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Abstract Vacuum magnetic birefringence was predicted

long time ago and is still lacking a direct experimental con-

firmation. Several experimental efforts are striving to reach

this goal, and the sequence of results promises a success in

the next few years. This measurement generally is accompa-

nied by the search for hypothetical light particles that couple

to two photons. The PVLAS experiment employs a sensitive

polarimeter based on a high finesse Fabry–Perot cavity. In

this paper we report on the latest experimental results of this

experiment. The data are analysed taking into account the

intrinsic birefringence of the dielectric mirrors of the cavity.

Besides a new limit on the vacuum magnetic birefringence,

the measurements also allow the model-independent exclu-

sion of new regions in the parameter space of axion-like and

milli-charged particles. In particular, these last limits hold

also for all types of neutrinos, resulting in a laboratory limit

on their charge.

1 Introduction

Vacuum magnetic birefringence is a very small macroscopic

quantum effect stemming from the 1936 Euler–Heisenberg–

Weisskopf effective Lagrangian density for slowly varying

electromagnetic fields [1–4] (see also References [5,6]) that,

to lowest order, reads:

LEHW = 1

2μ0

(

E2

c2
− B2

)

+ Ae

μ0

[

(

E2

c2
− B2

)2

+ 7

(

E

c
· B

)2
]

. (1)
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Here

Ae = 2

45μ0

α2λ̄3
e

mec2
= 1.32 × 10−24 T−2, (2)

λ̄e = h̄/mec being the Compton wavelength of the electron,

α = e2/(4πε0h̄c) the fine structure constant, and me the elec-

tron mass. The first term in Eq. (1), quadratic in the fields, is

the classical Lagrangian corresponding to Maxwell’s equa-

tions in vacuum, for which the superposition principle holds

and no light-by-light interaction is expected. The other terms,

instead, imply that Electrodynamics is nonlinear even in vac-

uum, giving rise to a new class of observable effects.

The Quantum Electrodynamics (QED) representation of

the simplest phenomena we are interested in is given by the

Feynman diagrams shown in Fig. 1a, b, in which four photons

interact through a virtual e+e− pair. In the Fig. 1b diagram,

two photons interact with an external field; this is the pro-

cess that leads, in vacuum, to magnetic birefringence, namely

to different indices of refraction for light polarised parallel

and perpendicular to an external magnetic field Bext. Let us

consider the complex index of refraction

n̂ = n + iκ.

The relationship between the extinction coefficient κ and the

absorption coefficient μ is given by μ = 4πκ/λ, where λ is

the wavelength in vacuum. It can be shown [7–12] that the

magnetic birefringence derived from Eq. (1) is

Δn(EHW) = n
(EHW)
‖ − n

(EHW)
⊥ = 3Ae B2

ext. (3)

This corresponds to

Δn(EHW) = 2.5 × 10−23 @ Bext = 2.5 T. (4)
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(a)

(c) (d)

(b)

Fig. 1 Lowest order elementary processes leading to magnetic bire-

fringence and dichroism

The calculations also show that the magnetic dichroism is

instead negligible [11,12]: no appreciable imaginary part κ

of the index of refraction is predicted.

Magnetic birefringence accompanied by magnetic dichro-

ism could, though, be generated in vacuum through the cre-

ation of so far hypothetical light bosonic spin-zero axion-

like particles (ALPs) [13], in an analog of the Primakoff

effect [14]. The two processes generating dichroism and bire-

fringence are shown, respectively, in Fig. 1c, d. Two dif-

ferent Lagrangians describe the pseudoscalar and the scalar

cases:

La = gaφaE · B and Ls = gsφs(E2 − B2),

where ga and gs are the coupling constants of a pseudoscalar

field φa and of a scalar field φs , respectively, and the natural

Heaviside-Lorentz units are used, so that 1 T =
√

h̄3c3

e4μ0
=

195 eV2 and 1 m = e
h̄c

= 5.06 × 106 eV−1. One finds [15]

|Δn(ALP)| = na
‖ − 1=ns

⊥ − 1=
g2

a,s B2
ext

2m2
a,s

(

1 − sin 2x

2x

)

,

|Δκ(ALP)|=κa
‖ =κs

⊥ = 2

ωL

(

ga,s Bext L

4

)2 (

sin x

x

)2

,

(5)

where ma,s are the masses of the particles, x = Lm2
a,s

4ω
in

vacuum, ω is the photon energy, and L is the magnetic field

length. The last formula corrects Equation (19) of Ref. [16],

where the factor 1/ωL is missing.

Consider now the vacuum fluctuations of particles with

charge ±ǫe and mass mǫ as discussed in References [17,

18]. The photons traversing a uniform magnetic field may

interact with such fluctuations, resulting in a phase delay

and, for photon energy h̄ω > 2mǫc2, in a pair production.

We consider separately the cases of Dirac fermions (Df) and

of scalar (sc) bosons. The indices of refraction of photons

with polarisation respectively parallel and perpendicular to

the external magnetic field have two different mass regimes

defined by a dimensionless parameter χ :

χ ≡ 3

2

h̄ω

mǫc2

ǫeBext h̄

m2
ǫc2

. (6)

In the case of fermions, it can be shown that [17–19]

Δn(Df)

= Aǫ B2
ext

⎧

⎪

⎨

⎪

⎩

3 for χ ≪1

−9

7

45

2

π1/221/3
[

Γ
(

2
3

)]2

Γ
(

1
6

) χ−4/3 for χ ≫1

where

Aǫ = 2

45μ0

ǫ4α2λ̄3
ǫ

mǫc2

in analogy to Eq. (2). In the limit of large masses (χ ≪ 1)

the expression reduces to Eq. (3) with the substitution of ǫe

with e and mǫ with me. Note that for small masses (χ ≫ 1)

the birefringence depends on the parameter χ−4/3 resulting

in a net dependence of Δn(Df) with B
2/3
ext rather than B2

ext as

in Eq. (3). For dichroism one finds [17,18,20]

Δκ(Df) = 1

8π

ǫ3eαλBext

mǫc

⎧

⎪

⎨

⎪

⎩

√

3
32

e−4/χ for χ ≪1

2π

3 Γ ( 1
6
)Γ ( 13

6
)
χ−1/3 for χ ≫1.

The results for the case of milli-charged scalar particles are

very similar to the case of Dirac fermion case [17,18]. Again

there are two mass regimes defined by the same parameter χ

of expression (6). In this case the magnetic birefringence is

Δn(sc)

= Aǫ B2
ext

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−6

4
for χ ≪1

9

14

45

2

π1/221/3
[

Γ
(

2
3

)]2

Γ
(

1
6

) χ−4/3 for χ ≫1.

The dichroism is given by

Δκ(sc)

= 1

8π

ǫ3eαλBext

mǫc

⎧

⎪

⎨

⎪

⎩

−
√

3
8

e−4/χ for χ ≪1

− π

3 Γ ( 1
6
)Γ ( 13

6
)
χ−1/3 for χ ≫1.

As can be seen, there is a sign difference with respect to

the case of Dirac fermions, both for birefringence and for

dichroism.

The PVLAS (Polarisation of Vacuum with LASer) exper-

iment in Ferrara is the fourth generation of a measurement

scheme that dates back to the end of the ’70s [21]. Previ-

ous experimental efforts were based at CERN [22], at BNL

[23], and at Legnaro (Italy) [24,25]. The experiment aims

at the direct measurement of the small polarisation changes

undergone by a linearly polarised laser beam traversing a

dipole magnetic field in vacuum. To this end, a pair of polar-

ising prisms, two permanent magnets, an optical high-finesse

Fabry–Perot cavity, and heterodyne detection are employed.

A quarter-wave-plate placed after the Fabry–Perot switches
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the measurement from ellipticity to rotation (dichroism). The

signal is detected in the extinguished beam with polarisation

orthogonal to the input polarisation.

The Fabry–Perot cavity has the role of lengthening the

optical path inside the magnetic field. It is realised with two

dielectric mirrors with extremely high reflectivity. Unfortu-

nately, the mirrors have a small intrinsic linear birefringence

in reflection. A first consequence of this fact is that, if linearly

polarised laser light is at maximum resonance inside the cav-

ity, the orthogonal polarisation component is not. This means

that the amplitude of the observed signal is reduced; this fact

is evidenced during the calibration of the polarimeter with

magnetic birefringence in gas (Cotton-Mouton – or Voigt –

effect) [26]. Recent anomalously low Cotton-Mouton results

could perhaps be explained in this way [27]. As a second

consequence, ellipticities and rotations are mixed, due to the

birefringence of the mirrors. As we will see, both phenom-

ena can be managed, in some cases even with profit. More-

over, the intrinsic birefringence of the mirrors may play a

role in the excess noise currently observed in the PVLAS

experiment.

In this article we present a detailed account of the polari-

metric method employed by the PVLAS experiment, with

a novel interpretation of the experimental data. What we

describe here has consequences for all the experiments that

use Fabry–Perot cavities for polarimetry, and in particu-

lar for those trying to measure vacuum magnetic birefrin-

gence. Section 2 analyses the experimental scheme, tak-

ing into account the intrinsic birefringence of the mir-

rors. Section 3 describes the experimental set-up with the

calibration measurements. Then the measurement of the

mirrors’ equivalent wave-plates and of the two resonance

curves are presented. In Sect. 4 the ellipticity and rotation

measurements in vacuum are discussed, together with the

new limits on the existence of axion-like and milli-charged

particles.

2 The PVLAS experimental method

In Fig. 2, a scheme of the PVLAS polarimeter is shown.

Linearly polarised light (wavelength λ) is fed to a Fabry–

Perot optical cavity. The cavity beam traverses the bore of

a dipole magnet, with the magnetic field making an angle

X X

Y

Z = Z

X

θ0

Rotating 

birefringent 

medium

n

n

φ(t)

Y

Y

E

B

Fig. 3 Reference frame for the calculations. XY : laboratory coordi-

nates; X ′: direction of the electric field as defined by the polariser; n‖:

direction of the magnetic field, rotating around the beam path Z at a

frequency νB

φ(t), variable in time, with respect to the polarisation direc-

tion. A variable ellipticity η(t) is then added to the polar-

isation of the beam transmitted by the cavity. For rota-

tion measurements, a quarter-wave-plate (λ/4) is inserted

at the exit of the cavity with one of its axes aligned to

the input polarisation, transforming the rotation eventually

acquired by the beam inside the magnetic field region into

an ellipticity (and, at the same time, the ellipticity into a

rotation). Finally a polariser, crossed with respect to the

input prism, extinguishes the polarisation component of

the beam parallel to the input polarisation. The residual

intensity is then collected with a light detector and Fourier

analysed.

In order to calculate the effect, we use Jones’ matrices [28]

to describe the beam and the optical elements. The most gen-

eral optical element describing linear magnetic birefringence

and dichroism can be written, in its own axes and neglecting

an overall attenuation factor, as

X0 =
(

eξ 0

0 1

)

,

where ξ is a small complex number that we write as ξ =
i 2ψ − 2θ . Here 2ψ is the phase difference between the two

polarisation directions added by the optical element and 1 −
e−2θ is the fraction of the absorbed electric field. Without

loss of generality, the x direction (X ′ direction of Fig. 3)

is considered as the absorbing as well as the slow axis. The

Fig. 2 Scheme of the PVLAS

polarimeter. PDE extinction

photodiode, PDT transmission

photodiode

λ

ξ ν η0 ν
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value ψ is the maximum ellipticity1 that the light can acquire

due to X0, while θ is the maximum rotation. In the case of

the vacuum birefringence of Eq. (3), the ellipticity ψ for a

length L = 1.64 m of a magnetic field Bext = 2.5 T and light

wavelength λ = 1.064 µm is

ψQED = π
Δn(EHW)L

λ
= 1.2 10−16. (7)

Placing X0 at an angle φ with respect to the polarisation

direction, one finds

X(φ)= 1

2

(

1−cos 2φ+eξ (1+cos 2φ) −
(

1−eξ
)

sin 2φ

−
(

1−eξ
)

sin 2φ 1+cos 2φ+eξ (1−cos 2φ)

)

.

To show the salient features of our polarimetric method,

we begin with neglecting the effect of the Fabry–Perot cavity.

The electric field after the analyser is then represented by

E(φ)= E0

(

0 0

0 1

)

·
(

1 i η

i η 1

)

·
(

q 0

0 q∗

)

·X(φ) ·
(

1

0

)

.

In this formula, from left to right, one finds the Jones matrices

of the analyser A, of the ellipticity modulator H (θ, ψ ≪
η ≪ 1), and of the quarter-wave-plate Q. In this last matrix,

q = 1 for ellipticity measurements, when the wave-plate

is out of the optical path and Q therefore coincides with

the identity matrix I, whereas q = (1 + i)/
√

2 for rotation

measurements. For ellipticity measurements (quarter-wave-

plate not inserted), the intensity collected at the photodiode

PDE is

I ell
⊥ (φ) = I0 (η2 + 2ηψ sin 2φ) + higher order terms. (8)

For rotation measurements, with the quarter-wave-plate

inserted,

I rot
⊥ (φ) = I0(η

2 + 2ηθ sin 2φ) + higher order terms. (9)

The light having the same polarisation as the input is collected

at the photodiode PDT and has intensity

I‖ ≈ I0 = ε0c
E2

0

2
.

The heterodyne method is employed to measure ψ and θ :

the angle φ is varied linearly in time as φ(t) = 2πνB t +φB ,

and η as η(t) = η0 cos(2πνm t + φm), with νB ≪ νm . The

sought for value of each of the quantities ψ and θ can be

extracted from the measurement of I‖ and from the amplitude

and phase of three components in a Fourier transform of the

extinguished intensity: the component I2νm at 2νm and the

components I± at νm ± 2νB . By using a lock-in amplifier to

demodulate the residual intensity at the frequency νm , instead

of I+ and I− there is a single component at 2νB , and the

resulting ellipticity and rotation signals are

1 The ellipticity is the ratio of the minor to the major axis of the ellipse

described by the electric field vector of the light.

ψ, θ = I2νB

2
√

2 I0 I2νm

= I2νB

I2νm

η0

4
. (10)

The ellipticity and rotation signals come with a well defined

phase 2φB . With reference to Fig. 3, one can see that the

value of φB is −θ0, with θ0 the angle between a reference

direction X and the polarisation direction. With this position,

the axes of X0 coincide with the laboratory axes (XY ) and the

ellipticity is a maximum at the time t0 = (θ0+π/4)/(2πνB).

We will return to this topic in the calibration section.

In the absence of signals due to magnetic birefringence or

dichroism, the noise level at the signal frequency translates

into an upper limit for the measured quantity.

2.1 The Fabry–Perot cavity as an optical path multiplier

To take into account the multiple reflections of the Fabry–

Perot cavity, we consider the physical parameters of the

mirrors, namely the reflectivity, transmissivity, and losses,

R, T , and P (assumed equal for both mirrors), such that

R + T + P = 1. If d is the distance between the two mirrors,

let δ = 4πd/λ be the phase acquired by the light in a round

trip. Then one can write, for the electric field after the cavity,

Eout(δ, φ) =
(

Eout,‖
Eout,⊥

)

= E0

∞
∑

n=0

[Reiδ X2(φ)]n · T eiδ/2 X(φ) ·
(

1

0

)

= E0 [I − Reiδ X2(φ)]−1 · T eiδ/2 X(φ) ·
(

1

0

)

,

(11)

and for the electric field after the analyser

E(δ, φ) = A · H · Q · Eout(δ, φ). (12)

In the case of ellipticity measurements, since at resonance

δ = 0 (mod 2π ), and given that R ≈ 1, the intensity collected

by photodiode PDE, at the lowest order, is

I ell
⊥ (φ) ≃ I0

[

η2 + 4ηψ

1 − R
sin 2φ

]

. (13)

Analogously, in the case of rotation measurements, one has

I rot
⊥ (φ) ≃ I0

[

η2 + 4ηθ

1 − R
sin 2φ

]

, (14)

while

I‖ ≈ I0 = ε0c
E2

0

2

T 2

(T + P)2
. (15)

By comparing these formulas with the corresponding ones

calculated above without the Fabry–Perot cavity [Eqs. (8) and

(9)], one sees that the expressions are very similar, with the

latter ones having the signals ψ and θ of Eq. (10) amplified

by a factor
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N = 2

1 − R
≈ 2F

π
,

where F is the finesse of the cavity, that can be up to ∼106

[29]. This can be interpreted as a lengthening of the opti-

cal path by a factor N , as the very form of Eq. (11) sug-

gests. Besides heterodyne detection, high amplification is

another key feature of the polarimetric technique adopted by

the PVLAS experiment. In this way, the ellipticity of Eq. (7)

becomes of order 10−10.

We now introduce another issue of the Fabry–Perot cavity

that will be fully discussed in the next paragraph. Let us sup-

pose that the condition δ = 0 (mod 2π ) is not fully matched,

namely that the Fabry–Perot cavity is not exactly locked to

the top of the resonance curve. The two Eqs. (13) and (14)

become, respectively,

I ell
⊥ (φ) ≃ I0

[

η2 + η
2Nψ − N 2θ sin δ

1 + N 2 sin2(δ/2)
sin 2φ

]

(16)

for the case of ellipticity measurements, and

I rot
⊥ (φ) ≃ I0

[

η2 + η
2Nθ + N 2ψ sin δ

1 + N 2 sin2(δ/2)
sin 2φ

]

(17)

for rotation measurements. Equation (15) becomes instead

I‖ ≈ I0 = ε0c
E2

0

2

T 2 N 2/4

1 + N 2 sin2(δ/2)
.

One can see that, in a cavity locked at δ �= 0, there is a

cross talk between the birefringence and dichroism signals

as defined by Eq. (10): a rotation is measured even in the case

ψ �= 0 and θ = 0. Conversely, in the case ψ = 0 and θ �= 0,

a signal mimicking a birefringence is observed.

2.2 Mirror birefringence

Let us now tackle the problem of dealing with birefringent

mirrors [30]. If α1,2 are the small phase differences acquired

by light in just one reflection by the mirrors, one must intro-

duce in the above calculations the wave-plates

M1,2 =
(

ei α1,2/2 0

0 e−i α1,2/2

)

,

where both α’s can be thought of as positive quantities, with-

out loss of generality. Assuming, for simplicity (see Sect. 3.2

for the more general case) that the slow axes of the mirror

wave-plates are both aligned to the input polarisation, the

polarisation auto-states of the Fabry–Perot cavity are given

by
(

[

1 − R ei[δ+(α1+α2)/2]]−1

0

)

and

(

0
[

1 − R ei[δ−(α1+α2)/2]]−1

)

.

The above equations show that the resonance curves of the

two polarisation modes are no longer centred at δ = 0, and

are separated by the quantity

α = α1 + α2.

In other words, the resonance frequencies of two polarisa-

tions are slightly different.

In the PVLAS experiment, the emission frequency of the

laser is locked to the resonance frequency of the cavity by

means of a feedback electronic circuit based on the Pound

and Drever locking scheme, in which the error signal is car-

ried by the light reflected from the cavity through the input

polariser. As a consequence, while the light having the input

polarisation is at the top of the resonance curve (δ = −α/2),

the orthogonal component is not. As the frequency width of

the cavity is a few tens of hertz, for a frequency difference of

this order of magnitude the orthogonal component may be fil-

tered significantly. Hence, as a first issue, when analysing the

extinguished beam one has to necessarily take into account

the fact that its intensity is reduced by the factor

k(α) = 1

1 + N 2 sin2(α/2)
≤ 1 (18)

with respect to the other polarisation. By varying the input

polarisation direction and the relative angular position of the

two mirrors, it is possible to minimise the effect of the wave-

plates of the mirrors by aligning the slow axis of one mirror

against the fast axis of the other. This ensures that the two

curves are as near as possible, in which case α is equal to the

difference Δα = α2 − α1.

As a second issue, analogously to Eqs. (16) and (17), a

symmetrical mixing appears between rotations and elliptici-

ties. In fact, the electric field at the exit of the cavity is

Eout(φ, δ)= E0 [I − Reiδ X · M1 · X · M2]−1

·T eiδ/2X ·
(

1

0

)

.

From Eq. (12), the intensity at the detector for small α’s, and

R ≈ 1, is

I ell
⊥ (φ) = I‖

[

η2 + η
2Nψ − N 2θ

(

δ − α
2

)

1 + N 2 sin2
(

δ
2

− α
4

) sin 2φ

]

, (19)

for the measurements of ellipticity, and

I rot
⊥ (φ) = I‖

[

η2 + η
2Nθ + N 2ψ

(

δ − α
2

)

1 + N 2 sin2
(

δ
2

− α
4

) sin 2φ

]

(20)

for rotation measurements. Here

I‖ = ε0c
E2

0

2

T 2 N 2/4

1 + N 2 sin2
(

δ
2

+ α
2

) .

Note the similarity of the above equations with Eqs. (16)

and (17). It can be shown that any small static ellipticity or
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Fig. 4 Transmitted intensity I0, amplitudes of the ellipticity and of

the rotation signals of Eq. (10) in the case of a pure birefringence,

as functions of the Fabry–Perot cavity phase δ, for α = 10−5 rad and

N = 4×105. The Airy curves are normalised to unity; the rotation signal

bears the same normalisation coefficient as the ellipticity. Transmitted

intensity is centred at δ = −α/2, the other two curves at δ = α/2. The

amplitude of the ellipticity signal at δ = −α/2 is a factor k(α) = 0.2

smaller than the maximum [see Eq. (18)]

rotation acquired before or after the cavity does not interfere

with the signal at 2νB and can thus be neglected. In Fig. 4, we

plot the last three equations as functions of δ for the case θ =
0 (pure birefringence), for N = 4 × 105 and α = 10−5 rad.

If the laser is locked to the maximum value of I‖ at δ =
−α/2, one has, for an ellipticity measurement,

I ell
⊥ (φ) = I‖[η2 + ηk(α) (2Nψ + N 2θα) sin 2φ], (21)

while for a rotation measurement

I rot
⊥ (φ) = I‖[η2 + ηk(α) (2Nθ − N 2ψα) sin 2φ], (22)

where I‖ is given by Eq. (15). With respect to Eqs. (13)

and (14), the expected signals of ellipticity and rotation are

attenuated by a factor k(α) [Eq. (18)]. Moreover, a cross talk

between the two measurement channels appears: even with

θ = 0, a rotation −k N 2αψ is observed. The ratio of the

“spurious” rotation and of the “true” ellipticity is

Rθ,ψ = − N

2
α, (23)

hence allowing a direct determination of the sum of the bire-

fringences of the two mirrors. Analogously, even with ψ = 0,

an ellipticity k N 2αθ appears.

In the absence of both signals, an upper limit coming from

the measurement of one of the two quantities, ellipticity or

rotation, translates in an upper limit also on the other one.

2.3 Intrinsic noise of the polarimeter

We now calculate the limit sensitivity of the apparatus. Start-

ing from Eq. (10), if the noise at νm − 2νB is uncorrelated to

the noise at νm +2νB , one must take into account a factor
√

2

due to the folding of the spectrum around νm . If Inoise(2νB)

is the rms noise spectral density of the light intensity at the

frequency of the signal, the expected peak sensitivity of the

polarimeter is

S2νB
= Inoise(2νB)

I‖η0
.

Several intrinsic effects contribute to S2νB
, all of which can

be expressed as a noise in the light intensity impinging on the

detector. We consider first the intrinsic rms shot noise due to

the direct current idc in the detector

ishot =
√

2e idc Δν.

According to Eqs. (8) or (9), the direct current inside the

photodiode is given by q I‖η2
0/2, where q is the efficiency of

the detection process. However, any pair of crossed polaris-

ing prisms has a nonzero minimum extinction coefficient for

intensity. For the best polarisers, the extinction coefficient

can be as low as σ 2 ≈ 10−8. This effect introduces an addi-

tional term in the detected intensity which is written as I‖σ 2.

This leads to

Ishot =

√

√

√

√

2e I‖
q

(

σ 2 + η2
0

2

)

and

Sshot =

√

√

√

√

2e

q I‖

(

σ 2 + η2
0/2

η2
0

)

.

Other effects contributing to the noise are the Johnson noise

of the transimpedance G of the photodiode

IJ =
√

4kB T

q2G
, giving SJ =

√

4kB T

G

1

q I‖η0
,

the photodiode dark noise

Idark = idark

q
, with Sdark = idark

q I‖η0
,

and the relative intensity noise (RIN) of the light emerging

from the cavity

IRIN(ν) = I‖ NRIN(ν),

giving

SRIN(2νB) = NRIN(νm)

√

(σ 2 + η2
0/2)2 + (η2

0/2)2

η0,
,

where in the last equation we consider that the contributions

of all the peaks in the Fourier spectrum add incoherently to

the intensity noise at νm , and that νB ≪ νm .

Figure 5 shows all the intrinsic contributions as functions

of η0 in typical operating conditions, with q ≈ 0.7 A/W, I‖ =
8 mW, σ 2 = 2 × 10−7, G = 106 �, idark = 25 fArms/

√
Hz,

and NRIN(νm) ≈ 3 × 10−7/
√

Hz. The figure shows that the

expected noise has a minimum for a modulation amplitude

η0 ≈ 10−2, which is the value normally used.

123



Eur. Phys. J. C (2016) 76 :24 Page 7 of 15 24

shot

RIN

dark

Johnson

total

10 5
10 4 0.001 0.01 0.1

10 10

10 9

10 8

10 7

10 6

Modulation amplitude 0

N
o
is

e
d
en

si
ty

1
H

z

Fig. 5 Intrinsic peak noise components of the polarimeter as a function

of the ellipticity modulation amplitude η0

3 Experimental setup

The upper and lower panels of Fig. 6 show a schematic top

view and a photograph of the apparatus. The experiment

is hosted inside a class 10,000 clean room. All the optics

lay upon a single 4.5 t, 4.8 × 1.5 × 0.5 m3 granite honey-

comb table. The optical table is seismically isolated from the

ground by means of actively operated pneumatic supports.

All the mechanical components of the apparatus are made of

nonmagnetic materials.

The light source is a 2 W Non Planar Ring Oscillator

Nd:YAG laser (λ = 1064 nm), having tuneable emission

frequency. The tuning capabilities of the laser are used to

lock the emission frequency of the laser to the resonance

frequency of the cavity. Laser light is mode matched to

the Fabry–Perot cavity with a single lens and is linearly

polarised immediately before the first mirror. The cavity

length is d = 3.303 m, corresponding to a free spectral

range νFSR = 45.4 MHz. The dielectric mirrors, 6 mm thick,

25.4 mm diameter, have fused silica substrates with a radius

of curvature of −2 m, and are mounted on (θxθyθz) mirror

mounts. The Gaussian cavity mode is TEM00, with a beam

radius on the mirrors wm = 1.2 mm. The decay time of the

cavity has been measured to be τ = (2.45 ± 0.05) ms, cor-

responding to a finesse of F = πcτ/d ≈ 700,000, hence

to a path amplification factor N = 445,000, and to a reflec-

tion coefficient R = 0.9999955. The frequency width of the

resonance is 65 Hz, corresponding to a phase interval of less

than 10−5 rad.

The laser frequency is matched to the resonance frequency

of the cavity by means of a modified Pound–Drever–Hall

feedback system [31]. The electronic feedback circuit has

the unique feature of allowing the adjustment of the reference

point of the loop, equivalent to varying δ in Eqs. (19) and (20).

This allows the scanning of the Airy curve of the intensity

transmitted by the cavity around its maximum. The amplitude

Fig. 6 Upper panel Optical and mechanical scheme of the apparatus.

WPs wave-plates, HWP half-wave-plate, PDR reflection photodiode,

P polariser, Ms mirrors, QWP quarter-wave-plate, PEM photoelastic

modulator, A analyser, PDT transmission photodiode, PDE extinction

photodiode. Lower panel A wide-angle picture of the PVLAS apparatus.

The two blue cylinders are the permanent magnets
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of this interval is in principle limited to the linear range of the

error function, but is in practice slightly less. The feedback

circuit parameters are controlled by a microprocessor that,

in the case the feedback unlocks, re-locks automatically. In

a measurement run lasting several days this normally results

in a dead time of less then 5 %.

After the cavity, the light crosses the photoelastic ellip-

ticity modulator PEM, that adds a small ellipticity variable

at frequency νm . In the case of rotation measurements, the

quarter-wave-plate QWP is inserted. Finally, the light leaves

the polarimeter through the analyser A, that separates the two

polarisations. The two beams are collected by the two 1 mm2

InGaAs photodiodes PDT and PDE. The photocurrents are

amplified by two low noise transimpedance amplifiers. The

extinguished signal is demodulated by two lock-in ampli-

fiers, at frequency νm and at the second harmonic 2νm . All

the relevant signals are properly filtered, digitised, and stored

for data analysis.

The magnetic field region is provided by two 94 cm long,

28 cm diameter dipole magnets in Halbach configuration,

placed between the mirrors and having a central bore of

20 mm. Each magnet weighs 450 kg. The magnets are sus-

tained by an aluminium structure mechanically decoupled

from the rest of the optical table. Overall, the magnets pro-

vide a
∫

B2 dℓ = (10.25 ± 0.06) T2m. As for the effective

length L of each magnet and the value of the magnetic field

Bext, in the following we will use the FWHM of the function

B2(z), L = 0.82 m and hence Bext = 2.50 T. The centres of

the two magnetic regions are separated by ≈ 150 cm. The

field profiles have been shown elsewhere [32]. Stray field on

the axis at a position 20 cm outside the magnets is less than

1 G. The magnets can rotate around their axes at a frequency

up to 10 Hz, so that the magnetic field vectors of the two mag-

nets rotate in planes normal to the path of the light stored in

the cavity. Two magnetometers, measuring the small stray

field of the two magnets, monitor the magnetic field direc-

tions.

The synchronous motors driving the two magnets are con-

trolled by two phase-locked signal generators. The same sig-

nal generators trigger the data acquisition. The two magnets

can rotate at the same frequency with the two magnetic fields

making an arbitrary angle, but normally each magnet rotates

at its own frequency. In this way the results of one magnet are

a countercheck for the results of the other. The two frequen-

cies νB1 and νB2 are chosen so to have a common subhar-

monic whose frequency is used to start data acquisition: at the

beginning of each acquisition run, the two magnets have the

fields in the same direction. The sampling rate is normally 16

samples/turn for the faster magnet. The rotation frequency of

the other magnet is then chosen in such a way that its num-

ber of samples/turn contains only factors 2 and 5. A practical

example: νB1 = 8 Hz, sampling rate 8 × 16 = 128 Hz,

νB2 = 6.4 Hz, acquisition start trigger 1.6 Hz; samples/turn

for the second magnet is 20. We have verified that the phase

relations between all the generators and the magnets rotation

never change during data acquisition.

Two analyses are performed in parallel on the intensity

collected by diode PDE. In both cases, this signal is first

demodulated for νm and then ψ (or θ ) is calculated through

Eq. (10) by using the values of the intensity I‖ ≈ I0 measured

by diode PDT and of the modulation amplitudeη0 determined

from I2νm . An online analysis is performed by means of an

FFT spectrum analyser. Normally, an integration time of 32 s

is chosen and vector averaging is performed between subse-

quent spectra. The start trigger ensures that the phases of all

the partial spectra are referred to the same angular position

of the magnets. This analysis produces visual results in real

time, but is not fully exploiting one of the main advantages of

the experimental method, namely the frequency selection. In

the offline analysis, since all the phases are under control, data

acquired in separate time blocks, but with the same exper-

imental conditions, are joined in a single long time series

called run. As the time base lengthens, the frequency resolu-

tion of the Fourier transform becomes better and better. When

doing this, one has to ensure that the νB component of the

Fourier transform of the signal from the magnetometer occu-

pies a single frequency bin. This was verified to be true even

for the longest runs, having bin size Δν ≈ 1 µs. Time inter-

vals containing anomalous features are expunged from the

data. The results of runs differing in the rotation frequency of

the magnets or for any other relevant experimental parameter

are averaged by using a weighted vector average procedure.

The polarimeter, from the entrance polariser to the anal-

yser, is housed inside a high-vacuum enclosure consisting of

five chambers aligned along the light beam path and con-

nected by metallic bellows and by two glass tubes with

12 mm inner diameter traversing the bores of the two mag-

nets. The entrance chamber hosts the polariser P, whereas

the exit chamber contains the quarter-wave-plate QWP, the

photoelastic modulator PEM, and the analyser A. Each mir-

ror is placed inside a separate chamber, preceded and fol-

lowed by 10 mm diameter iris diaphragms carved from

strongly absorbing glass. The light enters and exits the vac-

uum through two AR-coated optical glass windows. A system

of baffles is placed inside the glass tubes. The central vac-

uum chamber serves as a pumping station and also contains

a central 5 mm diameter diaphragm.

The vacuum system is pumped by turbo-molecular and

non-evaporable getter (NEG) pumps, and has a base pres-

sure of less than 10−7 mbar; the residual atmosphere, moni-

tored by two Residual Gas Analysers, is mainly composed of

water vapour, hydrogen and a small amount of methane pro-

duced by the NEG pumps. This guarantees that no magnetic

birefringence signal from Cotton–Mouton effect on residual

gases in the vacuum chamber can interfere with the vacuum

measurements [33]. To reduce mechanical vibrations, during
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measurements in vacuum, only the turbo pump of the central

chamber is kept on to pump methane produced by the NEG

pumps and the noble gases. The system can be filled with

high purity gases through a leak valve; in this case, the gas

pressure is measured with a capacitive transducer. To ensure

gas purity, the all-metal gas line is pumped by a turbo pump

before gas filling. When the chamber is dosed with noble

gases, the NEG pumps are not shut off.

3.1 Calibration

The apparatus is calibrated measuring the magnetic linear

birefringence of gases (Cotton–Mouton or Voigt effect) [26].

This effect is perfectly analogous to the vacuum magnetic

birefringence described by Eq. (3), but is far more intense

already at low gas pressures. The birefringence generated in

an atmosphere of gas at pressure P by a magnetic field B is

given by the expression

Δn = n‖ − n⊥ = Δnu

(

B

1T

)2
P

1 atm
,

where Δnu is the unit birefringence generated in 1 atm of

gas by a unitary field B = 1 T. Typical values of Δnu

range from a minimum of ≈2 × 10−16 T−2 atm−1 for He

[34] to ≈ − 2.3 × 10−12 T−2 atm−1 for O2 [35] and to

≈10−11 T−2 atm−1 for a few other simple molecules [26].

These measurements give two calibration parameters: the

amplitude and the phase of the ellipticity signal. The ampli-

tude can be compared to theoretical calculations as well as to

other experimental results, and calibrates the linear response

of the polarimeter; the second parameter is the phase of the

ellipticity signal, which is determined by the geometry and

the electronic response of the apparatus (see Fig. 3). As seen

with the discussion of Fig. 3, the phase of the signal directly

depends on the angle θ0 of the polariser; this parameter has

not a single value during the experiment, but is adjusted from

time to time. Electronic components (lock-ins, filters, etc)

introduce a phase which depends on the frequency of the sig-

nal. The phase of the Cotton–Mouton signals defines what

we call the physical phase of the measurements; we expect

that the vacuum magnetic birefringence comes with the same

phase as the Cotton–Mouton measurement of the noble gases

[26]. Any signal in quadrature with respect to the physical

phase has to be considered as spurious. As a general princi-

ple, all the measured signals are projected onto the physical

axis. We explicitly note that the gas measurements are inter-

preted in terms of a pure birefringence (θ = 0). In fact, for

gases, no dichroism is associated to a transverse magnetic

field; however, a Faraday rotation, due to the time variation

of an eventual small longitudinal component of the rotating

magnetic field at the position of the mirrors, comes at the

magnet rotation frequency νB and not at 2νB [36].

Fig. 7 Cotton–Mouton effect measurements for 230 µbar of Ar gas:

Fourier spectra of the extinguished intensity demodulated at the modu-

lator frequency νm . A single magnet was rotating at νB = 6 Hz, inter-

esting signals are at 2νB . Upper panel Ellipticity measurement. Lower

panel Rotation measurement. Integration time is T = 640 s for both

spectra

In Fig. 7 we show the spectra of the residual intensity

after the analyser, demodulated at the frequency νm , with the

vacuum chamber filled with 230 µbar of Ar gas. In the top

panel, the Cotton–Mouton ellipticity signal is observed. The

bottom panel shows the rotation signal. This indicates that the

Fabry–Perot resonances of the two orthogonal polarisation

are separated, and the calculations of Sect. 2.2 apply. Taking

the ratio of the amplitudes of the two peaks [see Eqs. (21)

and (22)] one finds a value α = 3.7 µrad, corresponding to

an attenuation factor k(α) = 0.59. The frequency distance

of the two Airy curves is 27 Hz. From these data one can

extract a value for the unitary birefringence of Ar gas at room

temperature: Δn
(Ar)
u = (7.5 ± 0.5) × 10−15 T−2 atm−1.

3.2 Studies of the mirrors’ wave-plates

In Sect. 2.2 we assumed that the axes of the birefringent wave-

plates of the two mirrors were always aligned to the input

polarisation. Here we use a full description of the wave-plates

of the two mirrors, placing the second one at an azimuthal

angle φWP with respect to the first one. We recall [37] that the

effect of two birefringent wave-plates is equivalent to that of

a single wave-plate with a phase difference αEQ given by

αEQ =
√

(α1 − α2)2 + 4α1α2 cos2 φWP (24)
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Fig. 8 Rotation-to-ellipticity signals ratio plotted as a function of the

azimuthal angle of the input mirror in a Cotton–Mouton measurement of

230 µbar of Ar gas. The fit line is the (N/2-amplified) phase difference

αEQ of the equivalent wave-plate of the mirrors given by Eq. (24)

and placed at an angle φEQ with respect to the slow axis of

the first mirror, where

cos 2φEQ = α1/α2 + cos 2φWP
√

(α1/α2 − 1)2 + 4(α1/α2) cos2 φWP

. (25)

As noted before, the ratio Rθ,ψ of Eq. (23) is exactly the

phase difference αEQ (amplified by −N/2) of the equivalent

wave-plate experienced by the light beam. By varying two of

the three quantities: the direction of the mirror axes and the

input polarisation direction, one is able to change the phase

difference of the equivalent wave-plate of the mirrors while

keeping the polarimeter at extinction, namely with the input

polarisation aligned with the axis of the equivalent wave-

plate. As this procedure changes the equivalent wave-plate,

it also changes the ratio of rotation to ellipticity. One is then

able to align the fast axis of one mirror wave-plate to the slow

axis of the other. In this configuration, if α1 were equal to

α2, the resonance curves of the two polarisation auto-states

would appear superimposed in a plot like that of Fig. 4. If

α1 �= α2, the two resonance curves are as near as possible

given the difference Δα = α2 − α1.

In Fig. 8, we show the ratio of the values of rotation to ellip-

ticity in a Cotton Mouton measurement, plotted as a function

of the azimuthal angle of the first mirror. Each rotation step, of

about 15◦, has been followed by cavity realignment through

the adjustment of the two tilt stages of the mirror, by opti-

misation and measurement of the extinction ratio, and by

measurement of the finesse. The experimental points are fit-

ted with Eq. (23), where α is given by Eq. (24). The best fit

produces values for the quantities Nα1/2, Nα2/2, and for

the angular position of the maxima with respect to the ini-

tial angular position of the input mirror (φWP = 0). With

N/2 ≈ 2.2 × 105, the phase differences of the two mirrors

are calculated to be (2.4 ± 0.1) µrad and (1.9 ± 0.1) µrad.

From this fit only it is not possible to label each mirror with

its phase difference for reflection. According to the relative

angular position of the two mirrors, the value of αEQ can be

Fig. 9 Polariser angle as a function of the azimuthal angle of the mirror

in a Cotton–Mouton measurement of 230 µbar of Ar. Data are fitted

with φEQ as given by Eq. (25)

found between 0.6 µrad and 4.3 µrad, which is equivalent to

saying that the Airy curve of the ellipticity resonance is 5 to

31 Hz away from the resonance of the input polarisation.

In Fig. 9, the values taken by the polariser angle while

tracking the best extinction ratio in the process described

above are plotted against the input mirror angle. The curve

is fitted with Eq. (25). The best fit produces a value α1/α2 =
0.62 ± 0.08, allowing the assignment of the phase delay of

each mirror. This value is slightly different from the one

obtained by the fit in Fig. 8, but is compatible within the

fit uncertainties. However, the zero references of φWP in the

two fits appear to be different by about 10◦, well beyond the

fit uncertainty. This might be due to the presence of other

birefringent elements (mirror substrates and PEM) between

the two crossed polarisers. As these elements are fixed dur-

ing the measurement, while the equivalent wave-plate of the

mirrors is varying, their contribution to the total anisotropy

varies from one measurement to the other. The position of

the polariser tracks the position of the equivalent wave-plate

of all the wave-plates of the system, and not only of that of

the mirrors. On the contrary, the data of Fig. 8, being the

ratio of signals at 2νB , do not suffer from the same problem.

Anyway, the smallness of the difference of the two determi-

nations of the reference angle indicates that the importance

of birefringent elements other than the reflecting surface of

the mirrors is very limited.

A unique feature of our apparatus is the possibility of vary-

ing the set point of the feedback electronic circuit that locks

the laser frequency to the resonance frequency of the cavity.

This allows to perform polarimetric measurements with arbi-

trary values of δ, in this way fully testing the mathematics

presented in Sect. 2.2. In Fig. 10, we show an experimental

realisation of Fig. 4. The continuous lines are the fits of the

data obtained with formulas (15), (21), and (22). In the three

fits, a single value of the resonance width has been used.

Ellipticity and rotation curves are forced to have the same

centre of resonance and the same amplitude coefficient. The

fit determines the scale factor between the feedback set point
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Fig. 10 From left to right: ellipticity, transmitted intensity, and rota-

tion, measured for 230 µbar of Ar gas, plotted as functions of the set

point of the laser locking feedback circuit. The continuous lines are the

fits obtained with formulas (21), (15), and (22)

and the phase δ. The distance between the two Airy curves is

found to be α = 1.5 µrad (with negative sign), corresponding

to a frequency difference of the two resonance frequencies

of about 11 Hz.

4 Vacuum measurements results and discussion

In this section we present the polarimetric measurements car-

ried out on vacuum in the attempt to test its opto-magnetic

properties. The runs considered in this work are listed in

Table 1. Differently from what we used to do before, we now

normally rotate the two magnets at different frequencies, as

a strategy to beat the systematics. Runs 1 and 2 make use of

the same data, analysed at two different frequencies corre-

sponding to the second harmonic of the rotation frequencies

of the two magnets; the same holds for runs 3 and 4. Since the

measurements have been taken making use of a birefringent

cavity, the ellipticity data can be interpreted also in terms of

rotation; the converse is also true. The integrated noise level

in the ellipticity measurement allow to cast upper limits on

the magnetic birefringence predicted by QED, and also on the

existence of hypothetical particles coupling to two photons,

ALPs and milli-charged particles. Two ellipticity runs, run 1

at νB = 4 Hz and run 4 at νB = 6.25 Hz, respectively with

integration time T = 106 s and T = 8.9 × 105 s, have been

discarded due to the presence of spurious structures in the

Fourier transform of the signals around 2νB (see Fig. 11). In

fact, a signal coming from a magnetic birefringence cannot

occupy more than a single bin. These structures are the con-

sequence of a misalignment of the glass tubes traversing the

rotating magnets. We have developed an alignment proce-

dure for the tubes that prevents the appearance of systematic

peaks in the spectra, but this does not prevent a small drift of

their positions during the long runs.

In Fig. 12 the results of all the runs are shown. In the

left column of plots, the amplitudes of the complex Fourier

Table 1 Experimental conditions for the runs in vacuum. In the “0 run”,

taken from Reference [38], the magnet rotation frequency ranged from

2.4 to 3 Hz. T is the integration time. Runs 1 and 2 were taken at the

same time; the same holds for runs 3 and 4

Run # Quantity Magnets 2νB (Hz) T (s) F k(α)

0 ψ MA + MB 6.7 × 105 6.7 × 105 0.50

1 ψ MB 8 1.0 × 106 7.0 × 105 0.65

2 ψ MA 10 1.0 × 106 7.0 × 105 0.65

3 ψ MB 10 8.9 × 105 7.0 × 105 0.65

4 ψ MA 12.5 8.9 × 105 7.0 × 105 0.65

5 θ MA + MB 10 1.4 × 105 7.0 × 105 0.65

transform of the signal in a narrow interval around 2νB show

the absence of any structure due to spurious signals. The

values at 2νB , projected along the physical axis, represent the

results of the measurement. In the right column of plots, the

histograms of the ellipticity noise amplitude values plotted

on the left are shown, fitted with the Rayleigh distribution

PR(ρ) = ρ

σ 2
e
− ρ2

2σ2

of a two-dimensional variable ρ =
√

x2 + y2, where x and

y are two independent Gaussian variables having the same

standard deviation σ . In our case, x and y are the projection

of the complex Fourier components of the signal onto the

physical and the quadrature axes. The values obtained for σ

define the noise level of the measurement for an integration

time T . The measured sensitivity Smeas
2νB

of the apparatus at

the frequency of interest is then

Smeas
2νB

=
√

T σ.

In the first half of Table 2 we summarise the results of all

the measurements in vacuum. Due to the mixing of ellipticity

and rotation, each line can be interpreted also in terms of the

reciprocal quantity. The second half of the same table, with

primed run numbers, presents the values obtained by apply-

ing Eqs. (21) and (22). The lines marked with ψ give four

determinations of the magnetic birefringence of vacuum; as

many determinations of the dichroism are given by the lines

marked with θ . These numbers are listed in Table 3.2 The

weighted averages of the numbers listed in the “In-phase”

column of Table 3 are

2 One must note that the measured ψ and θ are intrinsically integral

quantities. As a consequence, the values of Δn and Δκ in the table

are not point functions, but average quantities. Moreover, they are cal-

culated with the length of the magnets defined for convenience as the

FWHM of B2(z). Hence, they have a precise meaning only in the cases

in which their expression is proportional to B2
ext , namely the QED vac-

uum and the birefringence of ALPs and MCPs in the limit of large

mass.
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Fig. 11 Fourier transform of the ellipticity signals of run 1 and 4. In both cases, a structure is present around 2νB . These data do not contribute to

the results presented in this work

Fig. 12 Ellipticity and rotation runs in vacuum. First column Ampli-

tude of the complex Fourier transforms of the signal in a narrow interval

around 2νB . The values are corrected for the k(α) factor. Second column

Histograms of the values plotted in the first column; the data are fitted

with the Rayleigh distribution, the vertical arrows mark the unprojected

values at 2νB . The strips at the bottom of the plots correspond to the

68.3, 95.5, and 99.7 % integrated probabilities. First row One magnet

rotating at 5 Hz, with integration time T = 106 s. Second row One mag-

net rotating at 5 Hz, T = 8.9 × 105 s. Third row two magnets rotating

at 5 Hz

Δn(PVLAS) = (−1.5 ± 3.0) × 10−22 @ B = 2.5 T, (26)

Δκ(PVLAS) = (−1.6 ± 3.5) × 10−22 @ B = 2.5 T. (27)

The quadrature value of Δn results to be (+5.2 ± 3.2) ×
10−22. All the numbers found are compatible with zero. The

value of Δn(PVLAS) is an order of magnitude larger than the

birefringence predicted by QED [Eq. (4)] and serves only as

an upper limit.

Figure 13 shows the time evolution of the measurement

of the QED magnetic birefringence of vacuum. To compare

the different experiments, the measured birefringence values

have been normalised to B2
ext. By extrapolation, one could
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Table 2 Ellipticity and rotation

results for all the runs in

vacuum. The first four lines

refer to the measurements

actually performed. The lower

half of the table, with primed

run numbers, reports the values

obtained through the use of

Eqs. (21) and (22)

Run # Quantity In-phase Quadrature σ Smeas
2νB

(1/
√

Hz)

0 ψ +5.2 × 10−10 +6.5 × 10−10 2.6 × 10−9 2.1 × 10−6

2 ψ −6.9 × 10−11 +2.6 × 10−10 4.9 × 10−10 4.9 × 10−7

3 ψ −4.1 × 10−10 +1.0 × 10−9 5.4 × 10−10 5.1 × 10−7

5 θ (rad) −6.6 × 10−11 −1.9 × 10−9 1.3 × 10−9 4.8 × 10−7

0′ θ (rad) +5.2 × 10−10 2.6 × 10−9 2.1 × 10−6

2′ θ (rad) −9.4 × 10−11 6.7 × 10−10 6.7 × 10−7

3′ θ (rad) −5.6 × 10−10 7.4 × 10−10 6.9 × 10−7

5′ ψ +9.0 × 10−11 1.8 × 10−9 6.5 × 10−7

Table 3 Determinations of the

magnetic birefringence and

dichroism of vacuum for

B = 2.5 T. The primed

measurements are obtained

through the use of Eqs. (21) and

(22)

Run # Quantity In-phase Quadrature σ Smeas
2νB

(1/
√

Hz)

0 Δn +2.5 × 10−22 +3.1 × 10−22 1.3 × 10−21 1.0 × 10−18

2 Δn −6.4 × 10−23 +2.4 × 10−22 4.5 × 10−22 4.5 × 10−19

3 Δn −3.8 × 10−22 +9.3 × 10−22 5.0 × 10−22 4.7 × 10−19

5′ Δn +4.2 × 10−23 8.2 × 10−22 3.0 × 10−19

0′ Δκ +2.5 × 10−22 1.3 × 10−21 1.0 × 10−18

2′ Δκ −8.7 × 10−23 6.2 × 10−22 6.2 × 10−19

3′ Δκ −5.2 × 10−22 6.8 × 10−22 6.4 × 10−19

5 Δκ −3.1 × 10−23 −8.8 × 10−22 6.0 × 10−22 2.2 × 10−19

| ∆
n
| 
/ 
B

2
(T

-2
)

Fig. 13 Time evolution of the measurement of vacuum magnetic bire-

fringence normalised to B2
ext . Error bars correspond to 1σ . Values have

been taken from the following references: BFRT [23], Legnaro [24,25],

Ferrara Test [16], BMV [39], PVLAS 2014 [38]

predict that it should not take too long before the measure-

ment is performed successfully. Anyway, this will not happen

if the sensitivity of the polarimeter will not improve by an

order of magnitude. The next section briefly discusses the

noise issue.

4.1 Noise considerations

The values found for the sensitivity of the polarimeter (see

last column of Table 2) are a factor four better than the values

obtained in previous versions of the experiment [38], but are

still far from the theoretical value 6 × 10−9 1/
√

Hz that is

computed by adding all the known noise sources, as in Fig. 5.

With respect to the 2014 version of the experiment, a few

minor changes have been made: the input polariser was sub-

stituted and a few iris diaphragms have been inserted along

the beam. It is not clear which of these changes determined

the improvement.

It is not clear either which could be the sources of the

excess noise. A few things are known, though: first of all,

the noise comes from the cavity; in fact, when the mirrors

are removed, the polarimeter performance is limited only

by intrinsic noise; this would exclude the laser as a source of

noise. Since we are talking of noise in ellipticity and rotation,

one must find a mechanism that produces noise in these two

quantities.

A possible source of noise is the intrinsic birefringence

of the mirrors. One could imagine a few mechanisms for a

wide band modulation of this parameter. One of them could

be mechanical movement of the mirrors induced by seis-

mic noise: as the surface of such mirrors has a birefringence

pattern both in amplitude and in axis direction [40], one

could imagine that environmental mechanical noise moves

the beam spot on the surface of the mirror, modulating the

birefringence in a wide frequency range. However, this mech-

anism can be excluded: the amplitude of the ellipticity signal

generated by forcing the optical bench to oscillate at a single
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Fig. 14 Exclusion plot for ALPs particles from laboratory experiments

at 95 % c.l. The excluded region is above the curves. The limits hold

for both scalar and pseudoscalar ALPs. Besides the PVLAS results, the

figure shows also the measurements by OSQAR [42] and ALPS [43]

collaborations

frequency with known amplitude was measured and com-

pared to the observed mechanical noise floor at 2νB . The

measurement was repeated for the three spatial directions; in

all cases the observed noise floor was found much too weak

to account for the observed sensitivity of the polarimeter.

Moreover, no improvement of the sensitivity was observed

when the polarimeter was running in the quietest situations

(during nights, with air conditioning switched off, etc.).

Considering again the intrinsic birefringence, another

mechanism that could be invoked to explain the sensitiv-

ity is the insufficient thermal stability of the mirrors [41].

This mechanism would imply a dependence of the sensitiv-

ity upon the light power inside the cavity. Such a dependence

is observed only for frequencies below ≈1 Hz. Nonetheless,

we are planning to cool the mirrors down to the liquid nitro-

gen temperature.

A notable aspect of the observed noise, is that it is

quite independent from the value of the coefficient k(α),

as was observed during the rotation of the mirrors reported

in the previous section. This seems to indicate that the

noise may originate from diffused light inside the polarime-

ter and have nothing to do with intrinsic birefringence of

the mirrors. However, the system of optical baffles and

diaphragms that was installed along the beam path was able

to get rid of the spurious signals at frequency 2νB that

haunted the measurements in the past [16], but seems not

to have benefited the wide band noise. Further studies are

ongoing.

4.2 Limits on hypothetical particles

The measurements of ellipticity and rotation can be used

to draw an exclusion plot in the plane (m, g) for Axion-
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Fig. 15 Exclusion plots for MCP particles at 95 % c.l. deriving from

the dichroism and birefringence values of Eqs. (26) and (27). Top panel

Fermion MCP. Bottom panel Scalar MCP. The excluded region is above

the curves. The limit derived from rotation dominates at small masses,

whereas the limit of birefringence is effective at large masses. The two

branches of the birefringence curve are not connected in the mass range

around χ = 1 (dashed line), where Δn changes sign. The two branches

of the dichroism curve are joined by a cubic spline

like particles. One must note, however, that it is not possi-

ble to average together measurements taken with different

magnet lengths [cf. Eq. (5)]. The best limits we can pro-

vide derive from the ellipticity measurements taken with one

rotating magnet (run 2 and 3 in Table 3) and from the rotation

measurements taken with two magnets (run 0’ and 5). The

results are shown in Fig. 14. The limits hold for both scalar

and pseudoscalar ALPs. Below 0.5 meV, the most stringent

results are given by a recent measurement by the OSQAR

experiment [42], whereas our ellipticity measurement dom-

inates the m ≥ 1 meV region. Between these two values,

our rotation measurement almost coincides with the 2010

ALPS result [43]. One must obviously remind that the whole

region has already been excluded by the CAST solar helio-

scope down to the level g ∼ 10−10 GeV−1 [44,45]. The

interest for the laboratory experiments resides in the fact that

their results are model independent.

In Fig. 15 we show the exclusion plots on the existence of

milli-charged particles. Two independent limits are derived

from the birefringence and the dichroism measurements of

Eqs. (26) and (27), the latter being more stringent in the low-
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mass range (mǫ ≤ 0.1 eV), whereas the former is dominating

the high-mass range. We explicitly note that the Fermion

exclusion plot applies also to all types of neutrinos, limiting

their charge to be less than ≈3×10−8e for mass smaller than

10 meV.

5 Conclusions

We have presented a detailed report of the status of the

PVLAS experiment, which strives to push further the frontier

of the opto-magnetic polarimetry of small signals. As for the

magnetic birefringence of vacuum, the new measurements

are approaching the goal of the experiment. The measure-

ments have given new limits also on the existence of hypo-

thetical particles which couple to two photons, both axion-

like and milli-charged. The sensitivity, although improved

with respect to the past, has not yet reached the level that

would guarantee the capability to perform the measurement

in a reasonable time. The challenge of the experiment is now

to lower the wide band noise. A few tests are ongoing, which

should reduce the noise or at least shade light on its nature.

Among them, we plan to rotate the magnets faster to reduce

the incidence of the 1/ f noise, to further reduce the scattered

light, to search for mirrors with even higher reflectivity and

lower losses and with smaller intrinsic birefringence, and to

test the possibility of significantly lowering the temperature

of the mirrors.
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