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The Pseudomonas quinolone signal (PQS) has been studied primarily in the context of

its role as a quorum-sensing signaling molecule. Recent data suggest, however, that this

molecule may also function to mediate iron acquisition, cytotoxicity, outer-membrane

vesicle biogenesis, or to exert host immune modulatory activities.
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INTRODUCTION

Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is the cause of a broad
range of human diseases, such as septicemia, pneumonia, and other critical infections (Bleves
et al., 2010; Lin et al., 2015; Valentini et al., 2017). The pathogenesis of P. aeruginosa is
controlled by several bacterial virulence factors that regulate adhesion and/or interrupt host cell
signaling pathways (Valentini et al., 2017). P. aeruginosa has an armory of cell-associated (flagella,
pili, lectins, alginate/biofilm, and lipopolysaccharide) and extracellular (proteases, hemolysins,
cytotoxin, pyocyanin, siderophores, exotoxin A, exoenzyme S, and exoenzyme U) virulence factors
(Strateva and Mitov, 2011).

The generation of some P. aeruginosa virulence factors is organized by a cell density monitoring
mechanism called quorum sensing (QS) (Strateva and Mitov, 2011). Usually QS bacteria generate
and liberate small chemical signals, and at high population densities, the gathered signals interface
with cognate receptors to prompt the expression of numerous target genes, including genes
that encode the generation of virulence factors (Lee and Zhang, 2015). P. aeruginosa has four
QS systems that function independently and dependently, namely, the Las, Rhl, and quinolone-
based QS systems and the recently determined IQS-dependent system (Lee and Zhang, 2015).
The Las and Rhl systems are controlled via the acyl-homoserine lactone (AHL) autoinducers N-
(3-oxododecanoyl)-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL),
respectively. LasR and RhlR (the QS receptors for the Las and Rhl systems, respectively)
homodimerize after binding their signal molecules, which allows them to connect to conserved
las-rhl boxes in the promoters of target genes, thus prompting their transcription (Lee and Zhang,
2015). The quinolone-based QS system acts mainly via 2-heptyl-3-hydroxy-4-quinolone, called the
Pseudomonas quinolone signal (PQS), which connects the LysR-type transcriptional regulator PqsR
to stimulate some virulence genes (Lee and Zhang, 2015). These signaling systems create a global
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regulatory network and are believed to regulate the expression
of up to 12% of the P. aeruginosa genome (Schuster et al., 2003;
Wagner et al., 2003; Déziel et al., 2005; Schuster and Greenberg,
2006).

A current evaluation revealed that PQS is obviously a multi-
functional molecule that functions via several PqsR-dependent
and PqsR-independent pathways (Rampioni et al., 2016). In
addition, PQS not only affects cells by altering the transcriptional
profiles of genes, but also binds directly to hundreds of previously
unrecognized protein partners in the cell. These observations
are the first to demonstrate that PQS may directly interact with
several key virulence pathways (Hodgkinson et al., 2016; Baker
et al., 2017; Dandela et al., 2018). Despite the great efforts made
in PQS research, both in vitro and in vivo, its precise role
remains poorly understood. In the present article, we stress the
significance of the recently determined flexibility of PQS instead
of the explicit mechanisms of the PQS QS system.

PQS MEDIATES QS

PQS was purified and determined in 1999 by Pesci and colleagues
when they noted that the culture supernatant from wild-type
P. aeruginosa PAO1 cells resulted in the obvious induction of
a lasB′-lacZ reporter construct in a lasR mutant, which just
about inactivated the las and rhl signaling pathways, and could
not be imitated by OdDHL or BHL (Pesci et al., 1999). PQS
is an alkylquinolone (2-heptyl-3-hydroxy-4-quinolone) that is
chemically differentiated from the AHL signals of the las and rhl
systems (Pesci et al., 1999).

The PQS synthesis cluster has been revealed to be made up
of pqsABCDE, phnAB, and pqsH (Gallagher et al., 2002). In P.
aeruginosa PAO1, these chromosomal genes consist of an operon
made up of pqsABCDE (PA0996-PA1000), which is nearby
phnAB (PA1001-PA1002) (Heeb et al., 2011). The pqsH (PA2587)
gene is found somewhere else on the chromosome (Heeb et al.,
2011). PqsA is an anthranilate-coenzyme A ligase (Gallagher
et al., 2002; Coleman et al., 2008) that prompts anthranilate to
produce anthraniloyl-coenzyme A, starting the first step in PQS
biosynthesis. PqsB and PqsC, which create a secure heterodimer,
as well as PqsD, are part of the FabH (β-ketoacyl-(acyl carrier
protein) synthase III) family (Bredenbruch et al., 2005; Zhang
et al., 2008; Bera et al., 2009; Dulcey et al., 2013; Drees et al.,
2016). PqsD regulates the synthesis of 2-aminobenzoylacetate
(2-ABA) from anthraniloyl-coenzyme A and malonyl-coenzyme
A, and then PqsBC catalyzes the condensation of octanoyl-
coenzyme A and 2-ABA to produce 2-heptyl-4-quinolone
(HHQ) (Dulcey et al., 2013; Drees et al., 2016). The pqsA,
pqsB and pqsD mutants do not produce alkylquinolones (AQs)
(Diggle et al., 2003; Zhang et al., 2008). HHQ comes before
PQS and can be transferred intercellularly among P. aeruginosa
cells (Dubern and Diggle, 2008). The pqsH gene encodes a
reported FAD-dependent mono-oxygenase necessary for the
transformation of HHQ into PQS and supposedly hydroxylates
HHQ at the 3-position (Figure 1; Gallagher et al., 2002; Déziel
et al., 2004; Dubern and Diggle, 2008; Schertzer et al., 2009).
Thus, the pqsH mutant does not produce PQS, but produces

other AQs (Déziel et al., 2004). The transcription of pqsH is
regulated by LasR, thus connecting PQS synthesis with the
AHL-dependent las signaling pathway (Schertzer et al., 2009).
A second mono-oxygenase, PqsL, uses reduced flavin to convert
2-ABA to 2-hydroxylaminobenzoylacetate (2-HABA), which is
condensed with octanoyl-coenzyme A to form 4-hydroxy-2-
heptylquinoline-N-oxide (HQNO) in a reaction catalyzed by
PqsBC (Figure 1; Lepine et al., 2004; Drees et al., 2018).
Mutants in pqsL cause the overgeneration of PQS, indicating that
AQ biosynthetic intermediates are moved in these mutants to
generate PQS (D’Argenio et al., 2002; Déziel et al., 2004; Lepine
et al., 2004). Besides PqsABCD, PqsE has a part in HHQ synthesis
(Drees and Fetzner, 2015). PqsE functions as a thioesterase
in alkylquinolone biosynthesis, hydrolyzing the biosynthetic
intermediate 2-aminobenzoylacetyl-coenzyme A to create 2-
ABA, the predecessor of HHQ and 2-aminoacetophenone (Drees
and Fetzner, 2015). The part of PqsE can be partially counteracted
by the broad-specificity thioesterase TesB, which reveals why
pqsE deletion mutants continue to synthesize HHQ and PQS
(Figure 1; Drees and Fetzner, 2015). PqsE functions as a
pathway-specific thioesterase, but it also adds to the control
of bacterial virulence through an unidentified mechanism; its
enzymatic activity might not be in charge of its regulatory activity
(Zender et al., 2016).

Just following the determination of the PQS signal, the
receptor PqsR (then referred to as MvfR) was involved in
the control of PQS production (Cao et al., 2001). PqsR is a
LysR-type transcriptional regulator that links to the promoter
area of the pqsABCDE operon and immediately regulates its
expression to produce an auto-regulatory loop (Cao et al., 2001;
Gallagher et al., 2002; McGrath et al., 2004; Wade et al., 2005;
Xiao et al., 2006). The expression of pqsR is then regulated by
the AHL-dependent QS regulator, LasR (Camilli and Bassler,
2006). PqsR has two ligands, HHQ and PQS, which prompt
PqsR linking to the pqsABCDE promoter region (Xiao et al.,
2006). PQS binds PqsR with higher avidity than HHQ, and
PQS is about 100-fold more active than HHQ (Wade et al.,
2005; Xiao et al., 2006). The mutation of pqsR ends up in
lowered pyocyanin, elastase, exoprotein, and 3-oxo-C12-HSL
generation, termination of phnAB and pqsABCDE expression,
and AQ biosynthesis, along with being impaired so it cannot
induce disease in plants and animals (Cao et al., 2001; Gallagher
et al., 2002; von Bodman et al., 2008; Schertzer et al., 2009). This
suggests that PqsR is necessary for PQS signal transduction.

The part of the pqs signaling system in promoting infection
and controlling virulence factors has been evaluated in numerous
studies. Null mutants of the pqs system show lowered biofilm
development and reduced generation of virulence factors,
including pyocyanin, elastase, lectin, and rhamnolipids (Rahme
et al., 1997, 2000; Cao et al., 2001; Diggle et al., 2003; Bala et al.,
2015). The pqs system is also required for complete P. aeruginosa
virulence toward plants (Cao et al., 2001), nematodes (Gallagher
et al., 2002), and mice (Cao et al., 2001; Lau et al., 2004). In
addition, PQS has been identified in the sputum of cystic fibrosis
patients infected with P. aeruginosa (Collier et al., 2002; Abdalla
et al., 2017). Nevertheless, the part PQS plays in the modulation
of virulence gene expression is currently up for discussion. In a
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FIGURE 1 | Biosynthetic pathway and multifunctionality of the Pseudomonas quinolone signal (PQS). Biosynthesis of HHQ requires PqsABCDE proteins. The

mono-oxygenase PqsH then converts HHQ to PQS. PQS has been implicated in quorum sensing, iron acquisition, cytotoxicity, outer-membrane vesicle biogenesis,

and modulation of the host immune response. See text for details. ROS, reactive oxygen species; IL-12, interleukin-12; IL-2, interleukin-2; TNF-α, tumor necrosis

factor-α; T2Rs, taste family 2 bitter receptor proteins; NrF2, transcription factor NrF2; HO-1, heme oxygenase-1; NF-κB, nuclear transcription factor-κB; HIF-1,

hypoxia-inducible factor 1; OM, outer membrane; IM, inner membrane; OMV, outer membrane vesicle; the dotted lines indicate a hypothesis. A second

mono-oxygenase, PqsL, is required together with the pqsABCDE gene products for the synthesis of HQNO. Intermediates and products of the alkylquinolone

biosynthetic pathway: 2-ABA-CoA, 2-aminobenzoylacetyl-coenzyme A; 2-ABA, 2-aminobenzoylacetate; 2-HABA, 2-hydroxylaminobenzoylacetate, HHQ,

2-heptyl-4-quinolone; HQNO, 4-hydroxy-2-heptylquinoline-N-oxide; PQS, 2-heptyl-3-hydroxy-4-quinolone.

mouse burn infection model, the pqsA mutant displays greatly
reduced virulence compared to the wild type strain (Déziel et al.,
2005; Xiao et al., 2006). It is interesting to note that the pqsH
mutant is as harmful as the wild-type in the identical mouse
burn infection model (Xiao et al., 2006), but it has reduced
virulence in nematodes (Gallagher et al., 2002). There are also
contradictory evaluations on the efficacy of PQS in prompting the
pqsA promoter via PqsR. One evaluation discovered that in strain
PA14, PQS is more beneficial than HHQ at upregulating pqsA
(Xiao et al., 2006). Nevertheless, a different evaluation showed
that in strain PAO1, PQS has less of an impact (Fletcher et al.,
2007). In addition, PQS has been documented to control the
expression of 182 genes, of which a large number are PqsR-
independent (Rampioni et al., 2016). Altogether, PQS may not
have as pivotal of a part in the immediate control of virulence

factors in P. aeruginosa as was initially believed and it might
have emerged as an unexpected byproduct with other functions
(Bredenbruch et al., 2006; Diggle et al., 2007).

PQS MEDIATES IRON ACQUISITION

As well as having a part as a QS signaling molecule, PQS chelates
ferric iron (Fe3+) in a similar fashion to the quinolobactin
siderophore from Pseudomonas fluorescens (Mossialos et al.,
2000; Bredenbruch et al., 2006). PQS has high affinity for iron
and can prompt the expression of genes for the biosynthesis
of the siderophores pyoverdine and pyochelin (Bredenbruch
et al., 2006; Diggle et al., 2007; Bala et al., 2015; Popat et al.,
2017). One reason for this is that PQS treatment imitates iron
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starvation, as the PQS traps iron in a non-deliverable manner
(Diggle et al., 2007; Popat et al., 2017). About 60% of the PQS
generated by P. aeruginosa is connected to the cell envelope
(Lepine et al., 2003; Diggle et al., 2007), and the membranes
of stationary-phase LB-grown P. aeruginosa are noticeably pink
because of complexed Fe3+, potentially because of insoluble
PQS-iron complexes (Royt et al., 2001, 2007). This has been
hypothesized to act in retaining free Fe3+, which can then be
taken up by siderophores to more efficiently scavenge accessible
iron under iron-deficient conditions (Diggle et al., 2007). While
this is an elaborate clarification, it is likely insufficient (Diggle
et al., 2007). For instance, Rampioni et al. revealed that the
expression of siderophore-associated genes in P. aeruginosa is
also intensely PqsE-dependent, suggesting that iron trapping by
PQS by itself does not completely control siderophore genes
(Rampioni et al., 2010). Hazan et al. documented that iron
counterbalances PQS-dependent control by “fine-tuning” its
activity, potentially by lowering PQS activity when complexed
with it (Hazan et al., 2010). Further, experiments conducted
in a P. aeruginosa pvdD/pchEF double mutant, which is not
able to generate the siderophores pyoverdine and pyochelin,
demonstrated that growth is escalated in iron-deficient media
via the addition of PQS-Fe3+ in a fashion like that induced by
FeCl3 (Diggle et al., 2007). P. aeruginosa also expresses heme,
ferrous iron, and ferric citrate uptake systems, any of which
could mediate iron uptake depending on the growth conditions
(Schalk and Cunrath, 2016). Furthermore, the newly identified
pseudopaline metallophore could potentially mediate uptake of
ferrous iron from PQS-Fe3+ complexes so long as a reductant
(such as phenazines or media components) is present (Lhospice
et al., 2017; Mastropasqua et al., 2017). However, the point
is taken that PQS-Fe3+ is likely not inducing growth simply
by promoting siderophore-dependent uptake. Thus, PQS may
function as an iron trap and storage molecule in cell membranes,
and it could transport iron immediately to cells.

Recently, we reported that PQS-associated iron is utilized by
P. aeruginosa PAO1 in a TseF-mediated process (Figure 1). TseF
is secreted by the Type VI Secretion System (T6SS) and associates
with PQS, as well as the receptors OprF and FptA. PQS also
associates with outer-membrane vesicles (OMVs), contributing
to the sequestration of iron ions in OMVs, which can then
be utilized by P. aeruginosa under iron-limited conditions.
Then, TseF enables the delivery of OMV-associated PQS-Fe3+ to
bacterial cells by involving the Fe(III)-pyochelin receptor FptA
and the porin OprF. However, this iron uptake pathway appears
to have low efficiency (Lin et al., 2017). Thus, PQS provides a
means of scavenging and concentrating freely diffusible iron ions
and delivering them directly to the cells or to other siderophores.

PQS MEDIATES CYTOTOXICITY

The 4-quinolone family, which includes PQS, has been
acknowledged for the antimicrobial activity of numerous
members (Heeb et al., 2011). Accordingly, PQS was found
to have concentration-dependent toxic effects (Diggle et al.,
2007; Haussler and Becker, 2008). Exogenously added PQS

extends the lag phase and decreases the growth rate of P.
aeruginosa under aerobic conditions in either iron-sufficient or
iron-deficient medium (Diggle et al., 2003, 2007; Haussler and
Becker, 2008; Toyofuku et al., 2008). PQS suppresses the growth
of some species in addition to P. aeruginosa, such as gram-
negative and gram-positive bacteria (Toyofuku et al., 2010). The
impact of PQS on bacterial growth is unlike that of antibiotics,
which function in a bacteriostatic or bacteriocidal manner, but
rather induces the bacteria to growth more slowly (Toyofuku
et al., 2010). The possible underlying mechanism is that PQS
may deplete iron from the medium or induce oxidative stress
(Figure 1). A previous study demonstrated that the growth of
a P. aeruginosa mutant that does not produce siderophores is
greatly repressed, compared to the wild-type strain, in iron-
deficient media by adding PQS, and that growth is restored
upon provision of PQS-Fe3+ or FeCl3 (Diggle et al., 2007).
Not long ago, Toyofuku et al. showed that growth repression
by PQS is impeded by adding iron to the medium, suggesting
that iron-chelating activity could be involved (Toyofuku et al.,
2010). These data indicate that iron availability has a pivotal
part in growth inhibition, likely because of the iron-chelating
activity of PQS. Likewise, iron lowers the clinical efficacy of
some drugs, including tetracycline, via the generation of iron-
drug complexes (Avery et al., 2004). Therefore, iron may hinder
the impact of PQS by establishing a PQS-Fe3+ precipitate.
At this point, it is hard to establish if adding iron reinstates
lowered levels in the medium or reverses PQS-mediated growth
impediment because of precipitation (Toyofuku et al., 2010).
Toyofuku et al. reported that no correlation was observed
between bacterial strains whose growth was repressed by PQS
and siderophore-producing bacteria, which goes against the
hypothesis that siderophore production determines susceptibility
to PQS (Toyofuku et al., 2010). Therefore, other factors may be
responsible for susceptibility to PQS.

A frequent cell-killing mechanism of antimicrobials pertains
to the generation of hydroxyl radicals (•OH) (Kohanski et al.,
2008; Dwyer et al., 2009), and PQS can induce the generation
of reactive oxygen species (ROS) and resultant toxicity in P.
aeruginosa (Haussler and Becker, 2008; Nguyen et al., 2011;
Pezzoni et al., 2015). PQS can prompt oxidative stress in
macrophages and lung epithelial cell lines (Abdalla et al., 2017).
The red-colored PQS–Fe3+ complex bestows the “red death”
lethal phenotype to P. aeruginosa in a Caenorhabditis elegans
infection model (Zaborin et al., 2009). At the same time, PQS
sensitizes P. aeruginosa to the effects of ultraviolet-A (UVA)
radiation, possibly acting as an endogenous photosensitizer
(Pezzoni et al., 2015). Absorption of UVA by PQS leads to its
own photo-degradation and the production of singlet oxygen and
superoxide anions, indicating that it raises oxidative damage to
biological targets on UVA exposure and bestows high sensitivity
to UVA in contrast to enteric bacteria (Pezzoni et al., 2015).
Further, the pro-oxidant activity of PQS raises the sensitivity
of P. aeruginosa to peroxide and different antibiotics (Haussler
and Becker, 2008; Nguyen et al., 2011), potentially causing
cell lysis and DNA release. PQS can prompt autolysis in P.
aeruginosa, specifically if overexpressed (D’Argenio et al., 2002),
and regularly adding PQS to P. aeruginosa prompts genes in
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charge of the oxidative stress response (Bredenbruch et al., 2006).
In addition, PQS has been indicated to balance growth and
death in P. aeruginosa populations by prompting a protective
reaction in some cells while eradicating others (Haussler and
Becker, 2008). Therefore, PQS’s inhibitory impact on bacterial
growth may modulate the growth of bacterial communities and
bestow a survival edge when P. aeruginosa is developing with
rival microorganisms.

PQS MEDIATES OMV BIOGENESIS

AQs are lipophilic molecules with poor aqueous solubility and
PQS is more hydrophobic than HHQ. PQS has a solubility of
about 1 mg/L (∼5µM) in water (Lepine et al., 2003; Mashburn
and Whiteley, 2005). Nevertheless, P. aeruginosa appears to
have developed a more direct solution to the problem of PQS
trafficking. The supernatant of P. aeruginosa cultures includes
large quantities of PQS, but not in a “free” soluble form.
Alternatively, the highly hydrophobic PQS is encased into OMVs
that traffic it within a population (Mashburn and Whiteley,
2005). Surprisingly, the same team also discovered that PQS
adds to the production of OMVs by incorporating it into the
outer membrane and prompting membrane curvature; thus it is
also an integral membrane component (Mashburn andWhiteley,
2005; Mashburn-Warren et al., 2008). PQS beings the emergence
of OMVs, and about 80% of the total PQS generated by P.
aeruginosa PA14 is kept within vesicles (Mashburn andWhiteley,
2005). The PQS kept within these vesicles is biologically active
and can reinstate the generation of virulence factors in a PQS-
deficient mutant that is independent of the vesicles (Mashburn
and Whiteley, 2005; Bala et al., 2015). PQS biosynthetic mutants
produced remarkably reduced numbers of OMVs (Mashburn
and Whiteley, 2005; Bala et al., 2015), especially late in the
growth phase, when PQS would normally be present (Tashiro
et al., 2010b; Macdonald and Kuehn, 2013). Compounds that halt
PQS generation, including indole and its derivatives, lower OMV
emergence, likely since there is smaller amount of PQS accessible
to prompt vesicle establishment (Tashiro et al., 2010c). Further,
exogenous PQS reinstates OMV generation in a mutant without
the PQS receptor and in PQS-null cells in which protein synthesis
is halted by antibiotic therapy (Mashburn and Whiteley, 2005).
PQS is not synthesized under anoxic conditions, as the last step
of its biosynthesis needs oxygen, and P. aeruginosa continuously
shows lowered OMV generation when grown under anoxic
conditions (Sabra et al., 2003; Schertzer et al., 2010), additionally
reinforcing the notion that OMV generation is significantly
lowered without PQS (Toyofuku et al., 2008; Schertzer et al.,
2010). These discoveries suggest that PQS-induced OMV
generation does not happen via a signaling mechanism or via
the induction of a cascade, including de novo protein synthesis,
but this appears to be a spontaneous process. Exogenous
PQS has been shown to also enhance OMV production by
other bacteria (Mashburn-Warren et al., 2008; Tashiro et al.,
2010a). A current evaluation documented that a peptidoglycan
(PG)-associated outer membrane protein, OprF, impacts OMV
generation by regulating PQS generation, additionally suggesting

the significance of PQS in OMV generation (Wessel et al., 2013).
From these first observations, Schertzer and Whiteley suggested
an OMV biogenesis model according to the biophysical impacts
of PQS on the outer membrane (Schertzer and Whiteley, 2012).

Schertzer and Whiteley (2012) detailed a bilayer-coupled
model through which PQS prompts OMV emergence by
interacting with the acyl chains and 4′-phosphates of bacterial
lipopolysaccharide (LPS) molecules and integrates them into the
outer leaflet of the outer membrane, causing the enlargement of
the membrane, curvature, and the eventual liberation of OMVs.
PQS might also impact the 4′-phosphate via its interaction with
divalent cations (Mg2+ and Ca2+) in the LPS leaflet of the outer
membrane (Mashburn-Warren and Whiteley, 2006; Mashburn-
Warren et al., 2008). Divalent cations secure the gram-negative
outer membrane by establishing salt bridges between negatively
charged phosphates of nearby LPS molecules. PQS isolates Mg2+

and Ca2+, thus impacting the movement of the 4′-phosphate of
LPS (Mashburn-Warren and Whiteley, 2006; Mashburn-Warren
et al., 2008). OMVs can unite with the outer membrane of
neighboring recipient bacteria, where they unload their haul,
which may be PQS as well as proteins, lipids, nucleic acids,
and other small molecules (Jan, 2017). This model details a
general mechanism through which P. aeruginosa might regulate
OMV emergence without external stresses. Nevertheless, some
other studies have demonstrated that PQS is not necessary
for OMV generation in planktonic cultures under stressed or
unstressed conditions (Tashiro et al., 2009; Macdonald and
Kuehn, 2013; Toyofuku et al., 2014; Turnbull et al., 2016).
However, a study by Florez et al. (2017) may help to solve
this contradiction (Figure 1). They examined the mechanisms
beneath the biogenesis of OMVs in P. aeruginosa without
external stresses and discovered that the export of PQS induces
OMV biogenesis (Macdonald and Kuehn, 2013; Florez et al.,
2017). They initially hypothesized that PQS had to be moved
out of the cell (via a not-yet-determined export mechanism)
to prompt OMV biogenesis. To examine this hypothesis and
verify that PQS export has a pivotal part in the generation of
OMVs, they initially examined the generation and export of
PQS and the generation of OMVs in laboratory-adapted and
clinical strains of P. aeruginosa. They discovered significant
differences in PQS export that were strongly correlated with
OMV emergence. Subcellular fractionation demonstrated that
poor OMV producers have significantly varying distributions
of PQS among membrane compartments in contrast to strong
OMV producers. In poor OMV producers that did not effectively
export PQS, most of the PQS was limited to the inner membrane,
while just a small amount of PQS was discovered in the inner
membrane of strong OMV producers. In spite of these variations,
both types of OMV producers had similar growth rates and
generated similar amounts of PQS, indicating that the spatial
distribution of PQS established the amount of OMVs that
were generated. The researchers additionally revealed that the
membrane distribution of PQS for a single strain is stable over
time, but it could be changed by growth in various media, with
a corresponding change in OMV generation (Florez et al., 2017).
This evaluation demonstrated an immediate correlation among
PQS membrane distribution and OMV biogenesis, and that by
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regulating the localization of PQS, researchers can control OMV
production (Florez et al., 2017).

PQS MODULATES HOST IMMUNE
RESPONSES

Evaluations of PQS in P. aeruginosa pathogenesis have primarily
zoned in on its part in modulating the generation of virulence
factors. PQS may have direct effects on host cells by exerting
host immunomodulatory activities (Figure 1; Hooi et al., 2004;
Sadikot et al., 2005; Wu et al., 2005; Skindersoe et al., 2009;
Hansch et al., 2014). With J774A.1 macrophages, PQS was
revealed to regulate the expression of several genes implicated
in the immune reaction and cytokine generation (Kim et al.,
2010a). Not long ago, Abdalla and co-workers demonstrated that
PQS prompts ROS generation in vitro in lung epithelial cells and
hinders heme oxygenase-1 (HO-1) protein generation in lung cell
lines, the latter probably through the impediment of the NrF2
pathway (Abdalla et al., 2017). PQS has also been revealed to
subdue cell proliferation and interleukin-2 liberation in human
peripheral blood mononuclear cells (hPBMCs) stimulated with
a panactivating lectin (concanavalin A) (Hooi et al., 2004). In
addition, PQS can prompt tumor necrosis factor-α liberation
from hPBMCs after stimulation with LPS at concentrations
over 10µM (Hooi et al., 2004). In vitro, PQS hinders the
generation of interleukin-12 from LPS-stimulated bone marrow-
derived dendritic cells, shows a reduced capability to prompt
T-cell proliferation, and lowers the antibacterial activity of the
adaptive immune defense (Skindersoe et al., 2009). Further,
PQS and HHQ down-regulate host innate immune systems
via hindering the nuclear transcription factor-κB and hypoxia-
inducible factor 1 (HIF-1) signaling pathways. This impact can
be completed with cell-free extracts from cultures of wild-type
P. aeruginosa, but not from cultures of correlating mutant
derivatives (Kim et al., 2010b; Legendre et al., 2012). PQS and
HHQ also activate airway epithelial bitter taste receptors (taste
family 2 bitter receptor proteins; T2Rs) and stimulate T2R-
mediated immune responses (Freund et al., 2018). A recent
study showed that PQS stimulates neutrophil chemotaxis via
activation of the MAPkinase p38, whereas PQS neither enhances
the bactericidal activity of polymorphonuclear neutrophils nor
induces apoptosis (Hansch et al., 2014). Altogether, these

discoveries offer evidence that PQS has a pivotal part in the
dysregulation of the host immune reaction throughout infection.
Therefore, PQS may offer P. aeruginosa with another approach
for bacterial survival through obstructing different host biological
functions.

CONCLUSION

The studies reviewed here showed that PQS, aside from its role as
a QS signaling molecule, mediates iron acquisition, cytotoxicity
and OMV biogenesis, and exerts host immunomodulatory
activities (Figure 1). It is interesting to note that the functions
of PQS usually act in a cooperative manner, providing it
with an immediate part in community protection and nutrient
scavenging. PQS generation may alter the entire architecture
of the bacterial population, improving its fitness in several
environments and causing resistance to environmental stress.
Furthermore, we speculate that there are still PQS functions
that remain unknown and that more research is warranted
for exploring new facets of signaling, as well as non-signaling
roles, of PQS for its potential application in developing modern
biotechniques and treating infectious diseases.
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