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ABSTRACT

This article presents a numerical investigation of the pulsatile flow of non-Newtonian Casson fluid through a rectangular channel with sym-
metrical local constriction on the walls. The objective is to study the heat transfer characteristics of the said fluid flow under an applied
magnetic field and thermal radiation. Such a study may find its application in devising treatments for stenosis in blood arteries, design-
ing biomechanical devices, and controlling industrial processes with flow pulsation. Using the finite difference approach, the mathematical
model is solved and is converted into the vorticity-stream function form. The impacts of the Hartman number, Strouhal number, Cas-
son fluid parameter, porosity parameter, Prandtl number, and thermal radiation parameter on the flow profiles are argued. The effects on
the axial velocity and temperature profiles are observed and argued. Some plots of the streamlines, vorticity, and temperature distribu-
tion are also shown. On increasing the values of the magnetic field parameter, the axial flow velocity increases, whereas the temperature
decreases. The flow profiles for the Casson fluid parameter have a similar trend, and the profiles for the porosity parameter have an oppo-
site trend to the flow profiles for the magnetic field parameter. The temperature decreases with an increase in the Prandtl number. The
temperature increases with an increase in the thermal radiation parameter. The profile patterns are not perfectly uniform downstream of
the constriction.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0036738., s

Nomenclatures

B uniform magnetic field
Cp specific heat
Da porosity parameter
E electric field
J current velocity
J electric field
k thermal conductivity
M Hartman number
Pr Prandtl number
Rd radiation parameter
Re Reynolds number of the flow
St Strouhal number
T period of the flow pulsation

U characteristic flow velocity
U characteristic flow velocity
β Casson fluid parameter
μ dynamic viscosity
μm magnetic permeability of the medium
ν kinematic viscosity
ρ density
σ electric conductivity

I. INTRODUCTION

In various engineering and biomechanical applications, non-
Newtonian fluid (NNF) flows in constricted channels are of partic-
ular interest. Early studies related to the constricted channels dis-
cussed simple steady and laminar flows in the channel, such as Lee1
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and Huwang.2 Mahapatra et al.3 studied unsteady laminar flows in
a constricted channel. The next level of relevant studies involves the
pulsating motion of the flow in a constricted channel, such as Tutty4

and Mittal.5 Isler et al.6 discussed the pulsatile flow along with equi-
librium states in a constricted channel. Bandyopadhay and Layek7

numerically studied the pulsatile flow in a locally constricted chan-
nel in detail. The research of the pulsating motion of Newtonian
and non-Newtonian flows also finds its applications in understand-
ing the blood flow, especially in the stenotic arteries. Because of the
pulse’s cyclic nature, the blood flow in a living body is intrinsically
unstable and pulsative. Its study is challenging in both experimen-
tal and computational research. The flow pattern may be laminar
or turbulent due to the position and function of the blood vessels.
If the Reynolds number is low, the blood flow is laminar and pul-
satile in small arteries; however, the Reynolds number is usually
high in large arteries, and the blood flow is turbulent. The wall shear
stress (WSS) and pressure play a considerable role in hemodynam-
ics in arteries. Therefore, it is crucial to comprehend the dynamics
of these sorts of pulsatile flows. Clark8 studied both pulsatile and
non-pulsatile flows via nozzle style stenosis and stated highly dis-
turbed flow statistics and the Reynolds number’s effect on velocity
fluctuations. Shirai and Masuda9 numerically studied the passing
of neutrophil through a rectangular channel with a moderate con-
striction. Chakravarty10 discussed the unsteady pulsatile flow in an
artery with an irregular surface. Liu and Yamaguchi11 explained the
waveform dependence of the pulsatile flow in the stenosed chan-
nel. Khair et al.12 discussed the transition of a pulsatile flow from
the laminar to the turbulent regime in the constricted channel. Hir-
tum13 attempted to explain in detail the analytic modeling of the
flow in constricted channels. Mustapha et al.14 numerically sim-
ulated unsteady blood flow in an arterial section having a pair
of stenosis.

In recent years, the analysis of non-Newtonian flows under the
impact of the magnetic field has attained tremendous attention due
to its large number of uses in medical science. Examples include
the cosmetic industry, solidification of fluid crystals, extrusion of
polymer liquids, cooling of a metallic plate in a bath, dying of tex-
tile and paper, petroleum industries, magnetohydrodynamic (MHD)
pumps and generators, the motion of artificial dialysis, and biolog-
ical liquids. To analyze several rheological possessions, some inves-
tigators have proposed diverse non-Newtonian liquid models, one
of which is the Casson liquid model. Casson15 proposed the Casson
liquid model and established that it does not follow the Newtonian
law of viscosity. The model was established to be more appropri-
ate for rheological data than other NNF models, such as chocolate
and blood flows. Sankar and Lee16 discussed the impact of magne-
tohydrodynamics on pulsatile blood flow as Casson flow via slightly
constricted arteries. Sankar et al.17 examined the blood pulsatile flow
in narrow arteries by treating blood flow as Casson fluid (CF) in
the core layer and cell reduced plasma as Newtonian fluid (NF) in
the exterior layer. Bali and Awasthi18 examined the blood flow via
a multi-stenosed artery under the impact of the applied magnetic
field. Padma et al.19 presented a model for the non-Newtonian blood
flow, taking into account Jeffery fluid with a mild stenosis artery.
Iqbal et al.20 investigated the influence of an inclined magnetic field
on micropolar CF over a stretching sheet with the effects of viscous
dissipation. Reddy et al.21 analyzed the molecular dynamics analy-
sis on transient MHD Casson liquid flow dispersion past a vertical

radiative cylinder. Shit and Majee22 studied the pulsatile MHD
blood flow and heat transfer in arteries with the vibrating body.
Some inquiries involving the peristaltic motion of NNF and NF are
provided in Refs. 23–26.

The consideration of heat transfer of Newtonian and NNF in
a channel has become essential due to its tremendous applications
in engineering and biomechanics. Moschandreu and Zamir27 stud-
ied the pulsatile flow within a pipe among constant heat flux at the
wall to define how pulsation affects the heat transfer rate and how
the phenomenon be influenced by the Prandtl number and the fre-
quency of pulsation. Ji et al.28 performed experiments to enhance
the heat transfer in pulsating flow in a heated rectangular cylin-
der. Elshafei et al.29 stated that the heat transfer method would be
deteriorated by pulsations related to the results found under steady
flow. Blythman et al.30 explored the heat transfer of pulsating flow
in a rectangular channel. Aman et al.31 evaluated the heat trans-
fer in an unsteady MHD flow of CF over a vertical oscillated plate.
Hussanan et al.32 analyzed CF under the impact of thermal radia-
tion on the wall via an oscillating vertical plate among Newtonian
heating. Srinivas et al.33 explored the influence of thermal radiation,
diffusion, and chemical reaction of a CF’s hydro-magnetic pulsatile
flow in a porous channel. Ullah et al.34 analyzed the influence of
chemical reaction, viscous dissipation, and heat generation of CF
over a cylinder subject to suction/blowing. Khan et al.35 argued
the heat transfer characteristics of SWCNT and MWCNT for CF’s
mixed convection Poiseuille flow with a vertical channel. Ahmed
and Arafa36 presented a mathematical formulation and numerical
simulations of an unsteady MHD non-Newtonian nanofluid flow
and entropy generation over a vertical plate using the fractional
derivatives approach. Kumar et al.37 analyzed the comparative (3D)
model for Casson-nanofluid and Carreau-nanofluid flows due to a
flat body in a MHD stratified environment. For steady and pulsatile
flows, Ali et al.38 investigated the flow behavior and CF’s electrically
conducted separation region via a 2D porous channel that followed
Darcy’s law.

The objective of the present work is to numerically explore the
heat transfer in the pulsatile flow of non-Newtonian CF in a locally
constricted channel in the presence of an applied magnetic field,
which is not considered yet. The unsteady governing model is con-
verted by using the vorticity-stream function approach and solved
using a computational scheme based on the finite difference method
(FDM). The impact of the Hartman number (M), Strouhal num-
ber (St), Casson parameter (β), porosity parameter (Da), Prandtl
number (Pr), and radiation parameter (Rd) on the flow profiles is
discussed. In particular, the influence of the relevant flow controlling
parameters on the axial velocity and temperature profiles is observed
and argued.

The subsequent part of the article is organized as follows: Sec. II
explains the mathematical formulation, boundary conditions, and
transformation of themodel in terms of vorticity-stream function. In
Sec. III, the numerical method is defined. The outcomes and relevant
discussion are presented in Sec. IV. Finally, in Sec. V, the findings are
summarized.

II. MATHEMATICAL FORMULATION

We study an incompressible electrically conducting fluid,
which is supposed to be laminar at the Reynolds number of 700,

AIP Advances 11, 025324 (2021); doi: 10.1063/5.0036738 11, 025324-2

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 1. Pulsatile Casson fluid flow channel with constricted walls having porous
medium.

flowing through a rectangular porous channel. As shown in Fig. 1,
the lower and upper walls of the channel have constrictions. B (uni-
formmagnetic field) is applied to the walls perpendicularly, whereas,
J (electric field) is applied normally to the flow plane. Therefore,
we consider flow direction to be along the x̃-axis and the direc-
tion of B is along the ỹ-axis by taking Cartesian coordinate system(x̃, ỹ). The temperature due to the thermal radiation at the lower and
upper walls are T1 and T2, respectively. The rheological equation for
incompressible CF is as follows:39

τij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(μβ + Py/√2π)eij π > πc

2(μβ + Py/√2πc)eij π < πc ,
where π = eijeij and eij are the (i, j) th component of deformation rate,
μβ denotes the NNF’s plastic dynamic viscosity, Py denotes the fluid’s
yield stress, π expresses the product of the component of deforma-
tion rate itself, and πc denotes a critical value dependent on the NNF
model of this product.

The unsteady incompressible Navier–Stokes equations repre-
senting the flow phenomenon are given as follows:

The continuity equation,

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0, (1)

the momentum equations,

∂ũ

∂ t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= −

1

ρ

∂p̃

∂x̃
+ ν(1 + 1

β
)∇2

ũ +
1

ρ
(J × B)x − νk ũ, (2)

∂ṽ

∂ t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ
= −

1

ρ

∂p̃

∂ỹ
+ ν(1 + 1

β
)∇2

ṽ −
ν

k
ṽ, (3)

and the heat equation,

∂T̃

∂ t̃
+ ũ

∂T̃

∂x̃
+ ṽ

∂T̃

∂ỹ
=

k

ρCp
∇

2
T̃ −

1

ρCp

∂q

∂ỹ
, (4)

where q = −( 4σ
3k

∂T̃4

∂ỹ
) is the radiative heat flux. Expanding T̃4 about

T∞ and ignoring higher-order terms, we get

T̃4
≅ 4T3

∞T̃ − 3T4
∞
,

Then q = −(4σ
3k

4T
3
∞

∂T̃

∂ỹ
) and ∂q

∂ỹ
= −(16σ

3k
T
3
∞

∂
2T̃

∂ỹ2
).

Equation (4) becomes

∂T̃

∂ t̃
+ ũ

∂T̃

∂x̃
+ ṽ

∂T̃

∂ỹ
=

k

ρCp
(∂2T̃

∂x̃2
+
∂
2T̃

∂ỹ2
) + 16σT3

∞

3kρCp

∂
2T̃

∂ỹ2
, (5)

where ũ and ṽ are the velocity components along x̃- and ỹ-axes,
respectively, p̃ denotes the pressure, ρ denotes the density,U denotes
the characteristic flow velocity, ν denotes the kinematic viscosity, β
denotes the CF parameter, and T̃ denotes the temperature. k denotes
the thermal conductivity, Cp denotes the specific heat, J ≡ (Jx, Jy, Jz)
denotes current velocity,B ≡ (0,B0, 0) denotes themagnetic field, B0

denotes the strength of the uniform magnetic field, σ denotes elec-
tric conductivity, μ denotes dynamic viscosity, and μm denotes the
magnetic permeability of the medium. If E ≡ (Ex,Ey,Ez) denotes
the electric field such that the electric current flows along the nor-
mal to the plane of the flow, then, E ≡ (0, 0,Ez). Moreover, from
Ohm’s law,

Jx = 0, Jy = 0, Jz = σ(Ez + ũB0). (6)

For the steady flow, Maxwell’s equation ∇ × E = 0 implies that Ez is
constant. For the current study, we suppose that Ez = 0. Then, Eq. (6)
gives Jz = σũB0. Therefore, J × B = −σũB

2
0. Hence, Eqs. (2) and (3)

become

∂ũ

∂ t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= −

1

ρ

∂p̃

∂x̃
+ ν(1 + 1

β
)∇2

ũ −
1

ρ
σũB2

0 −
ν

k
ũ. (7)

The following quantities are considered to obtain the dimensionless
form of the governing model:

x =
x̃

L
, y =

ỹ

L
, u =

ũ

U
, v =

ṽ

U
, t =

t̃

T
, Da =

ν

U
√
k
, θ =

T̃ − T2

T1 − T2

p =
p̃

ρU2
, Re =

UL

ν
, St =

L

UT
, M = B0L

√
σ

ρν
,

Pr =
μCp

k
,Rd =

16σT3
∞

3kρCp
.

(8)

Here, T is the period of the flow pulsation, Re is the Reynolds num-
ber of the flow, St is the Strouhal number,M is the Hartman number,
Da is the porosity parameter, U is the characteristic flow velocity, Pr
is the Prandtl number, and Rd is the radiation parameter.

Equations (1)–(3) and (5) are converted to following equations,
respectively, by using quantities given in (8):

∂u

∂x
+
∂u

∂y
= 0, (9)

St
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

1

Re
(1 + 1

β
)∇2

u

−
M2

Re
u − ReD

2
au, (10)

St
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

1

Re
(1 + 1

β
)∇2

v − ReD
2
av, (11)

St
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

Re

1

Pr
(∂2θ

∂x2
+
∂
2θ

∂y2
+ Rd

∂
2θ

∂y2
). (12)
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A. Channel wall geometry

The channel walls are defined by

y1(x) = ⎧⎪⎪⎨⎪⎪⎩
h1
2
[1 + cos( πx

x0
)], ∣x∣ ≤ x0

0, ∣x∣ > x0 ,

y2(x) = ⎧⎪⎪⎨⎪⎪⎩
1 − h2

2
[1 + cos( πx

x0
)], ∣x∣ ≤ x0

1, ∣x∣ > x0 ,
(13)

where the lower and upper walls are represented by y = y1(x) and
y = y2(x)with constriction’s height h1 and h2, respectively. The con-
strictions are spanned from x = −x0 to x = x0 with its center at x = 0.
Thus, the length of a constriction is 2x0.

B. Vorticity-stream function formulation

Dimensionless form of themomentum equation is transformed
from primitive variables (u, v) to vorticity-stream functions (ψ,ω)
as

u =
∂ψ

∂y
, v = −

∂ψ

∂x
,ω =

∂v

∂x
−
∂u

∂y
. (14)

To compute the WSS, the expression is given as

τ = μn̂ × ωwall, (15)

where n̂ is the normal vector and ωwall is the vorticity at the wall.
40

As vorticity andWSS are orthogonal to each other, the expression of
vorticity can also be used to measure the WSS.41

By taking the derivative of Eq. (10) w.r.t. “y” and Eq. (11) w.r.t.
“x”, then subtracting, we get

St
∂

∂t
(∂v
∂x
−
∂u

∂y
) + u

∂

∂x
(∂v
∂x
−
∂u

∂y
) + v

∂

∂y
(∂v
∂x
−
∂u

∂y
)

=
1

Re
[ ∂2

∂x2
(∂v
∂x
−
∂u

∂y
) + ∂

2

∂y2
(∂v
∂x
−
∂u

∂y
)](1 + 1

β
)

−
M2

Re

∂u

∂y
+ ReD

2
aω. (16)

Using the quantities (14), the following vorticity transport equation
is obtained:

St
∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y
=

1

Re
[∂2ω

∂x2
+
∂
2ω

∂y2
](1 + 1

β
)

+
M2

Re

∂
2ψ

∂y2
+ ReD

2
aω. (17)

In addition, for the stream function (ψ), the Poisson equation is
given as

∂
2ψ

∂x2
+
∂
2ψ

∂y2
= −ω, (18)

whereas ω and ψ are the non-primitive variables.

C. Transformation of the coordinates

The constricted portion of the channel is transformed
into a straight one by incorporating the following coordination
transformation:

ξ = x,η =
y − y1(x)

y2(x) − y1(x) . (19)

By using (19), the lower and upper walls of the channel are defined
by η = 0 and η = 1, respectively, and Equations (17), (18), and (12)
are converted into the new coordinate system (ξ,η) given in the
following equations:

St
∂ω

∂t
+ u(∂ω

∂ξ
−Q

∂ω

∂η
) + vD

∂ω

∂η

=
1

Re
(1 + 1

β
)[∂2ω

∂ξ2
− (P − 2QR)∂ω

∂η
− 2Q

∂
2ω

∂ξ∂η

+(Q2
+D

2)∂2ω

∂η2
] + M2

Re
D

2 ∂
2ψ

∂η2
+ ReD

2
aω(20), (20)

∂
2ψ

∂ξ2
− (P − 2QR)∂ψ

∂η
− 2Q

∂
2ψ

∂ξ∂η
+ (Q2

+D
2)∂2ψ

∂η2
= −ω, (21)

St
∂θ

∂t
+ u(∂θ

∂ξ
−Q

∂θ

∂η
) + vD

∂θ

∂η

=
1

RePr
[∂2θ

∂ξ2
− (P − 2QR)∂θ

∂η
− 2Q

∂
2θ

∂ξ∂η

+ (Q2
+D

2
+ RdD

2)∂2θ

∂η2
], (22)

where

P = P(ξ,η) = ηy′′2 (ξ) + (1 − η)y′′1 (ξ)
y2(ξ) − y1(ξ) ,

Q = Q(ξ,η) = ηy′2(ξ) + (1 − η)y′1(ξ)
y2(ξ) − y1(ξ) ,

R = R(ξ) = y′2(ξ) − y′1(ξ)
y2(ξ) − y1(ξ) , D = D(ξ) = 1

y2(ξ) − y1(ξ) .
(23)

The velocity components u and v take the form

u = D(ξ)∂ψ
∂η

, v = Q(ξ,η)∂ψ
∂η
−
∂ψ

∂ξ
. (24)

D. Boundary conditions

For obtaining the boundary conditions for the flow problem
under consideration, the dimensionless form of Eq. (7) is solved. For
the steady case, the flow between two parallel plates in the presence
of B0 and Ez , the equation of motion (2) becomes

ρν(1 + 1

β
)∂2ũ

∂ỹ2
− σũB2

0 − ρ
ν

k
ũ =

∂p̃

∂x̃
+ σEzB0. (25)

Here, Ez and
∂p̃

∂x̃
are constants and all the other variables depend only

on ỹ.
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Now, we non-dimensionalize Eq. (25) by using the dimension-
less quantities (8), and we get

g
d2u

dy2
−M

2
1u =

L2

ρνU
(∂p̃
∂x̃

+ σEzB0), (26)

where g = (1 + 1
β
) andM2

1 = (M2 + Re2Da2). Equation (26) has the

following solution:

u(y) = 1

8

M2

M2
1

⎡⎢⎢⎢⎢⎢⎣
cosh(M

2
)[cosh( M1

2
√

g
) − cosh( M1

√

g
(y − 1

2
))]

sinh2(M
4
) cosh( M1

2
√

g
)

⎤⎥⎥⎥⎥⎥⎦
,

v = 0,M ≠ 0 (27)

where

M2 cosh(M
2
)

8sinh2(M
4
) = − L2

ρνU
(∂p̃
∂x̃

+ σEzB0). (28)

The outlet boundary conditions are treated as for fully developed
flows. For the pulsatile flow, the flow is considered sinusoidal,

u(y, t) = u(y)∥1 + sin(2πt)∥, v = 0. (29)

Furthermore, u = 0 and v = 0 (i.e., no-slip conditions) are considered
on the walls.

The initial condition for the stream function (ψ) and the
vorticity (ω) at the walls in the (ξ,η) system are given by

ψ = 0, for all t ≤ 0

ω = 0, for all t ≤ 0
.

The resulting solution with necessary manipulations and transfor-
mation as defined in (19) produces the following boundary condi-
tions. The boundary conditions for ψ in the (ξ,η) system are given
as follows:

ForM ≠ 0,

ψ =

⎡⎢⎢⎢⎢⎢⎣
M2√g cosh(M

2
)( M1
√

g
cosh( M1

2
√

g
)η − sinh( M1

√

g
(η − 1

2
)))

8M3
1sinh

2(M
4
) cosh( M1

2
√

g
)

⎤⎥⎥⎥⎥⎥⎦
× ∥1 + ε sin(2πt)∥, (30)

forM = 0 and Da = 0,

ψ =
1

6g
(3η2 − 2η3)∥1 + ε sin(2πt)∥, (31)

and forM = 0 and Da ≠ 0,

ψ =
2

Re2Da2
[η − √g

ReDa
(sinh(g1) − cosh(g1) tanh( g1

2
))]

× ∥1 + ε sin(2πt)∥. (32)

Here,

g = (1 + 1

β
),M2

1 = (M2
+ Re

2
Da

2),g1 = ReDaη√
g

,

and ε is the amplitude of the sinusoidal flow pulsation. ε = 0 for
the steady flow, and ε = 1 for the pulsatile flow conditions. The wall
boundary conditions for ψ are obtained at the upper and lower walls
using η = 0 and η = 1, respectively, in (25)–(27).

The wall boundary conditions for ω in the (ξ,η) system,
obtained from Eq. (14), are given by

ω = −[(Q2
+D

2)∂2ψ

∂η2
]
η=0,1

. (33)

The wall boundary conditions for θ in (ξ,η) system are given by

θ = 1, at η = 0
θ = 0, at η = 1

}. (34)

As for fully developed flows, the outlet boundary conditions are
viewed. In addition, on the walls, no-slip conditions are considered.

III. NUMERICAL METHOD

The numerical solution of Eqs. (20)–(22) subject to the bound-
ary conditions defined in Sec. II D is computed using FDM over
a uniform structured grid. The computational domain is taken as{(ξ,η)∣ξ ∈ ∥−x1, x1∥ andη ∈ ∥0, 1∥}. To ensure the stability of the
numerical scheme, the step sizes are taken as follows: Δt = 0.000 25
for the steady case, and Δt = 0.000 05 for the pulsatile flow with Δξ
= 0.05, and Δη = 0.02. Thus, the domain is discretized by a grid of
400 × 50 elements. Furthermore, the length of each of the symmet-
ric constriction is considered as 2x0 = 4 with heights h1 = h2 = 0.35;
hence, the channel width, therefore, remains 30% at the throat of
the constriction of the channel width. The solution at time level l is
known, whereas the solution at each time level l + 1, for l = 0, 1, 2, . . .,
is computed. At each time level l + 1, first, Eq. (21) is solved for the
stream function ψ = ψ(ξ,η) using the central differences for the dis-
cretization of the space derivatives and the well-known TDMA (Tri-
Diagonal Matrix Algorithm) for the linear system. Second, Eqs. (22)
and (20) are solved for ω = ω(ξ,η) and θ = θ(ξ,η), respec-
tively, using the well-known ADI (Alternating Direction Implicit)
scheme. For this, the time derivative is discretized using the for-
ward/backward difference. The initial conditions for ψ, ω, and θ at
time level l = 0 are set as zero.

By discretizing, Eq. (21) at any time level l + 1, where l = 0, 1,
2, . . ., and skipping the superscript l + 1 from ψ for simplicity and
maintaining the uniformity, takes the form

ψi+1,j − 2ψi,j + ψi−1,j(dξ)2 − (Pi,j − 2Qi,jRi)ψi,j+1 − ψi,j−1

dη

− 2Qi,j
ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4dξdη

+ (Q2
i,j +D

2
i )ψi,j+1 − 2ψi,j + ψi,j−1(dη)2 = −ωl

i,j. (35)

After rearranging, Eq. (35) takes the form

a(j)ψi,j−1 + b(j)ψi,j + c(j)ψi,j+1 = s(j) (36)
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where a(j), b(j), c(j), and s(j) are given as follows:

a(j) = Pi,j − 2Qi,jRi

2dη
+
Q2

i,j +D2
i(dη)2 ,

b(j) = − 2(dξ)2 − 2(dη)2 (Q2
i,j +D

2
i ),

c(j) = −Pi,j − 2Qi,jRi

2dη
+
Q2

i,j +D2
i(dη)2 ,

(37)

s(j) = −ωl
i,j − (ψi+1,j + ψi−1,j(dξ)2 )

+ 2Qi,j
ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4dηdξ
.

For every i = 2, 3, . . ., n − 1, Eq. (36) represents a linear tridiagonal
system (for j = 2, 3, . . ., m − 1). TDMA with the over–relaxation
parameter λ = 1.3 is used for solving the system.

The vorticity at the upper and lower walls are given by, for
i = 1, 2, 3, . . ., n,

ωl
i,1 = −2(Q2

i,1 +D
2
i )ψi,2 − ψi,1(dη)2 ,

ωl
i,m = −2(Q2

i,m +D
2
i )ψi,m−1 − ψi,m(dη)2

, (38)

For solving Eq. (20), the solution is computed at the time level l + 1/2
using the solution at the time level l, for l = 0, 1, 2, . . ., in the first half-
step of the ADI process, by taking step size Δt/2. At time level l (the
explicit scheme) and l + 1/2 (the implicit scheme), the derivatives of
ω are discretized in the ξ-direction and η-direction, respectively. i.e.,

St
⎛⎜⎝
ω
l+ 1

2

i,j − ω
l
i,j

Δt/2
⎞⎟⎠ + ui,j

⎛⎜⎝
ωl
i+1,j − ω

l
i−1,j

2dξ
−Qi,j

ω
l+ 1

2

i,j+1 − ω
l+ 1

2

i,j−1

2dη

⎞⎟⎠
+ vi,jDi

ω
l+ 1

2

i,j+1 − ω
l+ 1

2

i,j−1

2dη

=
g

Re

⎛⎜⎝
ωl
i+1,j − ω

l
i,j + ω

l
i−1,j(dξ)2 − (Pi,j − 2Qi,jRi)ω

l+ 1
2

i,j+1 − ω
l+ 1

2

i,j−1

2dη

− 2Qi,j

ωl
i+1,j+1 − ω

l
i+1,j−1 − ω

l
i−1,j+1 + ω

l
i−1,j−1

4dηdξ

⎞⎠
+
M2

Re
D

2
i

ψi,j+1 − 2ψi,j + ψi,j−1(dη)2 + ReD
2
aω

l+ 1
2

i,j . (39)

After rearranging, Eq. (39) takes the form

A(j)ωl+ 1
2

i,j−1 + B(j)ωl+ 1
2

i,j + C(j)ωl+ 1
2

i,j+1 = S(j), (40)

where

A(j) = ui,j Qi,j

2dη
− vi,j

Di

2dη
− g

Pi,j − 2Qi,jRi

2dηRe
− g

Q2
i,j +D2

i

Re(dη)2
B(j) = St

Δt/2 + g
2(Q2

i,j +D2
i )

Re(dη)2 − ReD
2
a,

C(j) = −ui,j Qi,j

2dη
+ vi,j

Di

2dη
+ g

Pi,j − 2Qi,jRi

2dηRe
− g

Q2
i,j +D2

i

Re(dη)2 ,

S(j) =( ui,j
2dξ

+
g

Re(dξ)2 )ωi−1,j + (− ui,j

2dξ
+

g

Re(dξ)2 )ωl
i+1,j

+
St

Δt/2ωi,j −
2g

Re(dξ)2ωi,j

−
2g

Re
Qi,j

ωl
i+1,j+1 − ω

l
i+1,j−1 − ω

l
i−1,j+1 + ω

l
i−1,j−1

4dηdξ

+
M2

Re
D

2
i

ψi,j+1 − 2ψi,j + ψi,j−1(dη)2 , (41)

For every i = 2, 3, . . ., n − 1, Eq. (40) represents a linear tridiagonal
system (for j = 2, 3, . . ., m − 1). TDMA with the over-relaxation
parameter λ = 1.3 is used for solving the system.

The solution is computed at the time level l + 1 using the solu-
tion at the time level l + 1/2, for l = 0, 1, 2, . . ., in the second half-step
of the ADI process, by taking step size Δt/2. At time level l + 1/2 (the
explicit scheme) and l + 1 (the implicit scheme), the derivatives of ω
are discretized in the η-direction and ξ-direction, respectively, i.e.,

St
⎛⎜⎝
ωl+1
i,j − ω

l+ 1
2

i,j

Δt/2
⎞⎟⎠ + ui,j

⎛⎜⎝
ωl+1
i+1,j − ω

l+1
i−1,j

2dξ
−Qi,j

ω
l+ 1

2

i,j+1 − ω
l+ 1

2

i,j−1

2dη

⎞⎟⎠
+ vi,jDi

ω
l+ 1

2

i,j+1 − ω
l+ 1

2

i,j−1

2dη

=
g

Re

⎛⎜⎝
ωl+1
i+1,j − ω

l+1
i,j + ωl+1

i−1,j(dξ)2 − (Pi,j − 2Qi,jRi)ω
l+ 1

2

i,j+1 − ω
l+ 1

2

i,j−1

2dη

− 2Qi,j

ω
l+ 1

2

i+1,j+1 − ω
l+ 1

2

i+1,j−1 − ω
l+ 1

2

i−1,j+1 + ω
l+ 1

2

i−1,j−1

4dηdξ

⎞⎟⎠
+
M2

Re
D

2
i

ψi,j+1 − 2ψi,j + ψi,j−1(dη)2 + ReD
2
aω

l+1
i,j . (42)

After rearranging, Eq. (42) takes the form

Ã(i)ωl+1
i−1,j + B̃(i)ωl+1

i,j + C̃(i)ωl+1
i+1,j = S̃(i), (43)
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where

Ã(i) = −ui,j
2dξ
−

2g

Re(dξ)2 ,
B̃(i) = St

Δt/2 +
2g

Re(dξ)2 − ReD2
a,

C̃(i) = ui,j

2dξ
−

g

Re(dξ)2 ,
S̃(i) = ⎛⎝vi,jDi

2dη
+ g

Pi,j − 2Qi,jRi

2dηRe
+ g

Q2
i,j +D2

i(dη)2 −
ui,jQi,j

2dη

⎞⎠ωl+ 1
2

i,j−1

+
⎛⎝−vi,jDi

2dη
− g

Pi,j − 2Qi,jRi

2dηRe
+ g

Q2
i,j +D2

i

Re(dη)2 +
ui,jQi,j

2dη

⎞⎠ωl+ 1
2

i−1,j+1

+
St

Δt/2ωl+ 1
2

i,j − 2g
Q2

i,j +D2
i

Re(dη)2
−

2g

Re
Qi,j

ω
l+ 1

2

i+1,j+1 − ω
l+ 1

2

i+1,j−1 − ω
l+ 1

2

i−1,j+1 + ω
l+ 1

2

i−1,j−1

4dηdξ

+
M2

Re
D

2
i

ψi,j+1 − 2ψi,j + ψi,j−1(dη)2 . (44)

For every j = 2, 3, . . ., n − 1, Eq. (43) represents a linear tridiagonal
system (for i = 2, 3, . . ., m − 1). TDMA with the over-relaxation
parameter λ = 1.3 is used for solving the system.

For solving Eq. (22), the solution is achieved at the time level(l + 1/2) using the solution at the time level l, for l = 0, 1, 2, . . ., in
the first half-step of the ADI process, by taking step size Δt/2. At
time level l (the explicit scheme) and l + 1/2 (the implicit scheme),
the derivatives ofω are discretized in the ξ-direction and η-direction,
respectively, i.e.,

St
⎛⎜⎝
θ
l+ 1

2

i,j − θ
l
i,j

Δt/2
⎞⎟⎠ + ui,j

⎛⎜⎝
θli+1,j − θ

l
i−1,j

2dξ
−Qi,j

θ
l+ 1

2

i,j+1 − θ
l+ 1

2

i,j−1

2dη

⎞⎟⎠
+ vi,jDi

θ
l+ 1

2

i,j+1 − θ
l+ 1

2

i,j−1

2dη

=
1

RePr

⎛⎜⎝
θli+1,j − 2θ

l
i,j + θ

l
i−1,j(dξ)2 − (Pi,j − 2Qi,jRi)

×

θ
l+ 1

2

i,j+1 − θ
l+ 1

2

i,j−1

2dη

− 2Qi,j

θli+1,j+1 − θ
l
i+1,j−1 − θ

l
i−1,j+1 + θ

l
i−1,j−1

4dηdξ

+(Q2
i,j +D

2
i + RdD

2
i )θ

l+ 1
2

i,j+1 − 2θ
l+ 1

2

i,j + θ
l+ 1

2

i,j−1(dη)2
⎞⎟⎠. (45)

After rearranging, Eq. (45) takes the form

A(j)θl+ 1
2

i,j−1 + B(j)θl+ 1
2

i,j + C(j)θl+ 1
2

i,j+1 = S(j), (46)

where

A(j) = ui,j Qi,j

2dη
− vi,j

Di

2dη
−
Pi,j − 2Qi,jRi

2dηRePr
−
Q2

i,j +D2
i + RdD2

i

RePr(dη)2 ,

B(j) = St

Δt/2 +
2(Q2

i,j +D2
i + RdD2

i )
RePr(dη)2 ,

C(j) = −ui,j Qi,j

2dη
+ vi,j

Di

2dη
+
Pi,j − 2Qi,jRi

2dηRePr
−
Q2

i,j +D2
i + RdD2

i

RePr(dη)2 ,

S(j) = ( ui,j
2dξ

+
1

RePr(dξ)2 )θi−1,j + (−
ui,j

2dξ
+

1

RePr(dξ)2 )θli+1,j
+

St

Δt/2θi,j − 1

RePr(dξ)2 θi,j
−

2

RePr
Qi,j

θli+1,j+1 − θ
l
i+1,j−1 − θ

l
i−1,j+1 + θ

l
i−1,j−1

4dηdξ
. (47)

For every i = 2, 3, . . ., n − 1, Eq. (46) represents a lin-
ear tridiagonal system (for j = 2, 3, . . ., m − 1). TDMA with
the over-relaxation parameter λ = 1.3 is used for solving the
system.

The solution is computed at the time level l + 1 using the solu-
tion at the time level l + 1/2, for l = 0, 1, 2, . . ., in the second
half-step of the ADI process, by taking step size Δt/2. At time level
l + 1/2 (the explicit scheme) and l + 1 (the implicit scheme), the
derivatives of ω are discretized in the η-direction and ξ-direction,
respectively, i.e.,

St
⎛⎜⎝
θl+1i,j − θ

l+ 1
2

i,j

Δt/2
⎞⎟⎠ + ui,j

⎛⎜⎝
θl+1i+1,j − θ

l+1
i−1,j

2dξ
−Qi,j

θ
l+ 1

2

i,j+1 − θ
l+ 1

2

i,j−1

2dη

⎞⎟⎠
+ vi,jDi

θ
l+ 1

2

i,j+1 − θ
l+ 1

2

i,j−1

2dη

=
1

RePr

⎛⎜⎝
θl+1i+1,j − 2θ

l+1
i,j + θl+1i−1,j(dξ)2 − (Pi,j − 2Qi,jRi)θ

l+ 1
2

i,j+1 − θ
l+ 1

2

i,j−1

2dη

− 2Qi,j

θ
l+ 1

2

i+1,j+1 − θ
l+ 1

2

i+1,j−1 − θ
l+ 1

2

i−1,j+1 + θ
l+ 1

2

i−1,j−1

4dηdξ

+(Q2
i,j +D

2
i + RdD

2
i )θ

l+ 1
2

i,j+1 − 2θ
l+ 1

2

i,j + θ
l+ 1

2

i,j−1(dη)2
⎞⎟⎠. (48)

After rearranging, Eq. (48) takes the form

A(i)θl+1i−1,j + B(i)θl+1i,j + C(i)θl+1i+1,j = S(i), (49)

where

A(i) = −ui,j
2dξ
−

1

RePr(dξ)2 ,
B(i) = St

Δt/2 +
2

RePr(dξ)2 ,
C(i) = ui,j

2dξ
−

1

RePr(dξ)2 ,
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S(i) = ⎛⎝vi,jDi

2dη
+
Pi,j − 2Qi,jRi

2dηRePr
+
Q2

i,j +D2
i + RdD2

i(dη)2RePr −
ui,jQi,j

2dη

⎞⎠θl+
1
2

i,j−1

+
⎛⎝−vi,jDi

2dη
−
Pi,j − 2Qi,jRi

2dηRePr
+
Q2

i,j +D2
i + RdD2

i

RePr(dη)2 +
ui,jQi,j

2dη

⎞⎠θl+
1
2

i,j+1

+
St

Δt/2θl+
1
2

i,j − 2
Q2

i,j +D2
i + RdD2

i

RePr(dη)2 θ
l+ 1

2

i,j

−
2

RePr
Qi,j

θ
l+ 1

2

i+1,j+1 − θ
l+ 1

2

i+1,j−1 − θ
l+ 1

2

i−1,j+1 + θ
l+ 1

2

i−1,j−1

4dηdξ
. (50)

For every j = 2, 3, . . ., n − 1, Eq. (49) represents a linear tridiagonal
system (for i = 2, 3, . . ., m − 1). TDMA with the over-relaxation
parameter λ = 1.3 is used for solving the system.

IV. RESULTS AND DISCUSSION

The stream-wise axial velocity (u) and temperature (θ) profiles
are obtained for M, St, β, Da, Pr, and Rd by solving Eqs. (20)–(22),
subject to the conditions, as mentioned in Sec. II. The computa-
tions for the present article are carried out in serial on an ordinary
personal computer. The computations can be accelerated through

FIG. 2. Flow profiles for different values of Reynolds number Re at t = 0.25 with M = 5, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1: (a) the WSS distribution, (b) temperature
profile θ vs η at x = 0, and (c) temperature profile θ vs η at x = 2.

FIG. 3. Velocity profile u vs y for different values of the Hartman number M at x = 0 with St = 0.02, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1: (a) at t = 0, (b) at t = 0.25, (c)
at t = 0.5, and (d) at t = 0.75.
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FIG. 4. Velocity profile u vs y for different values of the Hartman number M at time t = 0.25 with St = 0.02, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1: (a) at x = −5, (b) at
x = −2, (c) at x = 2, and (d) at x = 5.

FIG. 5. Temperature profile θ vs η for dif-
ferent values of the Hartman number M
at t = 0.25 with St = 0.02, β = 0.5, Da

= 0.002, Pr = 1, and Rd = 1: (a) at the
throat of the constriction x = 0, and (b) in
the lee of the constriction at x = 2.

FIG. 6. Flow profiles for different values of the Strouhal number St at t = 0.25 with M = 5, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1: (a) velocity profile u vs y at x = 0, (b)
temperature profile θ vs η at x = 0, (c) temperature profile θ vs η at x = 2.
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parallel programming of the method and, then, executing on a
high-performance parallel architecture.42 Unless stated otherwise,
Reynolds number (Re) is set as 700 for the computations. The impact
of the flow parameters is studied for four different time levels, i.e.,
the start of the pulsating motion (t = 0.0), the maximum flow rate(t = 0.25), the minimum flow rate (t = 0.50), and the instantaneous
zero net flow (t = 0.75).

The WSS is computed for Re = 600, 800, 1000 with M = 5, St
= 0.02, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1. The WSS is maxi-
mum at x = 0 (where the flow rate is maximum) and is symmetric
at the upper and lower walls. The WSS at the upper wall for t = 0.25
is shown in Fig. 2(a). Higher values of Re result in higher WSS at
x = 0, i.e., the throat of the constriction. There is a flow separation

region in the wake of the constriction that expands on increasing Re.
Consequently, the WSS decreases there at the walls. The θ profiles
for distinct values of Re at x = 0 and x = 2 are shown in Figs. 2(b)
and 2(c), respectively, for t = 0.25. For higher values of Re and M,
the temperature decreases at x = 0. However, at x = 2, no signifi-
cant reduction in the temperature is noted in the lower half of the
channel.

The u and θ profiles, computed for M = 0, 5, 10, 15 with
St = 0.02, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1, are shown
in Figs. 3–5. The u profile at x = 0 is shown in Fig. 3 for the
four time instants. The velocity attains its maximum value at
x = 0. The peak value of u increases with M, and the curves
exhibit a parabolic profile at 0 ≤ t ≤ 0.5. However, at t = 0.75,

FIG. 7. Flow profiles for different values of the CF parameter β at t = 0.25 with M = 5, St = 0.02, Da = 0.002, Pr = 1, and Rd = 1: (a) velocity profile u vs y at x = 0, (b)
temperature profile θ vs η at x = 0, and (c) temperature profile θ vs η at x = 2.

FIG. 8. Flow profiles for different values of the porosity parameter Da at t = 0.25 with M = 5, St = 0.02, β = 0.5, Pr = 1, and Rd = 1: (a) velocity profile u vs y at x = 0, (b)
temperature profile θ vs η at x = 0, and (c) temperature profile θ vs η at x = 2.

FIG. 9. Temperature profile θ vs η for dif-
ferent values of the Prandtl number Pr at
t = 0.25 with M = 5, St = 0.02, β = 0.5,
Da = 0.002, and Rd = 1: (a) at the throat
of the constriction x = 0 and (b) in the lee
of the constriction at x = 2.
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FIG. 10. Temperature profile θ vs η for
different values of the thermal radiation
parameter Rd at t = 0.25 with M = 5, St
= 0.02, β = 0.5, Da = 0.002, and Pr = 1:
(a) at the throat of the constriction x = 0,
and (b) in the lee of the constriction at
x = 2.

the magnitude of u is substantially less as compared to all the other
time instants. Moreover, a backflow is observed in the vicinity of
the walls. Next, the velocity profiles at four different x-locations for
t = 0.25 are shown in Fig. 4. The profiles are parabolic at all loca-
tions except at x = 2.0, where the constriction ends downstream of
the center.

The θ profiles againstM at the throat of the constriction, i.e., x
= 0, and in the lee of the constriction, specifically x = 2, are shown

in Fig. 5 for t = 0.25. The value of θ decreases as M is increased.
Further analysis revealed that the minimum and maximum values
of θ are at t = 0.50 and t = 0.75, respectively, for M > 0. Upstream
of the constriction, the temperature decreases with an increase inM.
However, although somewhat similar, this behavior is not perfectly
uniform downstream of the constriction. This is due to the separa-
tion of flow and the generation of the vortices downstream of the
constriction.

FIG. 11. (a) Streamlines, (b) vorticity, and (c) temperature distribution plots at different instants of a pulse cycle with Re = 800, M = 5, St = 0.02, β = 0.5, Da = 0.002, Pr = 1,
and Rd = 1.

FIG. 12. (a) Streamlines, (b) vorticity, and (c) temperature distribution plots for different values of the Hartman number M at t = 0.25 with Re = 1000, St = 0.02, β = 0.5,
Da = 0.002, Pr = 1, and Rd = 1.
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The u and θ profiles are computed for St = 0.02, 0.05, 0.08 with
M = 5, β = 0.5, Da = 0.002, Pr = 1, and Rd = 1. Figure 6(a) shows
the u profile at x = 0 and t = 0.25, where u attains its maximum
value due to the maximum flow rate. For 0 ≤ t ≤ 0.5, no significant
variation in u is observed on varying St at x = 0; however, the peak
value of u decreases on increasing St at the other x locations. The
profiles are parabolic at most of the x-locations except at x = 2. The
θ profiles against St at x = 0 and x = 2 are shown in Figs. 6(b) and
6(c), respectively, for t = 0.25. There are no significant variations in
the profiles at x = 0; however, slight fluctuations in the profile are
noted at x = 2.

The u and θ profiles are computed for β = 0.5, 1, 1.5, 2 with M
= 5, St = 0.02, Da = 0.002, Pr = 1, and Rd = 1. Figure 7(a) shows u
profiles at x = 0 and t = 0.25. The u profiles against β are somewhat
similar to the case of increasingM, except for the profile at x = 2 for
which there is some backflow near the walls on increasing β. The θ

profiles against β at x = 0 and x = 2 are shown in Figs. 7(b) and 7(c),
respectively, for t = 0.25. Again the θ profiles are somewhat similar
to the case of increasingM, except for the θ profile at x = 2 [Fig. 7(c)]
for which there is a reversal of behavior against β in the upper and
lower half of the channel.

The u and θ profiles, computed for Da = 0.002, 0.004, 0.006,
0.008 with M = 5, St = 0.02, β = 0.5, Pr = 1, and Rd = 1, are shown
in Fig. 8, for t = 0.25. The trends of the profiles on increasing Da are
very much similar to the cases of decreasingM.

The θ profile, computed for Pr = 0.5, 1.0, 1.5, 7.0 with M = 5,
St = 0.02, β = 0.5, Da = 0.002, and Rd = 1, is shown in Fig. 9, for
t = 0.25. The temperature decreases with increasing values of Pr.
However, slight fluctuations in the temperature profiles are observed
downstream of the constriction.

The θ profile, computed for Rd = 1, 0.6, 0.3, 0.1 with M = 5, St
= 0.02, β = 0.5, and Pr = 1, is shown in Fig. 10, for t = 0.25. The

FIG. 13. (a) Streamlines, (b) vorticity, and (c) temperature distribution plots for different values of the CF parameter β at t = 0.25 with Re = 1000, M = 5, St = 0.02, Da = 0.002,
Pr = 1, and Rd = 1.

FIG. 14. The temperature distribution plots at t = 0.25 with Re = 1000, M = 5, St = 0.02, β = 0.5, and Da = 0.002: (a) for different values of Prandtl number Pr and Rd = 1,
and (b) for different values of Prandtl number Rd and Pr = 1.
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temperature increases with increasing values of Rd. However, the
profiles slightly fluctuate downstream of the constriction.

To further elaborate the flow profiles, the plots of the stream-
lines, vorticity, and temperature distribution at the four time levels t
= 0, 0.25, 0.5, 0.75 are shown in Fig. 11. The plots of the streamlines,
vorticity, and temperature distribution at t = 0.25 for different values
ofM and β are shown in Figs. 12 and 13, respectively. The tempera-
ture distribution plots for different values of Pr and Rd, at t = 0.25,
are shown in Figs. 14(a) and 14(b), respectively.

V. CONCLUDING REMARKS

The pulsatile flow of thermally developed non-Newtonian CF
in a channel with constricted walls under the impact of the mag-
netic field is numerically investigated. The effects of the magnetic
field parameter or Hartman number (M), pulsatile flow parame-
ter or Strouhal number (St), CF parameter (β), Darcy parameter or
porosity parameter (Da), Prandtl number (Pr), and thermal radi-
ation parameter (Rd) on the axial velocity (u) and dimensionless
temperature (θ) profiles are observed. The summary of the findings
is as follows:

● The wall shear stress (WSS) is maximum at the throat of
the constriction (where the flow rate is maximum), and it
increases with an increase in Re. The WSS is symmetrical at
the upper and lower walls.

● On increasing M, the stream-wise axial velocity increases.
At all places, the profiles are parabolic except at x = 2. On
increasing M, the temperature decreases at the throat of
the constriction and upstream of the constriction. However,
this behavior is not perfectly uniform downstream of the
constriction.

● On increasing St, no significant variation in u is observed
at x = 0. However, the peak value of the velocity decreases
slightly at the other x locations of the channel for 0 ≤ t ≤
0.5. At all places, the profiles are parabolic except at x = 2.
On increasing St, there are no significant variations in the
temperature profiles at x = 0; however, slight fluctuations in
the profile are noted at x = 2.

● On increasing β, the velocity and temperature profiles, for
most of the cases considered, exhibit a behavior similar to
that for increasing M. Slight fluctuations in the profiles are
observed downstream of the constriction.

● On increasing Da, the velocity and temperature profiles, for
most of the cases considered, exhibit a behavior similar to
that for decreasingM.

● On increasing Pr, the temperature decreases. That is, the
flow has a thinner thermal boundary layer with a larger
Prandtl number. However, slight fluctuations in the temper-
ature profiles are observed downstream of the constriction.

● On increasing Rd, the temperature increases. However,
slight fluctuations in the temperature profiles are observed
downstream of the constriction.

For understanding of blood flow in stenotic arteries, designing
biomechanical structures, and use in industrial facilities where flow
pulsation plays a vital role, these results can be beneficial for scien-
tists and engineers.
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