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I. Introduction. This paper is written for mathematicians and mathematical 
physicists with some knowledge of stochastic processes and of the basic 
notions of statistical mechanics, but I have tried to explain what I believe are 
all major concepts, notions and definitions required for the understanding of 
the main results, i.e. I have tried to write these notes for the nonexpert at the 
risk of boring the expert and, perhaps, being a little imprecise here and there. 
(The expert may find some new results in §§IV and V.) All major recent or 
new results I am describing in this paper were obtained in collaboration with 
B. Simon, T. Spencer, E. H. Lieb and R. Israel. The reader is advised to 
consult references [l]-[4] for statements of the original results and complete 
proofs. Reviews of some of the material contained in these references and 
applications to relativistic quantum field theory may be found in [5], [6]. The 
reader may consult [7], [8], [1] for the original results on phase transitions in 
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relativistic quantum field theory and their proofs. The general point of view 
adopted in this paper is developed in [9HH] and references given there (see 
also [12H14]). Some of the weighting of different concepts and a few results 
have grown out of a course I have taught at Princeton University in the fall 
semester 1976. 

ACKNOWLEDGEMENTS. I am very much indebted to E. H. Lieb, B. Simon 
and T. Spencer for all they have taught me and for the joy of collaboration 
and to these colleagues and R. Israel for permission to present results that are 
in part not yet published. 

1.1. Description of the problem. In these notes I try to outline a new 
mathematically rigorous theory of phase transitions and symmetry breaking 
which is rather general. It applies to Gibbs random fields and noncommuta-
tive generalizations of these, namely some class of quantum lattice systems 
and Fermion (Grassmann) lattice systems; the general concepts and methods 
involved may however equally well be applied to other physical theories, in 
particular relativistic quantum field theory. Many of the results I am going to 
describe were actually first obtained in the context of relativistic quantum 
field theory or at least motivated by it. 

This illustrates once again that mathematics can sometimes profit a lot 
from theoretical physics. The few proofs contained in these notes also show 
that, to use some words of Mark Kac, "in the right hands, Schwarz's 
inequality and integration by parts are still among the most powerful tools of 
analysis".3 

Mathematically speaking, we shall be concerned, in this talk, with certain 
aspects of the theory of stochastic processes and their noncommutative 
versions; aspects that are somewhat related to probabilistic potential theory. 
In particular I want to discuss an analogy between phase transitions and the 
existence of nonconstant harmonic functions of a generalized process. The 
simplest example of a generalized process is a (multi-time) Markov process 
(or a multi-dimensional Markov chain), but the concept of generalized 
processes such as has emerged from the work of the past few years [9], [10], 
[15], [16], [12], [13], [11], [17] is more general and includes "Gibbs lattice 
fields" which are some sort of noncommutative random fields. 

The general problem I shall discuss may be posed as follows: Suppose we 
are given the local characteristics of a generalized process, in the commutative 
case e.g. a system of conditional probabilities or some equilibrium equations 
of the Dobrushin-Lanford-Ruelle (DLR) type [9]-[ll], ia the noncommutative 
case e.g. a "Gibbs condition" [13] or a "Gibbs variational equality" (all cases), 
can we prove general theorems giving a complete description of all harmonic 
functions of the generalized process (i.e. all Gibbs lattice fields with given 
local characteristics) or, in a physicist's language, the pure phases of the 
process! 

Our results are two-fold: 
1. Uniqueness theorems: Dobrushin's theorem [15], [11], [18] and its 

noncommutative versions [19], [20]. 
2. A general method for proving the existence of "nonconstant" harmonic 

3 M. Kac, On applying mathematics: Reflections and examples, Quart. Appl. Math. 30 (1972). 
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functions, or, in other words, of several distinct pure phases with identical local 
characteristics. 

For aesthetical and educational reasons I shall emphasize the discussion of 
symmetries and symmetry breaking, by which I mean that the local 
characteristics of a generalized process (and in particular its "Gibbs 
potential", resp. its Hamiltonian) may be invariant under a symmetry group 
which does not leave invariant some or all its nonconstant harmonic 
functions, i.e. which permutes the pure phases of the process among them-
selves. 

I briefly want to motivate this emphasis on symmetries and symmetry 
breaking. 

1.2. The role of symmetry in mathematics and physics. For a beautiful 
discussion of the significance and the history of symmetry as a concept in 
mathematics, the natural sciences and the arts I refer the reader to Hermann 
WeyFs book entitled Symmetry [21]. (A new, somewhat more modern treatise 
on this subject would be desirable.) There are two aspects of "symmetry" of 
direct relevance to this paper: 

1. A purely geometric aspect. 
2. A dynamical aspect. 
The symmetries of geometric objects lead to the mathematical concept of 

symmetry and are one of several major roots for the development of group 
theory. (One might recall, here, Felix Klein's program of characterizing 
geometries by their invariance groups.) 

Geometric symmetries played and still play an important role in chemistry, 
crystallography, biology and other natural sciences. Historically they also 
played a role in dynamics, especially celestial mechanics. The Greeks believed 
that the motions of the planets and the moon would necessarily have to be 
circular or a superposition of circular motions, as the circle is a geometric 
object of maximal symmetry. 

The Platonic solids, namely the tetrahedron, the cube, the octahedron, the 
pentagon dodecahedron and the icosahedron found their way into celestial 
mechanics: Kepler tried to reduce the distances in the planetary system to the 
shapes of these solids which he alternatingly inscribed and circumscribed to 
spheres. The six spheres correspond to the six planets Saturn, Jupiter, Mars, 
Earth, Venus and Mercurius, known at that time, separated in this order by 
cube, tetrahedron, dodecahedron, octahedron and icosahedron. 

Kepler's attempt to understand laws of nature in terms of static, geometric 
symmetries is typical for natural philosophy in pre-Galilean and pre-
Newtonian times. 

One of the most significant steps in the history of human thinking may well 
have occurred when the static, geometric concept of symmetry and its rather 
successless applications to dynamics were abandoned in favour of a dynami-
cal concept of symmetry. 

With Newton physicists started to conceive the idea that it is the laws of 
physics describing the motion of particles, e.g. the planets, which are 
invariant under certain symmetry groups rather than the orbits of the parti-
cles themselves. This dynamical concept of "symmetry" is at the basis of some 
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of the major revolutions in the physics of this century and is the one of main 
importance for the following. 

1.3. Spontaneously broken symmetries. The idea that the symmetry group 
leaving invariant the laws that describe a physical system may be broken in 
the space of states of the system is in some sense the main theme of these 
notes. This idea will take a mathematically precise shape in the following 
discussion. 

The statement that some symmetry of the laws describing a physical system 
is broken means that the states of the system fall into equivalence classes 
invariant under the time evolution and under all possible measurements one 
can do at such systems which are however not invariant under a symmetry 
operation. Rather, symmetry operations permute these equivalence classes 
among themselves. 

A very striking example of a broken symmetry is found in biology: Living 
organisms contain the dextro-rotatory form of glucose and the laevo-rotatory 
form of fructose. There seems to be no a priori reason why it should not be 
the opposite or why living organisms of both kinds should not coexist (though 
perhaps coexistence might necessarily result in the extinction of one kind). 

We all know that this striking asymmetry in the chemical constitution of 
living organisms has been preserved over centuries and has so far not been 
destroyed by any changes of the environmental conditions. Thus it really 
presents an example of a broken symmetry. 

A trivial example of a broken symmetry in every day physics is a dumbbell 
shaped balloon with two distinct, asymmetric equilibrium shapes. 

The physical laws describing the balloon do not distinguish between left and 
right. 

Without going into any detail I want to recall the fundamental role played 
by dynamical symmetries (spatial or internal) and their breaking in elemen
tary particles physics. The idea that symmetries of physical laws may be 
broken spontaneously (or dynamically) in the state space of a system is a 
fundamental ingredient in all recent theories of elementary particle physics 
[22]. To conclude this introduction let me mention some examples of symme-
try breaking in solid state physics that have a certain bearing on the subject of 
my talk: 

The first example is a ferromagnet, i.e. a system of bulk matter (e.g. iron) 
that has the property that when an external magnetic field in a fixed direction 
is turned off and the temperature is low enough it remains magnetized in the 
direction of the turned off field. Quantum mechanically, this phenomenon is 
not yet well understood. 

Another theoretically closely related phenomenon is Bose-Einstein 
condensation. In a quantum gas of particles satisfying Bose-Einstein statistics 
the ground state of the gas may have, at low temperatures, a macroscopic 
occupation. This is accompanied by the spontaneous breaking of a gauge 
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group of the first kind isomorphic to SO (2) which leaves the physical laws 
describing the gas invariant. 

We shall also meet examples where a discrete symmetry is spontaneously 
broken. 

One of the most striking and fundamental phenomena is however, no 
doubt, the existence of crystals in nature, that is to say of states of matter 
which break the translational invariance of all physical laws. 

In the past two years mathematically rigorous theoretical understanding of 
the phenomenon of phase transitions and symmetry breaking in the frame-
Work of admittedly somewhat too simple models has made great progress. 
What I intend to do is to describe some of the mathematical and analytical 
aspects of this progress. I hope this introduction has convinced the reader 
that the problems I am going to discuss are important and that it has 
indicated what kind of mathematics is involved (generalized processes, Gibbs 
random fields, probabilistic potential theory). 

II. Lattice systems and generalized processes. 
II. 1. Description of the mathematical structure. Let £ denote some ^-dimen-

sional lattice. For simplicity I shall in general assume in these notes that 
£ = Z"; the simple cubic lattice. 

Many of the results I am going to indicate in the following depend however 
only on a certain reflection invariance property of the lattice £, i.e. a 
geometric symmetry property of £. (Some of the results, e.g. the uniqueness 
theorems, do not depend on any special properties of the lattice, at all.) Since 
there are only finitely many crystallographic groups in v dimensions (17 for 
v = 2, 230 for v = 3), it is a matter of consulting a table of these groups in 
order to give a complete list of all lattices having the required reflection 
invariance. 

At each site / E £ we are given an algebra 21, of operators. We must 
distinguish two cases (if we included Fermions it would be three): 

(C) classical case 

% « C(0,), 

where S2,- is a copy of some fixed, compact Hausdorff space fl0. In these notes 
S20 Ç R*4, N = 1, 2, 3 , . . . , but in interesting cases (lattice gauge theories) 
fi0 may be a nonabelian compact group. We equip 2t, with the sup norm and 
complex conjugation as an involution*. 

(QM) quantum mechanical case 

Ï , « B ( 3 Q ; 
here 3C, is an isomorphic copy of some fixed, finite dimensional Hubert space 
%>. The norm and the * operation on 21, are defined in the usual way. 

For X G ^ ( £ ) (the algebra of bounded subsets of the lattice £), we 
define 

%x = ® 21,.. 

If ^ c ^ ' w e consider 21* to be the subalgebra of 21^ defined by 
4 Here R^ is the one-point compactification of RN. 
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where I, is the identity element in %. Technically speaking, {31*: X E 
tyj(£)}is a family of C* algebras (in case (QM) von Neumann algebras), and 
they are called local algebras". 

If a is a translation in the lattice £ and X is a finite subset of £ then X + a 
denotes the translate of X by a. 

The natural identification of %x with %x+a *s denoted ra. 
The * algebra 31 = U xcé^x *s called the algebra of all local observables; 

3t is normed in the obvious way with the norm denoted || • ||. The group {ra: 
a E £} acts as a * automorphism group on 31. 

The completion of 31 in the norm || • || is denoted 31 and is called the 
algebra of all quasi-local observables. This algebra is a C* algebra. In the 
classical case, 21 is isomorphic to C(fi), with 

Q= X 0, 
zee ' 

(Stone-Weierstrass theorem). 
A state p on 21 is a positive linear functional on 3t normalized such that 

p(i) = i» 
with 1 — ®/€Eel/ (the identity in 31). The space of states on 31 is denoted 31*. 
The structure of 31* is analyzed in [14]. 

In the classical case, where 31 = C(B), 31* is simply the class of all regular 
Borel probability measures on Ö. 

For all A E 31*, define 

(C) tr(̂ )=f II + ( ^ ( 4 

where Qx = XiexQi9 ux = {<*>,: i E X}9 and dp is some probability measure 
on S20; 

(QM) tr(A) - (l/d)Tr%x(A), 

where %x = ® l€=* 3Q, <ƒ is the dimension of %x> i.e. rf - (dim %$*\ with 
(Z) the number of sites in X, and Tr^ is the usual trace on B(%x) — 
®/e*W). 

In the definition of tr, X is an arbitrary finite subset of £. Hence tr extends 
by continuity to a state on 31 (note that tr is linear, tx(A*A) > 0, for all 
AE% tr(l) = 1). 

II.2. Interactions ("Gibbs potentials**). An interaction $ is a function on the 
class *3/(£) of all finite subsets of £ with values in 31 such that, for 
X E <?/£), 
(*1) $ : I K <S>(X) E 3t*. 

($2) $(X + a) = ra(®(X)) (translation invariance). 

($3) $ ( * ) * = $ ( * ) , for all JT. 

The interactions $ form a real Banach space $ with norm ||$|U = 

2*3 011*0*011 (0 is the origin in £). 
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An interaction $ is of finite range if ${X) = 0 when diam X > r, for some 
finite r > 0. 

The iteractions of finite range are dense in ©. 
Symmetries. Let G be some compact, topological group acting as a group of 

continuous * automorphisms on SSQ. Clearly the action of G as a 
* automorphism group of 9t0 has a natural extension to a representation {rg: 
g E G} of G by continuous * automorphisms of the algebra 31. 

We say that the interaction $ is G-invariant (or: G is a symmetry of $) if 

Tg(0(X)) - <P(X)9 for all X E # / e ) . 

II.3. Fi/ufe systems. We are now prepared to define the systems considered 
in the following. They represent a class of dynamical systems characterized by 

•a C* algebra of observables, 
—a one parameter * automorphism group of "time-translations" on this 

algebra, 
-the "states of interest" on the algebra of observables (in these notes we 

concentrate on the analysis of equilibrium states, defined below, see also [9J, 
[13], [14]). 

First we study finite (dynamical) systems: For simplicity we assume that 
£ = Z Î / 2 s zr + ( 1 / 2 , . . . , 1/2). 

Let A be some finite rectangle in Z?/2- We identify opposite faces of A, i.e. we 
wrap A on a torus (recovering in this way a group of translations). We then 
regard 2IA as the algebra of observables of a finite dynamical system in the 
region A. Given an interaction <& we construct the time-translation 
automorphisms of the system by means of a Hamiltonian 

* C A 

Property ($3) guarantees that, for all finite regions A, # A is selfadjoint One 
may therefore define the time-evolution of an observable A E 2lA by 

A H>af(A) = eitH*Ae~itIi\ 

In case (C) a,A is trivial, but in case (QM) it is in general not. 
The equilibrium state ("state of interest" in these notes) of a finite* 

dynamical system specified by the region A and the interaction O is then 
defined by 

p£*(A) s tr(e-^yhx(e"^A% (A E 3lA). 
It is unique and it is invariant under all * automorphism groups of 2tA 

commuting with H* and leaving tr invariant. This means that "finite systems 
do not have phase transitions or symmetry breaking". 

Here some examples of interactions that are interesting for physics: 
(Cl) Ö0 = { - 1 , 1}; S0 is the function on Q0 defined by ^(±1) = ± 1; 

St « T/(5o); Si is called the (Ising) spin at site i. $({/}) = - hSiy h real; 
*({''J» = - Ji-jSiSp with ƒ,_, > 0 and ƒ,_, > 0, for |j ~j\ = 1; 

$(X) = 0, for |Jf| > 3; 

M ( { ± l } ) - i -
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This is the so-called ferromagnetic Ising model We note that, for h = 0, H* 
has a discrete symmetry 

H*(SA) = H*(-S„), 

i.e. the dynamics is invariant under flipping all spins in A. This symmetry is 
shared by dp and tr. 

(C2) Here S20 = SN~\ the unit sphere in R^; SQ is the function assigning to 
a unit vector in fi0 its /th component, and S0 = ( 5 j , . . . , SQ), S, = T,(S0). 

*({/}) = - h S,, h e R"; 0({/J}) = - / W S , - S,, with e.g. ƒ,_, > 0, and 
Jt-j > 0, for \i -j\ = 1; $(X) = 0, for |JT| > 3; 

4t(S0) = 5 ( | S 0 | - i y X 
This is the classical, ferromagnetic iV-vector model (when N — 3 it is 

frequently called the classical Heisenberg model). For h = 0, its symmetry 
group is obviously O (N). 

REMARK. If in the definition of the interaction 0 in models (CI) and (C2) 
we set Jt_j = 0, for \i —j\ > 2, we obtain examples of multidimensional 
Markov chains. (The equilibrium expectations of these models have the local 
Markov property, [16], [17], [23].) 

(QM1) % = C2S+l; S = 1/2, 1, 3 / 2 , . . . ; 

{SQ: i = x,y, z) a 25 + 1 dimensional, irreducible representation of the Lie 
algebra of SU(2); S0 = (Sg, S$, S$); S, = T,.(S0); $ as in (C2). 

This is the spin-S Heisenberg ferromagnet. For h = 0 it has 0(3) as its 
symmetry group. This is a difficult model which is not completely understood 
yet. 

(QM2) The same as (QM1), but in the definition of O we require Jt_j < 0, 
for 11 - j \ = 1, Jt_j = 0, otherwise. 

This is the spin- S Heisenberg antiferromagnet. Again the symmetry group 
is O (3) (for h = 0). For results see [2]. 

The main part of these notes is devoted to the discussion of new results 
concerning the equilibrium statistical mechanics of a dynamical system 
specified by the observable algebra 9IA and the dynamics H%. We are mainly 
interested in the systems obtained by taking the thermodynamic limit A -» 
Z /̂2- This limit must be taken before one can start to discuss phase 
transitions and symmetry breaking. (Finite systems never exhibit symmetry 
breaking!) 

I shall now introduce some basic objects of thermodynamics and statistical 
mechanics, in particular the so called thermodynamic functions. They are 
needed to define the "states of interest" for the infinite systems (A = Zî/2). 

II.4. Thermodynamic functions. We define the canonical partition function 
for a system in the region A with interaction O by 

Z A ( A O ) = t r ( e - ^ ) , 

and the free energy f \(fi, $) per unit volume by 

# A ( j 8 , * ) = - ( l / | A | ) l n Z A ( A * ) . 

Here ft is the inverse temperature. 
Let p be a translation invariant state of the infinite system, i.e. 
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p(ri(A))^p(A), 

for all i G Z', all A G 91. We set 

pA = p/9TA (the restriction of p to 9IA). 

We define the internal energy per site by 

«A(p,<D) = (l/|AI)p(tf*), 

and the specific entropy by 
*A(p)=-(l / |A|)tr(pA lnpA) . 

(In case (QM) we consider arbitrary translation-invariant states on 9T, in 
case (C) only those states p with the property that pA is absolutely continuous 
with respect to II|GA dKto,). The class of all these states is denotedE1.) 

The following results (see [9] and references given there) summarize some 
rigorous thermodynamics for lattice systems with interactions $ G %. 

THEOREM 1. For all real /?, $ G ®, p G i?7, the following limits exist (and 
are "independent of boundary conditions" and of the sequence {A} -» II\ 
k-*7J "in the sense of van Hove"). 

ƒ(/*,$)= Hm AC/?,*), 
A-»Z' 

M(p, $) = lim «A(p, $) = 2 M"' P(*(X% 
A~*Z A" 3 0 

j(p) - lim sA(p). 
A-»Z* 

(2) The function s(p) is affine and upper semicontinuous. 
(3) Gibbs (variational) ienqualtiy; 

s(p)< pu(P> *)-&(&*)• 
THEOREM 2. For all real ft and $ 6 $ there exists at least one translation 

invariant state pon 91 such that 

*(p) = /to(p> <&)-/*ƒ(&$) 
(Gibbs variational equality [9]). 

Any cluster point of the sequence of states in E1 

{ZA( A $)-'trA(,-^ - ) ® M - W C A , ^ 

satisfies the Gibbs variational equality, i.e. any limiting state of the equilibrium 
states of the finite systems, as A^ZÎ /2 satisfies this equality. 

REMARK 3. Existence of at least one such limiting state follows from a 
standard compactness argument. Moreover, under suitable assumptions on 
the interaction $, one can prove that 

at(A) = n-lim a*(A) exists, for all ̂ 4 G 91; 

see [9]. A different construction of the time-translations for infinite systems is 
discussed in [24]. 
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We are now prepared to define the "states of interest" for the infinite 
systems. 

U.S. Equilibrium states, uniqueness theorems. Any state p E E1 satisfying 
the Gibbs variational equality for an interaction $ E © and inverse tempera-
ture /? is called an equilibrium state of the infinite system (specified by $) at 
inverse temperature /?. These are the "states of interest" in these notes. For 
people familiar with thermodynamics this definition looks most reasonable. I 
should however emphasize that the justification of this definition and its 
consequences is the subject of deep and difficult work that is still partly in 
"statu nascendi" [9], [10], [13], [14]. In particular it is possible to prove the 
equivalence of this definition with a characterization of equilibrium states in 
terms of local characteristics (systems of conditional probabilities in case (C)). 
This establishes a connection to the theory of generalized processes. 

Moreover there is a deep connection of the theory of equilibrium states and 
Tomita-Takesaki theory [25]. Since s(p) and u(p, <&) are affine in p, we 
immediately conclude that the set A ^ of all equilibrium states with given <& 
and ft is convex. 

As a matter of fact one has 
THEOREM 4. A '̂* is a Choquet simplex, i.e. each equilibrium state p E A&° is 

the resultant of (a unique probability measure supported on) extremal elements 
in A'30 (see e.g. [9], [31]; a simple proof in the classical case (C) is outlined in 
[19]). 

REMARKS. The extremal elements of Â ** are called the pure phases of the 
infinite system with interaction $, at inverse temperature /?. If A'*'* happens 
to be the family of all stationary states of a multidimensional Markov chain 
(see the Remark in §11.3, Example (C2))-or some more general stochastic 
process-then the probability measures supported on the extreme points of 
A^° are in 1-1 correspondence with the harmonic functions of the Markov 
chain. 

The next result asserts that, for small /?, A^f* contains typically only one 
state. 

THEOREM 5. Let $ be of finite range. Then, for sufficiently small /} ("high 
temperature"), à^ contains precisely one state p&*. If A and B are arbitrary 
operators in some local algebra then 

\p^(ArJ(B))-p^(A)p^(B)\ 

decays exponentially in \j\ ("exponential clustering"). 

REMARKS. 1. A more general result has been groven in the classical case (C) 
by Dobrushin [15]: For any interaction O e ® (||$IL < °°) &M contains 
precisely one state, for fi small enough (but generally no exponential 
clustering); see also [11], [18]. 

2. In the quantum case (QM) Theorem 5 is due to the author [19]. In one 
dimension (v = 1) Araki has proven a more general result of this type, for all 
ft [20]. Preliminary results of this genre were obtained in [26], [27]. 

3. Let G be a connected Lie group acting as a nontrivial, local, continuous 
* automorphism group on 31. Let Ô be an interaction of finite range that is 

G-invariant. For v = 1 and 2 Dobrushin and Shlosman [28] have proven that 
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in the classical case (C) all states in A^f* are G-invariant. Hence there is no 
spontaneous symmetry breaking. We shall show that if $ has very long range 
then this conclusion is in general false. 

4. The proofs of Theorem 5 and the results mentioned in Remarks 1-3 
involve a great deal of concrete, hard analysis, in particular expansion 
methods, fixed point theorems, trace-inequalities, etc. 

III. The general notion of phase transition. We consider an infinite lattice 
system characterized by an interaction $ and the family à&* of all its 
translation-invariant equilibrium states at inverse temperature /?. 

DEFINITION OF PHASE TRANSITIONS. We say that a system with interaction <& 
has a phase transition if the number of extremal equilibrium states in AA* is 
not constant as a function of /?. 

From Theorem 5 we already know that, under suitable assumptions on <& 
and for | >81 small enough, A '̂* contains precisely one state. In this situation 
we speak of a phase transition if, for sufficiently large \fi\9 à^ contains more 
than one extremal state. 

Thus we will have proven the existence of a phase transition if we can find 
some (5 and a state p^* G à&® which is not an extremal state. We must 
therefore formulate a criterion which permits us to decide whether some state 
p ^ * is extremal or not. Since in the following p&® is some fixed element of 
A**, we do not need the labels fi and $ and write (A) for pA%4), A E 2T. 

We now state this criterion, then indicate why it is correct and finally 
discuss the connections between phase transitions and symmetry breaking. 

Let A E 21 be some quasi-local observable and A§ — rê(A) the translate of 
A by the vector i. We define 

c = c(A): = lim - J - 2 2 <A?Aj>. 
A-*ZÏ/2 |A|2 ,6A yeA 

We define a truncated expectation A *A by 

(A*A}T'- (A*A) - c. 

The state < - > is not an extremal invariant equilibrium state (extreme point of 
AA*) if and only if, for some A E % 

(PT) (A*A)T< (A*A) - \(A)\2. 

Clearly this inequality is equivalent to 

c > M>|2, 
or-if we define 

(MF) Urn (tlAZbAA) - c - |<-4>|2 > 0. 
A"*Z|/2 

A theoretical physicist interprets this inequality as showing the presence of 
macroscopic fluctuations (or long range order) in the state < — ), see e.g. [2]. 

If < - > were extremal invariant then, clearly, 
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lim (AA%bAA) = 0, for all A E 91. 

Therefore the state < —> is «0/ extremal invariant if and only if there exists 
some quasi-local observable A satisfying inequality (PT) or, equivalently, 
inequality (MF). 

We now develop some geometric notions that may be used to make this 
criterion plausible (and, as a matter of fact, to prove it; see [9], [10], [1], [2], 
[5]). Given any translation-invariant state < —> on the algebra 91, there exists 
a Hubert space %, a cyclic vector S E 3C, a representation m of 91 on % and 
a continuous, unitary representation {Ua: a EZP} of the translation group 
such that 

(A) = (S2, ^ ) f l ) , 

{Ara(B)) = {n,<n(A)Ua<ir(B)ti)9 

£/öÖ = S2, for alla E II. 

This is simply the Gel'fand-Naimark-Segal construction; see e.g. [31]. 
Let %J be the closed subspace of % consisting of all translation-invariant 

vectors in %, i.e. for * E OC7, Ua^ = *. Clearly dim X1 > 1, as Q E 3C7. 

THEOREM 6. <—> = p'5'* w extremal {moreprecisely: extremal invariant) if 
and only if dim 3C7 = 1, i.e. 3C7 - {£2}. 

The proof of this result involves using the definition of equilibrium states in 
terms of local characteristics (the DLR-equations in the classical case, the 
KMS- or Araki's Gibbs condition in the quantum case). Thus, in order to 
prove that < — ) is not extremal, it suffices to show tjiat dim %' > 2. 

Let P1 denote the orthogonal projection onto the orthogonal complement 
of3C7. 

For A and B in 91 we define a "truncated expectation" of A and B by 

(BA)T = (TT(5)*Q, P77T(V4)Q). 

(For 5 = A* this definition coincides with the one given previously. This 
follows from the spectral theorem.) 

If dim %' = 1 then P1 is simply the orthogonal projection onto {Q}x 

which we denote by 1 - Pfi. Hence 

(AB)T= (AB) - (A)(B). 
Since Q e 9C', P' < 1 - i>c, so that 

<^*y*>r<<v4M>-M>|2 . 
Thus, in order to show that < — > is not extremal, it suffices to show that 

(A*A)T<(A*A}-\(A)\2, 

for some suitable A E % i.e. inequality (PT)! 
Let Aj = Ti(A). The Fourier transform of (A^A^(T) is denoted du(T)(k). It 

is a positive measure on the first Brillouin zone B = {k: k' E [ — IT, IT], 
i = 1 , . . . , v). Clearly 

<.ASA,y = <A$A,y + (*(A0ya, (i - P > ( 4 ) 8 ) -
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The second term is independent of /, since (1 - P1) projects onto the space of 
translation-invariant vectors. Therefore 

du(k) = cS(k)dvk + duT{k\ 

for some c > 0; if c > \(A)\2 then (PT) and (MF) hold. 
Our strategy for the proof of the existence of a phase transition can now be 

formulated as follows: 
(0) Choose a suitable local observable A. 
(1) Derive an upper bound for (A*A}T: 

(A*AY= f d0>T(k) < Cy 

(II) Derive a lower bound on {A*A) — |<^>|2: 

(A*A) - \(A)\2 > c2. 

If c, < c2 then 

<^>H<^>|2><^>r, 
therefore dim %I > 2, i.e. < —> = p A * is not extremal (that means that <—> 
has macroscopic fluctuations in the sense of inequality (MF)). Next we want 
to show why a phase transition may be accompanied by the spontaneous 
breaking of a symmetry of the system. 

Let G be some compact topological group acting as a nontrivial, local 
* automorphism group {T^: g G G} on the algebra 31 of all quasi-local 

observables, and Tg(%x) = 21*, for all X G %(£). 
Suppose now that the interaction $ of the system is G-invariant, i.e. 

rg(Q(X)) = 9(X), for all X G <?/£). 

This is a precise expression for "G is a symmetry of the system" (dynamical 
concept of symmetry). Next, assume that the equilibrium state < — > is 
G-invariant, i.e. 

<^(C) ) = <C>, forallg G G,C G 2T. 

There exists always at least one G-invariant equilibrium state if the 
interaction $ is G-invariant; see Theorem 2. Let dg be the normalized Haar 
measure on G and let A be some observable of the system with the property 
that 

A=Â-f Tg(Â)dg^Q. 

Suppose now that A satisfies Estimates (I) and (II) with cx < c2, i.e. 

(A*A) >(A*A)T. 

(Estimate (II) is simplified because {A} = 0.) In this case < —> is not 
extremal, so that by Theorem 4, 

(A)=f df>(xKA}x (foralMGStt), 

where S (A^$) denotes the set of extremal states in AA*, and dp is a proba-
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bility measure on S(A^*) with at least two different extremal states in its 
support. For */p-almost all x> <\~")x *s extremal, i.e. 

<A*A)l= <A*A)X- M > / , 

and therefore 

f dp(x)\<A)x\
2 = [ dp(x)[<A*Ayx-<A*A}T] 

= < ^ * ^ > ~ < ^ * ^ > r > 0 , 

i.e. (A}x T^ 0, for a set T of x's of positive rfp-measure. 
From (A}x =£ 0 and fG dg(rg{A))x = 0, for all x ^ T , one immediately 

concludes that the states {< — >x: x £ T} are not G-invariant. All the states 

N-))r?ec l X er} 
are equilibrium states of the system (they satisfy the Gibbs variational 
equality!). 

Thus the symmetry group G of the interaction $ (the "dynamics of the 
system") is broken by the states {<Tg(-)>x: g e G, x ^ T}; G permutes 
different pure phases of the system among themselves. 

An interesting special case in this situation is the following: There exists 
some distinct, extremal equilibrium state < — >+ in the set of all equilibrium 
states A^* of the system such that every state < - > in A A* is of the form 

<->=ƒ dn(g)<rg(-))+, 

for some probability measure d[i on G. 
In this case information on the structure of A '̂̂  is obviously rather 

complete. 
As proven by Slawny [29] and Lebowitz [30] this special situation is met in 

the ferromagnetic Ising models (of the form of Example (CI), §11.3) at all but 
possibly countably many temperatures. 

It follows from our discussion that the concept of phase transition is in 
principle more basic than the one of symmetry breaking (see [1], [6], [28] for a 
precise discussion of this point). In many important physical theories phase 
transitions and symmetry breaking come however in pairs. 

The remaining part of these notes is devoted to an outline of a general 
theory for the derivation of Estimate (I) and the application of our strategy 
(Estimates (I) and (II)) to the proof of existence of phase transitions in specific 
models. 

The starting point for our proofs of Estimate (I) is the following chain of 
simple observations: 

To get an upper bound on (A*A}Tj=: fB do)T(k) it suffices to prove a 
pointwise upper bound on duT(k). Let J(k) be some continuous function on 
the first Brillouin zone B with J(k = 0) = 0. Then 

(1) / (kf du(k) = / (kf duT(k), 

because J(k)28(k) = 0, as a measure on B. Taking the Fourier transform of 
equation (1) we conclude that 
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(2) <(ƒ * A*)0(J * A),) = <(/ * A*)Q(J * A)f. 

Let C(h) = 2QA(0 = 2 T,(C)A(I), where C is a local observable and h(j) is 
some function on Z /̂2- Then we obtain from (2) 

((ƒ * ^*)(M(/ * ^)(A)) = ( ( / • ^*)(A)(7 * A)(h))T. 

Hence if we can find some J such that its Fourier transform / is nonposi-
tive, -J(k)~l is rf"A>integrable, and for all summable functions h 

((J * A*)(h)(J * A)(h)) < -const 2 MJ) Jt-MJ) 
ij 

then 

J (k)2 daT(k) < - const J (k) d% or 

do)T(k) < - const / (A:)"1 dvk 

which is the required upper bound. 
These are the estimates derived-under suitable assumptions on the 

interaction O-in the subsequent sections. 

IV. Reflection positivity. In this section we consider a certain cone of 
interactions which satisfy a positivity property called reflection positivity [4]. 
This property can only be formulated for lattices which have a certain 
reflection invariance (alluded to in §11.1). For simplicity we only consider 
simple, cubic lattices; but see [4] for more general results in the classical case 
(Q. 

In the language of a mathematical physicist reflection positivity expresses 
the existence of a self adjoint transfer matrix. 

IV. 1. Reflection positivity in finite systems. Unless otherwise stated all the 
following results are proven in [4]. 

We let A c Z\/2 s V + ( 1 / 2 , . . . , 1/2) be the rectangle 

X [ - / , . + 1 / 2 , / , - 1 / 2 ] , /, = 1 ,2 ,3 , . . . , 

and we identify 4 + 1/2 with - lt -f 1/2, i.e. we wrap A on a torus. We then 
define 

A4 - X . [ - 4 + 1 / 2 , 4 - 1/2] X [ ± 1 A ±lt+ 1/2]. 

The following figure represents a cross section of A (viewed as a torus): 

o' 

- I /+1/2 
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For / = ( / „ . . . , /,) E Zj/2 we define 

OH = (il9...,-/},..., ƒ,). 

Thus if X is some subset of ZÎ/2, 9
jX will denote the reflection of X at the 

plane /, = 0. 
We now define O7 to be the * automorphism of 2lA which when restricted 

to 21, is the identification map: 2I,->21^, and ©/(2tÂ ) = ®iEiX 0/(2l/). 
Obviously 

© ^ = 2IAV 

In the following we generally suppress the superscript j . Any statement that 
does not contain explicit reference to a distinct j is true for ally = 1 , . . . , v. 

LEMMA 7. For all A E 9tA+, tr(^0(^*)) > 0. 

PROOF. 

tr(^0(^*)) = trA+04)trA_(©04*)) 

- trA+04)trA+04*) = trA+(^) trA+(^) > 0. Q.E.D. 

Note that because of translation invariance of A and tr the choice of an 
origin on the torus A is arbitrary, as indicated in the figure! 

DEFINITION. An interaction 0 satisfies reflection positivity iff, for all finite 
X, 0($(I)) = <P(0X), and 

(04) classical case (C): For all finite rectangles A, 

2 *(X) = - 2 * W ) (or = - ƒ BX@(BX) dx\ 
*nA+*=0 

where all the operators Bt (resp. Bx) are selfadjoint elements of 2tA+. 
(04) quantum mechanical case (QM): For all * G ^f(Z\/2)9 $(X) is ra*/ 

with respect to some complex conjugation of 21 (i.e. $(X) is a matrix with real 
entries, in a suitable representation). Moreover, for all finite rectangles A, 

2 * ( * ) = - 2 W * , ) (or = - ƒ 2^0(5, ) <fel 
*nA+*0 
*nA_*0 

where all operators Bt (resp. Bx) are rea/ elements of 2IA and Uf = ± Bt 

(2>;=±2?J;see[2],[4]. 
REMARKS. 1. A similar (somewhat more complicated) condition defines 

reflection positivity in Fermion lattice systems; see [19], [4]. 
2. From now on we shall only consider the classical case (C). All results 

extend however to the quantum mechanical case (QM) if the interaction O 
satisfies ($4) and if we only consider real observables A E 2t, replacing 
®(A*) systematically by ®(A). These conditions seem to exclude the treat-
ment of the quantum mechanical ferromagnet (model (QM1)), permit how-
ever the analysis of the antiferromagnet (model (QM2)) and the so-called 
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quantum mechanical x-y model within the gerneral theory described in this 
and the next section; see [2]. 

LEMMA 8. If $ satisfies reflection positivity ($4) then 

(H) Ht = C + 0(C) - 2 Bfi{Bt) 

with C = C* E 9IA+ and Bt E 3IA+,/or a//1. 

PROOF. 

Jtf- 2 *(*) 
xeA 

= 2 *(*) + 2 *(*) + 2 *(*> 

*nA_#o 

We set C = 2 * e A + $(*) . Then 

0(C) = 2 ©(*(*))- 2 *(**) 

*<EA_ 

This and reflection positivity ($4) yield equation (H). The remaining part of 
Lemma 8 follows from the selfadjointness of $(Ar), for all X, and from 
<P(X)(E%X. Q.E.D. 

THEOREM 9. ƒƒ $ satisfies (04) //œ« 

<^0(^*)>A= ZA(ft $)_1 tr(^-^*^0(^*)) > o, 

/or a// A E 3TA+, arbitrary A aw</ a// /? > 0. 

Before we prove Theorem 9 wé pause for a 
REMARK. In the classical case (C) we can derive Theorem 9 from a more 

general notion of reflection positivity: 
($4') An interaction <S> is reflection positive (in the generalized sense) if 

©(*(*)) = *(ftT) and, for all finite rectangles A, 

- 2 tr(A<è(X)@(A*)) > 0, 
* n A + * 0 
A-nA.^O 

for all A E 9lA+ with tr(A) « 0. 
This version of reflection positivity is weafcer than condition ($4). One can 

prove that ($4') is equivalent to the inequality 

<4 ©04 *)>A > 0, for all A E 3IA>, 

arbitrary A and a// /? > 0. 
Finally there is a third (even more general) notion of reflection positivity 

that is applicable and useful in the classical case: Without loss of generality 
we may assume that the interaction 0 is normalized such that 
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(T) tr($(X)) = 0, for all X G <$f(Z
p

l/2). 

(If (T) does not hold we may introduce a physically equivalent interaction $ 
defined by 

$(X) = $(X) - tr($(X)). 

Clearly $ determines the same time translation automorphisms as $, and $ 
and 4> have the same equilibrium states: A^° = A^'0.) 

($4") An interaction $ satisfying (T) is reflection positive if ©(«E^f» = 
$(9X) and 

2 tr(^$(Ar)0(^*)) > 0, 

Arn(z?/2)_*® 

for all A E U A finite V ' 
For a large class of classical interactions $ one can use correlation 

inequalities to prove that-under the hypothesis that $ satisfy ($4")-Theorem 
9 holds in the thermodynamic limit A = Zj /2; (in this case Theorem 9 may fail 
for finite A). Our general theory of phase transitions applies under these 
circumstances (§§IV.3 and IV.4; see [4] for proofs). 

PROOF OF THEOREM 9. We only consider the classical case which is 
somewhat simpler than the quantum case, since all operators commute. 
Because ZA( /?, $) > 0 we must only show that 

tr{e~fiH^A@(A*)) >0. 

Using Lemma 8 we obtain 

tr(e^^ AQ(A*)) = t r ( e - ^ ' ^ c > e ^ ' ^ > ^ 0 ( ^ * ) ) 

2 tr 
#»/ — 0 , . . . , oo, 

all/ 
V^! 

Each term in the sum on the r.h.s. is positive, by Lemma 7. Q.E.D. 

COROLLARY 10 [7], [34], [3] ("CHESSBOARD ESTIMATE"). Assume that $ 
satisfies reflection positivity (04). Let 4̂, E 9tt be selfadjoint9for all i E A. Then 

1/|A| 

( n A) < n ( n ^A,)) 
»/6A ' A I /eA <yeA ' A 

The proof of Corollary 10 is based on the following-inequality (one of the 
fundamental inequalities of L^ and $p -theory). 

THEOREM [3] (GENERALIZED HOLDER INEQUALITY). Let V be some complex 
vector space (e.g. an algebra) and * a conjugation on V. Let co be a multilinear 
functional on Vx2i with the following three properties 

(A) «(*„ . . •, B2l) « <4B2l, £ „ . . . , Bv-X ) 

(cyclic invariance) 
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(B) for arbitrary B\9.. . , B\ in V9 * = 1,2, 3 , . . . , 

M9 = «((Bl)*9...9(Bl)*9B{9...,Bl) 

defines a positive semidefinite matrix', in particular 

(C) u{AT9 ...9AÎ9Bl9...9Bê) = <o(5f , . . . , Bf9Al9.. .9At) 

Then 
21 

\^BX9 . . . , B2i ) | < n <»(Ba9 B:9 . . . , Ba9 B: f2\ 
« = 1 

and 

is a seminorm on V. 

\B\\2l = u(B9B*>...9B9B*y/21 

We give the proof for the case / = 2: 
By properties (B) and (C) of w we have the Schwarz inequality 

(S) co(5„ B29 B39 B4 ) < u(Bl9 B29 B$9 Bf ) l / 2 co(54*, B$9 B39 B4 )
, / 2 . 

Using (S) and the cyclic invariance of <o, i.e. (A)9 we obtain 

a(A9 B9 Q D) < u(A9 B9 B*9A*)l/2 w(D*9 C*9 C,D)l/2 

= u(A*9 A9 B9 B*)l/2 w(D9 D*9 C*9 C ) ! / 2 

< u(A*9 A9A*9 A)l/4 co(5, B*9 B9 B*)l/4 

X (o(A D*9 D9 Z)*)1/4 co(C*, C, C , C ) 1 / 4 

= u(A9 A*9 A9 A*)l/4 o)(B9 B*9 B9 B*)l/4 

X w(C C*9 C9 C*)1/4 w(D9 D*9 D9 Z)*)1/4 

which completes the proof for / = 2. 
The proof for general / is similar, but involves an additional maximization 

argument; see [3]. 
APPLICATION 1. For a = 1 , . . . , 2lj and /} theyth component of i E Z\/29 

define 

Ba » II 4 , with Ai e %9 and 
ij=-lj~\/2+* 

«y(*1,...,«2J) = ( n A ) 
V §eA ' y 

where < — >A is the equilibrium state of a finite system with an interaction $ 
satisfying reflection positivity. Then, by Theorem 9 and the translation 
invariance of <—>A> w, has properties (A)-(C). If we now apply the general-
ized Holder inequality to <oy and let J vary from 1 to v we immediately obtain 
Corollary 10. 

APPLICATION 2 {Holder inequality for traces). Let Cl9..., Cn be arbitrary 
matrices (or functions) and tr the usual trace (integral), as above. Let 
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mx,..., mn be rational numbers > 1 with 

2 m-l= 1. 
1 - 1 

Choose a positive, even integer 2/ such that mfx2l is a positive integer, for all 
/. We define (for arbitrary matrices (functions) Bx . . . B2i) 

( 21 n ̂  
which has obviously properties (A)-(C). 

Let Cs = f^lQl be the polar decomposition of Ct and define 

then 

Hence 
C, = ÂA(2/M>" !» f o r all / = 1 , . . . , /z. 

tr(C1...Cn) = t r ( n AA 0 # M ) " ! ) 

<nkA,^..o
, /
T

M 

= n mer)
1
/"" 

/ = i 

= n IIQIU, 
i = i 

and we have used that 

«(/>,, Dr,...) =^(4 âr,...)- tr(ic,r). 
The inequality just proven and a simple continuity argument yield the 

general Holder inequality for traces (resp. arbitrary central states). Other 
applications of the generalized Holder inequality include proofs of most of 
the important inequalities for traces and KMS states. 

IV.2. Examples of interactions satisfying reflection positivity. Again, we 
restrict ourselves to the classical case. 

THEOREM 11. Let $ be the interaction defined by 

*({*}) = hrn(A), *({«, m}) - - 2 J^mTn(Ba)rm(Ba), 
a 

where n, m are lattice sites, and A, Ba self adjoint operators in 2t0. Furthermore 

$(X) = 0, for \X\ > 3. 

Assume, in addition, that for arbitrary {cn} c C, 
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(R) 2 ^ « - W ^ m > 0, for all j and all a. 
K ' nj>0 

m,>0 

Then $ satisfies reflection positivity (04). 

REMARK. In the classical case this theorem was first proven by the author 
[32]; see also [33]. The general case appears in [4]. 

PROOF. We only consider the case ? = 1 (the general case is hardly more 
difficult). Then condition (R) is 

2 Jl%)cicj>0. 
i > 0 
j>0 

By a version of Bochner's theorem and the fact that J/a) -> 0, as \j\ -^ oo, 
this implies that for \n\ > I 

(R') / ^ ) = r + 1AW-! dpM(X), 
•'—l 

for some positive measure dp{a) on [— 1, 1]. We now consider a fixed a and 
set 

Aa)=J„ dp^ = dp and Tn(Ba) = Sn. 

Then, using (R'), 

2 H*) - 2 Ji+jStSv + 2 Ju-u+jASy 
A + * 0 

xnA-*0 
xn\+*Z> J>0 J>0 

=ƒ 2 ^-{/2sn)[ 2 xm-l/2s0m)dp(\) 
J~\ \ / i « l / 2 / \ m - l / 2 / 

ƒ 2 v-l/2-nsn)\ 2 A ' - 1 / 2 - % „ U ( A ) + 

which, in view of &(Sm) = S0m, is precisely of the form ($4). 
REMARK. Conditions analogous to (R) and (R') can also be derived for 

many body interactions ($(X) =£ 0, for some X with |̂ T| > 3); see [4]. 
An explicit example of a /,_, in v dimensions satisfying condition (R) is 

const \i - j \ ~ ( t , - 2 + 1 1 \ i¥=j, 

const', i = j9 

where r\ is an arbitrary, positive number. For J to define an admissible 
interaction (i.e. $ E %) we must require rj > 2; see [4]. 

For a field theorist the verification of condition (R) for this choice of Jt_j is 
a rather easy exercise (catch word: conformai invariant two point functions). 

IV.3. Extension to the thermodynamic limit. Let < —> denote some equi-
librium state which is an arbitrary cluster point of the family {<->A® 
trAc(-)}AcZ, 2 of equilibrium states of finite systems with an interaction $ 
satisfying(#1M$3) and 2X9(i/2...., i/2)ll*(*)|| < <»• 

' - { : 
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A standard compactness argument shows that such a family of states has 
always at least one cluster point. Any cluster point is automatically 
translation invariant. We let 21 ± denote the normclosure of U ACZ?/2 ^A±-

THEOREM 12. Assume, in addition, that $ satisfies reflection positivity ($4). 
Then 

(1) (A&(A*)) > 0, for all A E 2I+. 

(2) For any finite subset B C Z\/2 and operators At = A* E 21,, i E B, 

|( n A)\ < n Km ( n T^A,)) 

= n Aiim ( n r,-,.^.)) 
iSB A~*Zl/2 \ | G A / 

A 

1/|A| 

REMARKS. Part (1) is an immediate consequence of Theorem 9. Part (2) 
follows from Corollary 10 and a well-known theorem which asserts that the 
free energy per site ƒ(/?, $) (see Theorem 1, (1)) of infinite lattice systems 
with interactions $ of the type considered here is independent of "boundary 
conditions." See [3] for a detailed proof. 

IV.4. Infrared bounds. In this section we prove a basic estimate on the 
Fourier transform dco T(k) of the truncated expectation {Ao ^ , ) r considered 
in §111. This estimate is a precise version of Estimate (I) in the strategy for 
proving the existence of phase transitions described there. 

Let $ be an interaction satisfying reflection positivity ($4) and 

*({U})--Jt-jS,'Sj, 
where S, = r,(B), B = (Bx,..., BN) is an iV-tuple of self adjoint operators in 
21^ and J satisfies condition (R). 

THEOREM 13 (INFRARED BOUND). Let J denote the Fourier transform of J and 
do)iT)(k) the one of <S0 • Sf )

( r ) . Then, under the assumptions on O stated above 
and in the classical case (C), 

dicT{k) < — , . N . r d% 
2/»(/(0)-/(*)) 

where /? ~ * is the temperature. 

In the quantum mechanical case (QM) the analogous estimate is somewhat 
more complicated, but see [2], [4], 

PROOF. We prove Theorem 13 only for a special class of classical models 
(the general case is treated in [4]). They are defined as follows: S20 = R^, 
S0 = (SQ, . . . , SQ), with SQ(X) = x' (the ith component of x), for all x E 
R"; Sj = r,.(S0), for./ E ZTl/2. 

The a priori measure d[i used in the definition of the expectation tr 
(tr^(-) = JaJI/e* rf/*(S/)) is assumed to be quasi-invariant under the trans-
lations of R^ (this is no loss of generality, since the general case will follow 
from the one considered here by a limiting argument). The interaction O is 
given by $({/*}) = - h - Sw, h E R* (independent of ri); $({n, m}) — -
/w_MSw .Sm ,$(X) = 0 , f o r | X | > 3 . 
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Without loss of generality we may normalize JH-m such that 

(N) 2Jn-m = J(0) = 0. 
m 

(This can be achieved by a suitable choice of J0 and hence amounts to a 
trivial redefinition of d\i) 

For each g E R ,̂ we define 

F «« = g" ( S + g )^(S + g) hg dn(S + g) 
t { ) ehS^(S) * *(S) ' 

Consider now the equilibrium expectation 
^-/82/,.m/„_m(2Sfl-gm-g„-gm)N># 

We note that 

- 2 [4.—(2S, • gw - g„ • gw) - «({H, m})] 
n,m 

= 2 ^n-«(Sn - g„) * (Sm ~ gm). 

This suggests a change of variables S'n = Sn — g„. Then 

Let <—>A denote, as usual, the equilibrium expectation of the system with 
interaction $ in the region A C Z\/2>

 a t inverse temperature /?. Then the 
substitution Sn -* S'n + gn yields 

= ( n FJS,) ) , forallAgZï /2. 
A 

We now apply the chessboard estimate (Corollary 10, Theorem 12) to the 
r.h.s. of this identity. This yields 

l/IAI 

( n ^(s,)) < n ( n F^)) 
M'eA ' A / e A t y E A / / A 

for all bounded A. Now we undo the substitution S„ -» SJ, + g„ on the r.h.s. 
of this inequality and obtain 

( II FM)) =<a~^^-(2S««'-8'g')>A. 
WeA ' / A 

Using the normalization (N) of Jn„m we find 

S ^ - w ( 2 S , g l - g / g J ) = 0, 

whence the r.h.s. of the equation above equals 1. This still holds in the limit 
A = JIX/1 (use Theorem 12!). If we put everything together we conclude 
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Next, scale g, to eg, and expand the Lh.s. of this inequality in powers of e. 
This yields 

^ n,m 
n\m' 

+ «2/? 2 Jn-m %n ' gM + 0(c3) < 1. 

Now note that 2„/n_m<S/t>- gm = 0. This follows from (N) and the fact 
that <S„>- gm is independent of /i, by translation invariance of < —>. If we 
divide the inequality above by e2 and let e tend to 0 we obtain 

sLu J n — mr n' — m' 

(IR') 

< 4 s /... 9/ ) ^ J vn—m on * bw' 

Next choose gn such that its Fourier transform is peaked near some momen-
tum k E B. Then (Fourier transformation of) (IR') gives 

J(k)2du(k) < -N(2/3ylJ(k). 

Since J(k = 0) = 0, by (N), we obtain 

AT 
(IR) du(k) = c8(k)dvk + </<or(À;) < c 0 ( * ) -

2 # ( * ) 
rf*. Q.E.U 

V. Applications to classical lattice systems: phase transitions for Gibbs 
random fields. In this final section we consider classical lattice systems (the 
so-called classical ferromagnets), i.e. models (CI) and (C2) defined in §11.3. 
More results on these systems and a detailed study of a class of quantum 
lattice systems may be found in [2], [4]; for applications to Fermion lattice 
systems we refer the reader to [4], [19]. Some of our results (Ising models with 
long range interactions in one dimension) have earlier been obtained by Dyson 
[35]. In models (CI) and (C2), fi0 = SN'\ the unit sphere in R", N = 1, 2, 
3, The measure rf/x on S20 used in the definition of the trace tr is given by 

4t(S) = 5 ( | S | - \)dNS. 

We assume that the interaction $ satisfies reflection positivity ($4); see 
§IV.l. Moreover 

$({«})= - h . s„, h a fixed vector in R", 

0 ({ / z ,m})=~ / ,_ m S / ! . S m , 

where J satisfies the reflection positivity condition (R) (resp. (R')) of §IV.2. 
For 1̂ 1 > 4, $(X) is an 0(N) invariant polynomial in Sx = { S , } , ^ 

(compatible with (04)). 
Obviously <S, • S7> = 1, for any state <->. 
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If h = 0 these models have O(N) as their symmetry group. 
Let < —> denote some infinite volume (thermodynamic) limit of the equi-

librium states {<—>A = pf'*(-)}, where {A} is a sequence of rectangles 
increasing to Z*/2 (see Theorem 2). 

Under these assumptions we may apply the infrared bound of §4. Thus 

(IR) do)(k) < (cS (k) + AT[2j3 ( / (0) - J (k))] " V * . 

This inequahty gives 

THEOREM 14 [1], [4]. If 

K r\-f d"k I(v,J) = \ - = 
JB J (0) - J (k) 

is finite then c is positive for /? > NI (v, J)/2. 
For h = 0 c > 0 implies the existence of macroscopic fluctuations in the state 

< —> and hence of a phase transition and O (Ny symmetry breaking in pure 
phases. 

PROOF. If we integrate inequality (IR) we obtain 

<S, • S,> - 1 - Jf <&**) < c + ^ I(v, J). 

This proves the first part of the theorem. 
If h = 0 then the state <-> is 0(iV)-invariant, so that 

<S,> = 0 and c = <SJ.-S,.>-<S /.-S(.>
r>0 

implies the existence of a phase transition. The remaining assertions therefore 
follow from the results of §111. Q.E.D. 

Finally we derive conditions for the finiteness of I (v, J). For simplicity we 
only consider the case where J( > 0, for all i ^ 0 (but see [4] for more general 
results). 

Let 5, be the unit vector with components 8jVj = 1 , . . . , v. 

PROPOSITION 15 [1], [4]. Suppose that J^ > 0, for some n1r = 1, 2, 3 , . . . ; 
j=\9...9v\ e.g. 

Jô = J > 0, for allj = 1 , . . . , v 

("ferromagnetic nearest neighbor coupling*', see [1], [4]). Then I(v,J) is finite, 
for all v > 3 and hence there is a phase transition. 

PROOF. 

J (0) - J (*) - 2 Jt 0 - cos(* • /)) 
iez" 

> £ /^( l -COS(# . | !>) ) 

> \ min (^.(«y)2)lfcP > const l*l2-
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Thus (/(O) - J(k)Yl is <TA>integrable for v > 3. Q.E.D. 
Next we briefly discuss phase transitions in v = 1 and 2 dimensions. 
From §IV.2 we know that 

Jtmlc\'V> '#ft 
1 \c\ / - a 

satisfies reflection positivity, for all a > 0 (v = 1 or 2). 
We assume that Jf > 0, for all i ^ 0, and 

(1) / | > c | / | - a , as ji|-> oo, 
for some positive constant c. 

Existence of the thermodynamic limit requires 
(2) a > v. 
The angle between a vector / E Z" and a vector k E Bis denoted < (i, &). 

THEOREM 16 [4J. ƒ (v, J) is finite if a < 2v. 
For v < a < 2v and h = 0 there exists a phase transition and 0(Ny 

symmetry breaking, for /? sufficiently large (low temperatures). 

PROOF. By Theorem 14 it suffices to show that I (P, J) < oo, for a < 2v. 
We first estimate J(0) - J(k): Clearly /(0) - J(k) > 0, for k *fi 0, under 

our assumptions on Jt. It therefore suffices to estimate the behaviour near 
A; « 0. We assume that \k\ < 1. Then 

/ (0) - J (k) - 2 / , (1 - cos(*• I» > 2 Ji0 - eos(*• 0) 
iez" $:(/,*) <ir/4 

> Cjj&p 2 îl'I2> f o r * small enough, 
X(i,k)<w/4 

| / | < f | * | - ' 

(3) 
> c 2 | * | 2 / xr+f-«<fe, f o r ^ r 1 » ! , 

« c3|*|2|A:|'r^+a, fora < y -f2, 

= c3|*|«"'. 

Hence (/(0) - /(Jfc))"1 is rf*A:-integrable if 
(4) a < 2?. Q.E.D. 

REMARKS. 1. Let S„ be an iV-dimensional, classical spin. Let $ be defined 
by 

where J satisfies the reflection positivity condition (R) (resp. (R')) of §IV.2; 
$(X) = 0, for |X| ^ 2. 

THEOREM 14'. Under these assumptions and for N > 2 the condition 
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is necessary and sufficient for the existence of spontaneous magnetization. 

Theorem 14' follows directly from Theorem 14 and the Mermin-Wagner 
theorem [36]. 

2. For N * 1 and <&(X) * - JxRtex Si> Jx > 0> Slawny [29] has obtained 
sharp upper bounds on the number of equilibrium states in A^*, for small /?. 
Using recent results of Lebowitz [30] one can extend these bounds to all but 
possibly countably many values of the inverse temperature /?. As an example 
we mention that for such models for which $({/*, m}) » — Jn^mSn* Sm, with 
/„ > 0, for \n\ = 1, there exist at most two translation invariant equilibrium 
states at all but possibly countably many values of /? [30]. 

In the two dimensional Ising model with nearest neighbor ferromagnetic 
interaction one has: 

(1) In an external magnetic field (i.e. $({«}) =• - h- Sn9 with h ^ 0) there 
exists precisely one translation invariant equilibrium state. The same is true 
for h * 0 and all /? < /?c, where fi~l > 0 is the critical temperature. 

(2) For h « 0 and fi > fie there exist precisely two translation invariant 
equilibrium states with opposite spontaneous magnetization. 

The proofs of these results are surprisingly simple. We urge the reader to 
consult [29], [30]. 

It has recently been shown in [37] that the plane rotator model in zero 
external field (N * 2, J^j > 0, h » 0) has a unique, extremal, translation 
invariant equilibrium state whenever there is no spontaneous magnetization. 

(3) For application and adaptations of the general theory of §§IV and V to 
quantum lattice systems, including non-relativistic fermions, see [2], [4], 

We conclude with some open problems: 
1. Is there a generalization of the theory described in §§IV and V which is 

applicable to the quantum mechanical Heisenberg ferromagnet? (The present 
theory only covers the anti-ferromagnet and the x-y model; see [2].) 

2. How can one analyze phase transitions in systems on irregular lattices 
and with impurities {other than Ising type models with discrete spins?) 

3. How close is the connection between reflection positivity (Theorem 9) 
and the validity of infrared bounds (Theorem 13, §IV.4)? It is known that 
there exist classical lattice systems which violate reflection positivity (and 
translation invariance) for which infrared bounds are true (E. H. Lieb, private 
communication). The only known such examples are however systems 
without phase transitions. 

4. Is there a generalization of the Slawny-Lebowitz theory [29], [30] 
concerning the number of translation invariant equilibrium states to general 
classical or quantum lattice systems? 

5. Consider a lattice system at the critical temperature (clustering, but not 
exponential). Is there a connection between reflection positivity and scaling 
behaviour at large distances? It is easy to see that if there is scaling, the 
scaling limit of the correlation functions of a system satisfying reflection 
positivity are the Euclidean Green's functions of a relativistic quantum field 
theory satisfying the Osterwalder-Schrader axioms. (For results concerning 
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phase transitions and the critical point in relativistic quantum field theory see 
[7], [8], [1], [4].) 
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