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The performance of an observer on a psychophysical
task is typically summarized by reporting one or more re-

sponse thresholds—stimulus intensities required to pro-
duce a given level of performance—and by a characteri-
zation of the rate at which performance improves with
increasing stimulus intensity. These measures are de-
rived from a psychometric function, which describes the
dependenceof an observer’s performance on some phys-
ical aspect of the stimulus.

Fitting psychometric functions is a variant of the more
general problem of modeling data. Modeling data is a

three-step process: First, a model is chosen, and the param-
eters are adjusted to minimize the appropriate error met-
ric or loss function. Second, error estimates of the param-
eters are derived and third, the goodness of fit between
model and the data is assessed. This paper is concerned
with the second of these steps, the estimation of variability
in fitted parameters and in quantities derived from them.
Our companionpaper (Wichmann & Hill, 2001) illustrates
how to fit psychometric functions while avoiding bias re-
sulting from stimulus-independentlapses, and how to eval-
uate goodness of fit between model and data.

We advocate the use of Efron’s bootstrap method, a
particular kind of Monte Carlo technique, for the prob-
lem of estimating the variabilityof parameters, thresholds,
and slopes of psychometric functions (Efron, 1979, 1982;
Efron & Gong, 1983; Efron & Tibshirani, 1991, 1993).
Bootstrap techniques are not without their own assump-
tions and potential pitfalls. In the course of this paper, we
shall discuss these and examine their effect on the esti-
mates of variability we obtain. We describe and examine
the use of parametric bootstrap techniques in finding con-
fidence intervals for thresholds and slopes. We then ex-
plore the sensitivity of the estimated confidence interval
widths to (1) sampling schemes, (2) mismatch of the ob-
jective function, and (3) accuracy of the originally fitted
parameters. The last of these is particularly important,
since it provides a test of the validity of the bridging as-
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The psychometricfunction relatesanobserver’s performance toan independent variable,usually a phys-
ical quantity of an experimental stimulus. Even if a model is successfully fit to the data and its goodness
of fit is acceptable,experimentersrequireanestimateof the variabilityof the parameterstoassesswhether
differencesacrossconditions are significant.Accurateestimatesof variabilityare difficult to obtain, how-
ever, giventhe typically small size of psychophysical data sets:Traditional statisticaltechniques are only
asymptotically correct and can be shown to be unreliable in some common situations. Here and in our
companion paper (Wichmann & Hill, 2001),we suggestalternativestatisticaltechniques based on Monte
Carlo resampling methods. The present paper’s principal topic is the estimation of the variabilityof fitted
parametersand derived quantities, such as thresholds and slopes. First, we outline the basic bootstrap
procedure and argue in favor of the parametric, as opposed to the nonparametric, bootstrap. Second, we
describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can
be tested. Third, we show how one’s choice of sampling scheme (the placement of sample points on the
stimulus axis) strongly affects the reliability of bootstrap confidence intervals, and we make recom-
mendations on how to sample the psychometric function efficiently. Fourth, we show that, under cer-
tain circumstances,the (arbitrary)choice of the distribution function can exert an unwanted influence on
the size of the bootstrap confidence intervals obtained, and we make recommendations on how to avoid
this influence. Finally, we introduce improved confidence intervals (bias corrected and accelerated) that
improve on the parametricand percentile-basedbootstrap confidence intervalspreviously used. Software
implementing our methods is available.
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sumption on which the use of parametric bootstrap tech-
niques relies. Finally, we recommend, on the basis of the
theoretical work of others, the use of a technique called
bias correction with acceleration (BCa) to obtain stable
and accurate confidence interval estimates.

BACKGROUND

The Psychometric Function
Our notation will follow the conventions we have out-

lined in Wichmann and Hill (2001). A brief summary of
terms follows.

Performance on K blocks of a constant-stimuli psy-
chophysical experiment can be expressed using three
vectors, each of length K. An x denotes the stimulus val-
ues used, an n denotes the numbers of trials performed at
each point, and a y denotes the proportion of correct re-
sponses (in n-alternative forced-choice [n-AFC] experi-
ments) or positive responses (single-interval or yes/no ex-
periments) on each block. We often use N to refer to the
total number of trials in the set, N 5 åni.

The number of correct responses yini in a given block i

is assumed to be the sum of random samples from a
Bernoulli process with probability of success pi. A psy-
chometric function y(x) is the function that relates the
stimulusdimensionx to the expected performance value p.

A common general form for the psychometric func-
tion is

(1)

The shape of the curve is determined by our choice of a
functional form for F and by the four parameters {a, b, g,
l}, to which we shall refer collectively by using the pa-
rameter vector q. F is typically a sigmoidal function, such
as the Weibull, cumulativeGaussian, logistic, or Gumbel.
We assume that F describes the underlyingpsychological
mechanism of interest: The parameters g and l determine
the lower and upper bounds of the curve, which are af-
fected by other factors. In yes/no paradigms, g is the guess

rate and l the miss rate. In n-AFC paradigms, g usually
reflects chance performance and is fixed at the recipro-
cal of the number of intervals per trial, and l reflects the
stimulus-independent error rate or lapse rate (see Wich-
mann & Hill, 2001, for more details).

When a parameter set has been estimated, we will usu-
ally be interested in measurements of the threshold (dis-
placement along the x-axis) and slope of the psychomet-
ric function. We calculate thresholds by taking the inverse
of F at a specified probability level, usually .5. Slopes are
calculated by finding the derivative of F with respect to x,
evaluated at a specified threshold. Thus, we shall use the
notation threshold0.8, for example, to mean F 1

0.8, and
slope0.8 to mean dF/dx evaluated at F 1

0.8. When we use the
terms threshold and slope without a subscript, we mean
threshold0.5 and slope0.5: In our 2AFC examples, this will
mean the stimulus value and slope of F at the point where
performance is approximately 75% correct, although the

exact performance level is affected slightly by the (small)
value of l.

Where an estimate of a parameter set is required, given
a particulardata set, we use a maximum-likelihoodsearch
algorithm, with Bayesian constraints on the parameters
based on our beliefs about their possible values. For ex-
ample, l is constrained within the range [0, .06], reflect-
ing our belief that normal, trained observers do not make
stimulus-independent errors at high rates. We describe
our method in detail in Wichmann and Hill (2001).

Estimates of Variability: Asymptotic
Versus Monte Carlo Methods

In order to be able to compare response thresholds or
slopes across experimental conditions, experimenters re-
quire a measure of their variability,which will depend on
the number of experimental trials taken and their place-
ment along the stimulus axis. Thus, a fitting procedure
must provide not only parameter estimates, but also error
estimates for those parameters. Reporting error estimates
on fitted parameters is unfortunately not very common in
psychophysical studies. Sometimes probit analysis has
been used to provide variability estimates (Finney, 1952,
1971). In probit analysis, an iteratively reweighted linear
regression is performed on the data once they have under-
gone transformation through the inverse of a cumulative
Gaussian function. Probit analysis relies, however, on as-
ymptotic theory: Maximum-likelihood estimators are as-
ymptotically Gaussian, allowing the standard deviation to
be computed from the empirical distribution(Cox & Hink-
ley, 1974). Asymptotic methods assume that the number
of datapoints is large; unfortunately, however, the number
of points in a typical psychophysical data set is small (be-
tween 4 and 10, with between 20 and 100 trials at each),
and in these cases, substantialerrors have accordinglybeen
found in the probit estimates of variability (Foster &
Bischof, 1987, 1991; McKee, Klein, & Teller, 1985). For
this reason, asymptotic theory methods are not recom-
mended for estimating variability in most realistic psy-
chophysical settings.

An alternative method, the bootstrap (Efron, 1979,
1982; Efron & Gong, 1983; Efron & Tibshirani, 1991,
1993), has been made possible by the recent sharp increase
in the processing speed of desktop computers. The boot-
strap method is a Monte Carlo resampling technique re-
lying on a large number of simulated repetitions of the
original experiment. It is potentially well suited to the
analysis of psychophysicaldata, because its accuracy does
not rely on large numbers of trials, as do methods derived
from asymptotic theory (Hinkley, 1988). We apply the
bootstrap to the problem of estimating the variability of
parameters, thresholds, and slopes of psychometric func-
tions, following Maloney (1990), Foster and Bischof
(1987, 1991, 1997), and Treutwein (1995; Treutwein &
Strasburger, 1999).

The essence of Monte Carlo techniques is that a large
number, B, of “synthetic” data sets y1*, …, yB* are gener-
ated.For each data set yi*, the quantityof interest J (thresh-

y a b g l g g l a bx F x; , , , ; , .( ) = + ( ) ( )1
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old or slope, e.g.) is estimated to give Ĵi*. The process for
obtaining Ĵi* is the same as that used to obtain the first esti-
mate Ĵ. Thus, if our first estimate was obtainedby Ĵ 5 t(q̂),
where q̂ is the maximum-likelihood parameter estimate
from a fit to the original data y, so the simulated esti-
mates Ĵi* will be given by Ĵi* 5 t(q̂i*), where q̂i* is the
maximum-likelihood parameter estimate from a fit to the
simulated data yi*.

Sometimes it is erroneously assumed that the intention
is to measure the variability of the underlying J itself.
This cannot be the case, however, because repeated com-
puter simulation of the same experiment is no substitute
for the real repeated measurements this would require.
What Monte Carlo simulationscan do is estimate the vari-
ability inherent in (1) our sampling, as characterized by
the distribution of sample points (x) and the size of the
samples (n), and (2) any interaction between our sam-
pling strategy and the process used to estimate J—that is,
assuming a model of the observer’s variability, fitting a
function to obtain q̂, and applying t(q̂).

Bootstrap Data Sets: Nonparametric
and Parametric Generation

In applyingMonte Carlo techniques to psychophysical
data, we require, in order to obtain a simulateddata set yi*,
some system that provides generating probabilities p for
the binomial variates yi1*, …, yiK*. These should be the
same generating probabilities that we hypothesize to un-
derlie the empirical data set y.

Efron’s bootstrap offers such a system. In the nonpara-
metric bootstrap method, we would assume p 5 y. This
is equivalent to resampling, with replacement, the origi-
nal set of correct and incorrect responses on each block
of observations j in y to produce a simulated sample yij*.

Alternatively,a parametric bootstrap can be performed.
In the parametric bootstrap, assumptions are made about
the generating model from which the observed data are
believed to arise. In the context of estimating the variabil-
ity of parameters of psychometric functions, the data are
generated by a simulated observer whose underlying
probabilitiesof success are determined by the maximum-
likelihood fit to the real observer’s data [yf it 5 y (x;q̂)].
Thus, where the nonparametric bootstrap uses y, the para-
metric bootstrap uses yf it as generating probabilities p
for the simulated data sets.

As is frequently the case in statistics, the choice of
parametric versus nonparametric analysis concerns how
much confidence one has in one’s hypothesis about the
underlying mechanism that gave rise to the raw data, as
against the confidence one has in the raw data’s precise
numerical values. Choosing the parametric bootstrap for
the estimation of variability in psychometric function fit-
ting appears the natural choice for several reasons. First
and foremost, in fitting a parametric model to the data,
one has already committed oneself to a parametric analy-
sis. No additional assumptions are required to perform a
parametric bootstrap beyond those required for fitting a
function to the data: Specification of the source of vari-

ability (binomial variability)and the model from which the
data are most likely to come (parameter vector q and dis-
tribution function F ). Second, given the assumption that
data from psychophysicalexperimentsare binomiallydis-
tributed, we expect data to be variable (noisy). The non-
parametric bootstrap treats every datapoint as if its exact
value reflected the underlying mechanism.1 The paramet-
ric bootstrap, on the other hand, allows the datapoints to
be treated as noisy samples from a smooth and monotonic
function, determined by q and F.

One consequenceof the two different bootstrap regimes
is as follows. Assume two observers performing the same
psychophysical task at the same stimulus intensities x and
assume that it happens that the maximum-likelihood fits
to the two data sets yield identical parameter vectors q.
Given such a scenario, the parametric bootstrap returns
identical estimates of variability for both observers, since
it depends only on x, q, and F. The nonparametric boot-
strap’s estimates would, on the other hand, depend on the
individualdifferences between the two data sets y1 and y2,
something we consider unconvincing: A method for es-
timating variability in parameters and thresholds should
return identical estimates for identicalobservers perform-
ing the identical experiment.2

Treutwein (1995) and Treutwein and Strasburger (1999)
used the nonparametric bootstrap and Maloney (1990)
used the parametric bootstrap to compare bootstrap esti-
mates of variabilitywith real-word variability in the data
of repeated psychophysicalexperiments. All of the above
studies found bootstrap studies to be in agreement with the
human data. Keeping in mind that the number of repeats
in the above-quoted cases was small, this is nonetheless
encouraging,suggesting that bootstrapmethods are a valid
method of variability estimation for parameters fitted to
psychophysical data.

Testing the Bridging Assumption
Asymptotically—that is, for large K and N—q̂will con-

verge toward q, since maximum-likelihood estimation is
asymptoticallyunbiased3 (Cox & Hinkley, 1974; Kendall
& Stuart, 1979). For the small K typical of psychophysical
experiments, however, we can only hope that our estimated
parameter vector q̂ is “close enough” to the true param-
eter vector q for the estimated variability in the parameter
vector q̂ obtained by the bootstrap method to be valid. We
call this the bootstrap bridging assumption.

Whether q̂ is indeed sufficiently close to q depends, in
a complex way, on the sampling—that is, the number of
blocks of trials (K ), the numbers of observations at each
block of trials (n), and the stimulus intensities (x) relative
to the true parameter vector q. Maloney (1990) summa-
rized these dependenciesfor a given experimental design
by plotting the standard deviation of b̂ as a function of a
and b as a contour plot (Maloney, 1990, Figure 3, p. 129).
Similar contour plots for the standard deviation of â and
for bias in both â and b̂ could be obtained. If, owing to
small K, bad sampling, or otherwise, our estimation pro-
cedure is inaccurate, the distribution of bootstrap param-
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eter vectors q̂1*, …, q̂B*—centered around q̂—will not
be centered around true q. As a result, the estimates of
variability are likely to be incorrect unless the magnitude
of the standard deviation is similar around q̂ and q, despite
the fact that the points are some distance apart in pa-
rameter space.

One way to assess the likely accuracy of bootstrap es-
timates of variability is to follow Maloney (1990) and to
examine the local flatness of the contours around q̂, our
best estimate of q. If the contours are sufficiently flat, the
variability estimates will be similar, assuming that the
true q is somewhere within this flat region. However, the
process of local contour estimation is computationallyex-
pensive, since it requires a very large number of complete
bootstrap runs for each data set.

A much quicker alternative is the following.Having ob-
tained q̂ and performed a bootstrap using y(x;q̂) as the
generatingfunction,we move to eight different pointsf1, …,
f8 in a–b space. Eight Monte Carlo simulations are per-
formed, using f1, …, f8 as the generating functions to ex-
plore the variability in those parts of the parameter space
(only the generatingparameters of the bootstrapare changed
x remains the same for all of them). If the contours of vari-
ability around q̂ are sufficiently flat, as we hope they are,
confidence intervals at f1, …, f8 should be of the same
magnitude as those obtained at q̂. Prudence should lead
us to accept the largest of the nine confidence intervals
obtained as our estimate of variability.

A decision has to be made as to which eight points in
a–b space to use for the new set of simulations. Gener-
ally, provided that the psychometric function is at least
reasonably well sampled, the contours vary smoothly in
the immediate vicinity of q, so that the precise placement
of the sample points f1, …, f8 is not critical. One sug-
gested and easy way to obtain a set of additional gener-
ating parameters is shown in Figure 1.

Figure 1 shows B 5 2,000 bootstrap parameter pairs as
dark filled circles plotted in a–b space. Simulated data
sets were generated from ygen with the Weibull as F and
qgen 5 {10, 3, 0.5, 0.01}; sampling scheme s7 (triangles;
see Figure 2) was used, and N was set to 480 (ni 5 80).
The large central triangle at (10, 3) marks the generating
parameter set; the solid and dashed line segments adjacent
to the x- and y-axes mark the 68% and 95% confidence
intervals for a and b, respectively.4 In the following, we
shall use WCI to stand for width of confidence interval,
with a subscript denoting its coverage percentage—that is,
WCI68 denotes the width of the 68% confidence interval.5

The eight additionalgenerating parameter pairs f1, …, f8

are marked by the light triangles. They form a rectangle
whose sides have length WCI68 in a and b. Typically, this
central rectangular region contains approximately30%–
40% of all a–b pairs and could thus be viewed as a crude
joint 35% confidence region for a and b. A coverage per-
centage of 35% represents a sensiblecompromise between
erroneously accepting the estimate around q̂, very likely
underestimating the true variability, and performing ad-

ditional bootstrap replications too far in the periphery,
where variability and, thus, the estimated confidence in-
tervals become erroneously inflated owing to poor sam-
pling. Recently, one of us (Hill, 2001b) performed Monte
Carlo simulations to test the coverage of various bootstrap
confidence interval methods and found that the above
method, based on 25% of points or more, was a good way
of guaranteeing that both sides of a two-tailed confidence
interval had at least the desired level of coverage.

MONTE CARLO SIMULATIONS

In both our papers, we use only the specific case of the
2AFC paradigm in our examples: Thus, g is fixed at .5.
In our simulations, where we must assume a distribution
of true generating probabilities, we always use the Wei-
bull function in conjunction with the same fixed set of
generating parameters qgen: {agen 5 10, bgen 5 3, ggen 5 .5,
lgen 5 .01}. In our investigationof the effects of sampling
patterns, we shall always use K 5 6 and ni constant—that
is, six blocks of trials with the same number of points in
each block.The number of observationsper point,ni, could
be set to 20, 40, 80, or 160, and with K 5 6, this means
that the total number of observationsN could take the val-
ues 120, 240, 480, and 960.

We have introduced these limitationspurely for the pur-
poses of illustration, to keep our explanatory variables
down to a manageable number. We have found, in many
other simulations, that in most cases this is done without
loss of generality of our conclusions.

Confidence intervals of parameters, thresholds, and
slopes that we report in the followingwere always obtained
using a method called bias-corrected and accelerated

(BCa ) confidence intervals, which we describe later in our
Bootstrap Confidence Intervals section.

The Effects of Sampling Schemes
and Number of Trials

One of our aims in this study was to examine the ef-
fect of N and one’s choice of sample points x on both the
size of one’s confidence intervals for Ĵ and their sensitiv-
ity to errors in q̂.

Seven different sampling schemes were used, each dic-
tating a different distribution of datapoints along the stim-
ulus axis; they are the same schemes as those used and de-
scribed in Wichmann and Hill (2001), and they are shown
in Figure 2. Each horizontal chain of symbols represents
one of the schemes, marking the stimulus values at which
the six sample points are placed. The different symbol
shapes will be used to identify the sampling schemes in our
results plots. To provide a frame of reference, the solid
curve shows the psychometric function used—that is,
0.5 1 0.5F(x;{agen, bgen})—with the 55%, 75%, and 95%
performance levels marked by dotted lines.

As we shall see, even for a fixed number of sample
points and a fixed number of trials per point, biases in
parameter estimation and goodness-of-f it assessment
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(companion paper), as well as the width of confidence in-
tervals (this paper), all depend markedly on the distrib-
ution of stimulus values x.

Monte Carlo data sets were generated using our seven
sampling schemes shown in Figure 2, using the generation
parameters qgen, as well as N and K as specified above.
A maximum-likelihood fit was performed on each sim-
ulated data set to obtain bootstrap parameter vectors q̂*,
from which we subsequently derived the x values corre-
sponding to threshold0.5 and threshold0.8, as well as to the
slope. For each sampling scheme and value of N, a total
of nine simulationswere performed: one at qgen and eight
more at points f1, …, f8 as specified in our section on the
bootstrap bridging assumption. Thus, each of our 28
conditions(7 sampling schemes 3 4 values of N ) required
9 3 1,000 simulated data sets, for a total of 252,000 sim-
ulations, or 1.134 3 108 simulated 2AFC trials.

Figures 3, 4, and 5 show the results of the simulations
dealing with slope0.5, threshold0.5, and threshold0.8, re-
spectively. The top-left panel (A) of each figure plots the
WCI68 of the estimate under consideration as a function
of N. Data for all seven sampling schemes are shown,
using their respective symbols. The top-right hand panel
(B) plots, as a function of N, the maximal elevation of
the WCI68 encountered in the vicinity of qgen—that is,
max{WCIf1/WCIqgen, …, WCIf8/WCIqgen}. The eleva-
tion factor is an indication of the sensitivity of our vari-
ability estimates to errors in the estimation of q. The
closer it comes to 1.0, the better. The bottom-left panel
(C) plots the largest of the WCI68’s measurements at qgen

and f1, …, f8 for a given sampling scheme and N; it is,
thus, the product of the elevation factor plotted in panel
B by its respective WCI68 in panel A. This quantity we
denote as MWCI68, standing for maximum width of the
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Figure 1. B 5 2,000 data sets were generated from a two-alternative forced-choice Weibull
psychometric function with parameter vector qgen 5 {10, 3, .5, .01} and then fit using our

maximum-likelihood procedure, resulting in 2,000 estimated parameter pairs (â , b̂ ) shown
as dark circles in a–b parameter space. The location of the generating a and b (10, 3) is

marked by the large triangle in the center of the plot. The sampling scheme s7 was used to
generate the data sets (see Figure 2 for details) with N 5 480. Solid lines mark the 68% con-

fidence interval width (WCI68) separately for a and b; broken lines mark the 95% confidence
intervals. The light small triangles show the a–b parameter sets f1, …, f8 from which each

bootstrap is repeated during sensitivity analysis while keeping the x-values of the sampling
scheme unchanged.
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68% confidence interval; this is the confidence interval
we suggest experimenters should use when they report
error bounds. The bottom-right panel (D), finally, shows
MWCI68 multipliedby a sweat factor, ÏN/120. Ideally—
that is, for very large K and N—confidence intervals
should be inversely proportional to ÏN, and multiplica-
tion by our sweat factor should remove this dependency.
Any change in the sweat-adjusted MWCI68 as a function
of N might thus be taken as an indicator of the degree to
which sampling scheme, N, and true confidence interval
width interact in a way not predicted by asymptotic theory.

Figure 3A shows the WCI68 around the median esti-
mated slope. Clearly, the different sampling schemes have
a profound effect on the magnitude of the confidence in-
tervals for slope estimates. For example, in order to en-
sure that the WCI68 is approximately 0.06, one requires
nearly 960 trials if using sampling s1 or s4. Sampling
schemes s3, s5, or s7, on the other hand, require only
around 200 trials to achieve similar confidence interval
width. The important difference that makes, for example,
s3, s5, and s7 more efficient than s1 and s4 is the presence
of samples at high predicted performance values (p $ .9)
where binomial variability is low and, thus, the data con-
strain our maximum-likelihoodfit more tightly.Figure 3B
illustrates the complex interactionsbetween different sam-
pling schemes, N, and the stability of the bootstrap esti-
mates of variability, as indicatedby the local flatness of the
contours around qgen. A perfectly flat local contour would
result in the horizontal line at 1. Sampling scheme s6 is
well behaved for N $ 480, its maximal elevation being
around 1.7. For N , 240, however, elevation rises to near

2.5.Other schemes, like s1, s4, or s7, never rise abovean el-
evationof 2 regardless of N. It is important to note that the
magnitude of WCI68 at qgen is by no means a good predic-
tor of the stabilityof the estimate, as indicated by the sen-
sitivity factor. Figure 3C shows the MWCI68, and here the
differences in efficiency between sampling schemes are
even more apparent than in Figure 3A. Sampling schemes
s3, s5, and s7 are clearly superior to all other sampling
schemes, particularly for N , 480; these three sampling
schemes are the ones that include two sampling points at
p . .92.

Figure 4, showing the equivalentdata for the estimates
of threshold0.5, also illustrates that some sampling schemes
make much more efficient use of the experimenter’s time
by providing MWCI68s that are more compact than oth-
ers by a factor of 3.2.

Two aspects of the data shown in Figure 4B and 4C are
important. First, the sampling schemes fall into two dis-
tinct classes: Five of the seven sampling schemes are al-
most ideally well behaved, with elevations barely exceed-
ing 1.5 even for small N (and MWCI68 # 3); the remaining
two, on the other hand, behave poorly, with elevations in
excess of 3 for N , 240 (MWCI68 . 5). The two unstable
sampling schemes, s1 and s4, are those that do not in-
clude at least a single sample point at p $ .95 (see Fig-
ure 2). It thus appears crucial to include at least one sam-
ple point at p $ .95 to make one’s estimates of variability
robust to small errors in q̂, even if the threshold of inter-
est, as in our example, has a p of only approximately .75.
Second, both s1 and s4 are prone to lead to a serious un-
derestimation of the true width of the confidence interval
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if the sensitivity analysis (or bootstrap bridging assump-
tion test) is not carried out: The WCI68 is unstable in the
vicinity of qgen even though WCI68 is small at qgen.

Figure 5 is similar to Figure 4, except that it shows the
WCI68 around threshold0.8. The trends found in Figure 4
are even more exaggerated here: The sampling schemes

without high sampling points (s1, s4) are unstable to the
point of being meaningless for N , 480. In addition, their
WCI68 is inflated, relative to that of the other sampling
schemes, even at qgen.

The results of the Monte Carlo simulations are sum-
marized in Table 1. The columns of Table 1 correspond to
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the different sampling schemes, marked by their respec-
tive symbols. The first four rows contain the MWCI68 at
threshold0.5 for N 5 120, 240, 480, and 960; similarly, the
next four rows contain the MWCI68 at threshold0.8, and
the following four those for the slope0.5. The scheme with
the lowest MWCI68 in each row is given the score of 100.
The others on the same row are given proportionallyhigher
scores, to indicate their MWCI68 as a percentage of the
best scheme’s value.The bottom three rows of Table 1 con-

tain summary statistics of how well the different sampling
schemes do across all 12 estimates.

An inspection of Table 1 reveals that the sampling
schemes fall into four categories. By a long way worst
are sampling schemes s1 and s4, with mean and median
MWCI68 . 210%. Already somewhat superior is s2, par-
ticularly for small N, with a median MWCI68 of 180% and
a significantly lower standard deviation. Next come sam-
pling schemes s5 and s6, with means and medians of
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around 130%. Each of these has at least one sample at p $
.95, and 50% at p $ .80. The importance of this high
sample point is clearly demonstrated by s6. Comparing s1
and s6, s6 is identical to scheme s1, except that one sam-
ple point was moved from .75 to .95. Still, s6 is superior
to s1 on each of the 12 estimates, and often very markedly
so. Finally, there are two sampling schemes with means
and medians below 120%—very nearly optimal6 on most
estimates. Both of these sampling schemes, s3 and s7,

have 50% of their sample points at p $ .90 and one third
at p $ .95.

In order to obtain stable estimates of the variability of
parameters, thresholds, and slopes of psychometric
functions, it appears that we must include at least one,
but preferably more, sample points at large p values. Such
sampling schemes are, however, sensitive to stimulus-
independent lapses that could potentially bias the esti-
mates if we were to fix the upper asymptote of the psy-
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chometric function (the parameter l in Equation 1; see
our companion paper, Wichmann & Hill, 2001).

Somewhat counterintuitively, it is thus not sensible to
place all or most samples close to the point of interest (e.g.,
close to threshold0.5, in order to obtain tight confidence in-
tervals for threshold0.5), because estimation is done via the
whole psychometric function, which, in turn, is estimated
from the entire data set: Sample points at high p values (or
near zero in yes/no tasks) have very little variance and thus
constrain the fit more tightly than do points in the middle
of the psychometric function,where the expected variance
is highest (at least during maximum-likelihood fitting).
Hence, adaptive techniques that sample predominantly
around the threshold value of interest are less efficient
than one might think (cf. Lam, Mills, & Dubno, 1996).

All the simulations reported in this section were per-
formed with the a and b parameter of the Weibull distri-
bution function constrained during fitting; we used Baye-
sian priors to limit a to be between 0 and 25 and b to be
between 0 and 15 (not including the endpoints of the in-
tervals), similar to constraining l to be between 0 and .06
(see our discussion of Bayesian priors in Wichmann &
Hill, 2001). Such fairly stringent bounds on the possible
parameter values are frequently justifiable given the ex-
perimental context (cf. Figure 2); it is important to note,
however, that allowinga and b to be unconstrainedwould
only amplify the differences between the sampling
schemes7 but would not change them qualitatively.

Influence of the Distribution Function
on Estimates of Variability

Thus far, we have argued in favor of the bootstrap
method for estimating the variability of fitted parameters,

thresholds, and slopes, since its estimates do not rely on
asymptotic theory. However, in the context of fitting psy-
chometric functions, one requires in addition that the
exact form of the distribution function F—Weibull, logis-
tic, cumulative Gaussian, Gumbel, or any other reason-
ably similar sigmoid—has only a minor influence on the
estimates of variability. The importance of this cannot be
underestimated, since a strong dependence of the esti-
mates of variability on the precise algebraic form of the
distributionfunction would call the usefulness of the boot-
strap into question, because, as experimenters, we do not
know, and never will, the true underlying distribution
function or objective function from which the empirical
data were generated. The problem is illustrated in Fig-
ure 6; Figure 6A shows four different psychometric func-
tions: (1) yW(x;qW), using the Weibull as F, and qW 5

{10, 3, .5, .01} (our “standard” generating function ygen);
(2) yCG(x;qCG), using the cumulativeGaussian with qCG 5

{8.875, 3.278, .5, .01}; (3) yL(x;qL ), using the logistic
with qL 5 {8.957, 2.014, .5, .01}; and finally, (4) yG(x;qG),
using the Gumbel and qG 5 {10.022, 2.906, .5, .01}. For
all practical purposes in psychophysics,the four functions
are indistinguishable. Thus, if one of the above psycho-
metric functions were to provide a good fit to a data set,
all of them would, despite the fact that, at most, one of
them is correct. The question one has to ask is whether
making the choice of one distribution function over an-
other markedly changes the bootstrap estimates of vari-
ability.8 Note that this is not trivially true: Although it can
be the case that several psychometric functions with dif-
ferent distribution functionsF are indistinguishablegiven

a particular data set—as is shown in Figure 6A—this does
not imply that the same is true for every data set generated

Table 1

Summary of Results of Monte Carlo Simulations

N s1 s2 s3 s4 s5 s6 s7

MWCI68 at 120 331 135 143 369 162 100 110

x 5 F.5
1 240 209 163 126 339 133 100 113

480 156 179 143 193 158 100 155

960 124 141 140 138 152 100 119

MWCI68 at 120 5725 428 100 1761 180 263 115
x 5 F.8

1 240 1388 205 100 1257 110 125 109

480 385 181 115 478 100 116 137
960 215 149 100 291 102 119 101

MWCI68 of dF/dx at 120 212 305 119 321 139 217 100
x 5 F

.5
1 240 228 263 100 254 128 185 121

480 186 213 119 217 100 148 134
960 186 175 113 201 100 151 118

Mean 779 211 118 485 130 140 119

Standard deviation 1595 85 17 499 28 49 16
Median 214 180 117 306 131 122 117

Note—Columns correspond to the seven sampling schemes and are marked by their respective symbols (see Figure 2). The

first four rows contain the MWCI68 at threshold0.5 for N 5 120, 240, 480, and 960; similarly, the next eight rows contain the
MWCI68 at threshold0.8 and slope0.5. (See the text for the definition of the MWCI68.) Each entry corresponds to the largest

MWCI68 in the vicinity of qgen, as sampled at the points qgen and f1, …, f8. The MWCI68 values are expressed in percent-
age relative to the minimal MWCI68 per row. The bottom three rows contain summary statistics of how well the different

sampling schemes perform across estimates.
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from one of such similar psychometric functions during
the bootstrap procedure: Figure 6B shows the fit of two
psychometric functions (Weibull and logistic) to a data set
generated from our “standard” generating function ygen,
using sampling scheme s2 with N 5 120.

Slope, threshold0.8, and threshold0.2 are quite dissimilar
for the two fits, illustrating the point that there is a real
possibility that the bootstrap distributions of thresholds
and slopes from the B bootstrap repeats differ substan-
tially for different choices of F, even if the fits to the
original (empirical) data set were almost identical.

To explore the effect of F on estimates of variability,
we conducted Monte Carlo simulations, using

as the generating function, and fitted psychometric func-
tions, using the Weibull, cumulative Gaussian, logistic,
and Gumbel as the distribution functions to each data set.
From the fitted psychometric functions, we obtained es-
timates of threshold0.2, threshold0.5, threshold0.8, and
slope0.5, as described previously. All four different val-
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Figure 6. (A) Four two-alternative forced-choice psychometric functions plotted on
semilogarithmic coordinates; each has a different distribution function F (Weibull, cu-

mulative Gaussian, logistic, and Gumbel). See the text for details. (B) A fit of two psy-
chometric functions with different distribution functions F (Weibull, logistic) to the same

data set, generated from the mean of the four psychometric functions shown in panel A,
using sampling scheme s2 with N 5 120. See the text for details.
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ues of N and our seven sampling schemes were used, re-
sulting in 112 conditions (4 distribution functions 3 7
sampling schemes 3 4 N values). In addition,we repeated
the above procedure 40 times to obtain an estimate of the
numerical variability intrinsic to our bootstrap routines,9

for a total of 4,480 bootstrap repeats affording 8,960,000
psychometric function fits (4.032 3 109 simulated 2AFC
trials).

An analysisof variancewas applied to the resultingdata,
with the number of trials N, the sampling schemes s1 to s7,
and the distribution function F as independent factors
(variables). The dependent variables were the confidence
interval widths (WCI68); each cell contained the WCI68

estimates from our 40 repetitions. For all four dependent
measures—threshold0.2, threshold0.5, threshold0.8, and
slope0.5—not only the first two factors, the number of
trials N and the sampling scheme, were, as was expected,
significant (p , .0001), but also the distribution function
F and all possible interactions: The three two-way inter-
actions and the three-way interaction were similarly sig-
nificant at p , .0001. This result in itself, however, is not
necessarily damaging to the bootstrap method applied to
psychophysical data, because the significance is brought
about by the very low (and desirable) variability of our
WCI68 estimates: Model R2 is between .995 and .997,
implying that virtually all the variance in our simulations
is due to N, sampling scheme, F and interactions thereof.

Rather than focusing exclusively on significance, in
Table 2 we provide informationabout effect size—namely,
the percentage of the total sum of squares of variation ac-
counted for by the different factors and their interactions.
For threshold0.5 and slope0.5 (columns2 and 4), N, sampling
scheme, and their interaction account for 98.63% and
96.39% of the total variance, respectively.10 The choice
of distribution function F does not have, despite being a
significant factor, a large effect on WCI68 for thresh-
old0.5 and slope0.5.

The same is not true, however, for the WCI68 of thresh-
old0.2. Here, the choice of F has an undesirably large ef-
fect on the bootstrap estimate of WCI68—its influence is
larger than that of the sampling scheme used—and only
84.36% of the variance is explained by N, sampling
scheme, and their interaction. Figure 7, finally, summa-
rizes the effect sizes of N, sampling scheme, and F graph-
ically: Each of the four panels of Figure 7 plots the WCI68

(normalized by dividing each WCI68 score by the largest
mean WCI68) on the y-axis as a function of N on the x-
axis; the different symbols refer to the different sampling
schemes. The two symbols shown in each panel corre-
spond to the sampling schemes that yielded the smallest
and largest mean WCI68 (averaged across F and N). The
gray levels, finally, code the smallest (black), mean (gray),
and largest (white) WCI68 for a given N and sampling
scheme as a function of the distribution function F.

For threshold0.5 and slope0.5 (Figure 7B and 7D), esti-
mates are virtually unaffected by the choice of F, but for
threshold0.2, the choice of F has a profound influence on
WCI68 (e.g., in Figure 7A, there is a difference of nearly
a factor of two for sampling scheme s7 [triangles] when
N 5 120). The same is also true, albeit to a lesser extent,
if one is interested in threshold0.8: Figure 7C shows the
(again undesirable) interaction between sampling scheme
and choice of F. WCI68 estimates for sampling scheme
s5 (leftward triangles) show little influence of F, but for
sampling scheme s4 (rightward triangles) the choice of F

has a marked influence on WCI68. It was generally the
case for threshold0.8 that those sampling schemes that re-
sulted in small confidence intervals (s2, s3, s5, s6, and s7;
see the previous section)were less affected by F than were
those resulting in large confidence intervals (s1 and s4).

Two main conclusions can be drawn from these simu-
lations. First, in the absence of any other constraints, ex-
perimenters should choose as threshold and slope mea-
sures corresponding to threshold0.5 and slope0.5, because
only then are the main factors influencing the estimates of
variability the number and placement of stimuli, as we
would like it to be. Second, away from the midpoint of F,
estimates of variability are, however, not as independent
of the distribution function chosen as one might wish—
in particular, for lower proportions correct (threshold0.2 is
much more affected by the choice of F than threshold0.8;
cf. Figures 7A and 7C). If very low (or, perhaps, very high)
response thresholds must be used when comparing ex-
perimental conditions—for example, 60% (or 90%) cor-
rect in 2AFC—and only small differences exist between
the different experimental conditions, this requires the ex-
ploration of a number of distribution functions F to avoid
finding significantdifferences between conditions,owing
to the (arbitrary) choice of a distribution function’s result-
ing in comparatively narrow confidence intervals.

Table 2
Summary of Analysis of Variance Effect Size (Sum of Squares [s5] Normalized to 100%)

Factor Threshold0.2 Threshold0.5 Threshold0.8 Slope0.5

Number of trials N 76.24 87.30 65.14 72.86

Sampling schemes s1 . . . s7 6.60 10.00 19.93 19.69
Distribution function F 11.36 0.13 3.87 0.92

Error (numerical variability in bootstrap) 0.34 0.35 0.46 0.34
Interaction of N and sampling schemes s1 . . . s7 1.18 0.98 5.97 3.50

Sum of interactions involving F 4.28 1.24 4.63 2.69
Percentage of SS accounted for without F 84.36 98.63 91.5 96.39

Note—The columns refer to threshold0.2, threshold0.5, threshold0.8, and slope0.5—that is, to approximately 60%,

75%, and 90% correct and the slope at 75% correct during two-alternative forced choice, respectively. Rows
correspond to the independent variables, their interactions, and summary statistics. See the text for details.
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the width of WCI68 for a given sampling scheme and N: Black symbols show the smallest WCI68 obtained, middle gray the mean WCI68

across the four distribution functions used, and white the largest WCI68. (A) WCI68 for threshold0.2. (B) WCI68 for threshold0.5. (C)

WCI68 for threshold0.8. (D) WCI68 for slope0.5.

Bootstrap Confidence Intervals
In the existing literature on bootstrap estimates of the

parameters and thresholdsof psychometric functions,most
studies use parametric or nonparametric plug-in esti-

mates11 of the variabilityof a distribution Ĵ*. For example,

Foster and Bischof (1997) estimate parametric (moment-
based) standard deviations s by the plug-in estimate ŝ.
Maloney (1990), in addition to ŝ, uses a comparable non-
parametric estimate, obtainedby scaling plug-in estimates
of the interquartile range so as to cover a confidence in-
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terval of 68.3%. Neither kind of plug-in estimate is guar-
anteed to be reliable, however: Moment-based estimates
of a distribution’s central tendency (such as the mean) or
variability (such as ŝ) are not robust; they are very sen-
sitive to outliers, because a change in a single sample can
have an arbitrarily large effect on the estimate. (The esti-
mator is said to have a breakdown of 1/n, because that is
the proportion of the data set that can have such an effect.
Nonparametric estimates are usually much less sensitive
to outliers, and the median, for example, has a breakdown
of 1/2, as opposed to 1/n for the mean.) A moment-based
estimate of a quantityJ might be seriously in error if only
a single bootstrap Ĵi* estimate is wrong by a large
amount. Large errors can and do occur occasionally—for
example, when the maximum-likelihood search algo-
rithm gets stuck in a local minimum on its error surface.12

Nonparametric plug-in estimates are also not without
problems. Percentile-basedbootstrapconfidence intervals
are sometimes significantly biased and converge slowly
to the true confidence intervals (Efron & Tibshirani, 1993,
chaps. 12–14, 22). In the psychological literature, this
problem was critically noted by Rasmussen (1987, 1988).

Methods to improve convergence accuracy and avoid
bias have received the most theoretical attention in the
study of the bootstrap (Efron, 1987, 1988; Efron & Tib-
shirani, 1993;Hall, 1988;Hinkley, 1988;Strube, 1988; cf.
Foster & Bischof, 1991, p. 158).

In situations in which asymptotic confidence intervals
are known to apply and are correct, bias-corrected and
accelerated (BCa) confidence intervalshave been demon-
strated to show faster convergenceand increased accuracy
over ordinary percentile-based methods, while retaining
the desirable property of robustness (see, in particular,
Efron & Tibshirani, 1993, p. 183, Table 14.2, and p. 184,
Figure 14.3, as well as Efron, 1988; Rasmussen, 1987,
1988; and Strube, 1988).

BCa confidence intervals are necessary because the
distribution of sampling points x along the stimulus axis
may cause the distributionof bootstrap estimates q̂* to be
biased and skewed estimators of the generating values q̂.
The same applies to the bootstrapdistributionsof estimates
Ĵ* of any quantity of interest, be it thresholds, slopes, or
whatever. Maloney (1990) found that skew and bias par-
ticularly raised problems for the distribution of the b pa-
rameter of the Weibull, b* (N 5 210, K 5 7). We also
found in our simulations that b*—and thus, slopes s*—
were skewed and biased for N smaller than 480, even
using the best of our sampling schemes. The BCa method
attempts to correct both bias and skew by assuming that
an increasing transformation, m, exists to transform the
bootstrap distribution into a normal distribution. Hence,
we assume that F 5 m(q ) and F̂5 m(q̂) resulting in

(2)

where

(3)

and kF0
any reference point on the scale of F values. In

Equation 3, z0 is the bias correction term, and a in Equa-
tion 4 is the acceleration term. Assuming Equation 2 to be
correct, it has been shown that an e-level confidence in-
terval endpoint of the BCa interval can be calculated as

(4)

where CG is the cumulative Gaussian distribution func-
tion, Ĝ 1 is the inverse of the cumulative distribution
function of the bootstrap replications q̂*, ẑ0 is our esti-
mate of the bias, and â is our estimate of acceleration. For
details on how to calculate the bias and the acceleration
term for a single fitted parameter, see Efron and Tibshi-
rani (1993, chap. 22) and also Davison and Hinkley (1997,
chap. 5); the extension to two or more fitted parameters
is provided by Hill (2001b).

For large classes of problems, it has been shown that
Equation 2 is approximately correct and that the error in
the confidence intervals obtained from Equation 4 is
smaller than those introduced by the standard percentile
approximation to the true underlyingdistribution, where
an e-level confidence interval endpoint is simply Ĝ[e]
(Efron & Tibshirani, 1993). Although we cannot offer a
formal proof that this is also true for the bias and skew
sometimes found in bootstrap estimates from fits to psy-
chophysical data, to our knowledge, it has been shown
only that BCa confidence intervals are either superior or
equally good in performance to standard percentiles, but
not that they perform significantly worse. Hill (2001a,
2001b) recently performed Monte Carlo simulations to
test the coverage of various confidence interval methods,
including the BCa and other bootstrap methods, as well
as asymptotic methods from probit analysis. In general,
the BCa method was the most reliable, in that its cover-
age was least affected by variations in sampling scheme
and in N, and the least imbalanced (i.e., probabilities of
covering the true parameter value in the upper and lower
parts of the confidence interval were roughly equal). The
BCa method by itself was found to produce confidence
intervals that are a little too narrow; this underlines the
need for sensitivity analysis, as described above.

CONCLUSIONS

In this paper, we have given an account of the procedures
we use to estimate the variabilityof fitted parametersand the
derived measures, such as thresholds and slopes of psy-
chometric functions.

First, we recommend the use of Efron’s parametric boot-
strap technique, because traditional asymptotic methods
have been found to be unsuitable, given the small number
of datapoints typically taken in psychophysical experi-
ments. Second, we have introduced a practicable test of
the bootstrap bridging assumption or sensitivity analysis

that must be applied every time bootstrap-derived vari-
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ability estimates are obtained, to ensure that variability es-
timates do not change markedly with small variations in
the bootstrapgenerating function’s parameters. This is crit-
ical because the fitted parameters q̂ are almost certain to
deviate at least slightly from the (unknown) underlying
parameters q. Third, we explored the influence of differ-
ent sampling schemes (x) on both the size of one’s con-
fidence intervals and their sensitivity to errors in q̂. We
conclude that only sampling schemes including at least
one sample at p $ .95 yield reliable bootstrap confi-
dence intervals. Fourth, we have shown that the size of
bootstrap confidence intervals is mainly influenced by x
and N if and only if we choose as threshold and slope val-
ues around the midpoint of the distribution function F;
particularly for low thresholds (threshold0.2), the precise
mathematical form of F exerts a noticeable and undesir-
able influence on the size of bootstrap confidence inter-
vals. Finally, we have reported the use of BCa confidence
intervals that improve on parametric and percentile-based
bootstrap confidence intervals, whose bias and slow con-
vergence had previously been noted (Rasmussen, 1987).

With this and our companion paper (Wichmann & Hill,
2001), we have covered the three central aspects of mod-
eling experimental data: first, parameter estimation; sec-
ond, obtaining error estimates on these parameters; and
third, assessing goodness of fit between model and data.
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NOTES

1. Under different circumstances and in the absence of a model of the
noise and/or the process from which the data stem, this is frequently the

best one can do.
2. This is true, of course, only if we have reason to believe that our

model actually is a good model of the process under study. This important
issue is taken up in the section on goodness of fit in our companion paper.

3. This holds only if our model is correct: Maximum-likelihood pa-
rameter estimation for two-parameter psychometric functionsto data from

observers who occasionally lapse—that is, display nonstationarity—is as-
ymptotically biased, as we show in our companion paper, together with

a method to overcome such bias (Wichmann & Hill, 2001).
4. Confidence intervals here are computed by the bootstrap percentile

method: The 95% confidence interval for a, for example, was deter-
mined simply by [a*(.025), a*(.975)], where a*(n) denotes the 100nth per-

centile of the bootstrap distribution a*.
5. Because this is the approximate coverage of the familiarity stan-

dard error bar denoting one’s original estimate 6 1 standard deviation
of a Gaussian, 68% was chosen.

6. Optimal here, of course, means relative to the sampling schemes
explored.

7. In our initial simulations, we did not constrain a and b other than to
limit them to be positive (the Weibull function is not defined for negative

parameters). Sampling schemes s1 and s4 were even worse, and s3 and s7
were, relative to the other schemes, even more superior under noncon-

strained fitting conditions. The only substantial difference was perfor-
mance of sampling scheme s5: It does very well now, but its slope esti-

mates were unstable during sensitivity analysis of b was unconstrained.
This is a good example of the importance of (sensible) Bayesian assump-

tions constraining the fit. We wish to thank Stan Klein for encouraging us
to redo our simulations with a and b constrained.

8. Of course, there might be situationswhere one psychometric func-
tion using a particular distributionfunction provides a significantly bet-
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ter fit to a given data set than do others using different distributionfunc-
tions. Differences in bootstrap estimates of variability in such cases are

not worrisome: The appropriate estimates of variability are those of the
best-fitting function.

9. WCI68 estimates were obtained using BCa confidence intervals,
described in the next section.

10. Clearly, the above-reported effect sizes are tied to the ranges in
the factors explored: N spanned a comparatively large range of 120–960

observations, or a factor of 8, whereas all of our sampling schemes were
“reasonable”; inclusionof “unrealistic” or “unusual” sampling schemes—

for example, all x values such that nominal y values are below 0.55—
would have increased the percentage of variation accounted for by sam-

pling scheme. Taken together, N and sampling scheme should be repre-
sentative of most typically used psychophysical settings, however.

11. A straightforward way to estimate a quantity J, which is derived
from a probability distribution F by J 5 t(F ), is to obtain F̂ from em-

pirical data and then use Ĵ 5 t(F̂ ) as an estimate. This is called a plug-

in estimate.

12.Foster and Bischof (1987)report problemswith local minima, which
they overcame by discarding bootstrap estimates that were larger than 20

times the stimulus range (4.2% of their datapoints had to be removed).
Nonparametric estimates naturally avoid having to perform posthoc data

smoothing by their resilience to such infrequent but extreme outliers.
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