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The recent remark by Mourou and Tajima, Science 331, 41 (2011), on the intensity of the driver
laser pulse and the duration of the created pulse that higher driver beam intensities are needed
to reach shorter pulses of radiation remains a conjecture without clear theoretical reasoning so
far. Here we discuss the observations leading to the conjecture and offer its extension to the case
of relativistic electron bunches as the laser’s radiating medium (free-electron laser). The idea is
further extended towards the regime of vacuum non-linearities.
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1. Introduction

In recent years large-scale laser facilities, like the National Ignition Facility (NIF) [1], Laser Mega-
joule [2], and the Extreme Light Infrastructure (ELI) [3], delivering unprecedented power, have been
of increasing interest. They are able to deliver energies on the kJ level in timeframes as short as 10 fs.
These high power levels are not only of interest because of the corresponding high fields, but there
also now emerges a case for them being the key to the creation of the shortest possible pulses.

This link between the driver intensity and the resulting pulse duration has been suggested by
Mourou and Tajima [4,5] and can be stated as: “To decrease the achievable pulse duration, we must
first increase the intensity of the driving laser.” This is not the same as the converse trivial state-
ment “to increase the achievable peak intensity of a pulse for a given energy, we must shorten pulse
duration” [4,5].

In this paper we give an overview of the major steps in the development of solid-state lasers leading
to the aforementioned conjecture (Sect. 2). In Sect. 3 we discuss electron beam non-linearities in
terms of the free-electron laser (FEL) and find a scaling supporting the conjecture over several orders
of magnitude. Finally we extend the discussion to the regime of vacuum non-linearities and their
possible applications (Sect. 4).

© The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan.
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2. Solid-state lasers

2.1. The non-linear regime

The first laser developed by Maiman [6] reached a pump intensity on the kW cm−2 level while
producing pulses with durations in the microsecond region. The laser technique has then been signif-
icantly improved by the concept of Q-switching [7], increasing the internal intensity to the MW cm−2

level while allowing for the production of nanosecond pulses. The first demonstration of mode-
locking in ruby [8], relying on the fast transparency recovery of the dye, and therefore the switch
to the non-linear bound electron regime, allowed further increase in the peak intensities to the range
of GW cm−2 resulting in pulse durations in the picosecond regime. In addition, the combination of
dye amplifying materials with the colliding pulse mode-locking technique allowed for the further
reduction of pulse durations to 100 fs [9] and even 27 fs [10].

The switch from relying on the dye resonance as the mode-locking mechanism to the intensity-
dependent index of refraction of the amplifier medium led to Kerr-lens mode-locking (KLM) [11].
The out-of-resonance operation requires higher driving intensities on the order of TW cm−2 leading
to pulse durations about 10 fs [12–14]. In this regime the pulse duration and its associated, required
bandwidth are limited by the bandwidth of the amplifying material.

To further reduce the pulse duration, an amplification mechanism providing a larger bandwidth
was required. One solution was the use of gas-filled hollow fibers [15] in combination with chirped
mirrors, allowing for a pulse duration of 4.5 fs [16] while only requiring an internal pulse intensity of
1014 W cm−2. Another approach relying on molecular phase modulation in gases resulted in a pulse
duration of 3.8 fs at an internal intensity of only 1012 W cm−2[17].

A further broadening of the bandwidth could be reached by using high harmonic generation (HHG)
[18] in a gas jet. Here, a compressed beam is focused into a gas jet creating harmonics up to the cut-off
frequency [19,20]. Using this technique the pulse duration could be reduced down to 100 as [21,22]
and even 80 as [23].

2.2. The relativistic regime

To reach even shorter pulse durations one had to switch to the relativistic regime where electrons
moving in the laser field become relativistic during their oscillation. Therefore, the required laser
intensity for a wavelength of 1 μm is greater than 1018 W cm−2, which is possible when using chirped
pulse amplification (CPA) [24] and optical parametric chirped pulse amplification (OPCPA) [25]. In
this regime a laser impinging on a surface causes the surface to oscillate in and out at relativistic
velocity causing a periodic modulation of the impinging light resulting in high harmonics [26,27].
This relativistic high harmonic generation opens up a much broader spectrum that, in contrast to
non-relativistic HHG, is not limited by the cut-off frequency [26,28].

The concept of the relativistic mirror above can be extended by focusing a pulse down to a spotsize
of λ2. In this so-called λ3-regime [29] the relativistic mirror gets deformed by the impinging Gaussian
beam. Particle-in-cell (PIC) simulations show that the motion of the mirror compresses the sub-cycle
pulse and guides it in a specific direction. The resulting pulse duration scales as

τ = 600 as

a0
, (1)

with a0 being the normalized vector potential of the laser. Assuming an impinging laser intensity of
1022 W cm−2 over the regime where this setup is possible, this could result in a compressed pulse
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Fig. 1. Visualization of the Pulse Intensity–Duration Conjecture suggested by Mourou and Tajima [4,5]. The
pulse duration and the driver intensity show an inverse linear dependence covering 15 orders of magnitude for
experimental results (blue) and 18 orders of magnitude when including theoretical and numerical results (red).

duration of a few attoseconds. The authors of this concept also simulated the creation of thin electron
sheets with a γ of a few tens and a duration of attoseconds. These electron sheets could be used to
produce coherent beams of X-rays or even γ -rays by Thomson scattering. Another approach sug-
gested by [30] is the so-called “relativistic flying mirror,” also based on a thin electron sheet that
could be used for pulse compression.

2.3. The ultra-relativistic regime

To further compress the laser pulse, even higher frequencies and therefore higher mirror densities
are needed to ensure a coherent reflection resulting, for example, in γ -rays. The required densities
are of the order of 1027 cm−3 and could be reached by an imploding flying mirror. An implosion
reducing the mirror size by a factor of ten in each dimension would already allow a thousand-
fold increase of the density. This might be possible by using pulse energies in the MJ range with
ultra-relativistic intensities of 1024 W cm−2 focused on a partial shell of a concave spherical target.
This concept of the ultra-relativistic flying mirror [31] in combination with the imploding target is
capable of reflecting a coherent 10 keV pulse into a γ -ray with only 100 yoctoseconds (ys) pulse
duration.

2.4. The conjecture

Gathering all these discussed data points in one diagram (Fig. 1) leads to a remarkable result: in a
double logarithmic plot we find an inverse linear relation between the intensity of the driving pulse
and the duration of the created pulse covering 18 orders of magnitude. Excluding theoretically pos-
sible but not yet tested concepts still yields a relationship covering 15 orders of magnitude. One has
to note that this relationship is only found upon optimization for the shortest possible pulse duration
for each driver intensity. However, due to the different physical principles dominating the behavior in
the various regimes no analytical model has been offered so far for the conjecture covering all these
orders of magnitude.
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3. Electron beam non-linearities

The lasers discussed up to now were all driven by solid-state lasers and associated specific setups.
We now wish to consider lasers whose emission mechanism is based on relativistic electron bunches
as the radiating medium. In other words we will examine if the stiffness of the relativistic electron
bunch contributes to the pulse duration of this type of laser. The advantage of this regime is the wide
parameter range that can be covered by varying the electron parameters, allowing for a single theory
covering several orders of magnitude in the intensity and pulse duration.

Such an example is given by the free-electron laser. Its light generation process is based on a
collective instability arising when an electron beam propagates through the periodic magnetic field
of an undulator and interacts with a copropagating light wave. The collective instability leads to
microbunching, i.e. the formation of a substructure in the electron beam on the scale of the radiated
wavelength λ, allowing for coherent emission. Since the emission process is based on the formation
of this substructure in the electron bunch, the bandwidth is governed by the electron beam intensity
Ibeam and the formation efficiency of the collective instability characterized by the Pierce parameter
ρ [32].

The shortest possible duration, i.e. the inverse bandwidth, of a single radiation spike is given by [33]

τ =
√

π

σω

, (2)

using the bandwidth σω defined as [34]

σω(z) =
√

3
√

3ρ

kuz
ωl, (3)

with ku = 2π/λu the undulator wavenumber of an undulator with period length λu , z the longitudinal
position inside the undulator, and ωl the resonant frequency.

To minimize the free parameters, we limit our discussion to a system operating with a fully mod-
ulated electron beam, i.e. at saturation zsat ≈ λu/ρ [35], allowing for maximum coherence of the
emitted light. In addition, we restrict our discussion to the “natural” beam size of the setup, i.e. the
constant matched beam size of the undulator, and assume the setup parameters to be optimized for a
short pulse duration. Using the dependence of the Pierce parameter on the current and the normal-
ized energy ρ ∝ I 1/3γ −1, and the proportionality between the resonant frequency and the normalized
energy ωl ∝ γ 2, the resulting pulse duration scales as

τ ∝ I −1/3γ −1, (4)

with I being the electron beam current and γ the normalized electron energy. Here the general rela-
tionship that the pulse duration drops with increasing electron energy and current, which are directly
proportional to the electron beam intensity

Ibeam = γ mec2 I

2πσ 2
r e

∝ γ I, (5)

can already be seen. Here, me is the electron mass, e the elementary charge, c the speed of light, and
σr the beam radius. This proportionality is a first hint that an FEL shows a scaling supporting the
Conjecture.
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Fig. 2. Comparison of the Conjecture suggested by Mourou and Tajima (solid black line), the here-derived
dependence of the pulse duration on the beam intensity for a fixed current (dashed green line) and a fixed
energy (dash-dotted red line), and the data points of LCLS (red circle), FLASH (green circle), and the X-FEL
(black circle).

Using Eqs. (4) and (5) the duration of the created photon pulse is related to the electron beam
intensity as

τ ∝ γ −1 ∝ I −1
beam, (6)

when only varying the energy for a fixed current, due to the linear dependence of the bandwidth on
the electron energy. On the other hand, another dependence emerges:

τ ∝ I −1/3 ∝ I −1/3
beam , (7)

for a fixed normalized energy and variation of the current. The exact dependence of the pulse duration
on the setup parameters is derived in the Appendix.

Figure 2 shows the comparison of the scaling obtained from the analysis of systems driven by solid-
state lasers, and the derived dependencies of the FEL pulse duration on the electron beam intensity.
In the case of the fixed current the dependence is inverse linear, as in the Conjecture. This may be
understood as follows: the assumption of a fixed current represents the situation of a medium that
gets harder to bend due to the increasing energy, and results in shorter pulses. Now we see that the
Conjecture emerges when we have related the pulse duration and its functional dependence to the
energy of the electron beam (i.e., the γ factor), as the latter implies the stiffness of the medium. The
slope of the red line in Fig. 2, i.e. the case of a fixed energy and variation of the current, can be related
to a simultaneous change of the density of the medium and the driver intensity due to the increasing
current (and particle number in the beam) resulting in a different scaling. This is reasonable, as the
“spring constant” in this case is not directly scaled. This leads to the conclusion that the scaling
of the Conjecture is indeed due to the rigidity of the pulse-generating matter, and that high driver
intensities are needed either to reach these rigidities, as in the case of an FEL, or to excite more rigid
non-linearities, as in the cases discussed in the original Conjecture.

Besides the different scaling, both cases support the Conjecture, since they lead to the same result:
to reduce the pulse duration, one has to increase the driver intensity.
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Fig. 3. Pulse durations for different beam intensities according to Eq. (4) (blue crosses), and according to Eqs. 2
and 3 calculated using the fitting formula of M. Xie [36] taking diffraction and emittance into account (red
circles). The following parameters were varied: γ = 101 → 1012, λu = 10−3 → 100 m, K = 10−2 → 101, and
I = 102 → 106 A. The normalized emittance was set to εn = 10−6 m rad. The black line is again the Conjecture
as a reference.

An interesting result of the Conjecture is the product of pulse duration and intensity, the coefficient
of the graph. It is the constant of the Conjecture for solid-state lasers, with a value of 1 J cm−2. Lower
values of the product are regarded as more favorable (or more efficient), since in that case lower beam
intensities are needed to reach shorter pulses.

We can study this for the FEL in the case of a fixed current, resulting in a product of pulse duration
and beam intensity of

τ Ibeam = π1/3

21/233/4

mecI 1/3
A

e

I 2/3
(

1 + K 2

2

)
ε

2/3
n JJ2/3 λ

1/3
u

, (8)

with the Alfvén current IA ≈ 17 kA, the undulator parameter K , the Bessel function dependent
factor JJ = J0(ζ ) − J1(ζ ) with ζ = K 2/(4 + 2K 2), and the normalized emittance εn . The detailed
derivation of Eq. (8) is shown in the Appendix. Using the parameters I = 1 kA, λu = 1 cm, K = 1,
and εn = 1 mm mrad, which are reasonable for current FELs, the product equals approximately
14 J cm−2. In the case of an FEL the product may easily range from 1 J cm−2 to 100 J cm−2 by adjust-
ing the setup parameters. The fractional power dependence of the product on the current is mainly
due to the beam intensity; the scaling with the other parameters like λu , K , and εn are more complex
and are a result of the competing effects between the pulse duration and the beam intensity.

Figure 3, where a wide parameter range has been scanned using the derived formulas, shows again
that the Conjecture only emerges upon optimization for the shortest possible pulse duration. The blue
domain shows the results according to the 1D theory while the red domain takes degrading effects,
i.e. diffraction and emittance, into account by using the fitting formula of M. Xie [36]. The parameter
scan shows that the upper envelope of the blue domain is represented by the Conjecture line and only
degrading effects cause a deviation. However, if we optimize for the efficiency of lasing instead of
the pulse shortness, the scaling line nearly goes to the envelope of the bottom of the blue region in
Fig. 3.
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4. Vacuum non-linearities

4.1. Scaling

Beyond the realms of the previously discussed non-linearities lie the vacuum non-linearities. An even
stronger pulse compression could be obtained by using the self-phase modulation in vacuum. The
bandwidth of the self-phase modulation scales as

�ω

ω
≈ Ln2

c

dI

dt
∝ n2

En

T 2 , (9)

using the carrier frequency ω, the self-phase modulation bandwidth �ω, the non-linear index of
refraction n2, the propagation length L , the driving pulse energy En , and its duration T . This shows
that, using high input intensities, significant non-linear effects are possible leading to a broad band-
width and the possibility of extreme compression. This resembles a fact already known from the
visible range where only with the availability of picosecond–femtosecond pulses were significant
non-linear processes like self-phase modulation or Kerr-lens mode-locking [11] possible.

4.2. Streaking vacuum

Besides the production of extremely short pulses, the exploration of processes on short time scales
is also of high interest. An interesting quantity, therefore, is the critical power, defining the limit for
self-focusing. It is given by

Pcr ≈ λ2

2πn0n2
∼ GW (10)

in the case of the χ3 non-linearity,

Pcr ≈ mc5

e2

(
ω

ωp

)2

∼ 17

(
ω

ωp

)2

GW (11)

in the case of the relativistic plasma non-linearity, and

Pcr ≈ 90

28

cE2
Sλ

2

α
∼ 1015

(
λ

λ1μ

)2

GW (12)

for the vacuum non-linearity. Here we used the Schwinger field ES , the limit for electron–positron
pair production in the vacuum [37–41], and the fine structure constant α. The critical power for
self-focusing in vacuum is a factor α−6 higher than its equivalent in gas. On the other hand, the
ratio between the Keldysh field and the Schwinger field is EK /ES = α3, resulting in an equivalent
power ratio of α6. While the Keldysh field is needed to overcome the potential energy of the Rydberg
energy WB over the Bohr radius aB , the Schwinger field is needed to overcome the potential energy
of 2mc2 = α−2WB over the distance of the Compton length αaB .

Another important parameter is the Keldysh parameter [42]

γK = ω

√
2meVI

eE
, (13)

using the carrier frequency ω, the ionization energy of the system VI , and the field strength of the laser
E . When the Keldysh parameter is lower than unity ionization is dominated by tunnel ionization and
can be treated as non-perturbative, while a Keldysh parameter greater than unity indicates a regime
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where the ionization is dominated by multi-photon processes. An equivalent parameter can be defined
for the vacuum,

γV σ = mσωc

eE
= 1

a0
. (14)

Here, σ is either e indicating electron processes or q when quark processes are considered [5]. How-
ever, for the latter more study is necessary as the process is debated [43]. Similar to the Keldysh
parameter this parameter indicates whether non-perturbative γV σ < 1 or perturbative quantum
electrodynamics (QED) γV σ > 1 is applicable.

This indicates the parameter range allowing for the creation of electron–positron pairs from vacuum
with high but still realistically achievable laser intensities by combining a gamma photon with a
strong laser field in vacuum [38–40]. This would open up the possibility of vacuum streaking with
lasers with zeptosecond time resolution [44].

5. Conclusion

We have studied the underlying mechanism between the laser intensity and resulting pulse length.
The suggested Conjecture, we find, is based on the rigidity of the medium that compresses the pulse.
Because the rigidity is the key for compression, the stiffer the medium (or setup) is, the shorter the
obtained pulse is. We have demonstrated this principle by adopting a setup using an electron beam
as the compression medium, i.e. an FEL. This examination in fact confirms the Conjecture for the
case of electron beam non-linearities. The higher the energy of the electron beam, the more intense
the beam energy is. In turn, the higher the beam intensity is, the shorter the FEL pulse length is,
according to Eq. (6). One can extend the road for shorter pulses by adopting the stiffest medium of
all, the vacuum (QED vacuum).
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Appendix A. Pulse duration of a free-electron laser at saturation

For the case of a free-electron laser the dependence of the pulse duration at saturation on the setup
parameters can be calculated as follows:

The exact scaling of the bandwidth is obtained by evaluating the bandwidth (3) assuming saturation
of the amplification process. The saturation distance is approximately given by zsat ≈ λu/ρ [35] with
the undulatory period length λu and the Pierce parameter ρ [32]. The Pierce parameter is defined as

ρ = 1

2γ

[
I

IA

(
K JJλu√
22πσr

)2
]1/3

, (A1)

using the normalized electron energy γ , the current I , the Alfvén current IA ≈ 17 kA, the undulator
parameter K , the Bessel function dependent factor JJ = J0(ζ ) − J1(ζ ) with ζ = K 2/(4 + 2K 2), and
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the electron beam size σr . Inserting this and the resonance frequency of the FEL ωl = 2ωuγ 2/(1 +
K 2/2), with ωu = 2πc/λu being the undulator frequency, in the bandwidth equation yields

σω =
√

6
√

3π

[
I

IA

(
K JJλu√
22πσr

)2
]1/3

cγ

λu(1 + K 2

2 )
. (A2)

Using the matched beam size of a twofold focusing undulator [45] that can be seen as the natural
beam size of the system

σr =
√

2εn

K ku
, (A3)

with the normalized rms emittance εn , the pulse duration is given by

τ = 1√
6
√

3

[
IA

I

(
2
√

2πεn

K 3/2JJ
√

λu

)2
]1/3

λu(1 + K 2

2 )

cγ
. (A4)

The product of the so-determined pulse duration and the beam intensity (5) is the coefficient of the
Conjecture (8).
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