
Journal of Cheminformatics

ss
Open AcceSoftware
The PubChem chemical structure sketcher
Wolf D Ihlenfeldt1, Evan E Bolton2 and Stephen H Bryant*2

Address: 1Xemistry GmbH, Hainholzweg 11, D-61462 Königstein, Germany and 2National Center for Biotechnology Information, National
Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, MD 20894, USA

Email: Wolf D Ihlenfeldt - wdi@xemistry.com; Evan E Bolton - bolton@ncbi.nlm.nih.gov; Stephen H Bryant* - bryant@ncbi.nlm.nih.gov

* Corresponding author

Abstract
PubChem is an important public, Web-based information source for chemical and bioactivity
information. In order to provide convenient structure search methods on compounds stored in
this database, one mandatory component is a Web-based drawing tool for interactive sketching of
chemical query structures. Web-enabled chemical structure sketchers are not new, being in
existence for years; however, solutions available rely on complex technology like Java applets or
platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-
based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services.
Our solution: a chemical structure sketching tool based exclusively on CGI server processing,
client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does
not require the presence of any specific runtime support libraries or browser configurations on the
client. It is completely platform-independent and verified to work on all major Web browsers,
including older ones without support for Web2.0 JavaScript objects.

Introduction
The National Center for Biotechnology Information
(NCBI) http://www.ncbi.nlm.nih.gov is widely known for
its cluster of literature, biology, genomics, and chemistry
databases which are freely accessible on the Web [1].
These databases register many tens of millions of hits per
day from millions of users accessing the site via a broad
range of Web browsers and operating system platforms.
From experience gained in more than a decade of opera-
tion, NCBI has developed a set of principles concerning
what kind of client-side technology can be deployed as a
part of its Web services. These help to prevent access or
support issues, specifically those pertaining to configura-
tion or installation of the user's Internet access tools.
Therefore, any technology which cannot be expected to
work reliably with a standard client browser installation
right out of the box, typically cannot be used in public

NCBI Web services. For these reasons, NCBI Web pages
traditionally allow only the use of basic HTML and JavaS-
cript on the client, CGI/FCGI processes on the server, and
nothing more.

This approach has not been a severe limitation for the
operation of the classic collection of databases served by
NCBI. However, with the addition of the PubChem[2]
suite of databases, an obvious problem arose. Chemical
structure databases cannot be readily queried by structure
in a reasonable fashion using purely textual input and
standard HTML form elements. Users of chemical struc-
ture databases demand the capability to search by full-
structure or substructure, with a graphical rendition of the
query structure as input. Fragment name search, externally
generated and pasted SMILES/SMARTS[3]strings, or
upload of query files drawn with stand-alone chemical

Published: 17 December 2009

Journal of Cheminformatics 2009, 1:20 doi:10.1186/1758-2946-1-20

Received: 8 October 2009
Accepted: 17 December 2009

This article is available from: http://www.jcheminf.com/content/1/1/20

© 2009 Ihlenfeldt et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.jcheminf.com/content/1/1/20
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov
http://www.biomedcentral.com/info/about/charter/

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
structure drawing programs are awkward procedures and
do not yield a satisfactory user experience. It became very
clear that the PubChem structure search system needed a
method to allow users to draw their query structure inter-
actively, in an integrated fashion, and without the need of
external software.

This is, of course, not a new problem. Most of the structure
databases on the Web already have graphical structure
input tools. These traditionally come in two styles: Java
applets and browser plug-ins. A Java applet requires that
the client browser has a functional Java virtual machine
installed and correctly configured. While this may be a
condition easily satisfied by most browsers, there will
always be some fraction where an issue may crop up. For
example, if only one in ten thousand of NCBI's two mil-
lion world-wide users per day encounters and reports such
an issue, two hundred user requests will ensue, distracting
and diluting support capabilities. So, while there are quite
a number of capable Java-based structure editors such as
JME[4], JChemPaint[5]http://sourceforge.net/projects/
jchempaint/, JmolDraw[6], MCDL[7], SDA[8], or Mar-
vin[9], the use of any of these for PubChem was not pos-
sible. Relying on plug-ins such as the one from
ChemDraw[10], is even more problematic because plug-
ins are platform-dependent, and there are (to our knowl-
edge) no free chemical structure editor plug-ins which can
connect to arbitrary sites.

A very recent trend are first attempts to implement chem-
ical structure sketchers purely based on advanced client-
side JavaScript functionality, without required server
interaction. One example for this approach is jsmoledi-
tor[11]. Disadvantages of this approach are that these
applications only work on very recent browser releases
and make necessary limitations in the feature set. For
example, 2D-layout cleanup and import/export of various
chemical file formats typically involve a rather large code
base to implement them. Sending a large amount of Java-
Script code to a browser client in a dynamic per-session
fashion is not currently feasible. Nevertheless, it is not
unlikely that future Web sketchers will use more and more
JavaScript client-side intelligence and rely on server-side
functions only for more demanding computational tasks.

Design Considerations
Facing restrictions on the use of Java or platform-specific
solutions, we decided to go a completely new route in
implementing a full featured, dynamically interactive
Web-based structure editor. Like the approach pioneered
by in internal CIBA project[12] and then also taken up,
according to one of the reviewers as a direct result of see-
ing the CIBA prototype, by Daylight Grins http://
www.daylight.com/daycgi/testgrins, we considered to
move all the chemical structure processing functions of a

structure editor onto a server CGI, and to send a dynami-
cally generated sequence of images with the evolving
structure back to the client browser, but, unlike Daylight
Grins, the editor behaves much like an interactive applica-
tion with mouse movements being tracked as they are
being made, rather than requiring the user click on an
image to register their action. This type of software config-
uration would not require any applets or plug-ins on the
client and appeared to be feasible on any browser sup-
porting the display of images and basic JavaScript func-
tions

The WebME editor from Molinspiration, with a design
very similar to the PubChem sketcher, was released after
the PubChem sketcher had been publicly deployed for
several months. At the time of writing, it re-used functions
of the portable JavaScript mouse event code originally
written by us for the PubChem Sketcher. This code re-use
is not problematic - the sketcher JavaScript components
are US Government Work in the public domain. We have
been informed that the current version of this software is
now relying on a different event catching mechanism.

The bandwidth requirements for this model are not exces-
sive. Essentially, the client needs to capture and send
mouse events on an image area (not more than a couple
of dozen bytes per second), and to receive a sequence of
images. Since typical chemical structure drawings consist
mostly of a monochrome background, with sparse mono-
chrome lines and letters, these images were expected to
compress very well. They do not exceed a couple of kilo-
bytes for a reasonable-sized drawing area. Even with four
or five image updates per second, the required receiver
bandwidth would thus not exceed some ten kilobytes per
second. This poses certainly no problem for Internet
access via broadband and could be, after some throttling
of the data stream, acceptable even for dial-up via tradi-
tional phone line or ISDN connections. It is comparable
to the bandwidth requirements of Internet radio or
telephony, and certainly far less than streaming video. A
segmentation of the drawing area into panels in order to
further reduce the amount of data sent to the client was
considered, but not deemed necessary after these initial
calculations.

The server responsible for the update of the images must
be able to process multiple events per second in order to
guarantee a satisfactory user experience. Users expect
dynamic feedback as it is provided in standard stand-
alone structure editors, such as continuously updated
bond lines following the mouse cursor. Because of the
rapid sequence of events, the server CGI application has to
be of the FastCGI (FCGI)[13] variant, as even the 100 ms
start-up overhead of a classical CGI to process only an
individual event would be prohibitive.
Page 2 of 9
(page number not for citation purposes)

http://sourceforge.net/projects/jchempaint/
http://sourceforge.net/projects/jchempaint/
http://www.daylight.com/daycgi/testgrins
http://www.daylight.com/daycgi/testgrins

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
The general rules for the deployment of Web applications
at NCBI also require robustness and redundancy with fail-
over support. The sketcher system as it is currently
deployed at PubChem uses two independent multi-proc-
essor server hosts, and redundant database servers for stor-
ing state. To the user, this is invisible - servers are
transparently switched depending on the load during a
drawing session, and multiple server processes are run-
ning in parallel on each host. Nevertheless, these require-
ments for redundancy and parallelism needed to be taken
into account early in the design and coding of the applica-
tion because they are difficult to retrofit at a later stage.

Core Technology
The PubChem sketcher system is at its core a compara-
tively simple CACTVS[14]http://www.xemistry.com
cheminformatics toolkit application script. All sketcher
functionality on the server is implemented in ~2100 lines
of script code. Such efficiency is achieved considering
CACTVS provides most features required to code a struc-
ture editor. This includes: basic handling of chemical
structure objects; creation, deletion and modification of
atoms and bonds; a structure layout/cleanup algorithm; I/
O modules for the input and output of many structure
exchange formats, such as MDL MOL/SDF, ChemDraw
CDX/CDXML, ISIS drawing formats, ACD/Labs Chem-
Sketch files, Daylight SMILES/SMARTS, and InChI; basic
image output functionality, although some extra func-
tionality was added for this purpose (detailed in the next
section); FCGI and CGI data input and decoding func-
tions; and HTTP header output function, in its default
configuration. With such capabilities, writing a server for
this task is not difficult. Because the CACTVS script com-
mands are high-level, their execution as interpreted state-
ments is not a bottleneck. More than 90% of the execution
time spent in response to a client request is spent in C-
coded library routines and not the script interpreter.

As part of the general integration of CACTVS for the use
within the PubChem project, we added a couple of gen-
eral-purpose interface functions to the toolkit. These
include encoding and decoding of the PubChem ASN.1
binary and ASCII chemical structure representations and
functions to access the PubChem structure database and
queuing system. These are used in the specific version of

the sketcher deployed at NCBI in order to integrate the
application into the PubChem environment. However, if
no site-specific functions, such as state storage in the
queuing system or non-public direct retrieval of PubChem
structures via compound (CID) or substance (SID) identi-
fiers, are needed, the PubChem sketcher server process can
be run with a standard interpreter from the CACTVS
toolkit.

Image generation
One of the most critical functions of the sketcher is the
image generation functionality. At the lowest level, we are
using the GD library[15] to render the structure images,
sometimes with additional graphical feedback objects
such as lines and rectangles. Images are formatted in
memory as binary blobs and transferred to the client. The
default image format sent to the client browser is
PNG[16]. {Browsers not supporting PNG, e.g., Microsoft
Internet Explorer (IE) 4.0, are detected by JavaScript and
default to GIF[17] image format.} The reason for this
choice is that PNG formatted images turned out to be
smaller than GIF formatted images after standard process-
ing. Table 1 shows the image size for PubChem Com-
pound CID 2244 (aspirin)
(http:pubchem.ncbi.nlm.nih.gov/summary/sum
mary.cgi?cid=2244) drawn in the style used in the
sketcher (550 × 380 pixels, black atom symbols and bond
lines, white background, not interlaced).

By default, we draw both element symbols and lines in
anti-aliased fashion to improve visual appearance. Inter-
nally, this requires rendering on a 24-bit image object
because anti-aliasing requires many (often hundreds)
intermediate color shades. However, original true-color
24-bit images are big - too big to be readily sent directly to
the client. Therefore, we reduce the color space in a post-
processing step and transmit only 8-bit colormap-indexed
images. The GD library natively provides a colorspace
reduction function based on dithering. However, this
class of algorithm is primarily suited to photographs and
other images with large colored regions with compara-
tively subtle color changes from one pixel to the next. Line
drawings deteriorate notably and become fuzzy when
processed in this manner. In order to address this prob-
lem, we wrote a custom colorspace reduction function

Table 1: Image sizes for PubChem Compound CID 2244 as a function of image format.

Format Anti-aliased Drawing Byte count

24-bit true color PNG yes 8 511
8-bit colormap GIF, dithered yes 3 778
8-bit colormap GIF, color reduced yes 4 689
8-bit colormap PNG, color reduced yes 4 254
8-bit colormap GIF, original colormap no 2 151
8-bit colormap PNG, original colormap no 1 733
Page 3 of 9
(page number not for citation purposes)

http://www.xemistry.com
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=2244
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=2244

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
which simply determines the most common 24-bit colors,
with additional weight for colors far from any color
already represented as a colormap entry. All 24-bit colors
in the original image are then rounded to the closest
colormap entry. This resulting reduced 8-bit colormap
image is used for display. Each processed image varies in
size but is typically about 4 Kbytes. This size range is
unfortunately prone to encounter a size-related IE
browser PNG rendering bug http://support.micro
soft.com/?kbid=822071. We pad images in invisible com-
ment fields that have no effect on the display, as required
to circumvent this problem

With an update rate of four images per second, and the
HTTP header and TCP protocol overhead not exceeding a
few percent, the result is a bandwidth requirement of
roughly 128 Kbit/s. This is about the same as a quality
MP3 radio stream. Nevertheless, this may still be too
much for dialup connections or users experiencing signif-
icant network congestion to the PubChem website. In
order to accommodate users lacking sufficient network
bandwidth, a network speed control element to the user
interface is available. If the low-bandwidth option is cho-
sen, anti-aliasing is disabled (resulting in images with a
somewhat less pleasing visual appearance but that are less
than half the size of the smoothed version) and thus the
required sketcher bandwidth is within the capacity of a
single-channel ISDN connection (64 Kbit/s), even with-
out the reduction of the processed event rate (see below)
which is simultaneously enforced. These "low-speed"
images are directly rendered as 8-bit colormap images.
Because the sketcher uses only a few primary drawing
colors (black, red, blue, green, orange), there is no danger
of colormap overflow when not using anti-aliasing.

Under special circumstances, we send an additional type
of image to the client. In order to provide easily recogniz-
able visual feedback for error conditions, parts of the
structure (e.g., the offending atom, bond, or fragment) or
the whole image area are flashed orange. In order to
deliver a clear signal with reliable timing, and in order to
avoid the complication of having to send error condition
flags back to the client which then would need to request
additional images in the highlight sequence, we assemble
a non-cycling animated GIF in and transmit it as a single
image. If the flash area is small, this animated GIF is not
significantly different in size from a standard static image,
because the animated GIF specification allows the time-
controlled replacement of arbitrary sections of the base
image by small bitmaps. The last operation on the flash
sequence is to restore the original drawing, so that the
image can be retained as drawing area backdrop for nor-
mal operation. An animated variant of the PNG format
has been defined[18], but at this time it is not sufficiently
supported on Web browsers. The GD library (at the time

of writing) does not support the assembly of animated
GIF images. We had to add this functionality.

Client Side Processing
The part of the PubChem sketcher which is loaded by the
client browser consists of a couple of simple HTML pages
with embedded JavaScript functions. The main window
(see Figure 1) has three visible components and one invis-
ible component. The right section is the drawing area. This
area is (on recent browsers) covered by a simple 8-bit
colormap PNG image with the current structure. In
response to mouse events, it is dynamically replaced by
new server-generated images. Image replacements are
requested by client JavaScript functions - this is not a con-
tinuous image stream. The left section of the main win-
dow controls the sketcher mode. Besides a grid of buttons
and pull-down menus, whose visual appearance is toggled
by JavaScript utility functions and mirrors the internal
state of the sketcher, this area also contains (in its under-
lying HTML encoding) a Web form used to transmit cer-
tain information to/from the client, for example to
request import and export operations. The top section of
the main window is the status line, which displays contin-
uously updated textual information about the current
structure. Depending on the display style settings, this
field can show: SMILES, SMART, InChI, or SLN strings; or
molecular formula (provided with molecular weight).
This display area is not just a passive display - it is also
possible to paste string representations of chemical struc-
tures into this field and add them to the current structure
by hitting the return key.

A final component to the main window is a hidden frame,
which is not visible but essential for operation. This frame
is, besides the drawing area image, a second target of
server output. After a request by a client JavaScript func-
tion, the server will send synthesized JavaScript com-
mands into this frame, which (upon execution) update
the status line or transfer the current structure in various
encodings to Web pages that are linked to the sketcher and
want to receive the resulting structure data (e.g., the input
form of a structure search page). In order to facilitate data
exchange with other Web pages via cross-window script-
ing, all sketcher pages operate in a configurable JavaScript
document domain, usually set to a less specific domain
than that of the fully qualified host the sketcher pages are
served.

The most complicated task of the client-side JavaScript
code is to capture mouse events on the drawing area.
These events are then filtered, and at appropriate times an
update request is made to update the drawing area images
and/or the status line. The image is requested from the
server via a simple CGI-style GET URL, with parameters
encoding the current sketcher mode and event details.
Page 4 of 9
(page number not for citation purposes)

http://support.microsoft.com/?kbid=822071
http://support.microsoft.com/?kbid=822071

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
Since there can be an arbitrary number of parallel editing
sessions, and the PubChem server set-up employs multi-
ple hosts and parallel server processes, it is necessary to
identify each session. This is conveniently achieved by a
pseudo-random session ID that is automatically gener-
ated by a client-side JavaScript function the first time the
main window page is loaded. The session ID is, from then
on, a part of all future CGI URL parameters for that
sketcher session. Besides generating a session ID, the start-
up code also supports the pre-loading of the sketcher with
structure data from various sources, for example, SMILES
or SMARTS strings or PubChem CID, SID, or PubChem
Deposition System identifiers (used to edit structural data
in the process of being added to PubChem). This is done
by decoding the initial startup URL of the sketcher main
window and sending properly formatted preload instruc-
tions to the server when requesting the first drawing area
image.

Event management on the client consists of two main
tasks. First, event handlers for all events of interest need to
be registered. In a second step, these events must be fil-
tered and reduced to a manageable number and fre-
quency. Catching events is (unfortunately) far from

standard between different browsers. As a relic from the
"browser wars" of the 1990's, there are a number of mutu-
ally incompatible event models in different Web brows-
ers. Fortunately, tutorials and sample code on how to
capture and interpret events on all major browsers are not
difficult to find on the Web. Interested readers may want
to inspect the source code of the main sketcher window.
All involved JavaScript functions can be found there in un-
obfuscated form. The sketcher monitors mouse move-
ments, mouse button events (left and right button), and
keyboard events for shortcuts. State involved with mouse
operations is maintained on the client side in JavaScript
variables. For example, a mouse-button-up event is
reported to the server not just with the primary event and
its drawing area coordinates, but also with the initial but-
ton-down coordinates, and the status of control keys. The
server only stores the structure state, not all details about
where and when the current event began.

Some critical events, such as mouse-up, are nearly always
and immediately sent to the server - in case of mouse-up
events the second event in a double click sequence is only
discarded if the mouse coordinates did not change from
the first click, and the first click is always reported. Others,

The PubChem sketcher main window, with loaded compoundFigure 1
The PubChem sketcher main window, with loaded compound. The sketcher contains three visible sub-window sec-
tions: a drawing area (right), a mode control pad (left), and a status line (top).
Page 5 of 9
(page number not for citation purposes)

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
like mouse movements, are extensively filtered. The
number of original events generated by mouse movement
is dependent on the browser and operating system, and in
any case far exceeds the available bandwidth for image
updating. The client-side JavaScript code, therefore, needs
to throttle the sequence of events actually sent to the
server for processing. A number of different techniques are
applied for this purpose. First, a minimum distance of five
pixels from the point of the last reported event is required.
Since the server automatically snaps event coordinates to
close objects, pixel-exact positioning is not needed. Sec-
ond, the time since the last event report is taken into
account. If this period is beyond a threshold of 333 ms
and if the event would trigger a structure change or a
change of graphical feedback elements, the event is trans-
mitted to the server. Otherwise, a so-called "catch-up"
event report is scheduled to be delivered in 200 ms. This
timer is rescheduled anytime a new (dragged) mouse
movement event is recorded. An approach such as this
guarantees that an important event (and subsequently an
image update) is reported every 333 ms if there is any
major movement with display consequences. When the
mouse movement stops, an event is also reported a maxi-
mum of 200 ms after the halt, if there is a need for a graph-
ical update. This mechanism is used, for example, to make
sure that, while drawing a bond, the bond line stays
attached to the tip of the mouse cursor when the user
slows down and navigates with precision. This also allows
the bond line to lag during phases of rapid, less precise
movement. In low-bandwidth mode, only catch-up
mouse movement events are used, leading to a significant
reduction of the number of events processed on the server.
In typical editing operations, this leads to only ~30% of
the number of mouse movement events being actually
processed, as compared to the broadband setting. In com-
bination with the suppression of anti-aliasing, the band-
width requirement drops to about 20 Kbit/s.

Mouse events are not the only events associated with
drawing area coordinates. Some keyboard shortcuts also
use coordinates, such as ctrl-v for pasting a structure
encoding from the clipboard onto the drawing area. Other
keyboard shortcuts simply change the sketcher mode. A
description of all keyboard shortcuts is available in the
PubChem Sketcher help page http://
pubchem.ncbi.nlm.nih.gov/sketch/sketchhelp.html.

The update of the status line is filtered by a 250 ms delay
timer. Whenever the structure is likely to have changed,
for example as the result of a mouse-up event on the draw-
ing area and when the editor is not in certain purely
graphical modes such as rotation or mirroring, a CGI
request for the replacement of the contents of the hidden
frame is scheduled. Again, this request is not sent but
rescheduled if additional events occur. The timeout is,

however, sufficiently short to guarantee that the status line
contents have been updated at the time a user is able to,
for example, perform a clipboard selection on the con-
tents. When an update request is transmitted, the server
sends back dynamically generated JavaScript which
updates the status line and, potentially, other form fields
of linked pages. Note that it is not possible to simply write
two consecutive JavaScript requests for the update of both
the drawing area and the status line. The structure infor-
mation on the server-side is only updated when process-
ing drawing area events. However, it is entirely possible
and, in our experience, not uncommon that the status
update request is received on the server before the image
request because there is no guarantee of sequence preser-
vation on independent network connections for those
two requests. In that case, the status line would continue
to report the conditions before the last image update.

It is noteworthy that the client-side JavaScript functions
do not make use of any XMLHttpRequest object, the
centerpiece of typical Web2.0 applications. The use of this
construct does not yield any obvious benefits for this
application, and our method does work on older browsers
such as IE 4.0 which do not support this object.

Server-Side Processing
The actual structure manipulations in response to events
sent by the client are performed exclusively on the server
side. In the beginning of a sketcher session, the main page
of the sketcher is loaded by the client, where a session ID
is transmitted to the server and either an empty structure
object is created, a structure object is generated by decod-
ing a linear notation string (e.g., a SMILES, SMARTS, or
InChI), or a structure object is pulled directly from a
PubChem database subsystem (e.g., by CID). This struc-
ture object, and a second backup object for undo/redo
operations, remains associated with the session key.

When a client request is received, the structure object
belonging to the client is identified via the session key,
and manipulations are performed in accordance with the
request. The response is either: an image of the updated
structure, which is displayed in the sketcher drawing area
on the client; an HTML page with embedded JavaScript
commands sent to the invisible recipient frame, used to
update the status line and other form elements; or, in the
case of export commands, an actual chemical structure
encoded in various graphical or chemical structure
exchange formats. In any case, the resulting data is trans-
mitted by the standard HTTP protocol, with a suitable
MIME header prefixed to the actual result bytes.

Every server process can perform editing services for mul-
tiple parallel editing sessions. On a single-processor sin-
gle-core server, a couple of dozen parallel sessions do not
Page 6 of 9
(page number not for citation purposes)

http://pubchem.ncbi.nlm.nih.gov/sketch/sketchhelp.html
http://pubchem.ncbi.nlm.nih.gov/sketch/sketchhelp.html

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
generate any load, since in most cases the computation
time is only a few milliseconds, and, for a comparatively
large fraction of the lifetime of a session, nothing really
happens on the server other than interpretation of com-
paratively rare mouse events requiring action.

In case of a single server-side sketcher process, one easy
approach to remembering the structure data is to simply
keep it in memory. This is a mode well suited for sites
without a lot of traffic (and indeed one of the state storage
modes supported by the sketcher application). However,
in the PubChem environment, with two load balanced
multi-core, multi-processor servers each running four
sketcher server processes, and where each server-side
sketcher process can pick up an operation for any session
at any time, a non-local structure state store is required. In
that type of configuration, the structure data is retrieved
from the store at the beginning of every task, via an
unique key bound to the session ID, and, if anything is
changed, written back into the same storage slot when the
task has been completed. This is not as inefficient as it
may sound. The content of the structure store is a simple
serialized molecular data object, or more precisely a pair
of these objects in order to support undo/redo functional-
ity. Functions to encode and decode these objects effi-
ciently are already part of the Cactvs toolkit. The data size
of such an object, which stores basic connectivity plus
atom and bond attributes, including query specifications,
is usually a couple of kilobytes. The image data associated
with a structure is not stored in these blobs since it needs
to be regenerated after each structure change. The generic
database blob storage mechanism is part of the PubChem
queuing system. This system is implemented as moni-
tored database tables on a redundant set of MS SQL Server
hosts.

After considering the two sketcher extremes (single
sketcher process on single server or many sketcher proc-
esses on many servers), there are two additional structure
store mechanisms for an intermediate load configuration
suitable for single-host multiprocessor systems. The struc-
ture data may be saved into shared memory segments or
managed by a memory cache daemon (e.g., mem-
cached[19]), where it can be picked up from multiple proc-
esses on the same server. The other option is to run the
application script in a multi-threaded style, with a pool of
threads picking up individual CGI tasks and threads oper-
ating concurrently on different processors. However, these
two additional configurations are not currently deployed.

Communication
Structure data from the sketcher is transferred to form
input fields on pages which link to the sketcher by a push
mechanism, not by invoking a function on the recipient
form to retrieve the current sketcher contents. This push

mechanism is part of the update scheme for the status
line. Whenever the status line is updated, the server-gener-
ated JavaScript code which updates this form field will
also attempt to call various functions with predefined
names on the opener of the sketcher main window, if such
a window exists. Arguments to these functions are the cur-
rent structure content in various encodings. There is no
real need for a specific "done" button on the sketcher
mode panel. Its presence in the current interface is just
due to user expectations. It simply closes the sketcher win-
dow and its operation is indistinguishable from clicking
the equivalent window control element.

The function called in the secondary application window
that opened the sketcher can fill the passed data into its
application form fields or perform any other operation
with it. For example, the sketcher is also used as a tool in
a verification Web service for multi-record file uploads to
be used in parallel multi-structure queries in PubChem. In
this context, individual records of uploaded SD-files can
be sent to the sketcher and edited. A thumbnail of that
record is updated by the verification service with data
received from the sketcher, by passing it to a structure ren-
dering CGI. Since the transfer functions are called when-
ever the edited structure changes, the dependent form
contents or other data representations are continuously
updated during the editing process.

The classes of transfer functions, for which an attempt at
calling is made, are configurable in the sketcher set-up.
The underlying toolkit supports a large number of struc-
ture file formats, and any of these exchange formats can be
used, as well as custom functions to transfer the molecular
formula or various line notations such as SMILES,
SMARTS, SLN, InChI, JME strings, PubChem Minimols (a
compact file format designed specifically for PubChem
structure searching) or CACTVS serialized objects. The
transfer format used for PubChem structure queries is an
extended, backwards-compatible SMARTS version.

Usability and Usage Experiences
User feedback is generally very positive. In over two years,
there is only a single reported instance of a user who could
not get the sketcher to work because of severely restricted
Internet zone control settings in their Web browser. Other
observed failures were due to general server or network
problems, not due to any specific unresolved issues with
the sketcher implementation methodology. This may be
surprising to some considering that approximately 15% of
all PubChem Structure Search interactive users launch or
otherwise consistently use the PubChem Sketcher on a
daily basis.

We have set the various timers and timeout periods which
control event processing to yield a maximum refresh rate
Page 7 of 9
(page number not for citation purposes)

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
of three to four images per second in broadband connec-
tion mode. The maximum updates rates are reached while
performing drag operations with the mouse, where there
is continuous feedback by trailing bond lines or the cur-
rent location of moved or rotated structure parts. With
these settings, reports from users in Europe and Japan
indicated satisfactory usability even at these non-US loca-
tions. In regions with less developed infrastructure, it
helps that the sketcher can be operated without resorting
to any actions which provoke generation of a stream of
feedback images. Almost all functions are accessible by
means of isolated mouse clicks that change atoms, sprout
bonds at default angles, change bond orders, add tem-
plate fragments, and so on. If used in this style, the image
is only updated when the structure has really changed,
and there is no risk of an accumulating backlog of delayed
image updates which are prone to confuse a user when
they arrive late.

The sketcher has been used in unexpected and creative
fashions by an enterprising user community. It has been
praised as convenient interactive rendering tool for InChI
and SMILES strings. We have also observed numerous
attempts to access its rendering functions by batch scripts.
Some of these access attempts had to be suppressed
because they were not compatible with the NCBI access
rules. In the sketcher configuration deployed on the
PubChem site, the data transfer functions to fill linked
forms are intentionally only usable only by pages served
from within the NCBI domain. Linking the sketcher to
other Web services with automatic data transfer is not sup-
ported.

Summary
We have successfully implemented and deployed a new
class of Web-based chemical structure editor. It has been
in stable production use for more than two years. It is
freely accessible at http://pubchem.ncbi.nlm.nih.gov/
edit/.

By completely avoiding the need for a Java runtime, the
installation of plug-ins and any advanced features in cli-
ent Web browsers, we were able to provide an extremely
portable chemical structure editing system which works
on all major Web browsers, even those outdated by nearly
a decade, and is entirely operating-system independent.
The system has proven to be robust and reliable. The inter-
active responsiveness of the sketcher, while undoubtedly
less than applications based on locally executed code in
Plug-ins or Java virtual machines, was found to be suffi-
cient for its purpose and we have received scant com-
plaints. We therefore are convinced that our approach has
demonstrated clear benefits over competing approaches
for the input of chemical structures, especially in the con-
text of public databases that have a diverse user base with

a broad and unpredictable spectrum of browser software,
operating systems, and Internet access methods.

Availability and Requirements
The sketcher server application script and the complemen-
tary set of HTML pages and JavaScript functions are US
government work in the public domain. They can be
downloaded from ftp://ftp.ncbi.nlm.nih.gov/pubchem/
CACTVS/. The server script can be run with a generic
chemical Web script interpreter from the CACTVS toolkit
(free for academic use, http://www.xemistry.com/aca
demic) as long as no functions which require direct access
to the PubChem databases (CID/SID/DID retrieval, queu-
ing system database for state storage) are configured. The
latter functions are not available outside NCBI, or, in case
of CID and SID retrieval, only via different, slower con-
duits.

Installation instructions for the NCBI version of the
sketcher are part of the manual, which can be downloaded
as PDF or viewed as HTML pages. A working installation
needs to be assembled from the Open Source portable
application script and interface files downloadable from
NCBI, which can be freely modified and redistributed,
plus a proprietary generic closed-source script interpreter
suitable for the target server platform, which is for exam-
ple included in a feature-sufficient version in the standard
academic distribution of the Cactvs toolkit and can be
obtained from the Xemistry website.

The software is also available in an enhanced commercial
version from Xemistry GmbH.

Competing interests
EEB and SHB are NCBI employees. WDI is owner of Xem-
istry GmbH, and worked at NCBI as a contractor at the
time of the initial sketcher implementation. Xemistry
GmbH provides and supports more recent versions of the
sketcher.

Authors' contributions
WDI developed the core interpreter (existing software
licensed to NCBI, thus not US Government Work), the
application script and the user interface. EEB performed
integration work. This paper was typed by WDI and EEB.
SHB is the principal investigator for the PubChem project.

Acknowledgements
This research was supported [in part] by the Intramural Research Program
of the NIH, National Library of Medicine.

References
1. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin

V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY,
Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL,
Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD,
Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starch-
Page 8 of 9
(page number not for citation purposes)

http://pubchem.ncbi.nlm.nih.gov/edit/
http://pubchem.ncbi.nlm.nih.gov/edit/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/CACTVS/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/CACTVS/
http://www.xemistry.com/academic
http://www.xemistry.com/academic

Journal of Cheminformatics 2009, 1:20 http://www.jcheminf.com/content/1/1/20
Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

enko G, Tatusova TA, Wagner L, Yaschenko E, Ye J: Database
resources of the National Center for Biotechnology Infor-
mation. Nucleic Acids Res 2009:D5-15.

2. Bolton EE, Wang Y, Thiessen PA, Bryant SH: PubChem: Inte-
grated Platform of Small Molecules and Biological Activities.
Annu Rep Comput Chem 2008, 4:217-241.

3. Weininger D: SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules.
J Chem Inf Comput Sci 1988, 28(1):31-36.

4. Molinspiration Cheminformatics [http://www.molinspira
tion.com]

5. Krause S, Willighagen E, Steinbeck C: JChemPaint - Using the
Collaborative Forces of the Internet to Develop a Free Edi-
tor for 2D Chemical Structures. Molecules 2000, 5:93-98.

6. JMolDraw [http://sourceforge.net/projects/jmoldraw/]
7. MCDL [http://sourceforge.net/projects/mcdl/]
8. ACD/Structure Drawing Applet [http://www.acdlabs.com/

products/java/sda/]
9. ChemAxon chemistry software toolkit [http://

www.chemaxon.com/]
10. CambridgeSoft Desktop Software - ChemDraw [http://

www.cambridgesoft.com/software/ChemDraw/]
11. jsMolEditor - Molecule Editor of JavaScript [http://chem

hack.com/jsmoleditor/]
12. Ertl P, Jacob O: WWW-based chemical information system.

Theochem 1997, 419:113-130.
13. FastCGI [http://www.fastcgi.com/]
14. Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki S: Computation and

management of chemical properties in CACTVS: An exten-
sible networked approach toward modularity and compati-
bility. J Chem Inf Comput Sci 1994, 34(1):109-116.

15. gdLibrary [http://www.libgd.org/Main_Page]
16. Portable Network Graphics [http://www.libpng.org/pub/png/]
17. GIF89a Specification [http://www.w3.org/Graphics/GIF/spec-

gif89a.txt]
18. Multiple-image Network Graphics [http://www.libpng.org/pub/

mng/]
19. Memcached: a distributed memory object caching system

[http://www.danga.com/memcached/]
Page 9 of 9
(page number not for citation purposes)

http://www.molinspiration.com
http://www.molinspiration.com
http://sourceforge.net/projects/jmoldraw/
http://sourceforge.net/projects/mcdl/
http://www.acdlabs.com/products/java/sda/
http://www.acdlabs.com/products/java/sda/
http://www.chemaxon.com/
http://www.chemaxon.com/
http://www.cambridgesoft.com/software/ChemDraw/
http://www.cambridgesoft.com/software/ChemDraw/
http://chemhack.com/jsmoleditor/
http://chemhack.com/jsmoleditor/
http://www.fastcgi.com/
http://www.libgd.org/Main_Page
http://www.libpng.org/pub/png/
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://www.libpng.org/pub/mng/
http://www.libpng.org/pub/mng/
http://www.danga.com/memcached/

	Abstract
	Introduction
	Design Considerations
	Core Technology
	Image generation
	Client Side Processing
	Server-Side Processing
	Communication
	Usability and Usage Experiences
	Summary
	Availability and Requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

