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Abstract 

 
This paper traces the ten plus year history of the 

Naval Research Laboratory’s Pump idea.  The Pump 
was theorized, designed, and built at the Naval 
Research Laboratory’s Center for High Assurance 
Computer Systems. The reason for the Pump is the need 
to send messages from a “Low” enclave to a “High” 
enclave, in a secure and reliable manner. In particular, 
the Pump was designed to minimize the covert channel 
threat from the necessary message acknowledgements, 
without penalizing system performance and reliability. 
We review the need for the Pump, the design of the 
Pump, the variants of the Pump, and the current status 
of the Pump, along with manufacturing and certification 
difficulties.  

 
 

1. Introduction 

This paper describes the evolution of what we 
generically call the Pump.  Myong H. Kang was 
working on a multilevel secure database (SINTRA) 
project at the time.  He was concerned with reliable 
data replication from a lower level (Low) to a higher 
level (High).  There were many contenders for such a 
data replicator, but they were bulky (e.g., XTS-200 
requires an extra host for each network that it is 
connected to), expensive, and could not satisfy all of 
the reliability, fairness, and robustness requirements 
that were desired.  Ira S. Moskowitz was researching 
the information theoretic basis of covert communication 
channels. Kang approached Moskowitz to discuss his 
concerns that the necessary message acknowledgements 
from High to Low could be used as a covert channel.  
They went on to write [8]. This then turned into a 
cottage industry of Pump-like papers 
[5,9,10,11,12,13,14,18,19,20].  We note that the first 

Pump paper is rather rudimentary and has plenty of 
rough edges.  Today, the Pump has been type 
accredited by the Navy and is being produced and 
distributed as the patent pending Network Pump™ [22] 
based upon the ideas in [13]. It is currently being used 
operationally in many locations. The engineering lead 
on the Network Pump™ is Stanley Chincheck, also of 
NRL, who started this task in 1996.  Chincheck had 
seen the need for this capability in more practical 
applications in the Navy.  Knowing the importance of 
transitioning technology to the Fleet, he began a 
journey to take a mathematical theory and turn it into a 
real world product. We felt that after ten years it would 
be of interest to share with our colleagues the growing 
pains of transitioning a research idea into a 
“purchasable product” at a government laboratory.  

 
One must keep in mind that the Pump is not 

quantum physics or the complete works of Shakespeare.  
It is an engineering solution to a quasi-impossible 
problem.  We wish to stress that contrary to some 
common folklore, the Pump does not eliminate all 
covert channels.  Rather, the Pump minimizes the 
covert channel risk to acceptable bounds by pragmatic 
engineering and parameter tweaking.   

 
The Pump was designed in two steps.  First, the 

“basic Pump” serves only one sender and one receiver.  
Second, the “network Pump” (which is the basis for the 
Network Pump™ modulo some changes) services many 
senders and receivers from different applications (e.g., 
file transfer, database replication) simultaneously.   We 
simply use the word Pump for dealing with the entire 
body of work that applies across the board.  That is, 
Pump refers to all of the ideas behind the device and the 
actual physical box with its specialized code [22].  

 
 



 

2. Design Requirements 

We review the design requirements that led to the 
design of the Pump.  The details are throughout the 
numerous papers [8,13].  

1. Assurance: The design of the Pump should be 
simple and able to facilitate its being evaluated at a 
high assurance level.  Security related functionality 
should be well isolated to reduce the complexity of 
critical components. 

2. Reliability: The reliability requirement for the 
Pump can be simply stated as: no loss of messages, 
and no duplication of messages.  The reliability 
should be guaranteed even if the connection 
between Low and High is broken temporarily.   

3. Performance: The Pump should not arbitrarily limit 
the data transfer rate in order to reduce the covert 
channel capacity.  Furthermore, the Pump, by 
slowing the receiving rate to alleviate congestion, 
should not lessen total throughput. 

4. Covert channel: The Pump should reduce covert 
channel capacity as much as possible without 
compromising performance.  

5. Fairness: The (network) Pump is designed to 
accommodate many senders and many receivers.  
Therefore, if the load of data traffic offered to the 
Pump exceeds its capability, the load reduction must 
be performed in a fair manner for all the sessions 
that share the Pump. 

6. Denial of service attack: Since the Pump may be a 
shared resource among several sessions (between 
senders and receivers), services for other sessions 
can be potentially disrupted if too much resource is 
allocated to one particular session.  The design of 
the Pump should prevent such a situation.  
 

3. Logical Design 

In this section, we describe logical design of the 
Pump: basic Pump and network Pump. 

3.1. Basic Pump 

The basic Pump is a device that balances the first 
four requirements in section 2.  An abstract view of the 
Pump is as follows (see figure 1):  
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Figure 1: The basic Pump 
 
The basic Pump places a non-volatile buffer (size n) 

between Low and High, and sends acknowledgements 
(ACKs) to Low at probabilistic times (i.e., stochastic 
ACKs) based upon a moving average of the past m 
High ACK times [8].  A High ACK time is the time 
from when the buffer sends a message to High to the 
time when High sends an ACK back to the basic Pump.  
By sending ACKs to Low at a rate related to High's 
historical response rate, the basic Pump provides flow 
control and reliable delivery without unduly penalizing 
performance and covert channel requirements.  We 
emphasize that ACKs are not passed through the basic 
Pump from High to Low.  In fact, the basic Pump can 
acknowledge receipt of messages from Low before 
High receives them (otherwise a buffer would not be 
necessary).  Each ACK sent to Low is generated 
internally by the basic Pump only in response to a 
message from Low.  The average rate at which these 
ACKs are sent from the basic Pump to Low reflects the 
average rate at which High acknowledges messages 
from the basic Pump. This guarantees that Low does 
not pay an undue performance penalty due to security 
reasons. 

 
Since the Low ACKs are decoupled from High 

ACKs, the rate of the ACKs from the basic Pump to 
Low does represent only downward flow of information.  
However, the algorithm controlling the rate at which 
acknowledgments are returned is parameterized to 
allow the capacity of this timing channel to be made as 
small as a certifying officer may require.   

 
The evaluation process of high-assurance devices is 

a difficult and lengthy one. Thus, we want to make the 
Pump a generic one-way device that supports many 
classes of applications. To achieve this goal, the Pump 
supports a specialized protocol, the Pump Protocol, 
across the local area network (LAN) interfaces (see 
figure 1).  Within the low and high systems are 
wrappers, specialized software that supports a variety 
of applications.  Wrappers, which run on the low and 
high systems, communicate with the basic Pump over 
their respective LANs.  Although not shown in the 
figure, each wrapper consists of two parts.  The 
application-specific part provides an application-



 

specific protocol on one side and the Pump-specific part 
provides Pump protocol on the other.  It can be tailored 
to support the particular set of objects or calls to the 
application it expects to see.  The Pump-specific part is 
a library of routines that implement the Pump protocol.  
It supports the Pump’s application program interface 
(API) on one side and the Pump protocol on the other.  
The application-specific part can call the Pump-specific 
API as required. Note that the Pump protocol and the 
application protocol are application-level protocols. 
Thus, the Pump provides application-to-application 
reliability.  

This structure of separating wrappers from the Pump 
(this applies to the network Pump as well) has several 
interesting aspects: 

• The Pump’s confidentiality properties depend solely 
on the Pump itself, not on the wrappers.  Thus, 
wrapper software is not security-critical and can be 
altered or replaced without affecting system security.  

• Wrappers make the Pump a generic device that is 
independent of a specific application.  Thus, the 
Pump can be used in conjunction with many 
applications (e.g., messaging systems, file transfer, 
database replication).  
 
By focusing on reliable message delivery without 

compromising confidentiality from a receiver to a 
sender, the design of the basic Pump becomes simple 
and easy to understand, this satisfies the assurance 
requirement [14]. 

3.2. Network Pump 

The basic Pump deals with only one Low and one 
High.  To make the Pump a generic network security 
device, network Pump theory was introduced [9, 13] 
and developed as the Network Pump™.  As stated 
before, we refer to the broad theory that covers a 
network version of the Pump as the network Pump, 
whereas Network Pump™ refers to the particular 
hardware device and its specialized code, based on the 
network Pump, which is currently being patented.  We 
include a section of the design of the Network Pump™ 
in section 3.3.  

 
The network Pump satisfies not only the first four 

requirements, but also the last two requirements in 
section 2.  The network Pump acts as a router that 
connects Low applications to High applications.  To 
provide fairness and prevent denial of service attacks, 
the network Pump is structured as follows (figures 2 
and 3): 
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Figure 2: Network Pump 
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Figure 3: Internals of the network Pump 
 
Li (Hj) is the set of inputs (outputs) to the network 

Pump.  We can consider them as wrappers in figure 2.  
Receiveri has J slots for receiving messages from Li.  
Slotj stores a message from sessionij (i.e., a connection 
between Li and Hj) until it is routed by the Trusted Low 
Process (TLP).  The TLP takes a message from a 
receiver and routes it to the appropriate output buffer.  

 
After the message is routed to the output buffer, the 

TLP is ready to send an ACK back to the appropriate 
Li.  The time this ACK arrives at Li depends on the 
randomization scheme.  There are I logical output 
buffers for Hj, each denoted as bufferij.  A message 
from sessionij will be stored in bufferij.  Trusted High 
Process j (THPj) delivers a message from bufferij to Hj 
according to a scheduling scheme.  The network Pump 
uses round robin scheduling scheme to guaranty max-
min fairness [6].  THPj cannot deliver another message 
from bufferij until the prior message from bufferij is 
ACKed (by Hj). 

 
The number of messages in bufferij is important to 

achieve fairness [6] (the bigger the number of messages 
in bufferij the fairer).  This is because our round-robin 
scheduler does not take bursting into account.  The way 
to handle bursty behavior is to have enough messages 
queued in bufferij so that times of abundance and 
starvation (with respect to message arrivals) are 
balanced out.  In fact, it is desirable to keep the queue 
length in bufferij positive so that max-min fairness is 



 

preserved.  However, if the queue length becomes too 
big we have potential covert channel and denial of 
service problems.  Thus, it is desirable to keep the 
message queue length at a certain level.  To address this 
issue, we introduce the concept of Fair size, which is a 
configuration parameter targeted for the desirable 
number of messages [13] in the output buffer.  
Intuitively, the more bursty the input, the larger the Fair 
size must be.  Note that Fair size has to be intelligently 
chosen so that one session cannot dominate (fill) the 
total output buffer and at the same time large enough to 
accommodate bursting.  Good design requires that the 
total output buffer have at least Fair size surplus spaces 
in addition to sum of the Fair size spaces allocated for 
all sessions.  Intuitively, if all sessions are active and 
behaving, this design leaves us with at least Fair size 
spaces in the total output buffer.  The fair size and the 
modified ACK time scheme [13] are also help to 
minimize covert channel because its modified ACK 
scheme prevent the output buffer being full. 

 
Since the network Pump has a built-in mechanism to 

share output buffers fairly among different sessions 
(i.e., moving average construction to control input 
rates), all output buffers are dynamically shared among 
different sessions. 

3.3. Network PumpTM Hardware 

The primary goal of the custom hardware 
architecture of Network Pump™ [22] is the assurance 
that two networks at different security levels that are 
connected through a Network Pump™ will not 
compromise sensitive information.  The Network 
Pump™ is implemented with separate microprocessors, 
memory, input/output (I/O) circuitry, etc. to connect the 
Low net and the High net with only a shared stable 
memory buffer in common.  The Network Pump™ 
keeps the stable buffer from overflowing by controlling 
the rate at which the messages are acknowledged.  The 
rate of the acknowledgements is random, with a mean 
based on the rate at which the High side has been 
accepting messages.  This mean rate of accepting 
messages provides significant protection against the use 
of a covert channel to leak information from High to 
Low. 

 
Early in the design phase, a system-wide design 

decision was made to separate the Network Pump™ 
architecture into two functional areas, a Low Side and a 
High Side.  The Low Side (i.e., Low LAN computer 
software configuration item which executes on the Low 
Side Microprocessor, memory, and assorted hardware 
support components) is responsible for all control, 

status, and data exchange with the Low Host via the 
Pump Protocol.  The High Side (i.e., High LAN 
computer software configuration item, which executes 
on the High Side Microprocessor, memory, and 
assorted hardware support components) is responsible 
for all control, status, and data exchange with the High 
Host via the Pump Protocol.   

 
Communication between the High Side and the Low 

Side of the Network Pump™ is provided via the 
Interprocessor Communication Channel. This 
Interprocessor Communication Channel is used to send 
Pump Messages from the Low Side to the High Side as 
well as moving averages from the High Side to the Low 
Side within the Network PumpTM.  There is also limited 
status and control information that is exchanged 
between the Low Microprocessor and the High 
Microprocessor.  Other than the Interprocessor 
Communication Channel, there is no resource sharing 
between the High Side and the Low Side.  This 
separation reduces/minimizes the risk of data flow (or 
leakage) from the High LAN Interface (e.g., High Host) 
to the Low LAN Interface (e.g., Low Host).   

 
In addition to interfaces to the Low and High LANs, 

the Network Pump™ provides an interface to an 
Administrator Workstation.  The Network Pump™ 
receives initial configuration and other control 
information across this interface and provides error and 
performance reports, if requested by the Administrator.  
The configuration information defines which Low 
Wrappers, specified by IP address and port number on 
the Low LAN are permitted to open connections (and 
thereby transmit messages) to which High Wrappers, 
specified similarly, by IP address and port number on 
the High LAN.  The custom hardware architecture of 
the Network Pump™ is shown in figure 3. 

 
To provide reliability (i.e., not losing any messages 

that the Network Pump™ receives), Network Pump™ 
is equipped with a built-in battery (as shown in figure 
4). All messages in the volatile RAM will be saved into 
non-volatile flash memory before the Network Pump™ 
shuts down in case of power failure. When the power is 
restored, all undelivered messages will be restored to 
the RAM and the Network Pump™ will operate 
normally.  
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Figure 4:  Network Pump™ hardware 

architecture 

It is important to note that the Network Pump™ 
provides end-to-end (i.e., application-to-application) 
reliable message delivery. This is one of many aspects 
that separate the Pump from the other one-way devices. 

 
Currently, Network Pump is produced as a rack 

mounted device (17.5"W x 1.75"H x 10.5"D; 19”) that 
has Ethernet 100BaseT functionality (see Figure 5). 

 

 
Figure 5: Network Pump in Production 

 
Network Pump is being used in the Navy and other 

government agencies.  

4. Competition and Pump Variants 

The Pump was not, and still is not, accepted by all as 
the next best thing since sliced bread.  In this section, 
we discuss some of the alternative ideas and an 
interesting variant of the Pump 

4.1. One-way Link 
There are other secure one-way transfer devices 

even though they do not satisfy all the requirements that 
the Pump satisfies.  A one-way data diode is a 
straightforward way to transfer data from one domain to 

another domain without high assurance components.  
The idea is shown in figure 6: 
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Figure 6: One-way link using one-way data 

diode 
 
A one-way data diode transfers data from Low to 

High without acknowledgements.  Since the diode can 
be physically validated that there is no reverse data 
flow, very little assurance effort is necessary to 
guarantee that no high information leaks to the low side.  
Since there is no data flow from High to Low, there is 
of course no covert channel.  However, there is also no 
guarantee that the data that is sent from Low arrived at 
High safely.  Therefore, in some applications, the same 
data is transferred multiple times [16] to increase the 
probability of a safe data transfer.  In addition, a “big 
buffer 1 ” may be necessary in the High receiving 
computer to prevent data loss.  For example, if the data 
receiving rate in High receiver computer is faster than 
data consumption rate, data is lost in some point.  The 
“big buffer” approach may not work if High system 
crashes (Low system does not know the status of the 
High system). 

 
Owl Computing Data Diode (OWL) from Owl 

Computing Technologies is a commercial product that 
utilizes this idea [16], based on the patent [23].  We 
note that a one-way data diode was also discussed in [5].  
OWL uses a pair of data diode network interface cards 
(NIC) that can be plug in the PCI bus of the host 
computers.  One NIC is used as a sender interface card 
and the other NIC is used as a receiver interface card.  
Each NIC is an optical communication card that moves 
data uni-directionally.  Two NIC cards are connected 
through a fiber optic cable. OWL is a common criteria 
EAL 2 validated product.  

 
The major differences between one-way data diode 

type ideas and the Pump are as follows: 
• The Pump provides reliable communication with 

controllable covert channel capacity. Reliable 

                                                
1 The use of a “big (enough) buffer” [16] was also an 

interesting alternative to the Pump. However, it does 
not meet all of our design requirements as stated in 
section 2.  



 

communication is essential for some applications.  
For example, if a transaction is lost during database 
replication service between a low database and a 
high database then the high database will be out of 
synchronization.  Thus, all applications that use the 
high database will be affected by this inconsistency.  
The Pump guarantees reliable delivery of messages 
even if the session between Low and High is 
disconnected temporarily. 

• The Pump is a network device that routes traffic 
from one domain to another domain while 
providing fairness and resisting denial of service 
attack.  On the other hand, one-way data diode 
does not provide any concept of routing.  

4.2. Quantum Pump 

Unfortunately, no one has come up with a clean 
closed form for the statistical covert channel [18] that 
arises in the Pump.  One of the reasons for tweaking the 
Pump into a “quantum Pump” [21] was the desirability 
of obtaining definite closed form analysis.  We still feel 
that such a closed form is not necessary for making 
pragmatic design choices; however, that is a 
mathematical nicety that is missing.  

4.3. Current Research & Related Research 

It comes as a surprise to us, but people are still 
publishing on the Pump.  There is a recent NPS 
Master’s thesis [7] laying the groundwork for possible 
common criterion considerations.  There is recent work 
[1, 2] analyzing the covert channel that arises from 
connect/disconnect messages.  We note that the 
Network Pump™ does not have this problem since the 
number of connections per unit time is a limited by a 
user-defined parameter.  There is recent work [15] 
applying probabilistic protocol analysis to the Pump. 

The ability to pass information via by affecting the 
time that something is in a queue or buffer is considered 
in other work in information theory such as [3, 4].  

5.   Lessons Learned 

In many respects, the development of the Network 
Pump™ as a GOTS (Government off-the-shelf) product 
was easier than the effort and planning it took to 
transition it to a “real-world” product.  Many obstacles 
were encountered in our efforts to prosecute the 
transition, everything from funding to “I’ll take one 
when it is certified and readily available.”  Part of our 
angst revolved around the lack of an infrastructure in 
place for a research laboratory environment to support 
technology transition.  Though technology transition 

from the research and development community is 
deemed important to the DoD, an overall 
comprehensive process to support the transition is 
lacking and the bulk of the work falls on the shoulders 
of the researchers and developers.   

Several important lessons were learned in our 
endeavor that in many respects will apply to other 
efforts that take a similar path.  The most notable of 
these observations are the followings:  

• Bridge funding: Dollars critical for transitioning 
the product from research and development to a 
certified real-world product were needed 

• Patient and flexible customers: Customers whose 
patience and understanding afford some latitude in 
getting the product established  

• Perseverance: The quality that we, the researchers 
and developers, had to exhibit to make this product 
a reality.   
 

Though it was a painful process, the lessons learned 
have made us smarter and with that, the hopes that the 
next time around success will be easier – especially 
since we are in that process …. again.   

 
From a pure research point of view, we hope that 

one day a more general way of dealing with the subtle 
issues of timing channels and statistical channels will 
be discovered. Until then, we have real problems that 
must be dealt with and obtaining mathematical results 
that lead to information leakage bounds (instead of nice 
closed-form solutions) is extremely useful. Once, we 
have our bounds in place, we can then go on to design 
engineering solutions that are good enough! This is the 
philosophy that we used for the Pump, and it is 
probably a good philosophy to adopt for other, but not 
all, security solutions.  
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