

The Pump: A Decade of Covert Fun

Myong H. Kang, Ira S. Moskowitz, and Stanley Chincheck

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, DC 20375
{mkang, moskowitz, chincheck}@itd.nrl.navy.mil

Abstract

This paper traces the ten plus year history of the

Naval Research Laboratory’s Pump idea. The Pump
was theorized, designed, and built at the Naval
Research Laboratory’s Center for High Assurance
Computer Systems. The reason for the Pump is the need
to send messages from a “Low” enclave to a “High”
enclave, in a secure and reliable manner. In particular,
the Pump was designed to minimize the covert channel
threat from the necessary message acknowledgements,
without penalizing system performance and reliability.
We review the need for the Pump, the design of the
Pump, the variants of the Pump, and the current status
of the Pump, along with manufacturing and certification
difficulties.

1. Introduction

This paper describes the evolution of what we
generically call the Pump. Myong H. Kang was
working on a multilevel secure database (SINTRA)
project at the time. He was concerned with reliable
data replication from a lower level (Low) to a higher
level (High). There were many contenders for such a
data replicator, but they were bulky (e.g., XTS-200
requires an extra host for each network that it is
connected to), expensive, and could not satisfy all of
the reliability, fairness, and robustness requirements
that were desired. Ira S. Moskowitz was researching
the information theoretic basis of covert communication
channels. Kang approached Moskowitz to discuss his
concerns that the necessary message acknowledgements
from High to Low could be used as a covert channel.
They went on to write [8]. This then turned into a
cottage industry of Pump-like papers
[5,9,10,11,12,13,14,18,19,20]. We note that the first

Pump paper is rather rudimentary and has plenty of
rough edges. Today, the Pump has been type
accredited by the Navy and is being produced and
distributed as the patent pending Network Pump™ [22]
based upon the ideas in [13]. It is currently being used
operationally in many locations. The engineering lead
on the Network Pump™ is Stanley Chincheck, also of
NRL, who started this task in 1996. Chincheck had
seen the need for this capability in more practical
applications in the Navy. Knowing the importance of
transitioning technology to the Fleet, he began a
journey to take a mathematical theory and turn it into a
real world product. We felt that after ten years it would
be of interest to share with our colleagues the growing
pains of transitioning a research idea into a
“purchasable product” at a government laboratory.

One must keep in mind that the Pump is not

quantum physics or the complete works of Shakespeare.
It is an engineering solution to a quasi-impossible
problem. We wish to stress that contrary to some
common folklore, the Pump does not eliminate all
covert channels. Rather, the Pump minimizes the
covert channel risk to acceptable bounds by pragmatic
engineering and parameter tweaking.

The Pump was designed in two steps. First, the

“basic Pump” serves only one sender and one receiver.
Second, the “network Pump” (which is the basis for the
Network Pump™ modulo some changes) services many
senders and receivers from different applications (e.g.,
file transfer, database replication) simultaneously. We
simply use the word Pump for dealing with the entire
body of work that applies across the board. That is,
Pump refers to all of the ideas behind the device and the
actual physical box with its specialized code [22].

2. Design Requirements

We review the design requirements that led to the
design of the Pump. The details are throughout the
numerous papers [8,13].

1. Assurance: The design of the Pump should be
simple and able to facilitate its being evaluated at a
high assurance level. Security related functionality
should be well isolated to reduce the complexity of
critical components.

2. Reliability: The reliability requirement for the
Pump can be simply stated as: no loss of messages,
and no duplication of messages. The reliability
should be guaranteed even if the connection
between Low and High is broken temporarily.

3. Performance: The Pump should not arbitrarily limit
the data transfer rate in order to reduce the covert
channel capacity. Furthermore, the Pump, by
slowing the receiving rate to alleviate congestion,
should not lessen total throughput.

4. Covert channel: The Pump should reduce covert
channel capacity as much as possible without
compromising performance.

5. Fairness: The (network) Pump is designed to
accommodate many senders and many receivers.
Therefore, if the load of data traffic offered to the
Pump exceeds its capability, the load reduction must
be performed in a fair manner for all the sessions
that share the Pump.

6. Denial of service attack: Since the Pump may be a
shared resource among several sessions (between
senders and receivers), services for other sessions
can be potentially disrupted if too much resource is
allocated to one particular session. The design of
the Pump should prevent such a situation.

3. Logical Design

In this section, we describe logical design of the
Pump: basic Pump and network Pump.

3.1. Basic Pump

The basic Pump is a device that balances the first
four requirements in section 2. An abstract view of the
Pump is as follows (see figure 1):

Low system

Low
application

Low
wrapper

Low system

Low
application

Low
wrapper Non-volatile

buffer

Pump
High system

High
wrapper

High
application

High system

High
wrapper

High
application

Data

Stochastic
ACK

Data

ACK

Low
LAN

High
LAN

Figure 1: The basic Pump

The basic Pump places a non-volatile buffer (size n)

between Low and High, and sends acknowledgements
(ACKs) to Low at probabilistic times (i.e., stochastic
ACKs) based upon a moving average of the past m
High ACK times [8]. A High ACK time is the time
from when the buffer sends a message to High to the
time when High sends an ACK back to the basic Pump.
By sending ACKs to Low at a rate related to High's
historical response rate, the basic Pump provides flow
control and reliable delivery without unduly penalizing
performance and covert channel requirements. We
emphasize that ACKs are not passed through the basic
Pump from High to Low. In fact, the basic Pump can
acknowledge receipt of messages from Low before
High receives them (otherwise a buffer would not be
necessary). Each ACK sent to Low is generated
internally by the basic Pump only in response to a
message from Low. The average rate at which these
ACKs are sent from the basic Pump to Low reflects the
average rate at which High acknowledges messages
from the basic Pump. This guarantees that Low does
not pay an undue performance penalty due to security
reasons.

Since the Low ACKs are decoupled from High

ACKs, the rate of the ACKs from the basic Pump to
Low does represent only downward flow of information.
However, the algorithm controlling the rate at which
acknowledgments are returned is parameterized to
allow the capacity of this timing channel to be made as
small as a certifying officer may require.

The evaluation process of high-assurance devices is

a difficult and lengthy one. Thus, we want to make the
Pump a generic one-way device that supports many
classes of applications. To achieve this goal, the Pump
supports a specialized protocol, the Pump Protocol,
across the local area network (LAN) interfaces (see
figure 1). Within the low and high systems are
wrappers, specialized software that supports a variety
of applications. Wrappers, which run on the low and
high systems, communicate with the basic Pump over
their respective LANs. Although not shown in the
figure, each wrapper consists of two parts. The
application-specific part provides an application-

specific protocol on one side and the Pump-specific part
provides Pump protocol on the other. It can be tailored
to support the particular set of objects or calls to the
application it expects to see. The Pump-specific part is
a library of routines that implement the Pump protocol.
It supports the Pump’s application program interface
(API) on one side and the Pump protocol on the other.
The application-specific part can call the Pump-specific
API as required. Note that the Pump protocol and the
application protocol are application-level protocols.
Thus, the Pump provides application-to-application
reliability.

This structure of separating wrappers from the Pump
(this applies to the network Pump as well) has several
interesting aspects:

• The Pump’s confidentiality properties depend solely
on the Pump itself, not on the wrappers. Thus,
wrapper software is not security-critical and can be
altered or replaced without affecting system security.

• Wrappers make the Pump a generic device that is
independent of a specific application. Thus, the
Pump can be used in conjunction with many
applications (e.g., messaging systems, file transfer,
database replication).

By focusing on reliable message delivery without

compromising confidentiality from a receiver to a
sender, the design of the basic Pump becomes simple
and easy to understand, this satisfies the assurance
requirement [14].

3.2. Network Pump

The basic Pump deals with only one Low and one
High. To make the Pump a generic network security
device, network Pump theory was introduced [9, 13]
and developed as the Network Pump™. As stated
before, we refer to the broad theory that covers a
network version of the Pump as the network Pump,
whereas Network Pump™ refers to the particular
hardware device and its specialized code, based on the
network Pump, which is currently being patented. We
include a section of the design of the Network Pump™
in section 3.3.

The network Pump satisfies not only the first four

requirements, but also the last two requirements in
section 2. The network Pump acts as a router that
connects Low applications to High applications. To
provide fairness and prevent denial of service attacks,
the network Pump is structured as follows (figures 2
and 3):

High
App 1

NRL Pump
Low
App I

High
App J

Low
App 1

Low
Wrappers

High
Wrappers

.

.

.

.

.

.

Figure 2: Network Pump

.

.

.

.

.

.

L1

LI

H1

.

.

.

.

.

.

HJ

Output buffer 1

Output buffer J

THP1

THPJ

Trusted
Low

Process

I{

I{

J{

J{

.

.

.

.

.

.

ROUTING

link1

linkI

.

.

.

.

Receiver 1

Receiver I

scheduler

scheduler

Figure 3: Internals of the network Pump

Li (Hj) is the set of inputs (outputs) to the network

Pump. We can consider them as wrappers in figure 2.
Receiveri has J slots for receiving messages from Li.
Slotj stores a message from sessionij (i.e., a connection
between Li and Hj) until it is routed by the Trusted Low
Process (TLP). The TLP takes a message from a
receiver and routes it to the appropriate output buffer.

After the message is routed to the output buffer, the

TLP is ready to send an ACK back to the appropriate
Li. The time this ACK arrives at Li depends on the
randomization scheme. There are I logical output
buffers for Hj, each denoted as bufferij. A message
from sessionij will be stored in bufferij. Trusted High
Process j (THPj) delivers a message from bufferij to Hj
according to a scheduling scheme. The network Pump
uses round robin scheduling scheme to guaranty max-
min fairness [6]. THPj cannot deliver another message
from bufferij until the prior message from bufferij is
ACKed (by Hj).

The number of messages in bufferij is important to

achieve fairness [6] (the bigger the number of messages
in bufferij the fairer). This is because our round-robin
scheduler does not take bursting into account. The way
to handle bursty behavior is to have enough messages
queued in bufferij so that times of abundance and
starvation (with respect to message arrivals) are
balanced out. In fact, it is desirable to keep the queue
length in bufferij positive so that max-min fairness is

preserved. However, if the queue length becomes too
big we have potential covert channel and denial of
service problems. Thus, it is desirable to keep the
message queue length at a certain level. To address this
issue, we introduce the concept of Fair size, which is a
configuration parameter targeted for the desirable
number of messages [13] in the output buffer.
Intuitively, the more bursty the input, the larger the Fair
size must be. Note that Fair size has to be intelligently
chosen so that one session cannot dominate (fill) the
total output buffer and at the same time large enough to
accommodate bursting. Good design requires that the
total output buffer have at least Fair size surplus spaces
in addition to sum of the Fair size spaces allocated for
all sessions. Intuitively, if all sessions are active and
behaving, this design leaves us with at least Fair size
spaces in the total output buffer. The fair size and the
modified ACK time scheme [13] are also help to
minimize covert channel because its modified ACK
scheme prevent the output buffer being full.

Since the network Pump has a built-in mechanism to

share output buffers fairly among different sessions
(i.e., moving average construction to control input
rates), all output buffers are dynamically shared among
different sessions.

3.3. Network PumpTM Hardware

The primary goal of the custom hardware
architecture of Network Pump™ [22] is the assurance
that two networks at different security levels that are
connected through a Network Pump™ will not
compromise sensitive information. The Network
Pump™ is implemented with separate microprocessors,
memory, input/output (I/O) circuitry, etc. to connect the
Low net and the High net with only a shared stable
memory buffer in common. The Network Pump™
keeps the stable buffer from overflowing by controlling
the rate at which the messages are acknowledged. The
rate of the acknowledgements is random, with a mean
based on the rate at which the High side has been
accepting messages. This mean rate of accepting
messages provides significant protection against the use
of a covert channel to leak information from High to
Low.

Early in the design phase, a system-wide design

decision was made to separate the Network Pump™
architecture into two functional areas, a Low Side and a
High Side. The Low Side (i.e., Low LAN computer
software configuration item which executes on the Low
Side Microprocessor, memory, and assorted hardware
support components) is responsible for all control,

status, and data exchange with the Low Host via the
Pump Protocol. The High Side (i.e., High LAN
computer software configuration item, which executes
on the High Side Microprocessor, memory, and
assorted hardware support components) is responsible
for all control, status, and data exchange with the High
Host via the Pump Protocol.

Communication between the High Side and the Low

Side of the Network Pump™ is provided via the
Interprocessor Communication Channel. This
Interprocessor Communication Channel is used to send
Pump Messages from the Low Side to the High Side as
well as moving averages from the High Side to the Low
Side within the Network PumpTM. There is also limited
status and control information that is exchanged
between the Low Microprocessor and the High
Microprocessor. Other than the Interprocessor
Communication Channel, there is no resource sharing
between the High Side and the Low Side. This
separation reduces/minimizes the risk of data flow (or
leakage) from the High LAN Interface (e.g., High Host)
to the Low LAN Interface (e.g., Low Host).

In addition to interfaces to the Low and High LANs,

the Network Pump™ provides an interface to an
Administrator Workstation. The Network Pump™
receives initial configuration and other control
information across this interface and provides error and
performance reports, if requested by the Administrator.
The configuration information defines which Low
Wrappers, specified by IP address and port number on
the Low LAN are permitted to open connections (and
thereby transmit messages) to which High Wrappers,
specified similarly, by IP address and port number on
the High LAN. The custom hardware architecture of
the Network Pump™ is shown in figure 3.

To provide reliability (i.e., not losing any messages

that the Network Pump™ receives), Network Pump™
is equipped with a built-in battery (as shown in figure
4). All messages in the volatile RAM will be saved into
non-volatile flash memory before the Network Pump™
shuts down in case of power failure. When the power is
restored, all undelivered messages will be restored to
the RAM and the Network Pump™ will operate
normally.

9

 Dual Port RAM
(Bypass Channel)

 High LAN
Interface

 Low LAN
Interface

 Administrator
Interface

 Power
Interface�

�

VCC_5

VCC_12

VCC_3.3

VCC_RAM

Reset

Power_Fail

�Fault

8

 High
RAM

 Security
Monitor

 High
EEPROM

 Low
RAM

 Low
EEPROM

 High Microprocessor

Low Microprocessor

High Ethernet
Interface

 Serial
Interface

 Power & Reset
Control

Battery

Low Ethernet
Interface

Control

Figure 4: Network Pump™ hardware

architecture

It is important to note that the Network Pump™
provides end-to-end (i.e., application-to-application)
reliable message delivery. This is one of many aspects
that separate the Pump from the other one-way devices.

Currently, Network Pump is produced as a rack

mounted device (17.5"W x 1.75"H x 10.5"D; 19”) that
has Ethernet 100BaseT functionality (see Figure 5).

Figure 5: Network Pump in Production

Network Pump is being used in the Navy and other

government agencies.

4. Competition and Pump Variants

The Pump was not, and still is not, accepted by all as
the next best thing since sliced bread. In this section,
we discuss some of the alternative ideas and an
interesting variant of the Pump

4.1. One-way Link
There are other secure one-way transfer devices

even though they do not satisfy all the requirements that
the Pump satisfies. A one-way data diode is a
straightforward way to transfer data from one domain to

another domain without high assurance components.
The idea is shown in figure 6:

One-way
data diode

Low sender
computer

High receiver
computer

Low
network

High
network

Figure 6: One-way link using one-way data

diode

A one-way data diode transfers data from Low to

High without acknowledgements. Since the diode can
be physically validated that there is no reverse data
flow, very little assurance effort is necessary to
guarantee that no high information leaks to the low side.
Since there is no data flow from High to Low, there is
of course no covert channel. However, there is also no
guarantee that the data that is sent from Low arrived at
High safely. Therefore, in some applications, the same
data is transferred multiple times [16] to increase the
probability of a safe data transfer. In addition, a “big
buffer 1 ” may be necessary in the High receiving
computer to prevent data loss. For example, if the data
receiving rate in High receiver computer is faster than
data consumption rate, data is lost in some point. The
“big buffer” approach may not work if High system
crashes (Low system does not know the status of the
High system).

Owl Computing Data Diode (OWL) from Owl

Computing Technologies is a commercial product that
utilizes this idea [16], based on the patent [23]. We
note that a one-way data diode was also discussed in [5].
OWL uses a pair of data diode network interface cards
(NIC) that can be plug in the PCI bus of the host
computers. One NIC is used as a sender interface card
and the other NIC is used as a receiver interface card.
Each NIC is an optical communication card that moves
data uni-directionally. Two NIC cards are connected
through a fiber optic cable. OWL is a common criteria
EAL 2 validated product.

The major differences between one-way data diode

type ideas and the Pump are as follows:
• The Pump provides reliable communication with

controllable covert channel capacity. Reliable

1 The use of a “big (enough) buffer” [16] was also an

interesting alternative to the Pump. However, it does
not meet all of our design requirements as stated in
section 2.

communication is essential for some applications.
For example, if a transaction is lost during database
replication service between a low database and a
high database then the high database will be out of
synchronization. Thus, all applications that use the
high database will be affected by this inconsistency.
The Pump guarantees reliable delivery of messages
even if the session between Low and High is
disconnected temporarily.

• The Pump is a network device that routes traffic
from one domain to another domain while
providing fairness and resisting denial of service
attack. On the other hand, one-way data diode
does not provide any concept of routing.

4.2. Quantum Pump

Unfortunately, no one has come up with a clean
closed form for the statistical covert channel [18] that
arises in the Pump. One of the reasons for tweaking the
Pump into a “quantum Pump” [21] was the desirability
of obtaining definite closed form analysis. We still feel
that such a closed form is not necessary for making
pragmatic design choices; however, that is a
mathematical nicety that is missing.

4.3. Current Research & Related Research

It comes as a surprise to us, but people are still
publishing on the Pump. There is a recent NPS
Master’s thesis [7] laying the groundwork for possible
common criterion considerations. There is recent work
[1, 2] analyzing the covert channel that arises from
connect/disconnect messages. We note that the
Network Pump™ does not have this problem since the
number of connections per unit time is a limited by a
user-defined parameter. There is recent work [15]
applying probabilistic protocol analysis to the Pump.

The ability to pass information via by affecting the
time that something is in a queue or buffer is considered
in other work in information theory such as [3, 4].

5. Lessons Learned

In many respects, the development of the Network
Pump™ as a GOTS (Government off-the-shelf) product
was easier than the effort and planning it took to
transition it to a “real-world” product. Many obstacles
were encountered in our efforts to prosecute the
transition, everything from funding to “I’ll take one
when it is certified and readily available.” Part of our
angst revolved around the lack of an infrastructure in
place for a research laboratory environment to support
technology transition. Though technology transition

from the research and development community is
deemed important to the DoD, an overall
comprehensive process to support the transition is
lacking and the bulk of the work falls on the shoulders
of the researchers and developers.

Several important lessons were learned in our
endeavor that in many respects will apply to other
efforts that take a similar path. The most notable of
these observations are the followings:

• Bridge funding: Dollars critical for transitioning
the product from research and development to a
certified real-world product were needed

• Patient and flexible customers: Customers whose
patience and understanding afford some latitude in
getting the product established

• Perseverance: The quality that we, the researchers
and developers, had to exhibit to make this product
a reality.

Though it was a painful process, the lessons learned
have made us smarter and with that, the hopes that the
next time around success will be easier – especially
since we are in that process …. again.

From a pure research point of view, we hope that

one day a more general way of dealing with the subtle
issues of timing channels and statistical channels will
be discovered. Until then, we have real problems that
must be dealt with and obtaining mathematical results
that lead to information leakage bounds (instead of nice
closed-form solutions) is extremely useful. Once, we
have our bounds in place, we can then go on to design
engineering solutions that are good enough! This is the
philosophy that we used for the Pump, and it is
probably a good philosophy to adopt for other, but not
all, security solutions.

6. References
[1] A. Aldini and M. Bernado, “An Integrated
View of Security Analysis and Performance Evaluation:
Trading QoS with Covert Channel Bandwidth” to
appear: SAFECOMP 2004.
[2] A. Aldini and M. Bernado, Measuring the
Covert Channel Bandwidth in the NRL Pump, technical
report 2003,
http://mefisto.web.cs.unibo.it/PubblSedeC0.html
[3] V. Anantharam, and S.Verdú, “Bits through
queues,” IEEE Transactions on Information Theory,
Volume: 42 , Issue: 1 , Jan. 1996.
[4] V. Anantharam and S. Verdú, ``Reflections on
the 1998 Information Theory Society Paper Award:
Bits through Queues,'' IEEE Information Theory
Society Newsletter vol. 49, no. 4, Dec. 1999.

[5] J. Froscher, D. M. Goldschlag, M. H. Kang, C.
Landwehr, A. P. Moore, I. S. Moskowitz, and C. Payne,
“Improving Inter-Enclave Information Flow for a
Secure Strike Planning Application,” Proceedings of
the 11th Annual Computer Security Applications
Conference, pp.89 - 98 (1995).
[6] E. L. Hahne. “Round-robin scheduling for
max-min fairness in data networks," IEEE J. Select.
Areas Commun., vol. 9, no. 7, Sep. 1991.
[7] J. S. Holmgren and R. P. Rich, Metric
Methodology for the Creation of Environments and
Processes to Certify a Component: The NRL Pump,
Naval Postgraduate School Monterey CA, March 2003.
[8] M. H. Kang and I. S. Moskowitz, “A Pump for
rapid, reliable, secure communication,” Proceedings of
the first ACM Conference on Computer and
Communications Security, 1993.
[9] M. H. Kang, I. S. Moskowitz and D. C. Lee,
“A Network Version of the Pump,” Proc. 1995 IEEE
Computer Society Symposium on Research in Security
and Privacy. May 1995.
[10] M. H. Kang, J. Froscher, and I. S. Moskowitz,
“A Framework for MLS Interoperability,” Proc.
HASE’96, Niagara-on-the-Lake, Canada, October
1996.
[11] M. H. Kang, I. S. Moskowitz, B. E. Montrose,
and J. J. Parsonese, “A Case Study of Two NRL Pump
Prototypes,” 12th Annual Computer Applications
Security Conference 1996.
[12] M. H. Kang and I. S. Moskowitz, “A data
Pump for communication,” NRL Memorandum Report,
5540-95-7771, 1995.
[13] M. H. Kang, I. S. Moskowitz. and D. C. Lee,
“A Network Pump,” IEEE Transactions on Software
Engineering, vol. 22, no. 5, 1996.
[14] M. H. Kang, A. P. Moore, and I. S.
Moskowitz, “Design and Assurance Strategy for the
NRL Pump,” 2nd IEEE High-Assurance System
Engineering Workshop (1997). IEEE Computer
Magazine, Vol. 31, No 4, 1998.
[15] R. Lanotte, A. Maggiolo-Schettini, S. Tini, A.
Troina, and E. Tronci, Automatic Covert Channel
Analysis of a Multilevel Secure Component, Proc. Int.
Conf. on Information and Communications Security,
LNCS 3269, pp. 249-261, 2004.
[16] J. McDermott, “The B2/C3 problem: How Big
Buffers Overcome Covert Channel Cynicism in Trusted
Database Systems,” in Biskup, J., M. Morgenstern, and
C. E. Landwehr, eds. Database Security, VIII: Status
and Prospects. IFIP Transactions A-60, Elsevier
Science B.V., Amsterdam, 1994.
[17] R. Mraz, “Secure Directory File Transfer
System”, Proc. 12th Annual Canadian Information
Technology Security Symposium, 2000.

[18] I. S. Moskowitz and M. H. Kang, “Discussion
of a statistical channel,” Proceedings of IEEE-IMS
Workshop on Information Theory and Statistics,
Alexandria, VA, (1994).
[19] I. S. Moskowitz and M.H. Kang, “The
Modulated-Input Modulated-Output Model,” Proc. IFIP
WG11.3 Workshop on Database Security, NY, August
1995.
[20] I. S. Moskowitz and C. Meadows, “Covert
Channels-A Context Based View,” Proc. Workshop on
Information Hiding, Cambridge, UK, May/June 1996.
[21] N. Ogurtsov, H. Orman, R. Schroeppel, S.
O'Malley, O. Spatscheck, “Experimental results of
covert channel limitation in one-way communication
systems,” Network and Distributed System Security,
1997.
[22] US Patent application, 10/627,102, July 25,
2003.
[23] US Patent 5,703,562, Method for Transferring
Data from an Unsecured Computer to a Secured
Computer, C.A. Nilsen Dec 30, 1997.

