations of our experiment do not allow us to say with certainty whether the structure
persists in the strongly overdoped materials. The important difference between 1/τ(ω)

for overdoped and underdoped materials is a strong temperature dependence of the high-
frequency part of 1/τ(ω) in the overdoped case.

Table 1. The slopes and zero-frequency intercepts of the high-frequency linear part of
1/τ(ω) = αω + β are given in the third and fourth columns. The linear coefficients normalized
to the plasma frequency are given in the fifth and sixth columns. The fit was performed over a
frequency range from 900–3000 cm−1. The Y124 material is not shown since the high-frequency
scattering rate significantly deviates from linearity above 2000 cm−1.

Material Tc (K) α β (cm−1) 4πα/ω2
p (µ� cm2) 4πβ/ω2

p (µ� cm)

Y123 (u.d.) 58 1.26 (1.45) 790 (560) 0.34 (0.39) 210 (149)
Y123 (opt.d.) 93.5 0.79 (0.93) 890 (590) 0.15 (0.17) 165 (108)

Bi2212 (u.d.) 67 0.84 (0.91) 1280 (1200) 0.25 (0.27) 377 (352)
Bi2212 (u.d.) 82 0.76 (0.95) 990 (750) 0.19 (0.23) 243 (185)
Bi2212 (opt.d.) 90 0.71 (0.72) 850 (650) 0.17 (0.17) 200 (150)
Bi2212 (o.d.) 82 0.73 (0.77) 890 (550) 0.18 (0.19) 219 (135)
(Bi/Pb)2212 (o.d.) 70 0.63 (0.65) 551 (118) 0.13 (0.14) 117(25)

Tl2212 (o.d.?) 90 0.64 (0.75) 473 (90) 0.16 (0.19) 121 (23)
Tl2212 (o.d.) 23 0.63 (0.54) 337 (−318) 0.17 (0.14) 89 (−84)

The common feature in all of the spectra is the linear dependence of the high-frequency
scattering rate. The linear frequency dependence has been seen previously in the scattering
rate of thea-axis Y123 both in the optimally doped and underdoped spectra [19, 20]. In
table 1 we present the slopes and zero-frequency intercepts of the high-frequency part of
the scattering rate obtained by fitting it to a straight line 1/τ(ω) = αω + β. The results
are presented at two temperatures:T = 300 K and at the lowest normal temperature (in
parentheses).
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We note here that the coefficients determined directly from 1/τ(ω) may be ambiguous
since they involve the plasma frequencies that were obtained by integrating the real part
of conductivity up to a somewhat arbitrary chosen frequency. However, the same cut-off
integration frequency was used for each of the series at all doping levels (1.5 eV for YBCO
and 1 eV for Bi2212 and Tl2201). While the absolute value ofωp obtained in this manner
may still be ambiguous, thechangesin ωp with doping reflect changes in the carrier density
for each of the material series [72]. For these reasons the materials presented in table 1
are grouped by series. Another way to get around the problem of the unknown plasma
frequency is to divide the scattering rate byω2

p: 4π/(ω2
pτ). This quantity may be called

the ‘optical resistivity’, orρopt , since it has the same functional form as a dc resistivity in a
simple Drude model [54]. Since it is directly obtained from the measured complex optical
conductivity: ρopt (ω) = Re(1/σ(ω)), it may be useful to examine variations of the slope
and zero-frequency intercept ofρopt (ω) instead of 1/τ(ω). The corresponding results are
listed in the last two columns of table 1.

The result of both approaches is that bothα and β seem to decrease with doping for
all of the series. However, while the decrease in the slope is insignificant (and may even
be inside our error bar estimated to be about 20%), the drop in the intercept, especially its
low-temperature value, is dramatic. We also note the large difference between the room-
temperature and low-temperature (numbers in parenthesis) intercept values for the overdoped
cuprates, which is a result of the intense temperature dependence of the high-frequency part
of 1/τ(ω). The low-temperature intercept even becomes negative for strongly overdoped
Tl2201.

The low intercept values for overdoped cuprates suggest that the temperature dependence
and the low-frequency threshold of 1/τ(ω) are closely related. The intense temperature-
induced suppression of 1/τ(ω) over a large frequency range makes the high-frequency
background atT ' Tc very small. Any further suppression of 1/τ(ω), similar to that
observed in underdoped and optimally doped samples, could potentially produce only a
weak feature that would be difficult to detect experimentally.

To conclude this subsection, we make a comparison between our data on the
temperature/frequency dependence of the scattering rate and earlier results. For the optimally
doped Y123 and Bi2212 samples, microwave and infrared experiments demonstrated that
1/τ(ω → 0) drops abruptly below the superconducting transition temperature [74, 75].
A suppression of the scattering rate in the superconducting state was confirmed through
transport experiments [76]. These results are consistent with the behaviour of 1/τ(ω)

plotted in figure 9.
In the underdoped regime, the suppression of the scattering rate occurs even in the

normal state and thus a comparison can be made with dc resistivity data. In underdoped
cuprates the resistivity is a linear function ofT for T > T ∗, but it shows a crossover to
a steeper slope atT < T ∗ [6]. Since dc resistivity is, within a constant factor, the zero-
frequency limit of 1/τ(ω), the crossover behaviour could be completely accounted for with
the low-frequency suppression of the scattering rate. We also note that the dc resistivity of
underdoped cuprates, at least below 300 K, is determined by the charge dynamics over a
relatively small energy range (below the threshold structure) while in the strongly overdoped
cuprates, much larger energies are involved. It is not quite clear, however, how the 1/τ(ω)

spectra in the underdoped cuprates will evolve above room temperatures where the dc
ρab(T ) is still increasing with temperature. In particular, it is not clear whether 1/τ(ω) will
remain linear and temperature independent at high frequencies.
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5.2. Theoretical models for1/τ(ω)

There is yet to be a clearly superior theoretical explanation for the peculiar behaviour of
the infrared optical response presented in the previous section, but a few models deserve
mentioning. We will start here with the models that rely on inelastic scattering processes
as the mechanism that determines the frequency and temperature behaviour of the real and
imaginary parts of the memory function, and will continue with other models later.

Figure 13. The reflectivity (top panel), the effective mass (middle panel), and the frequency-
dependent scattering rate (lower panel) for an optimally doped Y123 crystal shown over a
wider frequency range. The temperature is 95 K. The effective mass becomes negative for
ω > 6000 cm−1 suggesting a breakdown of the validity of the single-component approach due
to the onset of an interband transition.

As we have stressed previously, the modelling of the real part ofM(ω) in terms of the
carrier scattering only makes sense if there are reasons to believe that the optical response
in the energy region under study is predominantly due to mobile carriers (no interband
contribution) and that there is only one type of carrier participating in optical excitations
(the one-component model). It is not at all clear that these requirements are satisfied in the
HTSC cuprates at all frequencies, particularly in the midinfrared range, where some of the



High-Tc superconductors: an infrared study 10073

interband transition processes may have energies comparable with the those of the intraband
excitations. The situation is complicated further by the fact that these contributions do not
have characteristic sharp features which would facilitate their separation. As an example, a
typical frequency dependence of the room-temperatureab-plane complex memory function
M(ω), in the functional form of 1/τ(ω) and m∗(ω), is shown in figure 13 on a large
frequency scale for Y123 (x = 6.95) material (E‖a). Evidence for the interband process
comes from, for example,m∗(ω) being negative [77] atω > 8000 cm−1.

Nevertheless, there are reasons to believe that the carrier scattering approach can be used
at frequencies below 2000–3000 cm−1 for which we have presented data in section 4. First,
the conductivity is observed to be temperature dependent [78] atω < 2000–3000 cm−1,
and it is natural to assign the temperature-dependent part to the ‘free’-carrier contribution;
second, as was noted earlier by Thomaset al [15], the number of carriers that one obtains
using the sum-rule analysis for the real part of the optical conductivity is consistent with
estimates from chemical valence arguments for the carrier density provided that the sum
rule is taken up to about 8000 cm−1.

Therefore the carrier scattering mechanism is at least a plausible mechanism for the
optical response in HTSC at frequencies less than 2000–3000 cm−1. Below we will outline
some approaches that are based on carrier scattering mechanisms as well as some problems
associated with them.

The first approach is electron–phonon scattering [56]. While this model qualitatively
reproduces the gap-like depression in 1/τ(ω) at low temperatures (see, for example,
calculations presented in figures 3 and 4), it is not nearly as sharp as that seen in the
experimental data. An even more severe problem is the absence of the predicted temperature
dependence of 1/τ(ω) at high frequencies. A signature of the electron–phonon theories is
their prediction of significant temperature-induced changes (proportional tokBT at high
temperatures). Furthermore, as discussed in section 3, within the electron–boson scattering
scenario, the characteristic temperature below which a low-frequency depression in 1/τ(ω)

occurs is determined by the high-energy cut-off of the bosonic spectrumAtr (�). The
experimental fact is that the characteristic temperature in the cuprates,T ∗, depends on the
doping level. This is inconsistent with the electron–phonon scenario, since the phonon
cut-off is doping independent. Thus we believe that the electron–phonon scattering model
fails to reproduce the essential features of the experimental data for underdoped cuprates.

It is still possible, however, that phonons play some role in the mechanism responsible
for the experimentally observed behaviour of 1/τ(ω), but in a more unconventional way.
We note in this respect that the frequency scale in the spectra of 1/τ(ω) associated with
the pseudogap state, which does not significantly change with doping, coincides remarkably
well with the high-frequency cut-off energy of the phonon density of states in HTSC [79].

More generally, a serious defect of all of the models that employ scattering of electrons
by bosonic excitations to describe the optical response of underdoped HTSC is their failure
to account for the observed behaviour in the high-frequency part of the 1/τ(ω) spectra. As
discussed in section 4, underdoped cuprates do not show any temperature dependence in
1/τ(ω) at ω > 700–800 cm−1. On the other hand, in section 3 we saw that scattering of
electrons by any temperature-independent bosonic spectrum leads to a strong temperature
dependence of 1/τ(ω) at high frequencies. The only way to get around this contradiction
is to assume that the boson spectral functionAtr (�) is also a function oftemperature:
Atr (�, T ). In this case, if the absolute value ofAtr (�, T ) scales properly with temperature,
it may account for the observed temperature-independent scattering rate at high frequencies.
The phonon density of states does not show any such changes [79].

One of the mechanisms that may yield a temperature-dependentA(ω) function is the
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scattering of charge carriers on local fluctuations towards an antiferromagnetic order. The
energy scale associated with spin fluctuations is measured [80] to be of the order of 50 meV.
The features in the scattering rate spectra that we observe in the pseudogap state are on
the same energy scale, supporting such models. This mechanism would also provide a
qualitative explanation for the doping dependence of the pseudogap.
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Figure 14. Top panel: the scattering rate aboveTc in the pseudogap state is approximated
by straight-line segments. Bottom panel: the slopes of the straight segments are plotted as a
function of frequency.

Finally, we can roughly estimate the boson spectral function that is needed to obtain
the threshold structure in 1/τ(ω) in the pseudogap state atT < T ∗. This estimate
can be obtained by inverting the lowest-temperature normal-state experimental results for
1/τ(ω) using Allen’s expression (equation (14)). The complete inversion formula can be
written asA(ω) = (1/ω)(d/dω)[ω2(d/dω)(1/τ(ω))] [81]. Since the process of numerical
differentiation greatly amplifies the noise level of our spectra, we have chosen the following
approach to minimize the added noise. The experimentally obtained 1/τ(ω) for underdoped
Bi2212 was fitted with four straight lines, as shown in figure 14 and then the inversion
formula was applied to the resulting artificial spectrum composed of the straight pieces. In
this scheme, the exact inversion formula reduces to the first derivative, that is the slope
of the straight lines. The resultingAtr (�) spectrum is shown in the bottom panel of
figure 14. Obviously the rather crude approximation of the experimental curve prevents us
from observing any fine details of the spectrum. The significant result is, however, that an
intense peak inAtr (�) at 500–700 cm−1, superimposed on a broad background, is needed
to account for the behaviour of the scattering rate in the pseudogap state if one adopts an
electron–boson scattering model.
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We note that at least some of the current electron–electron scattering models suffer
the same problems as the electron–boson ones—namely, they cannot account for the weak
or completely absent temperature dependence of 1/τ(ω) spectra in underdoped cuprates at
high frequencies. In the conventional Fermi-liquid theory, for example, the electron–electron
scattering rate is proportional to(h̄ω)2 + (πkBT )2, that is the frequency and temperature
dependences of the scattering rate ‘mirror’ one another [82]. Another example of this type
of mirroring is provided by the heavy-fermion compound URu2Si2 [83] or the perovskite
Sr2RuO4 [84]. In both cases a scaling of ¯hω = 2kBT collapses the dc resistivity curve
onto the frequency-dependent scattering rate curve. This is in contrast to the experimental
observations for underdoped cuprates where a significant frequency dependence, but no
temperature dependence, was observed at frequencies above 1000 cm−1. Other Fermi-
liquid-type models, such as the nested Fermi-liquid (NFL) model or the marginal Fermi-
liquid (MFL) model, also predict a significant temperature dependence at high frequencies
[67, 58]. For example, the main assumption of the phenomenological MFL model is that
the scattering rate varies as 1/τ(ω, T ) = αω+βT whereα andβ are constants of the order
of unity. It is clear that in the underdoped materials 1/τ does not follow this behaviour
sinceβ = 0, i.e. there is no temperature dependence associated with the linear-in-frequency
scattering rate. As we have seen, a temperature dependence of the scattering rate does
develop, but only in optimally doped and overdoped materials.

We note that from a completely different point of view, the two-component model
of optical conductivity [85] where the infrared conductivity is divided into a free-carrier
and a midinfrared component, these observations imply that the midinfrared component is
temperature independent in underdoped materials.

Some hints regarding the microscopic origin of the scattering mechanism in HTSC can
be obtained from the analysis of impurity effects. As was shown in section 4, the effect
of Zn doping was not just the introduction of an additional frequency-independent term in
1/τ(ω) spectra. Zinc substitution also modifies the frequency dependence of the scattering
rate suggesting thatinelastic processes are affected by Zn as well. Thec-axis results
obtained for the sample with 0.425% Zn reveal acomplete suppressionof the pseudogap
[68]. The effect of Zn on thec-axis pseudogap is similar to the one observed in the spin–
lattice relaxation time 1/T T1 [86]. The similar concentrations of Zn in ceramic pellets of
Y124 completely suppress the pseudogap feature in the temperature dependence of 1/T T1,
despite the fact that the behaviour of the Knight shift remains unchanged from that of a
pure sample. The results obtained from crystals with Zn substitution strongly suggest that
spin fluctuations may be involved or may even be the dominant mechanism of scattering in
underdoped cuprates.

There are several other theoretical models that attempt to explain the pseudogap
phenomenon from different assumptions.

The model due to Emery and Kivelson [87] predicts that the low carrier density in the
underdoped regime may result in pairing without pair–pair coherence at temperatures well
above the actualTc, thus producing a pseudogap. As the temperature is lowered the phase
coherence is established, leading to bulk superconductivity. This model would provide
an explanation for the lack of dramatic changes upon crossing into the superconducting
state, which is consistent with our optical experiments as well as ARPES measurements.
However, it is not quite clear why the high-frequency onset energy of the optical pseudogap
does not change as a function of doping whileT ∗ andTc do.

In the spin–charge separation picture [57], spin singlets form atT ∗, giving rise to a spin
gap while the charge carriers, holes which are bosons, Bose condense at the superconducting
transition [88–91]. Other models invoke a spin-density wave [92, 93] in the context of



10076 A V Puchkov et al

a normal Fermi liquid to form a gap in the spin excitations which are the predominant
scatterers of the charge carriers.

5.3. The effect of Zn doping

As a small fraction of Cu is substituted for with Zn, the optical response of underdoped
Y124 changes dramatically. Contrary to what is seen for the underdoped samples in the
pseudogap state or the optimally doped sample in the superconducting state, there is no
structure in the scattering rate either above or belowTc. These results suggest that the
temperature characterizing the pseudogap stateT ∗ can be very small and definitely much
lower thanTc. We note that a similar effect may be seen for overdoped cuprates. Therefore
we suggest that the addition of Zn may have an effect similar to the overdoping of Y124
compounds.

The normal-state plasma frequency is not affected by Zn substitution. Indeed, as was
demonstrated by Puchkovet al [72], overdoping does not lead to any significant changes in
the value of the in-plane plasma frequency. At the same time, overdoped compounds usually
show a higher dc conductivity than their underdoped or optimally doped counterparts. That
is not the case for the Y124 material with Zn where the conductivityσa(ω → 0) is reduced.
However, this may simply reflect the fact that Zn is put directly in the CuO2 planes and this
inevitably causes additional impurity scattering. The latter effect is so strong that crystals
with 1.25% of Zn show evidence for a charge-carrier localization behaviour in the optical
conductivity. This point will be addressed in detail elsewhere.

It is critical to determine whether the effects observed for the Y124 crystals on Zn
substitution are unique for this specific impurity or whether other types of disorder would
produce similar results.

5.4. The relation between the ab-plane and c-axis pseudogap

A comparison ofa-axis results for Y123 materials with earlierc-axis data [25, 26] suggests
that the pseudogap directly observed in thec-axis conductivity atT < T ∗ is necessarily
accompanied by a suppression of the in-plane 1/τ(ω) at low frequencies. Indeed, the
threshold feature in 1/τa(ω) is found for underdoped crystals atT < T ∗ only when the
spectrum ofσc(ω) exhibits a pseudogap. The suppression of the pseudogap inσc(ω),
either by an increase of temperature aboveT ∗, or by an increase of the carrier density
from x = 6.6 to x = 6.95 in Y123, or by the substitution for Cu with Zn in underdoped
Y124 [68], restores the nearly linear frequency dependence of the in-plane scattering rate.
Therefore, we conclude that the same microscopic mechanism leads to the opening of the
pseudogap in the interplane response of YBCO crystalsand the low-frequency anomalies
in the lifetime effects within the CuO2 planes.

It is interesting to note that the frequency shape of thec-axis conductivity is somewhat
similar to the bosonic spectral function, shown in figure 14, that is needed to reproduce
the in-planebehaviour of 1/τ(ω). This suggests that there may be an intricate connection
between the two.

5.5. The superconducting state

One of the most striking features of the curves, in our view, is how closely the 1/τ curves
for the underdoped cuprates in the superconducting state resemble those in the pseudogap
state. It is useful to compare the energy scales for the various experiments that reveal the
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presence of a pseudogap.
The maximum gap seen in the ARPES experiment is about 21 = 360 cm−1 (45 meV)

whereas thec-axis conductivity (in YBCO) shows an onset at∼200 cm−1 (25 meV) rising
to a plateau at 360 cm−1 (45 meV). Theab-plane 1/τ scale is considerably higher with the
steepest part of the curve at∼500 cm−1 (62 meV) merging with the high-frequency linear
curve at around 750 cm−1 (93 meV) in all of the materials studied. Another high-energy
scale is the energy range of the depression of thec-axis conductivity at the superconducting
transition—of the order of or larger than 600 cm−1.

Thus it appears to us that the energy scales associated with the pseudogap and with the
superconducting state are different. In Y124 crystals with Zn substitution, superconductivity
persists while the pseudogap is suppressed. We also note that in all of the samples we find
finite absorption extending down to the lowest frequencies. In an s-wave superconductivity
scenario, this absorption implies a very anisotropic superconducting gap. As for the d-wave
gap models, our data may be consistent with the theoretical predictions [94–96] only if
one assumes a significant number of impurities present in the crystals. This assumption is,
however, inconsistent with the linear penetration depth observed in the high-quality YBCO
crystals used in this work [97, 98].

Although changes in 1/τ(ω) upon crossing into the superconducting regime in
the optimally doped cuprates are apparently dramatic, this may simply be due to the
simultaneous formation of the pseudogap and superconducting condensate. Also, as noted
above, it is only in thec-axis conductivity that we see evidence of a larger energy scale
associated with the superconducting state [26].

In the superconducting state, the spectra of the effective mass are remarkably similar
in all of the crystals that we have studied. In particular, the absolute value ofm∗(ω → 0)

is about 4 both in Y123 and in Y124 materials. As noted in section 3, the zero-frequency
extrapolation of the effective mass gives a square of a ratio of the total plasma frequency,
ωp, to the plasma frequency of the superconducting condensate,ωps . This value is in good
agreement with the results obtained directly from the use of the sum-rule analysis ofσ1(ω) or
from an analysis of the imaginary part of the conductivity. The fact that the zero-frequency
extrapolations of the effective mass are roughly the same,m∗(ω → 0) ' 3.5–4, for all of the
underdoped materials suggests that the superfluid condensate density scales with the total
carrier density in the underdoped cuprates. Therefore, we conclude that there are no pair-
breaking effects in the pseudogap state. However, as doping is increased above optimal, the
mass enhancement becomes weaker, which indicates a decrease in the superfluid density.
This behaviour is in agreement with the earlierµSR results [99–101].

5.6. The phase diagram and the comparison with c-axis data

In figure 1 we show a phase diagram where the characteristic temperaturesT ∗ (determined
from thec-axis conductivity) andTc for several different samples from the YBCO family are
plotted as a function of superfluid densityω2

ps = ns/m∗ in the CuO2 planes. The superfluid
density is obtained from the optical conductivity as described in section 3. Our choice of
superfluid density rather thanω2

p of the normal-state carriers is governed by the fact that
the former quantity could be determined unambiguously from the real part of theab-plane
infrared conductivity. From underdoped to optimally doped regimes the critical temperature
scales with the superfluid density in the CuO2 planes, and theTc-points for YBa2Cu3O6.6

and YBa2Cu3O6.95 crystals fall on the universal dependence first proposed by Uemuraet
al [99, 100]. Tc of Y124 is 20% above the universal line. TheTc versusns/m∗ boundary
in the phase diagram is well defined since bothTc and ns/m∗ could be determined very
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accurately. However, theT ∗ versusns/m∗ boundary cannot be determined with same high
precision since the uncertainty inT ∗ is about 20–30 K, based on thec-axis conductivity
data. The fourT ∗-points correspond to the following crystals:T ∗ = 300 K—Y123 crystal
with x = 6.6; T ∗ = 180 K—Y123 withx = 6.7 [49]; T ∗ = 140 K—Y124 crystal, and for
Y123 with x = 6.95, T ∗ = Tc = 93.5 K. The variation ofT ∗ between the different YBCO
samples significantly exceeds the error in the absolute value ofT ∗. So far crystals with
oxygen contents less thanx = 6.5 have not been investigated in detail. Thus it is unclear
whether the pseudogap temperature continues to grow as one approaches the insulating
region in the phase diagram or whether it saturates at the level of 300–400 K.

5.7. Open questions

At the time of writing this survey of theab-plane pseudogap phenomenon, there remain
many open questions. The first question that must be addressed is that of whether or not the
pseudogap state is generic among all high-Tc materials. In particular, does anything similar
exist for non-cuprate superconductors such as BKBO or RENi2B2C?

It has been suggested that the pseudogap is a manifestation of interlayer coupling and is
specific to the double-layer materials such as YBCO and Bi2212 [71]. Support for this view
comes from NMR measurements, which show a rather weak depression of the magnetic
susceptibility in La214 in the temperature range where the transport data show evidence
of a strong suppression of the scattering. As we have seen from our presentation of the
data for overdoped single-plane Tl2201 samples, theab-plane 1/τ(ω) curves look similar
to those of the two-plane materialsin the superconducting state.

Experimental optical data exist for the one-plane La214 material [102, 40, 103] which,
in the underdoped regime, shows a very strong depression in 1/τ(ω) at low temperatures
which is consistent with the pseudogap picture. However, one must be cautious at this
stage since the data from various laboratories show considerable variation as regards the
magnitude of the effect. In some cases, the structure in the reflectivity is so strong that it
produces an unphysical singularity in the 1/τ(ω) curves [40]. More work on a range of
samples must be done for this system. Similar strong features are seen for the electron-doped
Nd2−xCexCuO4 material [103].

It has been suggested that the one-component model of charge transport in the cuprates
is particularly unsuited for the La214 system where, at least at low doping levels,σ(ω)

shows a separate midinfrared band [104] rather than a smooth free-carrier band with excess
conductivity at high frequencies. It is also known that at very low doping levels, in the
insulating state, there is a separate band or several bands [105, 106] and a one-component
picture is clearly inappropriate.

Another important effect that needs to be examined is the role of impurities. We have
seen that Zn has the effect of destroying the pseudogap in Y124, both in thec-axis σ1(ω)

and in theab-plane 1/τ(ω) curves which acquire a frequency dependence similar to what
is seen in the overdoped materials. Zn is an impurity that has a strong effect onTc and a
systematic study of the influence of Zn may help us to isolate its effect onT ∗, the onset
temperature of the pseudogap phase, andTc, the onset temperature of superconductivity.

Phonons play an important, if perhaps subsidiary, role in high-temperature super-
conductivity. As we have seen in section 3, the standard electron–phonon mechanism
predicts a temperature-dependent 1/τ(ω) at all frequencies whereas the observations in
the pseudogap state show a temperature-independent high-frequency 1/τ(ω). On the other
hand, the frequency range of the steepest rise of 1/τ(ω) falls in the oxygen-mode region
of the phonon spectrum and seems to vary little with temperature, chemical composition or
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doping. This inertness of the pseudogap frequency suggests that phonons may be involved
in some indirect way.

One process that affects theab-plane conductivity in all high-Tc materials is the coupling
of the ab-plane electrodynamic response toc-axis LO phonons [23, 22, 107]. To separate
this process from other processes, it is necessary to measure the in-plane optical response
on theac-face of an underdoped crystal where the LOc coupled structure vanishes [23].

The signature of the pseudogap state of YBCO materials is that the in-plane conductivity
is enhanced whereas the interplane conductivity is suppressed. It is important to find out
whether this is manifested by other cuprates.

6. Conclusions

In our review of the recent optical data, we see that there is a universal depression of the
real part of the memory functionM ′(ω), or 1/τ(ω), below an energy of the order of 700–
800 cm−1 in all underdoped materials below a characteristic temperatureT ∗. At the optimal
doping levelTc ' T ∗ and in the strongly overdoped regime the gap-like depression is not
seen. While the high-frequency 1/τ(ω) was found to be temperature independent for the
underdoped cuprates, an obvious temperature dependence is seen for the strongly overdoped
cuprates. We believe that these optical results add to the growing evidence for the existence
of a normal-state pseudogap in the physical response function of the underdoped HTSC.

While intense theoretical work has been done with the aim of explaining the observed
phenomenon, none of it has been completely successful. It is necessary for any theoretical
model to explain not only the formation of the gap in theab-plane response, but also a wealth
of phenomena, such as thec-axis transport and the remarkable temperature dependencies
that are observed, both for thec-axis pseudogap as well as theab-plane response.
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[27] Tajima S, Scḧutzmann J and Miyamoto S 1995Solid State Commun.95 759
[28] Leggett A J 1994Braz. J. Phys.B 50 496
[29] Homes C C, Timusk T, Liang R, Bonn D A and Hardy W H 1995PhysicaC 254 265
[30] Basov D N, Mook H A, Dabrowski B and Timusk T 1995Phys. Rev.B 52 R13 141
[31] Kumar N, Lee P A and Shapiro B 1990PhysicaA 168 447
[32] Kumar N and Jayannavar A M 1992 Phys. Rev.B 50 438
[33] Rojo A G and Levin K 1993Phys. Rev.B 48 16 861
[34] Graf M J, Rainer D and Sauls J A 1995Phys. Rev.B 47 12 089
[35] Ioffe L B, Larkin A I, Varlamov A A and Yu L 1993Phys. Rev.B 47 8936
[36] Nyhus P, Karlow M A, Cooper S L, Veal B and Paulikas A P 1994Phys. Rev.B 50 13 898
[37] Clarke D G, Strong S P and Anderson P W 1995Phys. Rev. Lett.74 4499
[38] Alexandrov A S, Kabanov V V and Mott N F 1996 unpublished
[39] Takigawa M, Reyes A P, Hammel P C, Thompson J D, Heffner R H, Fisk Z and Ott K C 1991Phys. Rev.

B 43 247
[40] Uchida S, Tamasaku K and Tajima S 1996Phys. Rev.B 53 14 558
[41] Reedyk M 1996 unpublished
[42] Marshall D S, Dessau D S, Loeser A G, Park C H, Shen Z-X, Matsuura A Y, Eckstein J N, Bozovik I,



High-Tc superconductors: an infrared study 10081

Fornier P, Kapitulnik A, Spicer W E and Shen Z-X 1996Phys. Rev. Lett.76 4841
[43] Loeser A G, Shen Z-X, Dessau D S, Marshall D S, Park C H, Fornier P and Kapitulnik A 1996Science273

325
[44] Ding H, Tokoya T, Campuzono J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and

Giapintzakis J 1996Nature382 51
[45] Dabrowski B 1996 unpublished
[46] Liang Ruxiang, Dosanih P, Bonn D A, Baar D J, Carolan J E and Hardy W N 1992PhysicaC 195 51
[47] Dabrowski B, Zhang K, Pluth J J, Wagner J L and Hinks D G 1992PhysicaC 202 271
[48] Fournier P, Kapitulnik A and Marshall A F 1996 PhysicaC 257 291

Kolesnikov N N, Kulakov M P, Molchanov V N, Schegolev I F, Shibaeva R P, Simonov V I, Tamazyan R A
and Vyaselev O M 1995PhysicaC 242 385

[49] Homes C C, Reedyk M A, Crandles D A and Timusk T 1993Appl. Opt.32 2976
[50] Timusk T and Tanner D B 1989Infrared Properties of HighTc Superconductors (Physical Properties of High

Temperature Superconductors I)ed D M Ginsberg (Singapore: World Scientific) p 339
[51] Romberg H, Nucker N, Fink J, Wolf T, Xi X X, Kock B, Geserich H P, Durrler M, Assmus W and

Gegenheimer B 1990Z. Phys.B 78 367
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