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Abstract

In numerous domains it is useful to represent a single example by the set of the local features

or parts that comprise it. However, this representation poses a challenge to many conventional

machine learning techniques, since sets may vary in cardinality and elements lack a meaningful

ordering. Kernel methods can learn complex functions, but a kernel over unordered set inputs must

somehow solve for correspondences—generally a computationally expensive task that becomes

impractical for large set sizes. We present a new fast kernel function called the pyramid match

that measures partial match similarity in time linear in the number of features. The pyramid match

maps unordered feature sets to multi-resolution histograms and computes a weighted histogram

intersection in order to find implicit correspondences based on the finest resolution histogram cell

where a matched pair first appears. We show the pyramid match yields a Mercer kernel, and

we prove bounds on its error relative to the optimal partial matching cost. We demonstrate our

algorithm on both classification and regression tasks, including object recognition, 3-D human

pose inference, and time of publication estimation for documents, and we show that the proposed

method is accurate and significantly more efficient than current approaches.

Keywords: kernel, sets of features, histogram intersection, multi-resolution histogram pyramid,

approximate matching, object recognition

1. Introduction

In a variety of domains, it is often natural and meaningful to represent a data object with a collection

of its parts or component features. For instance, in computer vision, an image may be described by

local features extracted from patches around salient interest points, or a shape may be described

by local descriptors defined at edge pixels. Likewise, in natural language processing, documents

or topics may be represented by sets or bags of words; in computational biology, a disease may

be characterized by sets of gene-expression data from multiple patients. In such cases, one set of

feature vectors denotes a single instance of a particular class of interest (an object, shape, document,

etc.). The number of features per example varies, and within a single instance the component

features may have no inherent ordering.

Classification and regression with these sets (or bags) of features is challenging. Kernel-based

learning methods are appealing for their generalization ability and efficiency, however conventional
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Figure 1: The pyramid match intersects histogram pyramids formed over sets of features, approx-

imating the optimal correspondences between the sets’ features. For example, vectors

describing the appearance or shape within local image patches can be used to form a fea-

ture set for each image; the pyramid match approximates the similarity according to a

partial matching in that feature space. (The feature space can be any local description of

a data object, images or otherwise; for images the features typically will not be the spatial

image coordinates.)

kernels are designed to operate on fixed-length vector inputs, where each dimension corresponds to

a particular global attribute for that instance; the commonly used general-purpose kernels defined on

ℜn inputs are not applicable in the space of vector sets. Existing kernel-based approaches specially

designed for matching sets of features generally require either solving for explicit correspondences

between features (which is computationally costly and prohibits the use of large inputs) or fitting

a particular parametric distribution to each set (which makes restrictive assumptions about the data

and can also be computationally expensive).

In this work we present the pyramid match kernel—a new kernel function over unordered fea-

ture sets that allows them to be used effectively and efficiently in kernel-based learning methods.

Each feature set is mapped to a multi-resolution histogram that preserves the individual features’

distinctness at the finest level. The histogram pyramids are then compared using a weighted his-

togram intersection computation, which we show defines an implicit correspondence based on the

finest resolution histogram cell where a matched pair first appears (see Figure 1).

The similarity measured by the pyramid match approximates the similarity measured by the

optimal correspondences between feature sets of unequal cardinality (i.e., the partial matching that

optimally maps points in the lower cardinality set to some subset of the points in the larger set,

such that the sum of the distances between matched points is minimized). Our kernel is extremely

efficient and can be computed in time that is linear in the sets’ cardinality. We show that the kernel

function is positive-definite, meaning that it is appropriate to use with learning methods that guar-

antee convergence to a unique optimum only for positive-definite kernels (e.g., the support vector
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machine). We also provide theoretical approximation bounds for the pyramid match cost relative to

the optimal partial matching cost.

Because it does not penalize the presence of superfluous data points, the proposed kernel is

robust to clutter. As we will show, this translates into the ability to handle common issues faced in

vision tasks like object recognition or pose estimation: unsegmented images, poor segmentations,

varying backgrounds, and occlusions. The kernel also respects the co-occurrence relations inherent

in the input sets: rather than matching features in a set individually, ignoring potential dependencies

conveyed by features within one set, our similarity measure captures the features’ joint statistics.

Other approaches to this problem have recently been proposed (Wallraven et al. 2003; Lyu 2005;

Boughhorbel et al. 2004; Kondor and Jebara 2003; Wolf and Shashua 2003; Moreno et al. 2003;

Shashua and Hazan 2005; Cuturi and Vert 2005; Boughorbel et al. 2005;

Lafferty and Lebanon 2002), but unfortunately each suffers from some number of the following

drawbacks: computational complexities that make large feature set sizes infeasible; limitations to

parametric distributions which may not adequately describe the data; kernels that are not positive-

definite; limitations to sets of equal size; and failure to account for dependencies within feature

sets.

Our method addresses each of these issues, resulting in a kernel appropriate for comparing un-

ordered, variable-sized feature sets within any existing kernel-based learning paradigm. We demon-

strate our algorithm in a variety of classification and regression tasks: object recognition from sets

of image patch features, 3-D human pose inference from sets of local contour features from monoc-

ular silhouettes, and documents’ time of publication estimation from bags of local latent semantic

features. The results show that the proposed approach achieves an accuracy that is comparable to or

better than that of state-of-the-art techniques, while requiring significantly less computation time.

2. Related Work

In this section, we review relevant work on learning with sets of features, using kernels and support

vector machines (SVMs) for recognition, and multi-resolution image representations.

Kernel-based learning algorithms, which include SVMs, kernel PCA, and Gaussian Processes,

have become well-established tools that are useful in a variety of contexts, including discriminative

classification, regression, density estimation, and clustering (Shawe-Taylor and Cristianini, 2004;

Vapnik, 1998; Rasmussen and Williams, 2006). However, conventional kernels (such as the Gaus-

sian RBF or polynomial) are designed to operate on ℜn vector inputs, where each vector entry

corresponds to a particular global attribute for that instance. As a result, initial approaches us-

ing SVMs for recognition were forced to rely on global image features—ordered features of equal

length measured from the image as a whole, such as color or grayscale histograms or vectors of

raw pixel data (Chapelle et al., 1999; Roobaert and Hulle, 1999; Odone et al., 2005). Such global

representations are known to be sensitive to real-world imaging conditions, such as occlusions, pose

changes, or image noise.

Recent work has shown that local features invariant to common image transformations (e.g.,

SIFT, Lowe, 2004) are a powerful representation for recognition, because the features can be re-

liably detected and matched across instances of the same object or scene under different view-

points, poses, or lighting conditions. Most approaches, however, perform recognition with local fea-

ture representations using nearest-neighbor (e.g., Belongie et al., 2002; Grauman and Darrell, 2004;

Sivic and Zisserman, 2003; Berg et al., 2005) or voting-based classifiers followed by an alignment
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step (e.g., Lowe, 2004; Mikolajczyk and Schmid, 2001); both may be impractical for large training

sets, since their classification times increase with the number of training examples. A support vec-

tor classifier or regressor, on the other hand, identifies a sparse subset of the training examples (the

support vectors) to delineate a decision boundary or approximate a function of interest.

In order to more fully leverage existing kernel-based learning tools for situations where the

data cannot be naturally represented by a Euclidean vector space—such as graphs, strings, or

trees—researchers have developed specialized similarity measures (Gartner, 2003). In fact, due

to the increasing prevalence of data that is best represented by sets of local features, several re-

searchers have recently designed kernel functions that can handle unordered sets as input (Lyu 2005;

Kondor and Jebara 2003; Wolf and Shashua 2003; Shashua and Hazan 2005;

Boughhorbel et al. 2004; Boughorbel et al. 2005; Wallraven et al. 2003; Cuturi and Vert 2005;

Moreno et al. 2003; Lafferty and Lebanon 2002). Nonetheless, current approaches are either pro-

hibitively computationally expensive, are forced to make assumptions regarding the parametric form

of the features, discard information by replacing inputs with prototypical features, ignore important

co-occurrence information by considering features independently, are not positive-definite, and (or)

are limited to sets of equal size. In addition, none have shown the ability to learn a real-valued

function from sets of features; results have only been shown for classification tasks. See Figure 2

for a concise comparison of the approaches.

Approaches which fit a parametric model to feature sets in order to compare their distributions

(Kondor and Jebara, 2003; Moreno et al., 2003; Cuturi and Vert, 2005; Lafferty and Lebanon, 2002)

can be computationally costly and have limited applicability, since they assume both that features

within a set will conform to the chosen distribution, and that sets will be adequately large enough to

extract an accurate estimate of the distribution’s parameters. These assumptions are violated regu-

larly by real data, which will often exhibit complex variations within a single bag of features (e.g.,

patches from an image), and will produce wide ranges of cardinalities per instance (e.g., titles of

documents have just a few word features). Our method instead takes a non-parametric, “model-free”

approach, representing sets of features directly with multi-dimensional, multi-resolution histograms.

Kernel methods that use explicit correspondences between two sets’ features search one set for

the best matching feature for each member in the other, and then define set similarity as a func-

tion over those component similarity values (Wallraven et al., 2003; Lyu, 2005; Boughhorbel et al.,

2004; Boughorbel et al., 2005). These methods have complexities that are quadratic in the number

of features, hindering usage for kernel-based learning when feature sets are large. The “intermedi-

ate” matching kernel of Boughorbel et al. (2005) has a quadratic run-time if the number of proto-

types p = O(m). That is reduced if p is set so that p < m; however, the authors note that higher

values of p yield more accurate results. Furthermore, matching each input feature independently

ignores useful information about intra-set dependencies. In contrast, our kernel captures the joint

statistics of co-occurring features by matching them concurrently as a set.

In the method of Wolf and Shashua (2003), similarity is measured in terms of the principal angle

between the linear subspaces spanned by two sets’ vector elements; the kernel has a cubic complex-

ity and is only positive-definite for sets of equal cardinality. In the work of Shashua and Hazan

(2005), an algebraic kernel is used to combine similarities given by local (vector-based) kernels,

with the weighting chosen to reflect whether the features are in alignment (ordered). When set

cardinalities vary, inputs are padded with zeros so as to form equal-size matrices; results are only

shown for a classification task with input sets whose features’ ordering is known.
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Captures Positive- Handles unequal

Method Complexity co-occurrences definite Non-parametric cardinalities

Match O(dm2) x x

Exponent match O(dm2) x x x

Greedy match O(dm2) x x x

Principal angles O(dm3) x x

Intermediate O(d pm) x x x

Bhattacharyya’s O(dm3) x x x

KL-divergence O(dm2) x x

Pyramid match O(dm logD) x x x x

Figure 2: Comparing the properties of kernel approaches to matching unordered sets. “Match”

refers to the kernel of Wallraven et al. (2003), “Exponent match” is the kernel of

Lyu (2005), “Greedy match” is from Boughhorbel et al. (2004), “Principal angles”

is from Wolf and Shashua (2003), “Intermediate” is from Boughorbel et al. (2005),

“Bhattacharyya’s” is from Kondor and Jebara (2003), and “KL-divergence” is from

Moreno et al. (2003). “Pyramid match” refers to the proposed kernel. Each method’s

computational cost is for computing a single kernel value. d is vector dimension, m is

maximum set cardinality, p is the number of prototype features used by Boughorbel et al.

(2005), and D is the value of the maximal feature range.

Several computer vision researchers have transformed the set of real-valued feature vectors com-

ing from one image into a single flat histogram that counts the frequency of occurrence of some num-

ber of pre-defined (quantized) feature prototypes. In this way the quantized feature space provides

a visual vocabulary or bag-of-words vector representation which can be used in conjunction with

some vector-based kernels or similarity measures. This type of representation was explored for tex-

ture recognition using nearest-neighbors (Leung and Malik, 2001; Hayman et al., 2004), and more

recently has been shown for classification of object categories using SVMs, Naı̈ve Bayes classifiers,

and a probabilistic Latent Semantic Analysis framework (Csurka et al., 2004; Willamowski et al.,

2004; Sivic et al., 2005).

The bag-of-words is appealing because it allows existing vector-based methods to be applied

and can describe the overall distribution of features in an image. However, this representation

faces the substantial challenge of generating an appropriately descriptive quantization of the fea-

ture space. Bin boundary issues have been shown to create matching problems for flat histograms

(Rubner et al., 2000), and though the right size of a vocabulary for a given data set can be crit-

ical to recognition performance (Csurka et al., 2004; Grauman and Darrell, 2004) it must still be

determined empirically. Generating the vocabulary from large amounts of data is generally compu-

tationally costly, and it is not clear whether a generic or universal feature quantization is more or less

effective than data set-dependent vocabularies. Finally, unlike the approach we develop here, ex-

isting bag-of-words techniques can only compare entire images to one another, do not allow partial

matchings, and cannot be used to extract correspondences telling which features match to which. In

our experiments we find that the pyramid match outperforms the bag-of-words approach for object

category recognition on a challenging data set (see Section 9).
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An alternative approach to discriminative classification when dealing with unordered set data is

to designate prototypical examples from each class, and then represent examples by a vector giving

their distances to each prototype; standard algorithms that handle vectors in a Euclidean space are

then applicable. Zhang and Malik (2003) build such a classifier for handwritten digits, and use the

shape context distance of Belongie et al. (2002) as the measure of similarity. Shan et al. also explore

a representation based on distances to prototypes in order to avoid feature matching when recogniz-

ing vehicles (Shan et al., 2005). The issues faced by such a prototype-based method are determining

which examples should serve as prototypes, choosing how many there should be, and updating the

prototypes properly when new types of data are encountered. The method of Holub et al. (2005a)

uses a hybrid generative-discriminative approach for object recognition, combining the Fisher ker-

nel (Jaakkola and Haussler, 1999) and a probabilistic constellation model.

Our feature representation is based on a multi-resolution histogram, or pyramid, which is com-

puted by binning data points into discrete regions of increasingly larger size. Single-level histograms

have been used in various visual recognition systems, one of the first being that of Swain and Ballard

(1991), where the intersection of global color histograms was used to compare images. Pyra-

mids have been shown to be a useful representation in a wide variety of image processing tasks,

from image coding (Burt and Adelson, 1983), to optical flow (Anandan, 1987), to texture modeling

(Malik and Perona, 1990). See work by Hadjidemetriou et al. (2004) for a summary.

In the method of Indyk and Thaper (2003), multi-resolution histograms are compared with L1

distance to approximate a least-cost matching of equal-mass global color histograms for nearest

neighbor image retrievals. This work inspired our use of a similar representation for point sets

and to consider counting matches within histograms. However, in contrast Indyk and Thaper’s

approach, our method builds a discriminative classifier or regressor over sets of local features, and

it allows inputs to have unequal cardinalities. Most importantly, it enables partial matchings, which

is important in practice for handling clutter and unsegmented images. In addition, we show that our

approximate matching forms a valid Mercer kernel and explore its use for kernel-based learning for

various applications.

In this work we develop a new kernel function that efficiently handles inputs that are unordered

sets of varying sizes. We show how the pyramid match kernel may be used in conjunction with

existing kernel-based learning algorithms to successfully learn decision boundaries or real-valued

functions from the multi-set representation. Ours is the first work to show the histogram pyramid’s

connection to the optimal partial matching when used with a hierarchical weighted histogram inter-

section similarity measure. 1

3. Approach

The main contribution of this work is a new kernel function based on implicit correspondences that

enables discriminative classification and regression for unordered, variable-sized sets of vectors.

The kernel is provably positive-definite. The main advantages of our algorithm are its efficiency,

its use of the joint statistics of co-occurring features, and its resistance to clutter or “superfluous”

1. We first introduced the pyramid match kernel for the purpose of discriminative object recognition in a recent con-

ference paper (Grauman and Darrell, 2005). This paper builds on that initial work: here we also demonstrate its

utility for regression, give results on additional new data sets (one of which is non-vision), provide a more in-depth

description of the kernel, and prove bounds on the error of the pyramid match relative to the optimal partial matching

cost.
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data points. The basic idea of our method is to map sets of features to multi-resolution histograms,

and then compare the histograms with a weighted histogram intersection measure in order to ap-

proximate the similarity of the best partial matching between the feature sets. We call the proposed

matching kernel the pyramid match kernel because input sets are converted to multi-resolution his-

tograms.

3.1 Preliminaries

We consider a feature space F of d-dimensional vectors. The point sets (or multi-sets, since dupli-

cations of features may occur within a single set) we match will come from the input space S, which

contains sets of feature vectors drawn from F :

S =
{

X|X = {x1, . . . ,xm}
}

,

where each feature is a d-dimensional vector, xi ∈ F ⊆ ℜd , and m = |X|. Note that the point

dimension d is fixed for all features in F , but the value of m may vary across instances in S. The

values of elements in vectors in F have a maximal range D, and the minimum inter-vector distance

between unique points is 1, which may be enforced by scaling the data to some precision and

truncating to integer values.

In this work we want to efficiently approximate the optimal partial matching. A partial matching

between two point sets is an assignment that maps all points in the smaller set to some subset of the

points in the larger (or equally-sized) set. Given point sets X and Y, where m = |X|, n = |Y|, and

m≤ n, a partial matching

M (X,Y;π) = {(x1,yπ1
), . . . ,(xm,yπm

)}

pairs each point in X to some unique point in Y according to the permutation of indices specified

by π = [π1, . . . ,πm], 1 ≤ πi ≤ n, where πi specifies which point yπi
∈ Y is matched to xi ∈ X, for

1≤ i≤ m. The cost of a partial matching is the sum of the distances between matched points:

C (M (X,Y;π)) = ∑
xi∈X

||xi−yπi
||1.

The optimal partial matching M (X,Y;π∗) uses the assignment π∗ that minimizes this cost:

π∗ = argmin
π

C (M (X,Y;π)) . (1)

In order to form a kernel function based on correspondences, we are interested in evaluating

partial matching similarity, where similarity is measured in terms of inverse distance or cost. The

similarity S (M (X,Y;π)) of a partial matching is the sum of the inverse distances between matched

points:

S (M (X,Y;π)) = ∑
xi∈X

1

||xi−yπi
||1 +1

,

where the distance in the denominator is incremented by 1 to avoid division by zero. We define the

optimal partial matching similarity score to be the similarity resulting from the same matching that

minimizes the cost (Eqn. 1).
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3.2 The Pyramid Match Algorithm

The pyramid match approximation uses a multi-dimensional, multi-resolution histogram pyramid

to partition the feature space into increasingly larger regions. At the finest resolution level in the

pyramid, the partitions (bins) are very small; at successive levels they continue to grow in size until

the point where a single partition encompasses the entire feature space. At some level along this

gradation in bin sizes, any two points from any two point sets will begin to share a bin, and when

they do, they are considered matched. The pyramid allows us to extract a matching score without

computing distances between any of the points in the input sets—when points sharing a bin are

counted as matched, the size of that bin indicates the farthest distance any two points in it could be

from one another.

Each feature set is mapped to a multi-resolution histogram that preserves the individual features’

distinctness at the finest level. The histogram pyramids are then compared using a weighted his-

togram intersection computation, which we show defines an implicit partial correspondence based

on the finest resolution histogram cell where a matched pair first appears. The computation time of

both the pyramids themselves as well as the weighted intersection is linear in the number of features.

The feature extraction function Ψ for an input set X is defined as:

Ψ(X) = [H0(X), . . . ,HL−1(X)], (2)

where X ∈ S, L = ⌈log2 D⌉+ 1, Hi(X) is a histogram vector formed over points in X using d-

dimensional bins of side length 2i, and Hi(X) has a dimension ri =
(

D
2i

)d
. In other words, Ψ(X) is

a histogram pyramid, where each subsequent component histogram has bins that double in size (in

all d dimensions) compared to the previous one. The bins in the finest-level histogram H0 are small

enough that each unique d-dimensional data point from features in F falls into its own bin, and then

the bin size increases until all points in F fall into a single bin at level L−1.2

The pyramid match P∆ measures similarity (or dissimilarity) between point sets based on im-

plicit correspondences found within this multi-resolution histogram space. The similarity between

two input sets Y and Z is defined as the weighted sum of the number of feature matchings found at

each level of the pyramid formed by Ψ:

P∆ (Ψ(Y),Ψ(Z)) =
L−1

∑
i=0

wiNi, (3)

where Ni signifies the number of newly matched pairs at level i, and wi is a weight for matches

formed at level i (and will be defined below). A new match is defined as a pair of features that were

not in correspondence at any finer resolution level.

The matching approximation implicitly finds correspondences between point sets, if we con-

sider two points matched once they fall into the same histogram bin, starting at the finest resolution

level where each unique point is guaranteed to be in its own bin. The correspondences are implicit in

that matches are counted and weighted according to their strength, but the specific pairwise links be-

tween points need not be individually enumerated. The matching is a hierarchical process: vectors

not found to correspond at a fine resolution have the opportunity to be matched at coarser resolu-

tions. For example, in Figure 3, there are two points matched at the finest scale, two new matches at

2. To enable accurate pyramid matching even with high-dimensional feature spaces, we have developed a variant where

the pyramid bin structure depends on the distribution of the data (Grauman and Darrell, 2007).
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Figure 3: The pyramid match (P∆) determines a partial correspondence by matching points once

they fall into the same histogram bin. In this example, two 1-D feature sets are used

to form two histogram pyramids. Each row corresponds to a pyramid level. In (a), the

set Y is on the left side, and the set Z is on the right. (Points are distributed along the

vertical axis, and these same points are repeated at each level.) Light dotted lines are bin

boundaries, bold dashed lines indicate a new pair matched at this level, and bold solid

lines indicate a match already formed at a finer resolution level. In (b) multi-resolution

histograms are shown, with bin counts along the horizontal axis. In (c) the intersection

pyramids between the histograms in (b) are shown. P∆ uses these intersection counts to

measure how many new matches occurred at each level. Here, Ii = I (Hi(Y),Hi(Z)) =
2,4,5 across levels, and therefore the number of new matches found at each level are

Ni = 2,2,1. (I−1 = 0 by definition.) The sum over Ni, weighted by wi = 1, 1
2
, 1

4
, gives the

pyramid match similarity.

the medium scale, and one at the coarsest scale. P∆’s output value reflects the overall similarity of

the matching: each newly matched pair at level i contributes a value wi that is proportional to how

similar two points matching at that level must be, as determined by the bin size.

To calculate Ni, the pyramid match makes use of a histogram intersection function I , which

measures the “overlap” between two histograms’ bin counts:

I (A,B) =
r

∑
j=1

min
(

A( j),B( j)
)

,

where A and B are histograms with r bins, and A( j) denotes the count of the jth bin of A.
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Histogram intersection effectively counts the number of points in two sets that match at a given

quantization level, that is, fall into the same bin. To calculate the number of newly matched pairs

Ni induced at level i, it is sufficient to compute the difference between successive histogram levels’

intersections:

Ni = I (Hi(Y),Hi(Z))− I (Hi−1(Y),Hi−1(Z)) , (4)

where Hi refers to the ith component histogram generated by Ψ in Eqn. 2. Note that the measure is

not searching explicitly for similar points—it never computes distances between the vectors in each

set. Instead, it simply uses the change in intersection values at each histogram level to count the

matches as they occur. In addition, due to the subtraction in Eqn. 4, the output score will reflect an

underlying matching that is one-to-one.

The sum in Eqn. 3 starts with index i = 0 because by the definition of F , the same points

that could match at level 0 can match at (a hypothetical) level −1. Therefore we can start col-

lecting new match counts at level 0, and define level −1 to be a base case with no intersections:

I (H−1(Y),H−1(Z)) = 0. All matches formed at level 0 are new.

The number of new matches found at each level in the pyramid is weighted according to the size

of that histogram’s bins: to measure similarity, matches made within larger bins are weighted less

than those found in smaller bins. Specifically, we make a geometric bound of the distance between

any two points sharing a particular bin; in terms of L1 cost, two points in the same bin can only

be as far from one another as the sum of the lengths of the bin’s sides. At level i in a pyramid,

this length is equal to d2i. Thus, the number of new matches induced at level i is weighted by

wi = 1
d2i to reflect the (worst-case) similarity of points matched at that level. Intuitively, this means

that similarity between vectors (features in Y and Z) at a finer resolution—where features are more

distinct—is rewarded more heavily than similarity between vectors at a coarser level.3 Moreover,

as we show in Section 6, this particular setting of the weights enables us to prove theoretical error

bounds for the pyramid match cost.

From Eqns. 3 and 4, we define the (un-normalized) pyramid match:

P̃∆ (Ψ(Y),Ψ(Z)) =
L−1

∑
i=0

wi

(

I (Hi(Y),Hi(Z))− I (Hi−1(Y),Hi−1(Z))
)

, (5)

where Y,Z ∈ S, and Hi(Y) and Hi(Z) refer to the ith histogram in Ψ(Y) and Ψ(Z), respectively.

We normalize this value by the product of each input’s self-similarity to avoid favoring larger input

sets, arriving at the final kernel value P∆ (P,Q) = 1√
C

P̃∆ (P,Q), where C = P̃∆ (P,P) P̃∆ (Q,Q).

In order to alleviate quantization effects that may arise due to the discrete histogram bins, we

combine the kernel values resulting from multiple (T ) pyramid matches formed under different

multi-resolution histograms with randomly shifted bins. Each dimension of each of the T pyramids

is shifted by an amount chosen uniformly at random from [0,D]. This yields T feature mappings

Ψ1, . . . ,ΨT that are applied as in Eqn. 2 to map an input set X to T multi-resolution histograms:

[Ψ1(X), . . . ,ΨT (X)]. For inputs Y and Z, the combined kernel value is then ∑T
j=1 P∆ (Ψ j(Y),Ψ j(Z)).

To further refine a pyramid match, multiple pyramids with unique initial (finest level) bin sizes

may be used. The set of unique bin sizes produced throughout a pyramid determines the range

3. This is if the pyramid match is a kernel measuring similarity; an inverse weighting scheme is applied if the pyramid

match is used to measure cost. To use the matching as a cost function, weights are set as the distance estimates

(wi = d2i); to use as a similarity measure, weights are set as (some function of) the inverse of the distance estimates

(wi ∝ 1
d2i ).
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of distances at which features will be considered for possible matchings. With bin sizes doubling

in size at every level of a pyramid, this means that the range of distances considered will rapidly

increase until the full diameter of the feature space is covered. However, by incorporating multiple

pyramids with unique initial bin sizes, we can boost that range of distances to include more diverse

gradations. This is accomplished by setting the side length for each histogram Hi(X) to f 2i, where

f is the side length at the finest resolution (in the above definition, f = 1). For example, say D = 32,

so L = 6. Then the set of distances considered with f = 1 are {1,2,4,8,16,32}; adding a second

pyramid with f = 3 increases this set to also consider the distances {3,6,12,24}. The outputs from

pyramids with multiple starting side lengths are combined in the same way that the outputs from

pyramids with multiple translations are combined.

In fact, the rationale for considering multiple random shifts of the pyramid grids is not only to

satisfy the intuitive need to reduce quantization effects caused by bin placements; it also allows us

to theoretically measure how probable it is (in the expectation) that any two points will be separated

by a bin boundary, as we describe below in Section 6.

3.3 Partial Match Correspondences

The pyramid match allows input sets to have unequal cardinalities, and therefore it enables partial

matchings, where the points of the smaller set are mapped to some subset of the points in the

larger set. Dissimilarity is only judged on the most similar part of the empirical distributions, and

superfluous data points from the larger set are entirely ignored; the result is a robust similarity

measure that accommodates inputs expected to contain extraneous vector entries. This is a common

situation when recognizing objects in images, due for instance to background variations, clutter,

or changes in object pose that cause different subsets of features to be visible. As a kernel, the

proposed matching measure is equipped to handle unsegmented or poorly segmented examples, as

we will demonstrate in Section 9.

Since the pyramid match defines correspondences across entire sets simultaneously, it inherently

accounts for the distribution of features occurring in one set. In contrast, previous approaches

have used each feature in a set to independently index into the second set; this ignores possibly

useful information that is inherent in the co-occurrence of a set of distinctive features, and it fails

to distinguish between instances where an object has varying numbers of similar features since

multiple features may be matched to a single feature in the other set (Wallraven et al., 2003; Lyu,

2005; Boughorbel et al., 2005; Lowe, 2004; Mikolajczyk and Schmid, 2001; Tuytelaars and Gool,

1999; Shaffalitzky and Zisserman, 2002).

4. Efficiency

A key aspect of this method is that we obtain a measure of matching quality between two point sets

without computing pairwise distances between their features—an O(m2) savings over sub-optimal

greedy matchings. Instead, we exploit the fact that the points’ placement in the pyramid reflects

their distance from one another in the feature space.

The time required to compute the L-level histogram pyramid Ψ(X) for an input set with m = |X|
d-dimensional features is O(dzL), where z = max(m,k) and k is the maximum histogram index value

in a single dimension. For a histogram at level i, k ≤ D
2i , so at any level, k ≤ D. (Typically m > k.)

The bin coordinates corresponding to nonzero histogram entries for each of the L = ⌈log2 D⌉+ 1

quantization levels are computed directly during a scan of the m input vectors; these entries are
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sorted by the bin indices and the bin counts for all entries with the same index are summed to form

one entry. This sorting requires only O(dm+dk) time using the radix-sort algorithm with counting

sort, a linear time sorting algorithm that is applicable to the integer bin indices Cormen et al. (1990).

The histogram pyramid that results is high-dimensional, but very sparse, with only O(mL) nonzero

entries that need to be stored.

The computational complexity of P∆ is O(dmL), since computing the intersection values for

histograms that have been sorted by bin index requires time linear in the number of nonzero entries

(not the number of actual bins). With sorted bin index lists, we obtain the intersection value by

running one pointer down each of the two lists; one pointer may not advance until the other is

incremented down to an index at least as high as the other, or else the end of its list. Then, whenever

the two lists share a nonzero index, the intersection count is incremented by the minimum bin count

between the two. If one list has a nonzero count for some bin index but the other has no entry

for that index, the minimum count is 0, so no update is needed. In the applications we explore in

our experiments, typical values of the variables affecting complexity are as follows: 5 ≤ d ≤ 12,

300≤ m≤ 3000, and D≈ 250, which yields L = 9.

Generating multiple pyramid matches with randomly shifted grids scales the complexity by T ,

the constant number of shifts. (Typically we will use 1 ≤ T ≤ 3.) All together, the complexity

of computing both the pyramids and kernel or cost values is O(T dmL). In contrast, the optimal

matching requires O(dm3) time, which severely limits the practicality of large input sizes. Refer to

Figure 2 for complexity comparisons with existing set kernels.

5. Satisfying Mercer’s Condition

Kernel-based learning algorithms are founded on the idea of embedding data into a Euclidean space,

and then seeking linear relations among the embedded data (Shawe-Taylor and Cristianini, 2004;

Vapnik, 1998). For example, a support vector machine (SVM) finds the optimal separating hyper-

plane between two classes in an embedded space (also referred to as the feature space). A kernel

function K : X × X → ℜ serves to map pairs of data objects in an input space X to their inner

product in the embedding space E, thereby evaluating the similarities between all data objects and

determining their relative positions. Linear relations are sought in the embedded space, but the

learned function may still be non-linear in the input space, depending on the choice of a feature

mapping function Φ : X → E.

Only positive semi-definite kernels guarantee an optimal solution to kernel-based algorithms

based on convex optimization, which includes SVMs. According to Mercer’s theorem, a kernel K

is positive semi-definite if and only if there exists a mapping Φ such that

K(xi,x j) = 〈Φ(xi),Φ(x j)〉, ∀xi,x j ∈ X ,

where 〈·, ·〉 denotes a scalar dot product. This insures that the kernel corresponds to an inner product

in some feature space, where kernel methods can search for linear relationships

(Shawe-Taylor and Cristianini, 2004).

Proposition 1

The pyramid match yields a Mercer kernel.
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Proof:

Histogram intersection on single resolution histograms over multi-dimensional data was shown

to be a positive-definite function by Odone et al. (2005). That is, the intersection I (H(Y),H(Z)) is a

Mercer kernel. The proof shows that there is an explicit feature mapping after which the intersection

is an inner product. Specifically, the mapping V encodes an r-bin histogram H as a p-dimensional

binary vector, p = m× r, where m is the total number of points in the histogram:

V (H) =






H(1)

︷ ︸︸ ︷

1, . . . ,1,

m−H(1)

︷ ︸︸ ︷

0, . . . ,0
︸ ︷︷ ︸

first bin

, . . . ,

H(r)

︷ ︸︸ ︷

1, . . . ,1,

m−H(r)

︷ ︸︸ ︷

0, . . . ,0
︸ ︷︷ ︸

last bin




 .

The inner product between the binary strings output from V is equivalent to the original histograms’

intersection value (Odone et al., 2005). If m varies across examples, the above holds by setting

p = M× r, where M is the maximum size of any input. Note that this binary encoding only serves

to prove positive-definiteness and is never computed explicitly.

Using this proof and the closure properties of valid kernel functions, we can show that the

pyramid match is a Mercer kernel. The definition given in Eqn. 5 is algebraically equivalent to

P̃∆ (Ψ(Y),Ψ(Z)) = wL−1 I (HL−1(Y),HL−1(Z))+
L−2

∑
i=0

(wi−wi+1) I (Hi(Y),Hi(Z)) ,

since I (H−1(Y),H−1(Z)) = 0 by definition. Given that Mercer kernels are closed under both addi-

tion and scaling by a positive constant (Shawe-Taylor and Cristianini, 2004), the above form shows

that the pyramid match kernel is positive semi-definite for any weighting scheme where wi ≥ wi+1.

In other words, if we can insure that the weights decrease for coarser pyramid levels, then the pyra-

mid match will sum over positively weighted positive-definite kernels, yielding another positive-

definite kernel. Using the weights wi = 1
d2i , we do maintain this property. The sum combining the

outputs from multiple pyramid matches under different random bin translations likewise remains

Mercer. Therefore, the pyramid match is valid for use as a kernel in any existing learning methods

that require Mercer kernels.

6. Approximation Error Bounds

In this section we show theoretical approximation bounds on the cost measured by the pyramid

match relative to the cost measured by the optimal partial matching defined in Section 3.1. Re-

call the cost (as opposed to similarity) is measured by setting wi = d2i in Eqn. 5. In earlier work,

Indyk and Thaper (2003) provided bounds for a multi-resolution histogram embedding’s approxi-

mation of the optimal bijective matching between inputs with equal cardinality. Some of the main

ideas of the proofs below are similar, but they have been adapted and extended to show the expected

error bounds for partial matchings, where input sets can have variable numbers of features, and

some features do not affect the matching cost.

Proposition 2

For any two point sets X,Y where |X| ≤ |Y|, we have

C (M (X,Y;π∗))≤ P∆ (X,Y) .
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Proof:

Consider a matching induced by pairing points within the same cells of each histogram Hi. The cost

induced by matching two points within a bin having d sides that are each of length 2i is at most d2i

under the L1 ground distance.

There are no pairings induced by the histograms at level −1, so I (H−1(X),H−1(Y)) = 0. At

level 0 there are I (H0(X),H0(Y)) pairs of points that can be matched together within the same

bins of H0, which induces a cost no more than d I (H0(X),H0(Y)). Then I (H1(X),H1(Y))−
I (H0(X),H0(Y)) new pairs of points are matched at level 1, which induces a cost no more than

2d [I (H1(X),H1(Y))− I (H0(X),H0(Y))], and so on.

In general, histogram Hi induces cost d2i [I (Hi(X),Hi(Y))− I (Hi−1(X),Hi−1(Y))]. Summing

the costs induced by all levels, we have:

C (M (X,Y;π∗)) ≤
L−1

∑
i=0

d2i
(

I (Hi(X),Hi(Y))− I (Hi−1(X),Hi−1(Y))
)

≤ P∆(X,Y),

where wi = d2i in Eqn. 5.

Proposition 3

There is a constant C such that for any two point sets X and Y, where |X| ≤ |Y|, if the histogram

bin boundaries are shifted randomly in the same way when computing Ψ(X) and Ψ(Y), then the

expected value of the pyramid match cost is bounded:

E[P∆(X,Y)]≤
(

C ·d logD+d
)

C (M (X,Y;π∗)).

Proof:

To write the pyramid match in terms of counts of unmatched points in the implicit partial matching,

we define the directed distance between two histograms formed from point sets X and Y:

D (H(X),H(Y)) =
r

∑
j=1

D j

(

H(X)( j),H(Y)( j)
)

, where

D j(a,b) =

{
a−b, if a > b

0, otherwise.

The directed distance D(Hi(X),Hi(Y)) counts the number of unmatched points at resolution level

i. Note that D (H−1(X),H−1(Y)) = |X| and D (HL−1(X),HL−1(Y)) = 0 by definition. The directed

distance value decreases with i, as bins are increasing in size and more implicit matches are made.

The change in the directed distance across levels is the decrease in the count of unmatched points

from one level to the next, and therefore also serves to count the number of new matches formed at

level i:

I (Hi(X),Hi(Y))− I (Hi−1(X),Hi−1(Y)) = D(Hi−1(X),Hi−1(Y))−D(Hi(X),Hi(Y)).
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In terms of the directed distance, the pyramid match cost is

P∆ (X,Y) =
L−1

∑
i=0

d2i
(

D (Hi−1(X),Hi−1(Y))−D (Hi(X),Hi(Y))
)

= dD (H−1(X),H−1(Y))+
L−2

∑
i=0

d2i D (Hi(X),Hi(Y))

= d|X|+
L−2

∑
i=0

d2i D (Hi(X),Hi(Y)) .

The expected value of the pyramid match cost is then

E [P∆ (X,Y)] = d|X|+
L−2

∑
i=0

d2i E [D (Hi(X),Hi(Y))] . (6)

The optimal partial matching M (X,Y;π∗) =
{
(x1,yπ∗

1
), . . . ,(xm,yπ∗

m
)
}

implies a graph whose

nodes are those points in the input sets X and Y that participate in the matching (i.e., all points in

X and a subset from Y), and whose edges connect the matched pairs (xi,yπi
), for 1 ≤ i ≤ |X|. Let

n j be the number of edges in this graph that have lengths in the range [d2 j−1,d2 j). A bound on the

optimal partial matching may then be expressed as:

∑
j

n j d2 j−1 ≤ C (M (X,Y;π∗)) , or

∑
j

n j d2 j ≤ 2 C (M (X,Y;π∗)) , (7)

since for every j, all n j edges must be of length at least d2 j−1.

The directed distance D counts at a given resolution how many points from set X are unmatched.

Any edge in the optimal matching graph that is left “uncut” by the bin boundaries in histogram Hi

contributes nothing to D (Hi(X),Hi(Y)). Any edge that is “cut” by the histogram contributes at most

1 to D (Hi(X),Hi(Y)). Therefore, the expected value of the directed distance at a given resolution

is bounded by:

E [D (Hi(X),Hi(Y))]≤∑
j

E [Ti j] , (8)

where Ti j is the number of edges in the optimal matching having lengths in the range [d2 j−1,d2 j)
that are cut by Hi.

The probability Pr(cut(x,y); i) that an edge for (x,y) in the optimal matching is cut by the

histogram grid Hi is bounded by
||x−y||1

2i . This can be seen by considering the probability of a bin

boundary cutting an edge in any one of the d dimensions, taking into account that the bin boundaries

are shifted independently in each dimension. An edge with length ||x− y||1 > d2i is certainly cut

by the histogram grid at Hi. An edge with length ||x−y||1 ≤ d2i may be cut in any dimension. In

this case, the probability of a cut in dimension k for points x = [x1, . . . ,xd] ,y = [y1, . . . ,yd] is
|xk−yk|

2i ,

for 1≤ k≤ d. The probability of a cut from Hi occurring in some dimension is then bounded by the

sum of these probabilities:

Pr(cut(x,y); i) ≤
d

∑
k=1

|xk− yk|

2i

≤
||x−y||1

2i
.
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This provides an upper bound on the expected number of edges in the optimal matching that are

cut at level i:

E [Ti j]≤ n j

d2 j

2i
,

since by definition d2 j is the maximum distance between any pair of matched points counted by n j.

Now with Eqns. 7 and 8 we have a bound for the expected directed distance at a certain resolu-

tion level:

E [D (Hi(X),Hi(Y))]≤
1

2i ∑
j

n j d2 j ≤
1

2i
2 C (M (X,Y;π∗)) .

Relating this to the expected value of the pyramid match cost in Eqn. 6, we have

E [P∆ (X,Y)] ≤ d|X|+
L−2

∑
i=0

d2i

(
1

2i
2 C (M (X,Y;π∗))

)

≤ d|X|+2d (L−1) C (M (X,Y;π∗))

≤ d|X|+2d logD C (M (X,Y;π∗)) (9)

since L = ⌈log2 D⌉+1.

As described in Section 3.1, points in sets X and Y are comprised of integer entries, insuring

that the minimum inter-feature distance between unique points is 1. We also know that for the sake

of measuring matching cost, X and Y are disjoint sets: X∩Y = /0; if there are any identical points

in the two sets, we can consider them as discarded (in pairs) to produce strictly disjoint sets, since

identical points contribute nothing to the matching cost. Since X,Y⊆ [D]d and X∩Y = /0, we have

|X| ≤ C (M (X,Y;π∗)). That is, each edge in the optimal matching must have a length of at least 1,

making the number of points in the smaller set a lower bound on the cost of the optimal matching

for any two sets. With this bound and Eqn. 9, we have the following bound on the expected pyramid

match cost error

E [P∆ (X,Y)] ≤ d C (M (X,Y;π∗))+2d logD C (M (X,Y;π∗))

≤
(

2d logD+d
)

C (M (X,Y;π∗))

≤
(

C ·d logD+d
)

C (M (X,Y;π∗)).

7. Classification and Regression with the Pyramid Match

We train support vector machines and support vector regressors (SVRs) to perform classification

and regression with the pyramid match kernel. An SVM or SVR is trained by specifying the matrix

of kernel values between all pairs of training examples. The kernel’s similarity values determine

the examples’ relative positions in an embedded space, and quadratic programming is used to find

the optimal separating hyperplane or function between the two classes in this space. Because the

pyramid match kernel is positive-definite we are guaranteed to find a unique optimal solution.

We have found that the pyramid match kernel can produce kernel matrices with dominant diag-

onals, particularly as the dimension of the features in the sets increases. The reason for this is that

as the dimension of the points increases, there are a greater number of finer-resolution histogram

levels in the pyramid where two input sets will have few shared bins. Once the quantization level is

coarse enough, two sets will start having significant histogram intersection values. However, these
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intersections will receive lower weights due to the 1
d2i weighting scheme, which by construction

accurately reflects the maximal distance between points falling into the same bin at level i. On the

other hand, an input set compared against itself will result in large histogram intersection values

at each level—specifically intersection values equal to the number of points in the set, which after

normalization generates a diagonal entry of one.

The danger of having a kernel matrix diagonal that is significantly larger than the off-diagonal

entries is that the examples appear nearly orthogonal in the feature space, in some cases causing

an SVM or SVR to essentially “memorize” the data and impairing its sparsity and generalization

ability (Shawe-Taylor and Cristianini, 2004). Nonetheless, we are able to work around this issue by

modifying the initial kernel matrix in such a way that reduces its dynamic range, while preserving

its positive-definiteness. We use the functional calculus transformation suggested in Weston et al.

(2002): a subpolynomial kernel is applied to the original kernel values, followed by an empirical

kernel mapping that embeds the distance measure into a feature space. Thus, when necessary to

reduce diagonal dominance, first kernel values Ki j generated by P∆ are updated to Ki j ← Ki j
p,

0 < p < 1. Then the kernel matrix K is replaced with KKT to obtain the empirical feature map

Φe(y) = [K(y,x1), . . . ,K(y,xN)]T for N training examples. As in Weston et al. (2002), the parameter

p is chosen with cross-validation. This post-processing of the kernel matrix is not always necessary;

both the dimension of the points as well as the specific structure of a given data set will determine

how large the initial kernel matrix diagonal is.

8. Empirical Quality of Approximate Partial Matchings

The approximation bounds we can show are actually significantly weaker than what we observe in

practice. In this section, we empirically evaluate the approximation quality of the pyramid match,

and make a direct comparison between our partial matching approximation and the L1 embedding

of Indyk and Thaper (2003).

We conducted experiments to evaluate how close the correspondences implicitly measured by

the pyramid match are to the true optimal correspondences—the matching that results in the minimal

summed cost between corresponding points. In order to work with realistic data but still have control

over the sizes of the sets and the amount of clutter features, we established synthetic “category”

models. Each model is comprised of some fixed number m′ of parts, and each part has a Gaussian

model that generates its d-dimensional appearance vector (in the spirit of the “constellation model”

used by Fergus et al., 2003, and others). Given these category models, we can then add clutter

features, adjust noise parameters, and so on, simulating in a controlled manner the variations that

occur with the sets of image patches extracted from an actual object. The appearance of the clutter

features is determined by selecting a random vector from a uniform distribution on the same range

of values as the model features.

We generated two data sets, one with equally-sized sets, and one with variable-sized sets. Every

point set was drawn from one of two synthetic category models, with m′ = 35 and d = 2. For the

first data set, 50 point sets containing only the m′ model features were sampled from both of the

two category models, for a total of 100 equally-sized point sets. For the other data set, the model

feature sets were merged with a randomly generated number C of “extra” clutter features, for a total

of 100 point sets with m′ +C features each, with C selected uniformly at random from [0,100]. We

compared the pyramid match’s outputs to those produced by the optimal partial matching obtained

via a linear programming solution to the transportation problem (Rubner et al., 2000), as well as
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those produced by an L1 approximation (Indyk and Thaper, 2003). For both of the data sets, we

computed the pairwise set-to-set distances using each of these three measures.

If an approximate measure is approximating the optimal matching well, we should find the

ranking induced by that approximation to be highly correlated with the ranking produced by the

optimal matching for the same data. In other words, the point sets should be sorted similarly by

either method. We can display results in two ways to evaluate if this is true: 1) by plotting the actual

costs computed by the optimal and approximate method, and 2) by plotting the rankings induced

by the optimal and approximate method. Spearman’s rank correlation coefficient R provides a good

quantitative measure to evaluate the ranking consistency:

R = 1−
6∑N

i=1(i− r̂(i))2

N(N2−1)
,

where i is the rank value in the true order and r̂(i) is the corresponding rank assigned in the approx-

imate ordering, for each of the N corresponding ordinal values assigned by the two measures.

Figure 4 displays both types of plots for the two data sets: the top row (a) displays plots corre-

sponding to the data set with equally-sized sets, that is, for the bijective matching problem, while

the bottom row (b) displays plots corresponding to the data set with variable-sized sets, that is, for

the partial matching problem.

The two plots in the lefthand column show the normalized output costs from 10,000 pairwise

set-to-set comparisons computed by the optimal matching (black), the pyramid match with the num-

ber of random shifts T = 3 (red circles), and the L1 approximation, also with T = 3 (green x’s). Note

that in these figures we plot cost (so the pyramid match weights are set to wi = d2i), and for dis-

play purposes the costs have been normalized by the maximum cost produced for each measure

to produce values between [0,1]. The cost values are sorted according to the optimal measure’s

magnitudes for visualization purposes. The raw values produced by the approximate measures will

always overestimate the cost; normalizing by the maximum cost value simply allows us to view

them against the optimal measure on the same scale.

The two plots in the righthand column display the rankings for each approximation plotted

against the optimal rankings. The black diagonals in these plots denote the optimal performance,

where the approximate rankings would be identical to the optimal ones. The R values displayed in

the legends refer to the Spearman rank correlation scores for each approximation in that experiment;

higher Spearman correlations have points clustered more tightly along this diagonal.

Both approximations compute equivalent costs and rankings for the bijective matching case,

as indicated by Figure 4 (a). This is an expected outcome, since the L1 distance over histograms is

directly related to histogram intersection if those histograms have equal masses (Swain and Ballard,

1991), as they do for the bijective matching test:

I (H(Y),H(Z)) = m−
1

2
||H(Y)−H(Z)||L1

, if m = |Y|= |Z|.

The structure along the diagonal in the top right plot reflects the fact that two types (categories) of

point sets were present in the data, causing items of the same category to block together when they

are sorted by matching cost. The square-shaped cluster in the upper right portions of the plots show

that while the approximate measures do not distinguish between all examples within a category

precisely the way the optimal measure does, they do both consider all items within one category to

be most distant from an example drawn from the other category. Similarly, there are discontinuities
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Figure 4: Pyramid match and L1 embedding comparison on (a) bijective matchings with equally-

sized sets and (b) partial matchings with variably-sized sets. When all input sets are the

same size, the pyramid match and the L1 embedding give equivalent results. However, the

pyramid match also approximates the optimal correspond ences for input sets of unequal

cardinalities and allows partial matches. (This figure is best viewed in color.)
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Figure 5: Example images from the ETH-80 objects database. Five images from each of the eight

object classes (apple, cow, dog, pear, car, cup, horse, and tomato) are shown here.

in the left plot of part (a) due to distance clusters caused by drawing point sets from two distinct

category models.

However, for the partial matching case (Figure 4 (b)), the L1 approximation fails because it can

handle only sets with equal cardinalities and requires all points to match to something. In contrast,

the pyramid match can also approximate the partial matching for the unequal cardinality case: its

matchings continue to follow the optimal matching’s trend since it does not penalize outliers, as

evidenced by the clustered points along the diagonal in the bottom right ranking quality plot. We

have performed this same experiment using data generated from a uniform random point model,

and the outcome was similar.

9. Discriminative Classification using Sets of Local Features

In this section we report on object recognition experiments using SVMs and provide baseline com-

parisons to other methods. We use the SVM implementation provided in the LIBSVM library

(Chang and Lin, 2001) and train one-versus-all classifiers in order to perform multi-class classifica-

tion.

Local affine- or scale-invariant feature descriptors extracted from a sparse set of interest points in

an image have been shown to be an effective, compact representation (e.g., Lowe 2004;

Mikolajczyk and Schmid 2001). This is a good context in which to test the pyramid match ker-

nel, since such local features have no inherent ordering, and it is expected that the number of fea-

tures will vary across examples. Given two sets of local image features, the pyramid match kernel

(PMK) value reflects how well the image parts match under a one-to-one correspondence. Since the

matching is partial, not all parts must have a match for the similarity to be strong.

In the following we experiment with two publicly available databases and demonstrate that

our method achieves better or comparable object recognition performance at a significantly lower

computational cost than other state-of-the-art approaches. All pyramid match run-times reported

below include the time needed to compute both the pyramids and the weighted intersections, and

were measured on 2.4 GHz processors with 2 GB of memory.
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9.1 ETH-80 Data Set

A performance evaluation given by Eichhorn and Chapelle (2004) compares the set kernels de-

veloped by Kondor and Jebara (2003), Wolf and Shashua (2003), and Wallraven et al. (2003) in the

context of an object categorization task using images from the publicly available ETH-80 database.4

The experiment uses eight object classes, with 10 unique objects and five widely separated views of

each, for a total of 400 images (see Figure 5). A Harris detector is used to find interest points in each

image, and various local descriptors (SIFT features, Lowe 2004; JETs, Schmid and Mohr 1997; and

raw image patches) are used to compose the feature sets. A one-versus-all SVM classifier is trained

for each kernel type, and performance is measured via cross-validation, where all five views of an

object are held out at once. Since no instances of a test object are ever present in the training set,

this is a categorization task (as opposed to recognition of the same specific object).

The experiments show the polynomial-time “match kernel” (Wallraven et al., 2003) and Bhat-

tacharyya kernel (Kondor and Jebara, 2003) performing best, with a classification rate of 74% using

on average 40 SIFT features per image (Eichhorn and Chapelle, 2004). Using 120 interest points,

the Bhattacharyya kernel achieves 85% accuracy. However, the study also concluded that the cubic

complexity of the method made it impractical to use the desired number of features.

We evaluated the pyramid match kernel on this same subset of the ETH-80 database under the

conditions provided in Eichhorn and Chapelle (2004), and it achieved a recognition rate of 83%

using PCA-SIFT features (Ke and Sukthankar, 2004) from all Harris-detected interest points (aver-

ages 153 points per image) and T = 8. Restricting the input sets to an average of 40 interest points

yields a recognition rate of 73%. Thus the pyramid match kernel (PMK) performs comparably to

the others at their best for this data set, but is much more efficient than those tested above, requiring

time only linear in the number of features.

In fact, the ability of a kernel to handle large numbers of features can be critical to its success.

An interest operator may be tuned to select only the most salient features, but in our experiments

we found that recognition rates always benefited from having larger numbers of features per image

with which to judge similarity. The plots in Figure 6 depict the run-time versus recognition accuracy

of the pyramid match kernel as compared to the match kernel (Wallraven et al., 2003), which has

O(dm2) complexity. The match kernel computes kernel values by averaging over the distances

between every point in one set and its nearest point in the other set. These are results from our own

implementation of the match kernel. Each point in the figure represents one experiment, and both

kernels were run with the exact same PCA-SIFT feature sets. The saliency threshold of the Harris

interest operator was adjusted to generate varying numbers of features, thus trading off accuracy

versus run-time. With no filtering of the Harris detector output (i.e., with a threshold of 0), there is

on average 153 features per set. To extract an average of 256 features per set we used no interest

operator and sampled features densely and uniformly from the images. Computing a kernel matrix

for the same data with the two kernels yields nearly identical accuracy (left plot), but the pyramid

match is significantly faster (center plot). Allowing the same amount of training time for both

methods, the pyramid match produces much better recognition results (right plot).

9.2 Caltech-101 Data Set

We also tested our method with a challenging database of 101 object categories developed at Cal-

tech, called the Caltech-101 (Fei-Fei et al., 2004). The creators of this database obtained the images

4. http://www.vision.ethz.ch/projects/categorization/.
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Figure 6: Both the pyramid match kernel and the match kernel of Wallraven et al. yield comparable

recognition accuracy for input sets of the same size (left plot). Both benefit from using

richer (larger) image descriptions. However, while the time required to learn object cat-

egories with the quadratic-time match kernel grows quickly with the input size, the time

required by the linear-time pyramid match remains very efficient (center plot). Allowing

the same run-time, the pyramid match kernel produces better recognition rates than the

match kernel (right plot). Recognition accuracy is measured as the mean rate of correct

predictions per class.

using Google Image Search, and many of the images contain a significant amount of intra-class ap-

pearance variation (see Figure 7). The Caltech-101 is currently the largest benchmark recognition

data set (in terms of number of categories) available, and as such it has been the subject of many

recent recognition experiments in the field. There are 8677 images in the data set, with between 31

to 800 images for each of the 101 categories.

For this data set, the pyramid match operated on sets of SIFT features projected to d = 10

dimensions using PCA, with each appearance descriptor concatenated with its corresponding posi-

tional feature (image position normalized by image dimensions). The features were extracted on a

uniform grid at every 8 pixels in the images, that is, no interest operator was applied. The regions

extracted for the SIFT descriptor were about 16 pixels in diameter, and each set had on average

m = 1140 features. We trained the algorithm using unsegmented images. Since the pyramid match

seeks a strong correspondence with some subset of the images’ features, it explicitly accounts for

unsegmented, cluttered data. Classification was again done with a one-vs-all SVM, and we set the

number of grid shifts T = 1, and summed over kernels corresponding to pyramids with finest side

lengths of 5,7, and 9. Note that some images were rotated by the creators of the database, causing

some triangular artifacts in the corners of some images; this is how the images are provided to any

user.

As a baseline, we also experimented with the bag-of-words representation and an RBF kernel:

K(x,y) = exp(−||x−y||/σ) for bag-of-words histograms x and y. We used hierarchical k-means

to cluster a corpus of two million example features from the Caltech-101 data set to form each

vocabulary, and we experimented with both L2 and the Mahalanobis distance as the basis for the

clustering; classification results were similar with either distance. Generating a vocabulary took

about five hours, and computing a kernel matrix required about one half hour. We experimented

with a large number of parameters, and the dotted red line in Figure 8 (a) reflects the very best

results we could obtain over any parameter setting for this technique. Specifically, the number of
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Figure 7: Example images from the Caltech-101 database. Three images are shown for each of 27

of the 101 categories.

feature prototypes (“words”) was tested at values ranging from 1000 to 100,000 (2200 was best);

the kernel’s σ parameter was tested from values of 500 to 10,000 (1000 was best).

Figure 8 (a) shows the multi-class category recognition results using the PMK (red solid line)

alongside the corresponding results for a bag-of-words baseline approach (blue dotted line). The

recognition scores are given for varying numbers of training set sizes, ranging from one to 30 ex-

amples per class. For each training set size, the mean and standard deviation of the pyramid match

accuracy over 10 runs is shown, where for each run we randomly select the training examples and

use all the remaining database images as test examples. All recognition rates have been normalized

according to the number of novel test images per class; that is, the mean recognition rate per class

is the average normalized score for all 101 categories. Using only one training example per class,

the pyramid match achieves an average recognition rate per class of 18%. Note that chance per-
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formance with any number of training examples would be just 1%. Using 15 examples (a standard

point of comparison), the pyramid match achieves an average recognition rate per class of 50%.

Experiments comparing the recognition accuracy of the pyramid match kernel to an optimal partial

matching kernel reveal that very little loss in accuracy is traded for speedup factors of several orders

of magnitude (Grauman, 2006, , pages 118-121).

Over all the parameter configurations we tested, the best performance we could achieve with

the bag-of-words on this data set is substantially poorer than that of the pyramid match, as seen in

Figure 8 (a). In addition, the bag-of-word approach’s accuracy was fairly sensitive to the parameter

settings; for instance, over all the parameters we tested, the mean accuracy for 15 training examples

per class varied from 28% to 37%. This indicates the difficulty of establishing an optimal flat

quantization of the feature space for recognition, and also suggests that the partial matching ability

of the pyramid match is beneficial for tolerating outlier features without skewing the matching cost.

Figure 8 (b) shows all published results on this data set as a function of time since the data

was released, including the PMK and results published more recently by other authors (Holub et al.

2005b; Serre et al. 2007; Wolf et al. 2006; Wang et al. 2006; Berg et al. 2005; Berg 2005;

Fei-Fei et al. 2004; Mutch and Lowe 2006; Lazebnik et al. 2006; Zhang et al. 2006; Frome et al.

2007). From this comparison we can see that even with its extreme computational efficiency, the

pyramid match kernel achieves results that are competitive with the state-of-the-art. We have pre-

viously obtained 50% accuracy on average (0.9% standard deviation) when using the standard 15

training examples per category (Grauman and Darrell, 2006). In addition, the PMK with sets of

spatial features yields very good accuracy on this data set: 56.4% for 15 training examples per class

(Lazebnik et al., 2006). These results are based on a special case of the pyramid match, where mul-

tiple pyramid match kernels computed on spatial features are summed over a number of quantized

appearance feature channels. This is among the very best accuracy rates reported to-date on the data

set, and about three percentage points below the most accurate result of 60% obtained recently by

Frome et al. (2007), which compares images using a discriminative local distance function.

Figure 8 (c) shows the recognition accuracy of various methods as a function of computation

time, measured in terms of the time required to train a classifier (left plot) and the time required

to classify a novel example (right plot). We collected these time estimates directly from the au-

thors, and every response we received is plotted here. (So not every method represented in (b) is

represented in (c) due to a lack of information on computation times.) For both plots in part (c),

computation time is measured excluding the time required to extract image features for all methods.

For display purposes, in the left plot, we plot the square root of the training time; nearest-neighbor

classifiers such as the method of Berg et al. require no training time beyond feature extraction. In

the right plot, we plot the log of the classification time estimates to reflect the relative complexities

in terms of orders of magnitude. This figure illustrates the PMK’s clear practical cost advantages.

Pyramid matching any two examples requires just 0.0001 s on this data set, and classifying a novel

example requires a fraction of a second; in contrast, many other techniques require on the order of

a minute to classify a single example, and yield varying accuracies relative to the PMK.

Pyramid match comparisons require only O(mL) time for the result of 50% accuracy. For the

spatial pyramid match result of 56.4% accuracy obtained by Lazebnik et al. (2006) there is an ad-

ditional one-time O(mk) cost of assigning each of a set’s features to one of the k pre-established

quantized appearance features; however, once a point set has been mapped to its prototypes, they

need not be re-computed to match against additional sets.
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Figure 8: Recognition results on the Caltech-101 data set. Plot (a) shows the mean and standard

deviation for the recognition accuracy using the pyramid match kernel (red solid line)

and a bag-of-words baseline (blue dotted line) when given varying numbers of training

examples per class, over 10 runs with randomly selected training examples. These are

recognition rates that have been normalized according to the number of test examples

per class. Plot (b) shows all published results on the same Caltech-101 data set over

time since the database’s release. Each recognition rate on this plot represents the mean

accuracy per class when using 15 training examples per class. Grauman & Darrell refers

to our PMK results using appearance descriptors, and Lazebnik et al. report results using

a PMK applied to 2D spatial features in each channel of quantized appearance. The two

plots in (c) show the accuracy of various methods as a function of their computational

costs, in terms of average training (left, square root scale) and testing times (right, log

scale), again when each method uses 15 training examples per class. All times exclude

the cost of computing the various image features employed.
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10. Learning a Function over Sets of Features

In the following experiments we demonstrate the pyramid match applied to two regression prob-

lems: time of publication inference from a collection of research papers, and articulated pose es-

timation from monocular silhouettes. We again use the SVR implementation of Chang and Lin

(2001). In these experiments we use an ε-insensitive loss function in order to obtain solutions that

are defined in terms of a small subset of the training examples, and which provide good generaliza-

tion ability. For all experiments, the SVR parameters C and ε were chosen using cross-validation.

10.1 Estimating a Document’s Time of Publication

We have applied our method to learn a function that maps a bag of local latent semantic features

extracted from a research paper (written in a specific field) to an estimate of the paper’s year of

publication. While much work has been done using bag-of-words representations and latent seman-

tic concept models for text classification and information retrieval, we are not aware of previous

work showing bags of local semantic features, nor demonstrating direct regression on documents to

estimate their publication times.

The bag-of-words model is a widely used representation in text processing in which each doc-

ument is represented by a vector giving the frequencies of words that occur in it, and it has been

used in kernel methods (Shawe-Taylor and Cristianini, 2004). The well-known limitation of such a

model, however, is that it encodes nothing about the semantic relationships between words. Each

word is treated as an isolated entity, ignoring the fact that distinct words may share degrees of se-

mantic equivalency (e.g., synonyms), or may have different connotations in different contexts (e.g.,

homonymy). Researchers have therefore adopted latent semantic indexing (LSI) (Deerwester et al.,

1990) to instill semantic cues into the basic bag-of-words representation. LSI projects data onto

a subspace determined using singular value decomposition (SVD) to represent document-term fre-

quency vectors in a lower-dimensional space where semantic relations are better preserved. Gener-

ally the subspace for LSI is learned from document vectors that give the frequency of occurrence for

each given word (e.g., Cristianini et al., 2002), which means each document is mapped to a point in

a “semantic space” where documents with correlated word frequencies are related.

However, requiring a document to map to a single point in this space assumes that inputs have

no clutter (e.g., extra words caused from OCR errors, or text inserted from a webpage ad), and that

each document can be represented as a linear combination of the document-level concepts recovered

by LSI. Instead, we propose treating documents as bags of word meanings by learning the subspace

for LSI from term vectors, which record the frequency with which a word occurs in each given

document in a training corpus. Each document is then a bag of local semantic features, and two

documents are compared with the partial matching implied by the pyramid match kernel, that is, in

terms of how well (some subset) of the LSI term-space projections can be put into correspondence.

Note that standard kernels (e.g., linear, RBF, polynomial) cannot be used with the bag of word

meanings representation, since it represents each word with a real-valued vector. Additionally, our

method makes it possible to learn a latent semantic space from narrower contexts than entire docu-

ments (e.g., paragraphs or sentences) and then represent documents by their component features in

this space.
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Figure 9: Inferring the time of publication for papers from 13 volumes of NIPS proceedings. Box-

plots (left) compare errors produced by three methods with a support vector regressor:

bag-of-words (BOW) and latent semantic document-vectors (LSI DOC) with linear ker-

nels, and “bag of word meanings” with the pyramid match kernel (BOWM PMK). Lines

in center of boxes denote median value, top and bottom of boxes denote upper and lower

quartile values, dashed lines show the extent of the rest of the errors. The plot on the right

shows the true targets and corresponding predictions made by the pyramid match method

(BOWM PMK).

We have experimented with a database containing 13 volumes of Neural Information Processing

Systems (NIPS) proceedings—a total of 1,740 documents, available online.5 For each paper, we

extracted the text from the abstract up to (but not including) the references section. While authors’

names and bibliography information would likely be good indicators of publication time, they were

excluded from the bags of features because we want our method to learn a function indicating topic

trends over time, as opposed to a look-up table of dates and names. We applied standard steps

to pre-process the text data. Suffixes were removed from words using the Porter stemmer (Porter,

1980), and the WordNet set of stop-list words were removed. Finally, co-occurrence matrices were

weighted using term frequency-inverse document frequency (tf-idf ) to normalize for text lengths

and distill the most informative words.

Figure 9 shows results for regressing directly on the year of publication for a NIPS paper using

the classic bag-of-words approach (BOW), a standard approach applying LSI at the document level

(LSI DOC) (Cristianini et al., 2002), and our method with bags of word meanings (BOWM PMK).

All methods were trained with the same randomly selected subset of the data (1393 examples) and

tested with the remaining 347 examples. Our approach with bags of word meanings performs the

best, with a median error of 1.6 years. The PMK values took on average 0.002 seconds to compute.

Using a paired difference T-test with α = 0.01, we found the difference in performance between our

approach and the two existing methods to be statistically significant.

5. http://www.cs.toronto.edu/ roweis/data.html.
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Figure 10: A training example generated with graphics software is composed of a silhouette and its

corresponding 3-D pose, as represented by the 3-D positions of 15 joint positions.

10.2 Inferring 3-D Pose from Shape Features

In this set of experiments, we use regression with the pyramid match kernel to directly learn the

mapping between monocular silhouette images of humans and the corresponding articulated 3-

D body pose. Many vision researchers have addressed the difficult problem of articulated pose

estimation; recent approaches have attempted to directly learn the relationship between images and

3-D pose (Agarwal and Triggs, 2004; Shakhnarovich et al., 2003; Grauman et al., 2003). Like these

techniques, we learn a function that maps observable image features to 3-D poses.

However, whereas ordered, fixed-length feature sets are required in the methods of Grauman et al.

(2003) and Shakhnarovich et al. (2003) (i.e., points are extracted in sequence around the contour,

or features are taken from fixed image windows), our method accepts unordered features and inputs

that may vary in size. This is a critical difference: images will naturally have varying numbers of

features (due to occlusions, clutter, translations, shape deformations, viewpoint changes, etc.), and

a robust global ordering among features within a single view may not be possible in the presence of

viewpoint and pose variations. In the pose estimation method of Agarwal and Triggs (2004) a bag-

of-words representation is used: local features are mapped to pre-established prototypes, and every

image is represented by a frequency vector counting the number of times each prototype occurred.

A relevance vector machine is then trained using these vectors with a Gaussian kernel. While this

representation allows unordered features, it can be sensitive to clutter, as we will show below.

As a training set, we used 3,040 images of realistic synthetic images of pedestrians generated

using the graphics package POSER. Each image was rendered from a humanoid model with ran-

domly adjusted anatomical shape parameters walking in a randomly selected direction. For each

image, both the silhouette and the 3-D locations of 15 landmarks on the model’s skeleton corre-

sponding to selected anatomical joints were recorded (see Figure 10). Regressors are trained with

silhouette inputs and produce 3-D joint position outputs. Once regressors have been trained with

the synthetic data, we can use them to perform regression with either additional synthetic examples

(for which we have ground truth poses), or with real image data (for which we can only evaluate

predicted poses qualitatively).

We represent each silhouette with a set of local contour descriptors. At each contour point,

we extract a shape context histogram (Belongie et al., 2002), which bins nearby edge pixels into

a log-polar histogram, thereby encoding local shape. For each shape context histogram, we used

12 angular and five radial bins with a fixed scale to capture only local points relative to each edge

point. To form a more compact descriptor, we used low-dimensional PCA projections (d = 5) of
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(b) Noisy synthetic test examples

Figure 11: Pose inference results. The top row (a) gives a quantitative evaluation of performance

on synthetic data with ground truth. The boxplots compare the error distributions for

the pyramid match kernel (PMK) and an RBF kernel over prototype frequency vectors

(VQ-RBF). Errors are measured by the distance between the 15 true and inferred joint

positions. Results for two test sets are shown: a set of novel, clean silhouettes (left plot),

and a set with randomly generated clutter or extra foreground blobs (right plot). The

bottom row (b) shows example poses inferred by our method from synthetic cluttered

silhouettes. In each, the true pose (solid black) is overlayed with the estimate (dotted

blue). These examples contain average case errors.

the initial 60-D shape context histogram features. Thus each silhouette shape is represented by

an unordered set of shape context subspace features, and each set varies in size due to the varying

number of contour points per image. Note that although this representation does not contain explicit

spatial constraints, the overlap between neighboring shape context histograms provides an implicit

encoding of how the features should be related spatially.

The number of contour points (and thus features) per image varied from m = 405 to m = 878.

The multi-resolution histograms used by the pyramid match contained ten resolution levels, as de-

termined by the diameter of the features in the training examples, and each contained on average

2644 non-empty bins. Computing a PMK value required about 0.002 seconds. For each dimension

of the pose targets, we trained an ε-insensitive SVR using the pyramid match kernel matrix between

the training examples. Each SVR had on average 308 support vectors.
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Figure 12: Pose inference on real images.

As a baseline, we also implemented a method that uses frequency vectors over feature prototypes

to represent each image (using Agarwal and Triggs, 2004, as a guideline). To obtain bag-of-words

histograms, vector quantization (VQ) is performed on the shape context subspace features found in

the training set to establish a set of 100 prototype features. Then all of the features detected in a

new image are mapped to a 1-D frequency histogram over these prototypes using soft voting with

Gaussian weights. A Gaussian RBF kernel is then applied, with γ chosen based on the maximum

inter-feature distance. In the following we will refer to this baseline as VQ-RBF.

For a novel test set of 300 POSER-generated silhouettes, the pose inferred by our method had a

median error of 4.9 cm per joint position. For the same test set, VQ-RBF obtained a slightly worse

median error of 6.8 cm (see Figure 11). Using a paired difference T-test with α = 0.001, we found

the difference in performance between the two methods to be statistically significant.

The silhouette contours produced with POSER are of course very “clean”, that is, the shapes are

perfectly segmented since they were formed by directly projecting the CG body. While it is reason-

able to train a model with this well-segmented data, we can expect real-world examples to exhibit

poorer foreground-background segmentations due to occlusions, clutter, shadows, or backgrounds

that look similar to the foreground object. Therefore, we altered the silhouettes for a separate test

set of 300 examples to introduce clutter and occlusions; starting with a POSER silhouette, we gen-

erated one to eight random blob regions in the image for which the foreground/background labels

were swapped. The blobs’ positions, sizes, and shapes were generated randomly. The result is a test

set that attempts to mimic real-world occlusions and clutter, yielding imperfect contours for which

estimating pose is more challenging (see Figure 11).

On the cluttered test set, our method inferred poses with a median error of 8.0 cm per joint, while

VQ-RBF had a median error of 14.1 cm (see Figure 11). Again, using a paired difference T-test,

we found the difference in performance to be statistically significant: with 99.99% confidence, the

pyramid match yields average errors that are smaller than those of VQ-RBF by amounts between

4.5 and 5.2 cm per joint.

This experiment demonstrates the pyramid match kernel’s robustness to superfluous features

in an input. The blobs added to the cluttered test set introduced extra contour features to the sil-

houettes, and they altered parts of the true contour in cases where they overlapped with the real

silhouette. The VQ-RBF distance over prototype frequency vectors (bags-of-words) essentially pe-

nalizes any features that have no “match” in a support vector training example’s set of features. In

contrast, the pyramid match’s partial matching rewards similarity only for the features placed into

correspondence, and ignores extraneous clutter features. This is an important advantage for many

vision applications, where segmentation errors, viewpoint changes, or image noise will often affect

which features (and how many) are detected.
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Finally, we applied our method to a test set of real images of various subjects walking through

a scene. A basic background subtraction method was used, which resulted in rough segmentations;

body parts are frequently truncated in the silhouettes where the background is not highly textured, or

else parts are inaccurately distended due to common segmentation problems from shadows. Ground

truth poses are not available for this test set, but Figure 12 shows some example output poses inferred

by our method.

11. Conclusions

We have developed a new efficient kernel function that handles unordered sets of features, and

we have shown its suitability for both discriminative classification and regression. The pyramid

match kernel approximates the optimal partial matching by computing a weighted intersection over

multi-resolution histograms, and it requires time only linear in the number of features. The kernel is

robust to clutter since it does not penalize the presence of extra features, it respects the co-occurrence

statistics inherent in the input sets, and it is provably positive-definite. We have applied our kernel

to a variety of tasks—object recognition, pose estimation, and time of publication inference—and

have demonstrated our method’s advantages over other state-of-the-art techniques. Source code for

the pyramid match kernel is available at http://people.csail.mit.edu/jjl/libpmk/.

Recently we have developed a method to generate data-dependent pyramid partitions, which

yield more accurate matching results in high-dimensional feature spaces (Grauman and Darrell,

2007). In ongoing work we are considering alternative weighting schemes on the bins for the pyra-

mid match, and developing methods for sub-linear time approximate similarity search over partial

correspondences.

Acknowledgments

We would like to thank Piotr Indyk, Regina Barzilay, Michael Collins, and John Lee for helpful

discussions, and Michael Collins for suggesting the application of estimating publication times. We

also thank John Lee for sharing his bag-of-words results on the Caltech-101 database, and the JMLR

reviewers for their helpful comments.

References

A. Agarwal and B. Triggs. 3D human pose from silhouettes by relevance vector regression. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington,

DC, June 2004.

P. Anandan. Measuring Visual Motion from Image Sequences. PhD thesis, University of Mas-

sachusetts, Amherst, 1987.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(24):509–522, April 2002.

A. Berg. Shape Matching and Object Recognition. PhD thesis, U.C. Berkeley, Computer Science

Division, Berkeley, CA, December 2005.

755

http://people.csail.mit.edu/jjl/libpmk/


GRAUMAN AND DARRELL

A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using low distortion corre-

spondences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, San Diego, CA, June 2005.

S. Boughhorbel, J-P. Tarel, and F. Fleuret. Non-Mercer kernels for SVM object recognition. In

British Machine Vision Conference, London, UK, September 2004.

S. Boughorbel, J. Tarel, and N. Boujemaa. The intermediate matching kernel for image local fea-

tures. In International Joint Conference on Neural Networks, Montreal, Canada, August 2005.

P. Burt and E. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on

Communications, COM-31,4:532–540, 1983.

C. Chang and C. Lin. LIBSVM: a library for SVMs, 2001.

O. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram-based image classification. Transac-

tions on Neural Networks, 10(5), September 1999.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.

N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent semantic kernels. Journal of Intelligent

Information Systems, 18(2/3):127–152, 2002.

G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints. In Pro-

ceedings of European Conference on Computer Vision, Prague, Czech Republic, May 2004.

M. Cuturi and J-P. Vert. Semigroup kernels on finite sets. In Advances in Neural Information

Processing, Vancouver, Canada, December 2005.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by Latent Semantic

Analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.

J. Eichhorn and O. Chapelle. Object categorization with SVM: kernels for local features. Technical

report, MPI for Biological Cybernetics, 2004.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples:

an incremental Bayesian approach tested on 101 object cateories. In Workshop on Generative

Model Based Vision, Washington, D.C., June 2004.

R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant

learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

Madison, WI, 2003.

A. Frome, Y. Singer, and J. Malik. Image retrieval and classification using local distance functions.

In B. Scholkopf, J.C. Platt, and T. Hofmann, editors, Advances in Neural Information Processing

Systems 19, Cambridge, MA, 2007. MIT Press.

T. Gartner. A survey of kernels for structured data. Multi Relational Data Mining, 5(1):49–58, July

2003.

756



THE PYRAMID MATCH KERNEL

K. Grauman. Matching Sets of Features for Efficient Retrieval and Recognition. PhD thesis, MIT,

2006.

K. Grauman and T. Darrell. Fast contour matching using approximate Earth Mover’s Distance. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington

D.C., June 2004.

K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of

image features. In Proceedings IEEE International Conference on Computer Vision, Beijing,

China, October 2005.

K. Grauman and T. Darrell. Pyramid match kernels: Discriminative classification with sets of image

features. Technical Report MIT-CSAIL-TR-2006-020, MIT CSAIL, Cambridge, MA, March

2006.

K. Grauman and T. Darrell. Approximate correspondences in high dimensions. In B. Scholkopf,

J.C. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19,

Cambridge, MA, 2007. MIT Press.

K. Grauman, G. Shakhnarovich, and T. Darrell. Inferring 3D structure with a statistical image-based

shape model. In Proceedings IEEE International Conference on Computer Vision, Nice, France,

October 2003.

E. Hadjidemetriou, M. Grossberg, and S. Nayar. Multiresolution histograms and their use for recog-

nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7):831–847, July

2004.

E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh. On the significance of real-world conditions

for material classification. In Proceedings of European Conference on Computer Vision, Prague,

Czech Republic, 2004.

A. Holub, M. Welling, and P. Perona. Combining generative models and fisher kernels for object

recognition. In Proceedings IEEE International Conference on Computer Vision, Beijing, China,

October 2005a.

A. Holub, M. Welling, and P. Perona. Exploiting unlabelled data for hybrid object classification.

Technical report, NIPS 2005 Workshop on Inter-Class Transfer, Vancouver, Canada, December

2005b.

P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd International Workshop on

Statistical and Computational Theories of Vision, Nice, France, Oct 2003.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In Advances

in Neural Information Processing, Denver, CO, December 1999.

Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image descriptors.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washing-

ton, D.C., June 2004.

757



GRAUMAN AND DARRELL

R. Kondor and T. Jebara. A kernel between sets of vectors. In Proceedings of the International

Conference on Machine Learning, Washington, D.C., August 2003.

J. Lafferty and G. Lebanon. Information diffusion kernels. In Advances in Neural Information

Processing, Vancouver, Canada, December 2002.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for

recognizing natural scene categories. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, New York City, NY, June 2006.

T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using

three-dimensional textons. International Journal of Computer Vision, 43(1):29–44, 2001.

D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Com-

puter Vision, 60(2):91–110, January 2004.

S. Lyu. Mercer kernels for object recognition with local features. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, San Diego, CA, June 2005.

J. Malik and P. Perona. Preattentive texture discrimination with early vision mechanisms. Journal

of Optical Society of America, 7(5):923–932, May 1990.

K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In Proceedings

IEEE International Conference on Computer Vision, Vancouver, Canada, July 2001.

P. Moreno, P. Ho, and N. Vasconcelos. A Kullback-Leibler divergence based kernel for SVM clas-

sification in multimedia applications. In Advances in Neural Information Processing, Vancouver,

December 2003.

J. Mutch and D. Lowe. Multiclass object recognition using sparse, localized features. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, New York City, NY,

June 2006.

F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for image matching. IEEE

Transactions on Image Processing, 14(2):169–180, February 2005.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.

D. Roobaert and M. Van Hulle. View-based 3D object recognition with support vector machines.

In IEEE International Workshop on Neural Networks for Signal Processing, Madison, WI, Aug

1999.

Y. Rubner, C. Tomasi, and L. Guibas. The Earth Mover’s Distance as a metric for image retrieval.

International Journal of Computer Vision, 40(2):99–121, 2000.

C. Schmid and R. Mohr. Local greyvalue invariants for image retrieval. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19(5):530–534, 1997.

758



THE PYRAMID MATCH KERNEL

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Object recognition with cortex-like

mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):411–426,

2007.

F. Shaffalitzky and A. Zisserman. Automated scene matching in movies. In Proceedings, Challenge

of Image and Video Retrieval, London, U.K., July 2002.

G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing.

In Proceedings IEEE International Conference on Computer Vision, Nice, France, October 2003.

Y. Shan, S. Sawhney, and R. Kumar. Vehicle identification between non-overlapping cameras with-

out direct feature matching. In Proceedings IEEE International Conference on Computer Vision,

2005.

A. Shashua and T. Hazan. Algebraic set kernels with application to inference over local image

representations. In Advances in Neural Information Processing, Vancouver, Canada, Dec 2005.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University

Press, 2004.

J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. Discovering object categories in

image collections. In Proceedings IEEE International Conference on Computer Vision, Beijing,

China, October 2005.

J. Sivic and A. Zisserman. Video Google: a text retrieval approach to object matching in videos. In

Proceedings IEEE International Conference on Computer Vision, Nice, France, Oct 2003.

M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11–32,

1991.

T. Tuytelaars and L. Van Gool. Content-based image retrieval based on local affinely invariant

regions. In 3rd Intl Conference on Visual Information Systems, Amsterdam, the Netherlands,

June 1999.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the kernel recipe. In

Proceedings IEEE International Conference on Computer Vision, Nice, France, October 2003.

G. Wang, Y. Zhang, and L. Fei-Fei. Using dependent regions for object categorization in a generative

framework. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

New York City, NY, June 2006.

J. Weston, B. Scholkopf, E. Eskin, C. Leslie, and W. Noble. Dealing with large diagonals in kernel

matrices. In Principles of Data Mining and Knowledge Discovery, volume 243 of SLNCS, 2002.

J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan. Categorizing nine visual classes

using local appearance descriptors. In ICPR Workshop on Learning for Adaptable Visual Systems,

2004.

759



GRAUMAN AND DARRELL

L. Wolf, S. Bileschi, and E. Meyers. Perception strategies in hierarchical vision systems. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York City,

NY, June 2006.

L. Wolf and A. Shashua. Learning over sets using kernel principal angles. Journal of Machine

Learning Research, 4:913–931, Dec 2003.

H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neighbor classifica-

tion for visual category recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, New York City, NY, June 2006.

H. Zhang and J. Malik. Learning a discriminative classifier using shape context distances. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI,

June 2003.

760


	Introduction
	Related Work
	Approach
	Preliminaries
	The Pyramid Match Algorithm
	Partial Match Correspondences

	Efficiency
	Satisfying Mercer's Condition
	Approximation Error Bounds
	Classification and Regression with the Pyramid Match
	Empirical Quality of Approximate Partial Matchings
	Discriminative Classification using Sets of Local Features
	ETH-80 Data Set
	Caltech-101 Data Set

	Learning a Function over Sets of Features
	Estimating a Document's Time of Publication
	Inferring 3-D Pose from Shape Features

	Conclusions

