THE Q-PROPERTY OF A MULTIPLICATIVE TRANSFORMATION IN SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEMS* R. BALAJI[†] AND T. PARTHASARATHY[‡] **Abstract.** The Q-property of a multiplicative transformation AXA^T in semidefinite linear complementarity problems is characterized when A is normal. **Key words.** Multiplicative transformations, Q-property, Complementarity. AMS subject classifications. 90C33, 17C55. **1. Introduction.** Let S^n be the space of all real symmetric matrices of order n. Suppose that $L: S^n \to S^n$ is a linear transformation and $Q \in S^n$. We write $X \succeq 0$, if X is symmetric and positive semidefinite. The semidefinite linear complementarity problem, $\mathrm{SDLCP}(L,Q)$ is to find a matrix X such that $$X \succeq 0$$, $Y := L(X) + Q \succeq 0$, and $XY = 0$. SDLCP has various applications in control theory, semidefinite programming and other optimization related problems. We refer to [2] for details. SDLCP can be considered as a generalization of the standard linear complementarity problem [1]. However many results in the linear complementarity problem cannot be generalized to SDLCP, as the semidefinite cone is nonpolyhedral and the matrix multiplication is noncommutative. We say that a linear transformation L defined on S^n has the Q-property if $\mathrm{SDLCP}(L,Q)$ has a solution for all $Q \in S^n$. Let $A \in R^{n \times n}$. Then the double sided multiplicative linear transformation $M_A : S^n \to S^n$ is defined by $M_A(X) := AXA^T$. One of the problems in SDLCP is to characterize the Q-property of a multiplicative linear transformation. When A is a symmetric matrix, Sampangi Raman [6] proved that M_A has the Q-property if and only if A is either positive definite or negative definite and conjectured that the result holds when A is normal. In this paper, we prove this conjecture. The transformation M_A has the following property: $X \succeq 0 \Rightarrow M_A(X) \succeq 0$. In other words, the multiplicative transformation leaves the positive semidefinite cone invariant. Using this interesting property, Gowda et al. [3] derived some specialized results for the multiplicative transformation. However, the problem of characterizing the Q-property of M_A remains open. We recall a theorem due to Karamardian [5]. THEOREM 1.1. Let L be a linear transformation on S^n . If SDLCP(L,0) and SDLCP(L,I) have unique solutions then L has the Q-property. ^{*}Received by the editors 6 September 2007. Accepted for publication 26 November 2007. Handling Editor: Michael J. Tsatsomeros. [†]Department of Mathematics and Statistics, University of Hyderabad, Hyderabad 46, India (balaji149@gmail.com). Supported by a generous grant from NBHM. [‡]Indian Statistical Institute, Chennai (pacha14@yahoo.com). Supported by INSA. R. Balaji and T. Parthasarathy The following theorem is well known, see for example [3]. THEOREM 1.2. Let A be a $n \times n$ matrix. Then the following are equivalent: - 1. A is positive definite or negative definite. - 2. SDLCP (M_A, Q) has a unique solution for all $Q \in S^n$. We mention a few notations. If k is a positive integer, let I_k be the $k \times k$ identity matrix. Let $SOL(M_A, Q)$ be the set of all solutions to $SDLCP(M_A, Q)$. Suppose that F is a $n \times n$ matrix. Then f_{ij} will denote the (i,j)-entry of F. Given a vector $x \in \mathbb{R}^n$, we let diag(x) to denote the diagonal matrix with the vector x along its diagonal. ## 2. Main Result. We introduce the following definitions. DEFINITION 2.1. Let A be a $k \times k$ matrix. We say that A is of type(*), if A = I + B where B is a $k \times k$ skew-symmetric matrix. EXAMPLE 2.2. Let $$A := \begin{pmatrix} 1 & -5 \\ 5 & 1 \end{pmatrix}$$. Then A is a $type(*)$ matrix. DEFINITION 2.3. Let $A \in \mathbb{R}^{n \times n}$. We say that A is of $form(n_1, n_2)$, if there exist type(*) matrices S and T of order n_1 and n_2 respectively such that $n_1 + n_2 = n$ and $$A = \left(\begin{array}{cc} S & 0 \\ 0 & -T \end{array} \right).$$ DEFINITION 2.4. Let m > 2 and $A \in \mathbb{R}^{m \times m}$. We say that A is of form(*), if there exists a skew-symmetric matrix W of order $k \geq 2$ such that $$A = \left(\begin{array}{cc} W & 0 \\ 0 & \widehat{A} \end{array}\right),$$ where $\widehat{A} \in R^{(m-k)\times(m-k)}$. Definition 2.5. We say that an $n \times n$ symmetric matrix $D = (d_{ij})$ is a corner matrix if its rank is one, d_{11} , d_{1n} , d_{n1} and d_{nn} are nonzero real numbers and all the remaining entries are zeros. DEFINITION 2.6. We say that an $n \times n$ symmetric matrix Q is of $type(n_1, n_2)$, if Q is not positive semidefinite and there exist integers n_1 and n_2 and a rank one matrix $Q_1 \in R^{n_1 \times n_2}$ such that $n_1 + n_2 = n$ and $Q = \begin{pmatrix} I_{n_1} & Q_1 \\ Q_1^T & I_{n_2} \end{pmatrix}$. Define $$\widetilde{Q} := \left(\begin{array}{cc} I_{n-1} & q \\ q^T & 1 \end{array} \right),$$ where $q := (2, 0, \dots, 0)^T$. By the well-known formula of Schur, $\det \widetilde{Q} = -3$. Therefore \widetilde{Q} is not positive semidefinite. It is clear that if n_1 and n_2 are any two positive integers such that $n_1 + n_2 = n$, then Q can be written as a $type(n_1, n_2)$ matrix. Throughout the paper, we use Q to denote this matrix. We will make use of the following proposition. The proof is a direct verification. PROPOSITION 2.7. Let $A \in \mathbb{R}^{n \times n}$. Then the following statements are true. The Q-property 1. If $0 \in SOL(M_A, Q)$, then $Q \succeq 0$. 2. Suppose that P is a nonsingular matrix. Then $$X \in SOL(M_A, Q) \Leftrightarrow P^{-1}XP^{-T} \in SOL(M_{P^TAP}, P^TQP).$$ Thus M_A has the Q-property iff M_{PAP^T} has the Q-property. 3. If M_A has the Q-property, then A must be nonsingular. We will use the following property of positive semidefinite matrices. THEOREM 2.8. Suppose that $X:=\begin{pmatrix} X_1 & Y_1 \\ Y_1^T & Z_1 \end{pmatrix}\succeq 0$. If $X_1=0$ or $Z_1=0$, then $Y_1=0$. We begin with the following lemma. LEMMA 2.9. Suppose that U_1 and U_2 are orthogonal matrices of order n_1 and n_2 respectively where $n_1 + n_2 = n$. Let $U = \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix}$. If $A \in \mathbb{R}^{n \times n}$ is of $form(n_1, n_2)$, then UAU^T is of $form(n_1, n_2)$. *Proof.* Let $B := UAU^T$. Then there exist type(*) matrices S and T of order n_1 and n_2 respectively such that $$A = \left(\begin{array}{cc} S & 0 \\ 0 & -T \end{array}\right).$$ It is easy to see that $$B = \left(\begin{array}{cc} S_1 & 0\\ 0 & -T_1 \end{array}\right)$$ where $S_1 = U_1 S U_1^T$ and $T_1 = U_2 T U_2^T$. Let $S = I_{n_1} + W$, where W is a skew-symmetric matrix. Then $W_1 := U_1 W U_1^T$ will be skew-symmetric. Therefore $S_1 = I_{n_1} + W_1$. So S_1 is of type(*). Similarly, T_1 is of type(*). Thus B is of $form(n_1, n_2)$. \square LEMMA 2.10. Let $A \in \mathbb{R}^{n \times n}$. Suppose X is a solution to $\mathrm{SDLCP}(M_A, P\widetilde{Q}P^T)$, where P is a permutation matrix. Then rank of X must be one. *Proof.* Let $\widehat{Q} := P\widetilde{Q}P^T$ and $Y := AXA^T + \widehat{Q}$. Let K be the leading principal $(n-1) \times (n-1)$ submatrix of Y. Then it can be easily verified that K is positive definite. Therefore the rank of Y must be at least n-1. Since $X \in SOL(M_A, \widehat{Q})$, XY = 0. Suppose that U is a orthogonal matrix which diagonalize X and Y simultaneously. Let $D = UXU^T$ and $E = UYU^T$, where D and E are diagonal. Then DE = 0. The rank of E is at least n-1. Therefore the rank of D can be at most one. If D = 0, then X = 0. This implies that $\widehat{Q} \succeq 0$ (Proposition 2.7) which is a contradiction. This means that the rank of X is exactly one. \square LEMMA 2.11. Let $A \in \mathbb{R}^{n \times n}$. Suppose that A is of $form(n_1, n_2)$. If $X \in SOL(M_A, \widetilde{Q})$ then there exists a $form(n_1, n_2)$ matrix B and a $type(n_1, n_2)$ matrix \widehat{Q} such that $SDLCP(M_B, \widehat{Q})$ has a corner solution. *Proof.* Write $$X = \left(\begin{array}{cc} X_1 & Y_1 \\ Y_1^T & Z_1 \end{array} \right),$$ ### R. Balaji and T. Parthasarathy where $X_1 \in S^{n_1 \times n_1}$ and $Z_1 \in S^{n_2 \times n_2}$. The above lemma implies that rank of X is one. Therefore rank of X_1 can be at most one. We now claim that rank of X_1 is exactly one. Let $Y := AXA^T + \widetilde{Q}$. Since A is of $form(n_1, n_2)$, there exist type(*) matrices S_1 and S_2 of order n_1 and n_2 respectively such that $$A = \left(\begin{array}{cc} S_1 & 0 \\ 0 & -S_2 \end{array} \right).$$ Now $$\widetilde{Q} = \left(\begin{array}{cc} I_{n_1} & Q_1 \\ Q_1^T & I_{n_2} \end{array} \right),$$ where Q_1 is of rank one. Suppose $X_1 = 0$. Then Theorem 2.8 implies that $Y_1 = 0$. Thus, $$AXA^T = \left(\begin{array}{cc} 0 & 0\\ 0 & S_2 Z_1 S_2^T \end{array}\right)$$ and hence $$Y = \begin{pmatrix} I_{n_1} & Q_1 \\ Q_1^T & S_2 Z_1 S_2^T + I_{n_2} \end{pmatrix}.$$ From the condition XY = 0, we see that $$Z_1(S_2Z_1S_2^T + I_{n_2}) = 0.$$ This implies that $Z_1 = 0$; so X = 0. Therefore $\widetilde{Q} \succeq 0$ (Proposition 2.7) which is a contradiction. Thus, X_1 is of rank one. Similarly we can prove that Z_1 and Y_1 are of rank one. Since X_1 is a rank one matrix, we can find an orthogonal matrix U_1 such that $$D := U_1 X_1 U_1^T = \begin{pmatrix} d & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix},$$ where d > 0. Let U_2 be an orthogonal matrix such that $$R := U_2 Z_1 U_2^T = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & r \end{pmatrix},$$ The Q-property where r > 0. Let $G = U_1 Y_1 U_2^T$. Then rank of G must be one as rank of Y_1 is one. Define $$U := \left(\begin{array}{cc} U_1 & 0 \\ 0 & U_2 \end{array} \right).$$ Then U is orthogonal. Let $Z := UXU^T$. Now $$Z = \left(\begin{array}{cc} D & G \\ G^T & R \end{array} \right).$$ Since $Z \succeq 0$, by Theorem 2.8, $$Z = \begin{pmatrix} d & 0 & \dots & 0 & e \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ e & 0 & \dots & 0 & r \end{pmatrix}.$$ As G is of rank one, e is nonzero. Thus Z is a corner matrix. Let $B := UAU^T$. Then by Proposition 2.7, Z is a solution to $SDLCP(M_B, \widehat{Q})$, where $\widetilde{Q} := U\widetilde{Q}U^T$. By Lemma 2.9, B must be of $form(n_1, n_2)$. It is direct to verify that \widehat{Q} is of $type(n_1, n_2)$. This completes the proof. \square Lemma 2.12. Let Q be a $m \times n$ matrix defined as follows: $$Q = \begin{pmatrix} 0 & 0 & \dots & 0 & \pm 1 \\ q_{21} & q_{22} & \dots & q_{2n-1} & 0 \\ \dots & \dots & \dots & \dots & \dots \\ q_{m1} & q_{m2} & \dots & q_{mn-1} & 0 \end{pmatrix}.$$ Suppose the rank of Q is one. Then the submatrix of Q obtained by deleting the first row and the last column is a zero matrix. *Proof.* We claim that $q_{21} = 0$. Consider the 2×2 submatrix $$\left(\begin{array}{cc} 0 & \pm 1 \\ q_{21} & 0 \end{array}\right).$$ Since Q is of rank one, $q_{21}=0$. By repeating a similar argument for the remaining entries we get the result. \square LEMMA 2.13. Suppose that \widehat{B} is of $form(n_1, n_2)$. Let \widehat{Q} be a type (n_1, n_2) matrix. Then a corner matrix cannot be a solution to $SDLCP(M_{\widehat{B}}, \widehat{Q})$. *Proof.* Since \widehat{B} is of $form(n_1, n_2)$, there exist type(*) matrices B and C of order n_1 and n_2 respectively such that $$\widehat{B} = \left(\begin{array}{cc} B & 0 \\ 0 & -C \end{array} \right).$$ Let $B = (b_{ij})$ and $C = (c_{ij})$. Then $b_{ii} = c_{ii} = 1$. Every off-diagonal entry of B and C will now satisfy $b_{ij} + b_{ji} = 0$ and $c_{ij} + c_{ji} = 0$. 424 R. Balaji and T. Parthasarathy Suppose that X is a *corner* matrix and solves $SDLCP(M_{\widehat{R}}, \widehat{Q})$. Let $$X = \left(\begin{array}{ccccc} d & 0 & \dots & 0 & e \\ 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ e & 0 & \dots & 0 & r \end{array} \right).$$ Let $$\widehat{Q} = \begin{pmatrix} I_{n_1} & Q_1 \\ Q_1^T & I_{n_2} \end{pmatrix}$$ where $$Q_1 = \begin{pmatrix} q_{11} & q_{12} & \dots & q_{1n_2} \\ q_{21} & q_{22} & \dots & q_{2n_2} \\ \dots & \dots & \dots & \dots \\ q_{n_11} & q_{n_12} & \dots & q_{n_1n_2} \end{pmatrix}.$$ Suppose that $Y := \widehat{B}X\widehat{B}^T + \widehat{Q}$. Then $$Y = \begin{pmatrix} d+1 & * & \dots & * & q_{1n_2} - e \\ -b_{12}d & * & \dots & * & b_{12}e + q_{2n_2} \\ \dots & \dots & \dots & * \\ -b_{1n_1}d & * & \dots & * & b_{1n_1}e + q_{n_1n_2} \\ c_{1n_2}e + q_{11} & * & \dots & * & -c_{1n_2}r \\ c_{2n_2}e + q_{12} & * & \dots & * & -c_{2n_2}r \\ \dots & \dots & \dots & * \\ -e + q_{1n_2} & * & \dots & * & r+1 \end{pmatrix}.$$ Suppose that $y_1, y_2, ..., y_n$ are the columns of Y and $x_1, x_2, ..., x_n$ are the columns of X. Since X is a solution to SDLCP $(M_{\widehat{B}}, \widehat{Q}), XY = 0$. Therefore for all $i \in \{1, ..., n\}$ and $j \in \{1, ..., n\}$, we must have $y_i^T x_j = 0$. From the equations $y_1^T x_1 = 0$ and $y_n^T x_n = 0$, we have (2.1) $$d(d+1) + e(q_{1n_2} - e) = 0,$$ $$(2.2) r(r+1) + e(q_{1n_2} - e) = 0.$$ Equations (2.1) and (2.2) imply that $$d(d+1) = r(r+1).$$ As d and r are positive, d = r. Since X is a corner matrix, rank of X must be one and hence $$d = r = \pm e$$. Now $d^2 = e^2$, and therefore from (2.1) we have $$q_{1n_2}=\pm 1.$$ The $$Q$$ -property Let $i \in \{2, \dots, n_1\}$. Then $y_i^T x_1 = 0$ gives $$-b_{1i}d^2 + b_{1i}e^2 + q_{in}e = 0.$$ As $d^2 = e^2$ and e is nonzero, $$q_{in_2} = 0.$$ Thus the last column of Q_1 is $(\pm 1, 0, \dots, 0)^T$. Let $i \in \{1, \dots, n_2 - 1\}$. Then $$c_{in_2}ed + q_{1i}d - c_{in_2}re = 0.$$ Using r = d, we have $$q_{1i} = 0.$$ Thus the first row of Q_1 is $(0, \dots, 0, \pm 1)$. Now \widehat{Q} is a $type(n_1, n_2)$ matrix and hence Q_1 is of rank one. Thus Q_1 satisfies the conditions of Lemma 2.12 and therefore the submatrix obtained by deleting the first row and last column of Q_1 is a zero matrix. Thus $$\widehat{Q} = \left(\begin{array}{cc} I_{n-1} & e \\ e^T & 1 \end{array} \right),$$ where e is the n-1 vector $(\pm 1, 0, \dots, 0)^T$. If $x \in \mathbb{R}^n$, then $$x^T \hat{Q} x = (x_1 \pm x_n)^2 + \sum_{i=2}^{n-1} x_i^2 \ge 0.$$ Hence $\widehat{Q} \succeq 0$. This contradicts that \widehat{Q} is a $type(n_1, n_2)$ matrix. This completes the proof. \square Lemmas 2.11 and 2.13 now implies the following result. LEMMA 2.14. Let A be a form (n_1, n_2) matrix. Then M_A cannot have the Q-property. We now claim that a skew-symmetric matrix cannot have Q-property. LEMMA 2.15. If A is a $n \times n$ skew-symmetric matrix, then SDLCP (M_A, \overline{Q}) has no solution. *Proof.* Suppose that X is a solution. Then the rank of X must be one. Therefore $X = xx^T$ for some vector $x \in R^n$. By the skew-symmetry of A, $x^TAx = 0$; hence XAX = 0. Now $X(AXA^T + \widetilde{Q}) = 0$. So $X\widetilde{Q} = 0$. Since \widetilde{Q} is nonsingular, X = 0. This implies that $\widetilde{Q} \succeq 0$ (Proposition 2.7) which is a contradiction. \square LEMMA 2.16. Let $A \in \mathbb{R}^{n \times n}$. If A is a form(*) matrix, then M_A cannot have the Q-property. *Proof.* Suppose that M_A has the Q-property. Since A is of form(*), $$A = \left(\begin{array}{cc} W & 0 \\ 0 & B \end{array} \right),$$ 426 R. Balaji and T. Parthasarathy where W is skew-symmetric of order $k \geq 2$ and B is of order l. Define a $k \times k$ matrix by $$Q_{11} = \left(\begin{array}{cc} I_{k-1} & p \\ p^T & 1 \end{array}\right),$$ where $p := (2, 0, ..., 0)^T$. Now define $$Q' = \left(\begin{array}{cc} Q_{11} & 0 \\ 0 & I_l \end{array} \right).$$ Note that there exists a permutation matrix P such that $P\widetilde{Q}P^T = Q'$. Suppose that X is a solution to $\mathrm{SDLCP}(M_A, Q')$. Write $$X = \left(\begin{array}{cc} X_1 & X_2 \\ X_2^T & X_3 \end{array}\right),$$ where X_1 is of order k. Suppose that $X_3 = 0$. Then, as $X \succeq 0$, $X_2 = 0$. Now $$AXA^T + Q' = \left(\begin{array}{cc} WX_1W^T + Q_{11} & 0 \\ 0 & I_l \end{array} \right).$$ It is now easy to verify that X_1 is a solution to $\mathrm{SDLCP}(M_W,Q_{11})$. However by applying the previous lemma, we see that $\mathrm{SDLCP}(M_W,Q_{11})$ has no solution. Thus, we have a contradiction. Therefore X_3 cannot be zero. In view of Lemma 2.10, rank of X must be one. Hence the rank of X_1 can be at most one and the rank of X_3 is exactly one. Let U_1 be a orthogonal matrix such that $$U_1 X_1 U_1^T = \begin{pmatrix} d & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix},$$ and U_2 be a orthogonal matrix such that $$U_2 X_3 U_2^T = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & r \end{pmatrix}.$$ Define an orthogonal matrix U by $$U := \left(\begin{array}{cc} U_1 & 0 \\ 0 & U_2 \end{array} \right).$$ The Q-property Suppose that $Z := UXU^T$. Then by Theorem 2.8 $$Z = \left(\begin{array}{cccc} d & 0 & \dots & e \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ e & 0 & \dots & r \end{array} \right).$$ Note that r > 0. Now Z is a solution to $\mathrm{SDLCP}(M_{UAU^T}, UQ'U^T)$. Suppose that $Y := M_{UAU^T} + UQ'U^T$. Now $$UQ'U^T = \left(\begin{array}{cc} U_1Q_{11}U_1^T & 0 \\ 0 & I_l \end{array} \right) \quad \text{and} \quad UAU^T = \left(\begin{array}{cc} U_1WU_1^T & 0 \\ 0 & U_2BU_2^T \end{array} \right).$$ Let α be the (n,n)-entry of UBU^T . Clearly, $U_1WU_1^T$ is skew-symmetric. Let the last row of Y be the vector $\mathbf{y} := (y_1, ..., y_n)^T$. Then by a direct verification, $y_1 = 0$ and $y_n = \alpha^2 r + 1$. By the complementarity condition, \mathbf{y} is orthogonal to $(e, 0, ..., 0, r)^T$. Thus, $r(\alpha^2 r + 1) = 0$, which is a contradiction. This completes the proof. \square The next result is apparent from Theorem 2.5.8 in Horn and Johnson [4]; hence we omit the proof. LEMMA 2.17. Suppose that $A \in \mathbb{R}^{n \times n}$ is a nonsingular normal matrix. If A is neither positive definite nor negative definite, then one of the following statements must be true: - 1. There exists a nonsingular matrix Q and positive integers n_1 and n_2 such that QAQ^T is of $form(n_1, n_2)$. - 2. There exists a nonsingular matrix Q such that QAQ^T is a form(*) matrix. - 3. A is skew-symmetric. Now the following theorem which is our main result follows from item (2) of Proposition 2.7 and the above results. Theorem 2.18. Let $A \in \mathbb{R}^{n \times n}$ be normal. Then the following are equivalent: - (i) $\pm A$ is positive definite. - (ii) SDLCP (M_A, Q) has a unique solution for all $Q \in S^n$. - (ii) M_A has the Q-property. **Acknowledgment.** We wish to thank Professor Seetharama Gowda for his comments and suggestions. #### REFERENCES - [1] R. Cottle, J.-S. Pang, and R.E. Stone. *The Linear Complementarity Problem.* Academic Press, Boston, 1992. - [2] M.S. Gowda and Y. Song. On semidefinite linear complementarity problems. *Mathematical Programming A*, 88:575–587, 2000. - [3] M.S. Gowda, Y. Song, and G. Ravindran. On some interconnections between strict monotonicity, globally uniquely solvable, and P properties in semidefinite linear complementarity problems. Linear Algebra and its Applications, 370:355-368, 2003. - [4] R.A. Horn and C.R. Johnson. *Matrix Analysis*. Cambridge University press, Cambridge, 1985. ## R. Balaji and T. Parthasarathy - [5] S. Karamardian. An existence theorem for the complementarity problem. *Journal of Optimization Theory and its Applications*, 19:227–232, 1976. - [6] D. Sampangi Raman. Some contributions to semidefinite linear complementarity problems. Ph.D. Thesis, Indian Statistical Institute, Kolkata, 2002.