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THE Q-PROPERTY OF A MULTIPLICATIVE TRANSFORMATION
IN SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEMS∗
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Abstract. The Q-property of a multiplicative transformation AXAT in semidefinite linear
complementarity problems is characterized when A is normal.
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1. Introduction. Let Sn be the space of all real symmetric matrices of order n.
Suppose that L : Sn → Sn is a linear transformation and Q ∈ Sn. We write X � 0,
if X is symmetric and positive semidefinite. The semidefinite linear complementarity
problem, SDLCP(L,Q) is to find a matrix X such that

X � 0, Y := L(X) +Q � 0, and XY = 0.

SDLCP has various applications in control theory, semidefinite programming and
other optimization related problems. We refer to [2] for details. SDLCP can be
considered as a generalization of the standard linear complementarity problem [1].
However many results in the linear complementarity problem cannot be generalized
to SDLCP, as the semidefinite cone is nonpolyhedral and the matrix multiplication is
noncommutative.

We say that a linear transformation L defined on Sn has the Q-property if
SDLCP(L,Q) has a solution for all Q ∈ Sn. Let A ∈ Rn×n. Then the double sided
multiplicative linear transformation MA : Sn → Sn is defined by MA(X) := AXAT .
One of the problems in SDLCP is to characterize the Q-property of a multiplicative
linear transformation. When A is a symmetric matrix, Sampangi Raman [6] proved
that MA has the Q-property if and only if A is either positive definite or negative
definite and conjectured that the result holds when A is normal. In this paper, we
prove this conjecture.

The transformation MA has the following property: X � 0 ⇒ MA(X) � 0. In
other words, the multiplicative transformation leaves the positive semidefinite cone
invariant. Using this interesting property, Gowda et al. [3] derived some specialized
results for the multiplicative transformation. However, the problem of characterizing
the Q-property of MA remains open.

We recall a theorem due to Karamardian [5].
Theorem 1.1. Let L be a linear transformation on Sn. If SDLCP(L, 0) and

SDLCP(L, I) have unique solutions then L has the Q-property.
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The following theorem is well known, see for example [3].
Theorem 1.2. Let A be a n× n matrix. Then the following are equivalent:
1. A is positive definite or negative definite.
2. SDLCP(MA, Q) has a unique solution for all Q ∈ Sn.
We mention a few notations. If k is a positive integer, let Ik be the k× k identity

matrix. Let SOL(MA, Q) be the set of all solutions to SDLCP(MA, Q). Suppose that
F is a n×n matrix. Then fij will denote the (i, j)-entry of F . Given a vector x ∈ Rn,
we let diag(x) to denote the diagonal matrix with the vector x along its diagonal.

2. Main Result. We introduce the following definitions.
Definition 2.1. Let A be a k × k matrix. We say that A is of type(∗), if

A = I +B where B is a k × k skew-symmetric matrix.

Example 2.2. Let A :=
(
1 −5
5 1

)
. Then A is a type(∗) matrix.

Definition 2.3. Let A ∈ Rn×n. We say that A is of form(n1, n2), if there exist
type(∗) matrices S and T of order n1 and n2 respectively such that n1 + n2 = n and

A =
(

S 0
0 −T

)
.

Definition 2.4. Let m > 2 and A ∈ Rm×m. We say that A is of form(∗), if
there exists a skew-symmetric matrix W of order k ≥ 2 such that

A =
(

W 0
0 Â

)
,

where Â ∈ R(m−k)×(m−k).
Definition 2.5. We say that an n× n symmetric matrix D = (dij) is a corner

matrix if its rank is one, d11, d1n, dn1 and dnn are nonzero real numbers and all the
remaining entries are zeros.

Definition 2.6. We say that an n × n symmetric matrix Q is of type(n1, n2),
if Q is not positive semidefinite and there exist integers n1 and n2 and a rank one

matrix Q1 ∈ Rn1×n2 such that n1 + n2 = n and Q =
(

In1 Q1

QT
1 In2

)
.

Define

Q̃ :=
(

In−1 q
qT 1

)
,

where q := (2, 0, · · · , 0)T .
By the well-known formula of Schur, det Q̃ = −3. Therefore Q̃ is not positive

semidefinite. It is clear that if n1 and n2 are any two positive integers such that
n1 + n2 = n, then Q̃ can be written as a type(n1, n2) matrix. Throughout the paper,
we use Q̃ to denote this matrix.

We will make use of the following proposition. The proof is a direct verification.
Proposition 2.7. Let A ∈ Rn×n. Then the following statements are true.
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1. If 0 ∈ SOL(MA, Q), then Q � 0.
2. Suppose that P is a nonsingular matrix. Then

X ∈ SOL(MA, Q)⇔ P−1XP−T ∈ SOL(MP T AP , PTQP ).

Thus MA has the Q-property iff MPAP T has the Q-property.
3. If MA has the Q-property, then A must be nonsingular.
We will use the following property of positive semidefinite matrices.

Theorem 2.8. Suppose that X :=
(

X1 Y1

Y T
1 Z1

)
� 0. If X1 = 0 or Z1 = 0, then

Y1 = 0.
We begin with the following lemma.
Lemma 2.9. Suppose that U1 and U2 are orthogonal matrices of order n1 and

n2 respectively where n1 + n2 = n. Let U =
(

U1 0
0 U2

)
. If A ∈ Rn×n is of

form(n1, n2), then UAUT is of form(n1, n2).
Proof. Let B := UAUT . Then there exist type(∗) matrices S and T of order n1

and n2 respectively such that

A =
(

S 0
0 −T

)
.

It is easy to see that

B =
(

S1 0
0 −T1

)

where S1 = U1SUT
1 and T1 = U2TUT

2 .
Let S = In1 +W , where W is a skew-symmetric matrix. Then W1 := U1WUT

1

will be skew-symmetric. Therefore S1 = In1 +W1. So S1 is of type(∗). Similarly, T1

is of type(∗). Thus B is of form(n1, n2).
Lemma 2.10. Let A ∈ Rn×n. Suppose X is a solution to SDLCP(MA, P Q̃PT ),

where P is a permutation matrix. Then rank of X must be one.
Proof. Let Q̂ := PQ̃PT and Y := AXAT + Q̂. Let K be the leading principal

(n − 1) × (n − 1) submatrix of Y . Then it can be easily verified that K is positive
definite. Therefore the rank of Y must be at least n− 1.

Since X ∈ SOL(MA, Q̂), XY = 0. Suppose that U is a orthogonal matrix which
diagonalize X and Y simultaneously. Let D = UXUT and E = UY UT , where D and
E are diagonal. Then DE = 0. The rank of E is at least n− 1. Therefore the rank of
D can be at most one. If D = 0, then X = 0. This implies that Q̂ � 0 (Proposition
2.7) which is a contradiction. This means that the rank of X is exactly one.

Lemma 2.11. Let A ∈ Rn×n. Suppose that A is of form(n1, n2). If X ∈
SOL(MA, Q̃) then there exists a form(n1, n2) matrix B and a type(n1, n2) matrix Q̂

such that SDLCP(MB, Q̂) has a corner solution.
Proof. Write

X =
(

X1 Y1

Y T
1 Z1

)
,
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where X1 ∈ Sn1×n1 and Z1 ∈ Sn2×n2 . The above lemma implies that rank of X is
one. Therefore rank of X1 can be at most one. We now claim that rank of X1 is
exactly one. Let Y := AXAT + Q̃.

Since A is of form(n1, n2), there exist type(∗) matrices S1 and S2 of order n1

and n2 respectively such that

A =
(

S1 0
0 −S2

)
.

Now

Q̃ =
(

In1 Q1

QT
1 In2

)
,

where Q1 is of rank one. Suppose X1 = 0. Then Theorem 2.8 implies that Y1 = 0.
Thus,

AXAT =
(
0 0
0 S2Z1S

T
2

)

and hence

Y =
(

In1 Q1

QT
1 S2Z1S

T
2 + In2

)
.

From the condition XY = 0, we see that

Z1(S2Z1S
T
2 + In2 ) = 0.

This implies that Z1 = 0; so X = 0. Therefore Q̃ � 0 (Proposition 2.7) which is a
contradiction. Thus, X1 is of rank one. Similarly we can prove that Z1 and Y1 are of
rank one.

Since X1 is a rank one matrix, we can find an orthogonal matrix U1 such that

D := U1X1U
T
1 =




d 0 · · · 0
0 0 · · · 0
...

...
...

...
0 · · · · · · 0


 ,

where d > 0.
Let U2 be an orthogonal matrix such that

R := U2Z1U
T
2 =




0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 · · · · · · r


 ,
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where r > 0. Let G = U1Y1U
T
2 . Then rank of G must be one as rank of Y1 is one.

Define

U :=
(

U1 0
0 U2

)
.

Then U is orthogonal. Let Z := UXUT . Now

Z =
(

D G
GT R

)
.

Since Z � 0, by Theorem 2.8,

Z =




d 0 ... 0 e
0 0 ... 0 0
...

...
...

...
...

e 0 ... 0 r


 .

As G is of rank one, e is nonzero. Thus Z is a corner matrix.
Let B := UAUT . Then by Proposition 2.7, Z is a solution to SDLCP(MB, Q̂),

where Q̃ := UQ̃UT . By Lemma 2.9, B must be of form(n1, n2). It is direct to verify
that Q̂ is of type(n1, n2). This completes the proof.

Lemma 2.12. Let Q be a m× n matrix defined as follows:

Q =




0 0 ... 0 ±1
q21 q22 ... q2n−1 0
... ... ... ... ...
qm1 qm2 ... qmn−1 0


 .

Suppose the rank of Q is one. Then the submatrix of Q obtained by deleting the
first row and the last column is a zero matrix.

Proof. We claim that q21 = 0. Consider the 2× 2 submatrix(
0 ±1
q21 0

)
.

Since Q is of rank one, q21 = 0. By repeating a similar argument for the remaining
entries we get the result.

Lemma 2.13. Suppose that B̂ is of form(n1, n2). Let Q̂ be a type(n1, n2) matrix.
Then a corner matrix cannot be a solution to SDLCP(M

bB, Q̂).
Proof. Since B̂ is of form(n1, n2), there exist type(∗) matrices B and C of order

n1 and n2 respectively such that

B̂ =
(

B 0
0 −C

)
.

Let B = (bij) and C = (cij). Then bii = cii = 1. Every off-diagonal entry of B and
C will now satisfy bij + bji = 0 and cij + cji = 0.
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Suppose that X is a corner matrix and solves SDLCP(M
bB, Q̂). Let

X =




d 0 ... 0 e
0 0 ... 0 0
... ... ... ... ...
e 0 ... 0 r


 .

Let Q̂ =
(

In1 Q1

QT
1 In2

)
where

Q1 =




q11 q12 ... q1n2

q21 q22 ... q2n2

... ... ... ...
qn11 qn12 ... qn1n2


 .

Suppose that Y := B̂XB̂T + Q̂. Then

Y =




d+ 1 ∗ ... ∗ q1n2 − e
−b12d ∗ ... ∗ b12e+ q2n2

... ... ... ∗
−b1n1d ∗ ... ∗ b1n1e+ qn1n2

c1n2e+ q11 ∗ ... ∗ −c1n2r
c2n2e+ q12 ∗ ... ∗ −c2n2r

... ... ... ∗
−e+ q1n2 ∗ ... ∗ r + 1




.

Suppose that y1, y2, ..., yn are the columns of Y and x1, x2, ..., xn are the columns
ofX . SinceX is a solution to SDLCP(M

bB, Q̂), XY = 0. Therefore for all i ∈ {1, ..., n}
and j ∈ {1, ..., n}, we must have yT

i xj = 0.
From the equations yT

1 x1 = 0 and yT
nxn = 0, we have

d(d+ 1) + e(q1n2 − e) = 0,(2.1)

r(r + 1) + e(q1n2 − e) = 0.(2.2)

Equations (2.1) and (2.2) imply that

d(d+ 1) = r(r + 1).

As d and r are positive, d = r. Since X is a corner matrix, rank of X must be one
and hence

d = r = ±e.

Now d2 = e2, and therefore from (2.1) we have

q1n2 = ±1.
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Let i ∈ {2, · · · , n1}. Then yT
i x1 = 0 gives

−b1id
2 + b1ie

2 + qin2e = 0.

As d2 = e2 and e is nonzero,

qin2 = 0.

Thus the last column of Q1 is (±1, 0, · · · , 0)T .
Let i ∈ {1, · · · , n2 − 1}. Then

cin2ed+ q1id− cin2re = 0.

Using r = d, we have

q1i = 0.

Thus the first row of Q1 is (0, · · · , 0,±1).
Now Q̂ is a type(n1, n2) matrix and hence Q1 is of rank one. Thus Q1 satisfies

the conditions of Lemma 2.12 and therefore the submatrix obtained by deleting the
first row and last column of Q1 is a zero matrix. Thus

Q̂ =
(

In−1 e
eT 1

)
,

where e is the n− 1 vector (±1, 0, · · · , 0)T .
If x ∈ Rn, then

xT Q̂x = (x1 ± xn)2 +
n−1∑
i=2

x2
i ≥ 0.

Hence Q̂ � 0. This contradicts that Q̂ is a type(n1, n2) matrix. This completes
the proof.

Lemmas 2.11 and 2.13 now implies the following result.
Lemma 2.14. Let A be a form(n1, n2) matrix. Then MA cannot have the Q-

property.
We now claim that a skew-symmetric matrix cannot have Q-property.
Lemma 2.15. If A is a n× n skew-symmetric matrix, then SDLCP(MA, Q̃) has

no solution.
Proof. Suppose that X is a solution. Then the rank of X must be one. Therefore

X = xxT for some vector x ∈ Rn. By the skew-symmetry of A, xTAx = 0; hence
XAX = 0. Now X(AXAT + Q̃) = 0. So XQ̃ = 0. Since Q̃ is nonsingular, X = 0.
This implies that Q̃ � 0 (Proposition 2.7) which is a contradiction.

Lemma 2.16. Let A ∈ Rn×n. If A is a form(∗) matrix, then MA cannot have
the Q-property.

Proof. Suppose that MA has the Q-property. Since A is of form(∗),

A =
(

W 0
0 B

)
,
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where W is skew-symmetric of order k ≥ 2 and B is of order l.
Define a k × k matrix by

Q11 =
(

Ik−1 p
pT 1

)
,

where p := (2, 0, ..., 0)T .
Now define

Q′ =
(

Q11 0
0 Il

)
.

Note that there exists a permutation matrix P such that PQ̃PT = Q′. Suppose
that X is a solution to SDLCP(MA, Q′). Write

X =
(

X1 X2

XT
2 X3

)
,

where X1 is of order k.
Suppose that X3 = 0. Then, as X � 0, X2 = 0.
Now

AXAT +Q′ =
(

WX1W
T +Q11 0
0 Il

)
.

It is now easy to verify that X1 is a solution to SDLCP(MW , Q11). However by
applying the previous lemma, we see that SDLCP(MW , Q11) has no solution. Thus,
we have a contradiction. Therefore X3 cannot be zero.

In view of Lemma 2.10, rank of X must be one. Hence the rank of X1 can be at
most one and the rank of X3 is exactly one.

Let U1 be a orthogonal matrix such that

U1X1U
T
1 =




d 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0


 ,

and U2 be a orthogonal matrix such that

U2X3U
T
2 =




0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... r


 .

Define an orthogonal matrix U by

U :=
(

U1 0
0 U2

)
.
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Suppose that Z := UXUT . Then by Theorem 2.8

Z =




d 0 ... e
0 0 ... 0
... ... ... ...
e 0 ... r


 .

Note that r > 0. Now Z is a solution to SDLCP(MUAUT , UQ′UT ). Suppose that
Y :=MUAUT + UQ′UT .

Now

UQ′UT =
(

U1Q11U
T
1 0

0 Il

)
and UAUT =

(
U1WUT

1 0
0 U2BUT

2

)
.

Let α be the (n, n)-entry of UBUT . Clearly, U1WUT
1 is skew-symmetric. Let the

last row of Y be the vector y := (y1, ..., yn)T . Then by a direct verification, y1 = 0 and
yn = α2r + 1. By the complementarity condition, y is orthogonal to (e, 0, ..., 0, r)T .
Thus, r(α2r + 1) = 0, which is a contradiction. This completes the proof.

The next result is apparent from Theorem 2.5.8 in Horn and Johnson [4]; hence
we omit the proof.

Lemma 2.17. Suppose that A ∈ Rn×n is a nonsingular normal matrix. If A is
neither positive definite nor negative definite, then one of the following statements
must be true:

1. There exists a nonsingular matrix Q and positive integers n1 and n2 such
that QAQT is of form(n1, n2).

2. There exists a nonsingular matrix Q such that QAQT is a form(∗) matrix.
3. A is skew-symmetric.
Now the following theorem which is our main result follows from item (2) of

Proposition 2.7 and the above results.
Theorem 2.18. Let A ∈ Rn×n be normal. Then the following are equivalent:
(i) ±A is positive definite.
(ii) SDLCP(MA, Q) has a unique solution for all Q ∈ Sn.
(ii) MA has the Q-property.
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