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1 Introduction

In the Standard Model, the sum of the QCD topological angle and the common quark mass

phase, θ = θ0+arg detMq, is experimentally bounded to lie below O(10−10) from the non-

observation of the neutron electric dipole moment (EDM) [1, 2]. While θ = O(1) would

completely change the physics of nuclei, its effects rapidly decouple for smaller values,

already becoming irrelevant for θ . 10−1÷10−2. Therefore, its extremely small value does

not seem to be necessary to explain any known large-distance physics. This, together with

the fact that other phases in the Yukawa matrices are O(1) and that θ can receive non-

decoupling contributions from CP-violating new physics at arbitrarily high scales, begs for

a dynamical explanation of its tiny value.

Among the known solutions, the QCD axion [3–9] is probably the most simple and

robust: the SM is augmented with an extra pseudo-goldstone boson, whose only non-

derivative coupling is to the QCD topological charge and suppressed by the scale fa. Such

a coupling allows the effects of θ to be redefined away via a shift of the axion field, whose

vacuum expectation value (VEV) is then guaranteed to vanish [10]. It also produces a mass

for the axion O(mπfπ/fa). Extra model dependent derivative couplings may be present

but they do not affect the solution of the strong-CP problem. Both the mass and the

couplings of the QCD axion are thus controlled by a single scale fa.

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
4

Presently astrophysical constraints bound fa between few 108GeV (see for e.g. [11])

and few 1017GeV [12–14]. It has been known for a long time [15–17] that in most of the

available parameter space the axion may explain the observed dark matter of the universe.

Indeed, non-thermal production from the misalignment mechanism can easily generate a

suitable abundance of cold axions for values of fa large enough, compatible with those

allowed by current bounds. Such a feature is quite model independent and, if confirmed,

may give non-trivial constraints on early cosmology.

Finally axion-like particles seem to be a generic feature of string compactification.

The simplicity and robustness of the axion solution to the strong-CP problem, the fact

that it could easily explain the dark matter abundance of our Universe and the way it

naturally fits within string theory make it one of the best motivated particle beyond the

Standard Model.

Because of the extremely small couplings allowed by astrophysical bounds, the quest

to discover the QCD axion is a very challenging endeavor. The ADMX experiment [18]

is expected to become sensitive to a new region of parameter space unconstrained by

indirect searches soon. Other experiments are also being planned and several new ideas

have recently been proposed to directly probe the QCD axion [19–22]. To enhance the

tiny signal some of these experiments, including ADMX, exploit resonance effects and

the fact that, if the axion is dark matter, the line width of the resonance is suppressed

by v2 ∼ 10−6 (v being the virial velocity in our galaxy) [23, 24]. Should the axion be

discovered by such experiments, its mass would be known with a comparably high precision,

O(10−6). Depending on the experiment different axion couplings may also be extracted

with a different accuracy.

Can we exploit such high precision in the axion mass and maybe couplings? What

can we learn from such measurements? Will we be able to infer the UV completion of the

axion? and its cosmology?

In this paper we try to make a small step towards answering some of these questions.

Naively, high precision in QCD axion physics seems hopeless. After all most of its prop-

erties, such as its mass, couplings to matter and relic abundance are dominated by non

perturbative QCD dynamics. On the contrary, we will show that high precision is within

reach. Given its extremely light mass, QCD chiral Lagrangians [25–27] can be used reli-

ably. Performing a NLO computation we are able to extract the axion mass, self coupling

and its full potential at the percent level. The coupling to photons can be extracted with

similar precision, as well as the tension of domain walls. As a spin-off we provide estimates

of the topological susceptibility and the quartic moment with similar precision and new

estimates of some low energy constants.

We also describe a new strategy to extract the couplings to nucleons directly from first

principle QCD. At the moment the precision is not yet at the percent level, but there is

room for improvement as more lattice QCD results become available.

The computation of the axion potential can easily be extended to finite temperature.

In particular, at temperatures below the crossover (Tc ∼170MeV) chiral Lagrangians allow

the temperature dependence of the axion potential and its mass to be computed. Around

Tc there is no known reliable perturbative expansion under control and non-perturbative

methods, such as lattice QCD [28, 29], are required.
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At higher temperatures, when QCD turns perturbative, one may be tempted to use

the dilute instanton gas approximation, which is expected to hold at large enough tempera-

tures. We point out however that the bad convergence of the perturbative QCD expansion

at finite temperatures makes the standard instanton result completely unreliable for tem-

peratures below 106GeV, explaining the large discrepancy observed in recent lattice QCD

simulations [30, 31]. We conclude with a study of the impact of such uncertainty in the

computation of the axion relic abundance, providing updated plots for the allowed axion

parameter space.

For convenience we report the main numerical results of the paper here, for the mass

ma = 5.70(6)(4)µeV

(

1012GeV

fa

)

,

the coupling to photons

gaγγ =
αem

2πfa

[

E

N
− 1.92(4)

]

,

the couplings to nucleons (for the hadronic KSVZ model for definiteness)

cKSVZ
p = −0.47(3) , cKSVZ

n = −0.02(3) ,

and for the self quartic coupling and the tension of the domain wall respectively

λa = −0.346(22) · m
2
a

f2
a

, σa = 8.97(5)maf
2
a ,

where for the axion mass the first error is from the uncertainties of quark masses while the

second is from higher order corrections. As a by-product we also provide a high precision

estimate of the topological susceptibility and the quartic moment

χ
1/4
top = 75.5(5) MeV , b2 = −0.029(2) .

More complete results, explicit analytic formulae and details about conventions can be

found in the text. The impact on the axion abundance computation from different finite

temperature behaviors of the axion mass is shown in figures 5 and 6.

The rest of the paper is organized as follows. In section 2 we first briefly review known

leading order results for the axion properties and then present our new computations

and numerical estimates for the various properties at zero temperature. In section 3 we

give results for the temperature dependence of the axion mass and potential at increasing

temperatures and the implications for the axion dark matter abundance. We summarize

our conclusions in section 4. Finally, we provide the details about the input parameters

used and report extra formulae in the appendices.

2 The cool axion: T = 0 properties

At energies below the Peccei Quinn (PQ) and the electroweak (EW) breaking scales the

axion dependent part of the Lagrangian, at leading order in 1/fa and the weak couplings

can be written, without loss of generality, as

La =
1

2
(∂µa)

2 +
a

fa

αs

8π
GµνG̃

µν +
1

4
a g0aγγFµνF̃

µν +
∂µa

2fa
jµa,0 , (2.1)

– 3 –
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where the second term defines fa, the dual gluon field strength G̃µν = 1
2ǫµνρσG

ρσ, color

indices are implicit, and the coupling to the photon field strength Fµν is

g0aγγ =
αem

2πfa

E

N
, (2.2)

where E/N is the ratio of the Electromagnetic (EM) and the color anomaly (=8/3 for

complete SU(5) representations). Finally in the last term of eq. (2.1) jµa,0 = c0q q̄γ
µγ5q is

a model dependent axial current made of SM matter fields. The axionic pseudo shift-

symmetry, a → a+ δ, has been used to remove the QCD θ angle.

The only non-derivative coupling to QCD can be conveniently reshuffled by a quark

field redefinition. In particular performing a change of field variables on the up and down

quarks

q =

(

u

d

)

→ e
iγ5

a
2fa

Qa

(

u

d

)

, trQa = 1 , (2.3)

eq. (2.1) becomes

La =
1

2
(∂µa)

2 +
1

4
a gaγγFµνF̃

µν +
∂µa

2fa
jµa − q̄LMaqR + h.c. , (2.4)

where

gaγγ =
αem

2πfa

[

E

N
− 6 tr

(

QaQ
2
)

]

, jµa =jµa,0 − q̄γµγ5Qaq , (2.5)

Ma =e
i a
2fa

QaMq e
i a
2fa

Qa , Mq =

(

mu 0

0 md

)

, Q =

(

2
3 0

0 −1
3

)

.

The advantage of this basis of axion couplings is twofold. First the axion coupling

to the axial current only renormalizes multiplicatively unlike the coupling to the gluon

operator, which mixes with the axial current divergence at one-loop. Second the only

non-derivative couplings of the axion appear through the quark mass terms.

At leading order in 1/fa the axion can be treated as an external source, the effects from

virtual axions being further suppressed by the tiny coupling. The non derivative couplings

to QCD are encoded in the phase dependence of the dressed quark mass matrix Ma, while

in the derivative couplings the axion enters as an external axial current. The low energy

behaviour of correlators involving such external sources is completely captured by chiral

Lagrangians, whose raison d’être is exactly to provide a consistent perturbative expansion

for such quantities.

Notice that the choice of field redefinition (2.3) allowed us to move the non-derivative

couplings entirely into the lightest two quarks. In this way we can integrate out all the

other quarks and directly work in the 2-flavor effective theory, with Ma capturing the whole

axion dependence, at least for observables that do not depend on the derivative couplings.

At the leading order in the chiral expansion all the non-derivative dependence on the

axion is thus contained in the pion mass terms:

Lp2 ⊃ 2B0
f2
π

4
〈UM †

a +MaU
†〉 , (2.6)
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where

U = eiΠ/fπ , Π =

(

π0
√
2π+

√
2π− −π0

)

, (2.7)

〈· · · 〉 is the trace over flavor indices, B0 is related to the chiral condensate and determined

by the pion mass in term of the quark masses, and the pion decay constant is normalized

such that fπ ≃ 92MeV.

In order to derive the leading order effective axion potential we need only consider the

neutral pion sector. Choosing Qa proportional to the identity we have

V (a, π0) = −B0f
2
π

[

mu cos

(

π0

fπ
− a

2fa

)

+md cos

(

π0

fπ
+

a

2fa

)]

= −m2
πf

2
π

√

1− 4mumd

(mu +md)2
sin2

(

a

2fa

)

cos

(

π0

fπ
− φa

)

(2.8)

where

tanφa ≡ mu −md

md +mu
tan

(

a

2fa

)

. (2.9)

On the vacuum π0 gets a vacuum expectation value (VEV) proportional to φa to minimize

the potential, the last cosine in eq. (2.8) is 1 on the vacuum, and π0 can be trivially

integrated out leaving the axion effective potential

V (a) = −m2
πf

2
π

√

1− 4mumd

(mu +md)2
sin2

(

a

2fa

)

. (2.10)

As expected the minimum is at 〈a〉 = 0 (thus solving the strong CP problem). Expanding

to quadratic order we get the well-known [5] formula for the axion mass

m2
a =

mumd

(mu +md)2
m2

πf
2
π

f2
a

. (2.11)

Although the expression for the potential (2.10) was derived long ago [32], we would

like to stress some points often under-emphasized in the literature.

The axion potential (2.10) is nowhere close to the single cosine suggested by the in-

stanton calculation (see figure 1). This is not surprising given that the latter relies on a

semiclassical approximation, which is not under control in this regime. Indeed the shape

of the potential is O(1) different from that of a single cosine, and its dependence on the

quark masses is non-analytic, as a consequence of the presence of light Goldstone modes.

The axion self coupling, which is extracted from the fourth derivative of the potential

λa ≡ ∂4V (a)

∂a4

∣

∣

∣

∣

a=0

= −m2
u −mumd +m2

d

(mu +md)2
m2

a

f2
a

, (2.12)

is roughly a factor of 3 smaller than λ
(inst)
a = −m2

a/f
2
a , the one extracted from the single

cosine potential V inst(a) = −m2
af

2
a cos(a/fa). The six-axion couplings differ in sign as well.

The VEV for the neutral pion, 〈π0〉 = φafπ can be shifted away by a non-singlet chiral

rotation. Its presence is due to the π0-a mass mixing induced by isospin breaking effects

– 5 –
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-3 π -2 π -π 0 π 2π 3π
a/fa

V
(a

)

Figure 1. Comparison between the axion potential predicted by chiral Lagrangians, eq. (2.10)

(continuous line) and the single cosine instanton one, V inst(a) = −m2
af

2
a cos(a/fa) (dashed line).

in eq. (2.6), but can be avoided by a different choice for Qa, which is indeed fixed up to

a non-singlet chiral rotation. As noticed in [33], expanding eq. (2.6) to quadratic order in

the fields we find the term

Lp2 ⊃ 2B0
fπ
4fa

a〈Π{Qa,Mq}〉, (2.13)

which is responsible for the mixing. It is then enough to choose

Qa =
M−1

q

〈M−1
q 〉

, (2.14)

to avoid the tree-level mixing between the axion and pions and the VEV for the latter.

Such a choice only works at tree level, the mixing reappears at the loop level, but this

contribution is small and can be treated as a perturbation.

The non-trivial potential (2.10) allows for domain wall solutions. These have width

O(m−1
a ) and tension given by

σ = 8maf
2
a E
[

4mumd

(mu +md)2

]

, E [q] ≡
∫ 1

0

dy
√

2(1− y)(1− qy)
. (2.15)

The function E [q] can be written in terms of elliptic functions but the integral form is more

compact. Note that changing the quark masses over the whole possible range, q ∈ [0, 1],

only varies E [q] between E [0] = 1 (cosine-like potential limit) and E [1] = 4 − 2
√
2 ≃ 1.17

(for degenerate quarks). For physical quark masses E [qphys] ≃ 1.12, only 12% off the cosine

potential prediction, and σ ≃ 9maf
2
a .

In a non vanishing axion field background, such as inside the domain wall or to a

much lesser extent in the axion dark matter halo, QCD properties are different than in the

vacuum. This can easily be seen expanding eq. (2.8) at the quadratic order in the pion

field. For 〈a〉 = θfa 6= 0 the pion mass becomes

m2
π(θ) = m2

π

√

1− 4mumd

(mu +md)2
sin2

(

θ

2

)

, (2.16)
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and for θ = π the pion mass is reduced by a factor
√

(md +mu)/(md −mu) ≃
√
3. Even

more drastic effects are expected to occur in nuclear physics (see e.g. [34]).

The axion coupling to photons can also be reliably extracted from the chiral La-

grangian. Indeed at leading order it can simply be read out of eqs. (2.4), (2.5) and (2.14):1

gaγγ =
αem

2πfa

[

E

N
− 2

3

4md +mu

md +mu

]

, (2.17)

where the first term is the model dependent contribution proportional to the EM anomaly

of the PQ symmetry, while the second is the model independent one coming from the

minimal coupling to QCD at the non-perturbative level.

The other axion couplings to matter are either more model dependent (as the derivative

couplings) or theoretically more challenging to study (as the coupling to EDM operators),

or both. In section 2.4, we present a new strategy to extract the axion couplings to nucleons

using experimental data and lattice QCD simulations. Unlike previous studies our analysis

is based only on first principle QCD computations. While the precision is not as good as

for the coupling to photons, the uncertainties are already below 10% and may improve as

more lattice simulations are performed.

Results with the 3-flavor chiral Lagrangian are often found in the literature. In the

2-flavor Lagrangian the extra contributions from the strange quark are contained inside

the low-energy couplings. Within the 2-flavor effective theory the difference between using

2 or 3 flavor formulae, is a higher order effect. Indeed the difference is O(mu/ms) which

corresponds to the expansion parameter of the 2-flavor Lagrangian. As we will see in the

next section these effects can only be consistently considered after including the full NLO

correction.

At this point the natural question is, how good are the estimates obtained so far using

leading order chiral Lagrangians? In the 3-flavor chiral Lagrangian NLO corrections are

typically around 20-30%. The 2-flavor theory enjoys a much better perturbative expansion

given the larger hierarchy between pions and the other mass thresholds. To get a quantita-

tive answer the only option is to perform a complete NLO computation. Given the better

behaviour of the 2-flavor expansion we perform all our computation with the strange quark

integrated out. The price we pay is the reduced number of physical observables that can

be used to extract the higher order couplings. When needed we will use the 3-flavor theory

to extract the values of the 2-flavor ones. This will produce intrinsic uncertainties O(30%)

in the extraction of the 2-flavor couplings. Such uncertainties however will only have a

small impact on the final result whose dependence on the higher order 2-flavor couplings

is suppressed by the light quark masses.

2.1 The mass

The first quantity we compute is the axion mass. As mentioned before at leading order in

1/fa the axion can be treated as an external source. Its mass is thus defined as

m2
a =

δ2

δa2
logZ

(

a

fa

)

∣

∣

∣

a=0
=

1

f2
a

d2

dθ2
logZ(θ)

∣

∣

∣

θ=0
=

χtop

f2
a

, (2.18)

1The result can also be obtained using a different choice of Qa, but in this case the non-vanishing a-π0

mixing would require the inclusion of an extra contribution from the π0γγ coupling.
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where Z(θ) is the QCD generating functional in the presence of a theta term and χtop is

the topological susceptibility.

A partial computation of the axion mass at one loop was first attempted in [35]. More

recently the full NLO corrections to χtop has been computed in [36]. We recomputed

this quantity independently and present the result for the axion mass directly in terms of

observable renormalized quantities.2

The computation is very simple but the result has interesting properties:

m2
a =

mumd

(mu +md)2
m2

πf
2
π

f2
a

[

1 + 2
m2

π

f2
π

(

hr1 − hr3 − lr4 +
m2

u − 6mumd +m2
d

(mu +md)2
lr7

)]

, (2.19)

where hr1, h
r
3, l

r
4 and lr7 are the renormalized NLO couplings of [26] and mπ and fπ are

the physical (neutral) pion mass and decay constant (which include NLO corrections).

There is no contribution from loop diagrams at this order (this is true only after having

reabsorbed the one loop corrections of the tree-level factor m2
πf

2
π). In particular lr7 and

the combinations hr1 − hr3 − lr4 are separately scale invariant. Similar properties are also

present in the 3-flavor computation, in particular there are no O(ms) corrections (after

renormalization of the tree-level result), as noticed already in [35].

To get a numerical estimate of the axion mass and the size of the corrections we

need the values of the NLO couplings. In principle lr7 could be extracted from the QCD

contribution to the π+-π0 mass splitting. While lattice simulations have started to become

sensitive to EM and isospin breaking effects, at the moment there are no reliable estimates

of this quantity from first principle QCD. Even less is known about hr1−hr3, which does not

enter other measured observables. The only hope would be to use lattice QCD computation

to extract such coupling by studying the quark mass dependence of observables such as

the topological susceptibility. Since these studies are not yet available we employ a small

trick: we use the relations in [27] between the 2- and 3-flavor couplings to circumvent the

problem. In particular we have

lr7 =
mu +md

ms

f2
π

8m2
π

− 36L7 − 12Lr
8 +

log(m2
η/µ

2) + 1

64π2
+

3 log(m2
K/µ2)

128π2

= 7(4) · 10−3 ,

hr1 − hr3 − lr4 = −8Lr
8 +

log(m2
η/µ

2)

96π2
+

log(m2
K/µ2) + 1

64π2

= (4.8± 1.4) · 10−3 . (2.20)

The first term in lr7 is due to the tree-level contribution to the π+-π0 mass splitting due

to the π0-η mixing from isospin breaking effects. The rest of the contribution, formally

NLO, includes the effect of the η-η′ mixing and numerically is as important as the tree-

level piece [27]. We thus only need the values of the 3-flavor couplings L7 and Lr
8, which

2The results in [36] are instead presented in terms of the unphysical masses and couplings in the chiral

limit. Retaining the full explicit dependence on the quark masses those formula are more suitable for lattice

simulations.
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can be extracted from chiral fits [37] and lattice QCD [38], we refer to appendix A for

more details on the values used. An important point is that by using 3-flavor couplings

the precision of the estimates of the 2-flavor ones will be limited to the convergence of

the 3-flavor Lagrangian. However, given the small size of such corrections even an O(1)

uncertainty will still translate into a small overall error.

The final numerical ingredient needed is the actual up and down quark masses, in

particular their ratio. Since this quantity already appears in the tree level formula of the

axion mass we need a precise estimate for it, however, because of the Kaplan-Manohar

(KM) ambiguity [39], it cannot be extracted within the meson Lagrangian. Fortunately

recent lattice QCD simulations have dramatically improved our knowledge of this quantity.

Considering the latest results we take

z ≡ mMS
u (2 GeV)

mMS
d (2 GeV)

= 0.48(3) , (2.21)

where we have conservatively taken a larger error than the one coming from simply av-

eraging the results in [40–42] (see the appendix A for more details). Note that z is scale

independent up to αem and Yukawa suppressed corrections. Note also that since lattice

QCD simulations allow us to relate physical observables directly to the high-energy MS

Yukawa couplings, in principle,3 they do not suffer from the KM ambiguity, which is a

feature of chiral Lagrangians. It is reasonable to expect that the precision on the ratio z

will increase further in the near future.

Combining everything together we get the following numerical estimate for the ax-

ion mass

ma = 5.70(6)(4) µeV

(

1012GeV

fa

)

= 5.70(7) µeV

(

1012GeV

fa

)

, (2.22)

where the first error comes from the up-down quark mass ratio uncertainties (2.21) while

the second comes from the uncertainties in the low energy constants (2.20). The total error

of ∼1% is much smaller than the relative errors in the quark mass ratio (∼6%) and in the

NLO couplings (∼30÷60%) because of the weaker dependence of the axion mass on these

quantities

ma =

[

5.70 + 0.06
z − 0.48

0.03
− 0.04

103lr7 − 7

4

+ 0.017
103(hr1 − hr3 − lr4)− 4.8

1.4

]

µeV
1012GeV

fa
. (2.23)

Note that the full NLO correction is numerically smaller than the quark mass error and

its uncertainty is dominated by lr7. The error on the latter is particularly large because of

a partial cancellation between Lr
7 and Lr

8 in eq. (2.20). The numerical irrelevance of the

other NLO couplings leaves a lot of room for improvement should lr7 be extracted directly

from Lattice QCD.

3Modulo well-known effects present when chiral non-preserving fermions are used.
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The value of the pion decay constant we used (fπ = 92.21(14)MeV) [43] is extracted

from π+ decays and includes the leading QED corrections, other O(αem) corrections to

ma are expected to be sub-percent. Further reduction of the error on the axion mass may

require a dedicated study of this source of uncertainty as well.

As a by-product we also provide a comparably high precision estimate of the topological

susceptibility itself

χ
1/4
top =

√

mafa = 75.5(5)MeV , (2.24)

against which lattice simulations can be calibrated.

2.2 The potential: self-coupling and domain-wall tension

Analogously to the mass, the full axion potential can be straightforwardly computed at

NLO. There are three contributions: the pure Coleman-Weinberg 1-loop potential from

pion loops, the tree-level contribution from the NLO Lagrangian, and the corrections from

the renormalization of the tree-level result, when rewritten in terms of physical quantities

(mπ and fπ). The full result is

V (a)NLO =−m2
π

(

a

fa

)

f2
π

{

1− 2
m2

π

f2
π

[

lr3 + lr4 −
(md −mu)

2

(md +mu)2
lr7 −

3

64π2
log

(

m2
π

µ2

)]

+
m2

π

(

a
fa

)

f2
π

[

hr1 − hr3 + lr3 +
4m2

um
2
d

(mu +md)4

m8
π sin

2
(

a
fa

)

m8
π

(

a
fa

) lr7

− 3

64π2

(

log

(

m2
π

(

a
fa

)

µ2

)

− 1

2

)]}

(2.25)

where m2
π(θ) is the function defined in eq. (2.16), and all quantities have been rewritten

in terms of the physical NLO quantities.4 In particular the first line comes from the NLO

corrections of the tree-level potential while the second line is the pure NLO correction to

the effective potential.

The dependence on the axion is highly non-trivial, however the NLO corrections ac-

count for only up to few percent change in the shape of the potential (for example the

difference in vacuum energy between the minimum and the maximum of the potential

changes by 3.5% when NLO corrections are included). The numerical values for the addi-

tional low-energy constants lr3,4 are reported in appendix A. We thus know the full QCD

axion potential at the percent level!

It is now easy to extract the self-coupling of the axion at NLO by expanding the

effective potential (2.25) around the origin

V (a) = V0 +
1

2
m2

aa
2 +

λa

4!
a4 + . . . (2.26)

We find

λa =− m2
a

f2
a

{

m2
u −mumd +m2

d

(mu +md)2
(2.27)

+6
m2

π

f2
π

mumd

(mu +md)2

[

hr1 − hr3 − lr4 +
4l̄4 − l̄3 − 3

64π2
− 4

m2
u −mumd +m2

d

(mu +md)2
lr7

]}

,

4See also [44] for a related result computed in terms of the LO quantities.
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where ma is the physical one-loop corrected axion mass of eq. (2.19). Numerically we have

λa = −0.346(22) · m
2
a

f2
a

, (2.28)

the error on this quantity amounts to roughly 6% and is dominated by the uncertainty on lr7.

Finally the NLO result for the domain wall tensions can be simply extracted from the

definition

σ = 2fa

∫ π

0
dθ
√

2[V (θ)− V (0)] , (2.29)

using the NLO expression (2.25) for the axion potential. The numerical result is

σ = 8.97(5)maf
2
a , (2.30)

the error is sub percent and it receives comparable contributions from the errors on lr7 and

the quark masses.

As a by-product we also provide a precision estimate of the topological quartic moment

of the topological charge Qtop

b2 ≡ −
〈Q4

top〉 − 3〈Q2
top〉2

12〈Q2
top〉

=
f2
aV

′′′′(0)

12V ′′(0)
=

λaf
2
a

12m2
a

= −0.029(2) , (2.31)

to be compared to the cosine-like potential binst2 = −1/12 ≃ −0.083.

2.3 Coupling to photons

Similarly to the axion potential, the coupling to photons (2.17) also gets QCD corrections at

NLO, which are completely model independent. Indeed derivative couplings only produce

ma suppressed corrections which are negligible, thus the only model dependence lies in the

anomaly coefficient E/N .

For physical quark masses the QCD contribution (the second term in eq. (2.17)) is

accidentally close to −2. This implies that models with E/N = 2 can have anomalously

small coupling to photons, relaxing astrophysical bounds. The degree of this cancellation

is very sensitive to the uncertainties from the quark mass and the higher order corrections,

which we compute here for the first time.

At NLO new couplings appear from higher-dimensional operators correcting the WZW

Lagrangian. Using the basis of [45], the result reads

gaγγ =
αem

2πfa

{

E

N
− 2

3

4md +mu

md+mu
+

m2
π

f2
π

8mumd

(mu+md)2

[

8

9

(

5c̃W3 +c̃W7 +2c̃W8
)

− md−mu

md+mu
lr7

]}

.

(2.32)

The NLO corrections in the square brackets come from tree-level diagrams with insertions

of NLO WZW operators (the terms proportional to the c̃Wi couplings5) and from a-π0

mixing diagrams (the term proportional to lr7). One loop diagrams exactly cancel similarly

5For simplicity we have rescaled the original couplings cWi of [45] into c̃Wi ≡ cWi (4πfπ)
2.
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to what happens for π → γγ and η → γγ [46]. Notice that the lr7 term includes the mu/ms

contributions which one obtains from the 3-flavor tree-level computation.

Unlike the NLO couplings entering the axion mass and potential little is known about

the couplings c̃Wi , so we describe the way to extract them here.

The first obvious observable we can use is the π0 → γγ width. Calling δi the relative

correction at NLO to the amplitude for the i process, i.e.

ΓNLO
i ≡ Γtree

i (1 + δi)
2 , (2.33)

the expressions for Γtree
πγγ and δπγγ read

Γtree
πγγ =

α2
em

(4π)3
m3

π

f2
π

, δπγγ =
16

9

m2
π

f2
π

[

md −mu

md +mu

(

5c̃W3 +c̃W7 +2c̃W8
)

− 3

(

c̃W3 +c̃W7 +
c̃W11
4

)]

.

(2.34)

Once again the loop corrections are reabsorbed by the renormalization of the tree-level pa-

rameters and the only contributions come from the NLO WZW terms. While the isospin

breaking correction involves exactly the same combination of couplings entering the ax-

ion width, the isospin preserving one does not. This means that we cannot extract the

required NLO couplings from the pion width alone. However in the absence of large can-

cellations between the isospin breaking and the isospin preserving contributions we can

use the experimental value for the pion decay rate to estimate the order of magnitude of

the corresponding corrections to the axion case. Given the small difference between the

experimental and the tree-level prediction for Γπ→γγ the NLO axion correction is expected

of order few percent.

To obtain numerical values for the unknown couplings we can try to use the 3-flavor

theory, in analogy with the axion mass computation. In fact at NLO in the 3-flavor theory

the decay rates π → γγ and η → γγ only depend on two low-energy couplings that can

thus be determined. Matching these couplings to the 2-flavor theory ones we are able to

extract the required combination entering in the axion coupling. Because the c̃Wi couplings

enter eq. (2.32) only at NLO in the light quark mass expansion we only need to determine

them at LO in the mu,d expansion.

The η → γγ decay rate at NLO is

Γtree
η→γγ =

α2
em

3(4π)3
m3

η

f2
η

,

δ(3)ηγγ =
32

9

m2
π

f2
π

[

2ms − 4mu −md

mu +md
C̃W
7 + 6

2ms −mu −md

mu +md
C̃W
8

]

≃ 64

9

m2
K

f2
π

(

C̃W
7 + 6 C̃W

8

)

, (2.35)

where in the last step we consistently neglected higher order corrections O(mu,d/ms). The

3-flavor couplings C̃W
i ≡ (4πfπ)

2CW
i are defined in [45]. The expression for the correction

to the π → γγ amplitude with 3 flavors also receives important corrections from the π-η
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mixing ǫ2,

δ(3)πγγ =
32

9

m2
π

f2
π

[

md − 4mu

mu +md
C̃W
7 + 6

md −mu

mu +md
C̃W
8

]

+
fπ
fη

ǫ2√
3
(1 + δηγγ) , (2.36)

where the π-η mixing derived in [27] can be conveniently rewritten as

ǫ2√
3
≃ md −mu

6ms

[

1 +
4m2

K

f2
π

(

lr7 −
1

64π2

)]

, (2.37)

at leading order in mu,d. In both decay rates the loop corrections are reabsorbed in the

renormalization of the tree-level amplitude.6

By comparing the light quark mass dependence in eqs. (2.34) and (2.36) we can match

the 2 and 3 flavor couplings as follows

c̃W3 + c̃W7 +
c̃W11
4

= C̃W
7 ,

5c̃W3 + c̃W7 + 2c̃W8 = 5C̃W
7 + 12C̃W

8 +
3

32

f2
π

m2
K

[

1 + 4
m2

K

fπfη

(

lr7 −
1

64π2

)]

(1 + δηγγ) . (2.38)

Notice that the second combination of couplings is exactly the one needed for the axion-

photon coupling. By using the experimental results for the decay rates (reported in ap-

pendix A), we can extract CW
7,8. The result is shown in figure 2, the precision is low for two

reasons: 1) C̃W
7,8 are 3 flavor couplings so they suffer from an intrinsic O(30%) uncertainty

from higher order corrections,7 2) for π → γγ the experimental uncertainty is not smaller

than the NLO corrections we want to fit.

For the combination 5c̃W3 + c̃W7 + 2c̃W8 we are interested in, the final result reads

5c̃W3 + c̃W7 + 2c̃W8 =
3f2

π

64m2
K

mu +md

mu

{[

1 + 4
m2

K

f2
π

(

lr7 −
1

64π2

)]

fπ
fη

(1 + δηγγ)

+ 3δηγγ − 6
m2

K

m2
π

δπγγ

}

= 0.033(6) . (2.39)

When combined with eq. (2.32) we finally get

gaγγ =
αem

2πfa

[

E

N
− 1.92(4)

]

=

[

0.203(3)
E

N
− 0.39(1)

]

ma

GeV2
. (2.40)

Note that despite the rather large uncertainties of the NLO couplings we are able to extract

the model independent contribution to a → γγ at the percent level. This is due to the fact

that, analogously to the computation of the axion mass, the NLO corrections are suppressed

by the light quark mass values. Modulo experimental uncertainties eq. (2.40) would allow

the parameter E/N to be extracted from a measurement of gaγγ at the percent level.

6NLO corrections to π and η decay rates to photons including isospin breaking effects were also computed

in [47]. For the η → γγ rate we disagree in the expression of the terms O(mu,d/ms), which are however

subleading. For the π → γγ rate we also included the mixed term coming from the product of the NLO

corrections to ǫ2 and to Γηγγ . Formally this term is NNLO but given that the NLO corrections to both ǫ2
and Γηγγ are of the same size as the corresponding LO contributions such terms cannot be neglected.

7We implement these uncertainties by adding a 30% error on the experimental input values of δπγγ

and δηγγ .
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Figure 2. Result of the fit of the 3-flavor couplings C̃W
7,8 from the decay width of π → γγ and

η → γγ, which include the experimental uncertainties and a 30% systematic uncertainty from higher

order corrections.
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Figure 3. The relation between the axion mass and its coupling to photons for the three reference

models with E/N = 0, 8/3 and 2. Notice the larger relative uncertainty in the latter model due to

the cancellation between the UV and IR contributions to the anomaly (the band corresponds to 2σ

errors.). Values below the lower band require a higher degree of cancellation.
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For the three reference models with respectively E/N = 0 (such as hadronic or KSVZ-

like models [6, 7] with electrically neutral heavy fermions), E/N = 8/3 (as in DFSZ

models [8, 9] or KSVZ models with heavy fermions in complete SU(5) representations) and

E/N = 2 (as in some KSVZ “unificaxion” models [48]) the coupling reads

gaγγ =















−2.227(44) · 10−3/fa E/N = 0

0.870(44) · 10−3/fa E/N = 8/3

0.095(44) · 10−3/fa E/N = 2

. (2.41)

Even after the inclusion of NLO corrections the coupling to photons in E/N = 2 models

is still suppressed. The current uncertainties are not yet small enough to completely rule

out a higher degree of cancellation, but a suppression bigger than O(20) with respect to

E/N = 0 models is highly disfavored. Therefore the result for g
E/N=2
aγγ of eq. (2.41) can

now be taken as a lower bound to the axion coupling to photons, below which tuning is

required. The result is shown in figure 3.

2.4 Coupling to matter

Axion couplings to matter are more model dependent as they depend on all the UV cou-

plings defining the effective axial current (the constants c0q in the last term of eq. (2.1)).

In particular, there is a model independent contribution coming from the axion coupling

to gluons (and to a lesser extent to the other gauge bosons) and a model dependent part

contained in the fermionic axial couplings.

The couplings to leptons can be read off directly from the UV Lagrangian up to the

one loop effects coming from the coupling to the EW gauge bosons. The couplings to

hadrons are more delicate because they involve matching hadronic to elementary quark

physics. Phenomenologically the most interesting ones are the axion couplings to nucleons,

which could in principle be tested from long range force experiments, or from dark-matter

direct-detection like experiments.

In principle we could attempt to follow a similar procedure to the one used in the previ-

ous section, namely to employ chiral Lagrangians with baryons and use known experimental

data to extract the necessary low energy couplings. Unfortunately effective Lagrangians

involving baryons are on much less solid ground — there are no parametrically large energy

gaps in the hadronic spectrum to justify the use of low energy expansions.

A much safer thing to do is to use an effective theory valid at energies much lower

than the QCD mass gaps ∆ ∼ O(100MeV). In this regime nucleons are non-relativistic,

their number is conserved and they can be treated as external fermionic currents. For

exchanged momenta q parametrically smaller than ∆, heavier modes are not excited and

the effective field theory is under control. The axion, as well as the electro-weak gauge

bosons, enters as classical sources in the effective Lagrangian, which would otherwise be a

free non-relativistic Lagrangian at leading order. At energies much smaller than the QCD

mass gap the only active flavor symmetry we can use is isospin, which is explicitly broken

only by the small quark masses (and QED effects). The leading order effective Lagrangian
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for the 1-nucleon sector reads

LN = N̄vµDµN + 2gAAi
µ N̄SµσiN + 2gq0 Â

q
µ N̄SµN + σ〈Ma〉N̄N + bN̄MaN + . . . (2.42)

where N = (p, n) is the isospin doublet nucleon field, vµ is the four-velocity of the non-

relativistic nucleons, Dµ = ∂µ − Vµ, Vµ is the vector external current, σi are the Pauli

matrices, the index q = (u+d
2 , s, c, b, t) runs over isoscalar quark combinations, 2N̄SµN =

N̄γµγ5N is the nucleon axial current, Ma = cos(Qaa/fa)diag(mu,md), and Ai
µ and Âq

µ

are the axial isovector and isoscalar external currents respectively. Neglecting SM gauge

bosons, the external currents only depend on the axion field as follows

Âq
µ = cq

∂µa

2fa
, A3

µ = c(u−d)/2
∂µa

2fa
, A1,2

µ = Vµ = 0 , (2.43)

where we used the short-hand notation c(u±d)/2 ≡ cu±cd
2 . The couplings cq = cq(Q) com-

puted at the scale Q will in general differ from the high scale ones because of the running

of the anomalous axial current [49]. In particular under RG evolution the couplings cq(Q)

mix, so that in general they will all be different from zero at low energy. We explain the

details of this effect in appendix B.

Note that the linear axion couplings to nucleons are all contained in the derivative in-

teractions through Aµ while there are no linear interactions8 coming from the non deriva-

tive terms contained in Ma. In eq. (2.42) dots stand for higher order terms involving

higher powers of the external sources Vµ, Aµ, and Ma. Among these the leading effects

to the axion-nucleon coupling will come from isospin breaking terms O(MaAµ).
9 These

corrections are small O(md−mu

∆ ), below the uncertainties associated to our determination

of the effective coupling gq0, which are extracted from lattice simulations performed in the

isospin limit.

Eq. (2.42) should not be confused with the usual heavy baryon chiral Lagrangian [50]

because here pions have been integrated out. The advantage of using this Lagrangian

is clear: for axion physics the relevant scale is of order ma, so higher order terms are

negligibly small O(ma/∆). The price to pay is that the couplings gA and gq0 can only be

extracted from very low-energy experiments or lattice QCD simulations. Fortunately the

combination of the two will be enough for our purposes.

In fact, at the leading order in the isospin breaking expansion, gA and gq0 can simply

be extracted by matching single nucleon matrix elements computed with the QCD+axion

Lagrangian (2.4) and with the effective axion-nucleon theory (2.42). The result is simply:

gA = ∆u−∆d , gq0 = (∆u+∆d,∆s,∆c,∆b,∆t) , sµ∆q ≡ 〈p|q̄γµγ5q|p〉 , (2.44)

where |p〉 is a proton state at rest, sµ its spin and we used isospin symmetry to relate

proton and neutron matrix elements. Note that the isoscalar matrix elements ∆q inside gq0

8This is no longer true in the presence of extra CP violating operators such as those coming from the

CKM phase or new physics. The former are known to be very small, while the latter are more model

dependent and we will not discuss them in the current work.
9Axion couplings to EDM operators also appear at this order.
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depend on the matching scale Q, such dependence is however canceled once the couplings

gq0(Q) are multiplied by the corresponding UV couplings cq(Q) inside the isoscalar currents

Âq
µ. Non-singlet combinations such as gA are instead protected by non-anomalous Ward

identities.10 For future convenience we set the matching scale Q = 2GeV.

We can therefore write the EFT Lagrangian (2.42) directly in terms of the UV cou-

plings as

LN = N̄vµDµN +
∂µa

fa

{

cu − cd
2

(∆u−∆d)N̄Sµσ3N

+

[

cu + cd
2

(∆u+∆d) +
∑

q=s,c,b,t

cq∆q

]

N̄SµN

}

. (2.45)

We are thus left to determine the matrix elements ∆q. The isovector combination can

be obtained with high precision from β-decays [43]

∆u−∆d = gA = 1.2723(23) , (2.46)

where the tiny neutron-proton mass splitting mn −mp = 1.3MeV guarantees that we are

within the regime of our effective theory. The error quoted is experimental and does not

include possible isospin breaking corrections.

Unfortunately we do not have other low energy experimental inputs to determine

the remaining matrix elements. Until now such information has been extracted from a

combination of deep-inelastic-scattering data and semi-leptonic hyperon decays: the former

suffer from uncertainties coming from the integration over the low-x kinematic region, which

is known to give large contributions to the observable of interest; the latter are not really

within the EFT regime, which does not allow a reliable estimate of the accuracy.

Fortunately lattice simulations have recently started producing direct reliable results

for these matrix elements. From [51–56] (see also [57, 58]) we extract11 the following inputs

computed at Q = 2GeV in MS

gud0 = ∆u+∆d = 0.521(53) , ∆s = −0.026(4) , ∆c = ±0.004 . (2.47)

Notice that the charm spin content is so small that its value has not been determined

yet, only an upper bound exists. Similarly we can neglect the analogous contributions

from bottom and top quarks which are expected to be even smaller. As mentioned before,

lattice simulations do not include isospin breaking effects, these are however expected to

be smaller than the current uncertainties. Combining eqs. (2.46) and (2.47) we thus get:

∆u = 0.897(27) , ∆d = −0.376(27) , ∆s = −0.026(4) , (2.48)

computed at the scale Q = 2GeV.

10This is only true in renormalization schemes which preserve the Ward identities.
11Details in the way the numbers in eq. (2.47) are derived are given in appendix A.
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We can now use these inputs in the EFT Lagrangian (2.45) to extract the corresponding

axion-nucleon couplings:

cp = −0.47(3) + 0.88(3)c0u − 0.39(2)c0d − 0.038(5)c0s

− 0.012(5)c0c − 0.009(2)c0b − 0.0035(4)c0t ,

cn = −0.02(3) + 0.88(3)c0d − 0.39(2)c0u − 0.038(5)c0s

− 0.012(5)c0c − 0.009(2)c0b − 0.0035(4)c0t , (2.49)

which are defined in analogy to the couplings to quarks as

∂µa

2fa
cN N̄γµγ5N , (2.50)

and are scale invariant (as they are defined in the effective theory below the QCD mass

gap). The errors in eq. (2.49) include the uncertainties from the lattice data and those

from higher order corrections in the perturbative RG evolution of the axial current (the

latter is only important for the coefficients of c0s,c,b,t). The couplings c
0
q are those appearing

in eq. (2.1) computed at the high scale fa = 1012GeV. The effect of varying the matching

scale to a different value of fa within the experimentally allowed range is smaller than the

theoretical uncertainties.

A few considerations are in order. The theoretical errors quoted here are dominated

by the lattice results, which for these matrix elements are still in an early phase and

the systematic uncertainties are not fully explored yet. Still the error on the final result

is already good (below ten percent), and there is room for a large improvement which

is expected in the near future. Note that when the uncertainties decrease sufficiently

for results to become sensitive to isospin breaking effects, new couplings will appear in

eq. (2.42). These could in principle be extracted from lattice simulations by studying the

explicit quark mass dependence of the matrix element. In this regime the experimental

value of the isovector coupling gA cannot be used anymore because of different isospin

breaking corrections to charged versus neutral currents.

The numerical values of the couplings we get are not too far off those already in

the literature (see e.g. [43]). However, because of the caveats in the relation of the deep

inelastic scattering and hyperon data to the relevant matrix elements the uncertainties in

those approaches are not under control. On the other hand the lattice uncertainties are

expected to improve in the near future, which would further improve the precision of the

estimate performed with the technique presented here.

The numerical coefficients in eq. (2.49) include the effect of running from the high scale

fa (here fixed to 1012GeV) to the matching scale Q = 2GeV, which we performed at the

NLLO order (more details in appendix B). The running effects are evident from the fact

that the couplings to nucleons depend on all quark couplings including charm, bottom and

top, even though we took the corresponding spin content to vanish. This effect has been

neglected in previous analysis.

Finally it is interesting to observe that there is a cancellation in the model independent

part of the axion coupling to the neutron in KSVZ-like models, where c0q = 0,

cKSVZ
p = −0.47(3) , cKSVZ

n = −0.02(3) , (2.51)
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the coupling to neutrons is suppressed with respect to the coupling to protons by a factor

O(10) at least, in fact this coupling still is compatible with 0. The cancellation can be

understood from the fact that, neglecting running and sea quark contributions

cn ∼
〈

Qa ·
(

∆d 0

0 ∆u

)〉

∝ md∆d+mu∆u , (2.52)

and the down-quark spin content of the neutron ∆u is approximately ∆u ≈ −2∆d, i.e.

the ratio mu/md is accidentally close to the ratio between the number of up over down

valence quarks in the neutron. This cancellation may have important implications on axion

detection and astrophysical bounds.

In models with c0q 6= 0 both the couplings to proton and neutron can be large, for

example for the DFSZ axion models, where c0u,c,t =
1
3 sin

2 β = 1
3 −c0d,s,b at the scale Q ≃ fa,

we get

cDFSZ
p = −0.617 + 0.435 sin2 β ± 0.025 , cDFSZ

n = 0.254− 0.414 sin2 β ± 0.025 . (2.53)

A cancellation in the coupling to neutrons is still possible for special values of tan β.

3 The hot axion: finite temperature results

We now turn to discuss the properties of the QCD axion at finite temperature. The

temperature dependence of the axion potential and its mass are important in the early

Universe because they control the relic abundance of axions today (for a review see e.g. [59]).

The most model independent mechanism of axion production in the early universe, the

misalignment mechanism [15–17], is almost completely determined by the shape of the

axion potential at finite temperature and its zero temperature mass. Additionally, extra

contributions, such as string and domain walls can also be present if the PQ preserving

phase is restored after inflation, and might be the dominant source of dark matter [60–66].

Their contribution also depends on the finite temperature behavior of the axion potential,

although there are larger uncertainties in this case coming from the details of their evolution

(for a recent numerical study see e.g. [67]).12

One may naively think that, as the temperature is raised, our knowledge of axion prop-

erties gets better and better — after all the higher the temperature the more perturbative

QCD gets. The opposite is instead true. In this section we show that, at the moment, the

precision with which we know the axion potential worsens as the temperature is increased!

At low temperature this is simple to understand. Our high precision estimates at zero

temperature rely on chiral Lagrangians whose convergence degrades as the temperature

approaches the critical temperature Tc ≃160-170MeV where QCD starts deconfining. At

Tc the chiral approach is already out of control. Fortunately around the QCD cross-over

region lattice computations are possible. The current precision is not yet competitive with

our low temperature results but they are expected to improve soon. At higher temperatures

12Axion could also be produced thermally in the early universe, this population would be sub-dominant

for the allowed values of fa [68–71] but might leave a trace as dark radiation.
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there are no lattice results available. For T ≫ Tc the dilute instanton gas approximation,

being a perturbative computation, is believed to give a reliable estimate of the axion

potential. It is known however that finite temperature QCD converges fast only for very

large temperatures, above O(106)GeV (see e.g. [72]). The situation is particularly bad for

the instanton computation. The screening of QCD charge causes an exponential sensitivity

to quantum thermal loop effects. The resulting uncertainty on the axion mass and potential

can easily be one order of magnitude or more! This is compatible with a recent lattice

computation [31], performed without quarks, which found a high temperature axion mass

differing from the instanton prediction at T = 1GeV by a factor ∼ 10. More recent

preliminary results from simulations with dynamical quarks [29] seem to show an even

bigger disagreement, perhaps suggesting that at these temperatures even the form of the

action is very different from the instanton prediction.

3.1 Low temperatures

For temperatures T below Tc axion properties can reliably be computed within finite tem-

perature chiral Lagrangians [73, 74]. Given the QCD mass gap in this regime temperature

effects are exponentially suppressed.

The computation of the axion mass is straightforward. Note that the temperature

dependence can only come from the non local contributions that can feel the finite temper-

ature. At one loop the axion mass only receives contribution from the local NLO couplings

once rewritten in terms of the physical mπ and fπ [75]. This means that the leading tem-

perature dependence is completely determined by the temperature dependence of mπ and

fπ, and in particular is the same as that of the chiral condensate [73–75]

m2
a(T )

m2
a

=
χtop(T )

χtop

NLO
=

m2
π(T )f

2
π(T )

m2
πf

2
π

=
〈q̄q〉T
〈q̄q〉 = 1− 3

2

T 2

f2
π

J1

[

m2
π

T 2

]

, (3.1)

where

Jn[ξ] =
1

(n− 1)!

(

− ∂

∂ξ

)n

J0[ξ] , J0[ξ] ≡ − 1

π2

∫ ∞

0
dq q2 log

(

1− e−
√

q2+ξ
)

. (3.2)

The function J1(ξ) asymptotes to ξ1/4e−
√
ξ/(2π)3/2 at large ξ and to 1/12 at small ξ. Note

that in the ratio m2
a(T )/m

2
a the dependence on the quark masses and the NLO couplings

cancel out. This means that, at T ≪ Tc, this ratio is known at a even better precision than

the axion mass at zero temperature itself.

Higher order corrections are small for all values of T below Tc. There are also contri-

butions from the heavier states that are not captured by the low energy Lagrangian. In

principle these are exponentially suppressed by e−m/T , where m is the mass of the heavy

state. However, because the ratio m/Tc is not very large and a large number of states

appear above Tc there is a large effect at around Tc, where the chiral expansion ceases to

reliably describe QCD physics. An in depth discussion of such effects appears in [76] for

the similar case of the chiral condensate.

The bottom line is that for T . Tc eq. (3.1) is a very good approximation for the

temperature dependence of the axion mass. At some temperature close to Tc eq. (3.1)
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suddenly ceases to be a good approximation and full non-perturbative QCD computations

are required.

The leading finite temperature dependence of the full potential can easily be derived

as well,

V (a;T )

V (a)
= 1 +

3

2

T 4

f2
πm

2
π

(

a
fa

) J0

[

m2
π

(

a
fa

)

T 2

]

. (3.3)

The temperature dependent axion mass, eq. (3.1), can also be derived from eq. (3.3) by

taking the second derivative with respect to the axion. The fourth derivative provides the

temperature correction to the self-coupling,

λa(T )

λa
= 1− 3

2

T 2

f2
π

J1

[

m2
π

T 2

]

+
9

2

m2
π

f2
π

mumd

m2
u −mumd +m2

d

J2

[

m2
π

T 2

]

. (3.4)

3.2 High temperatures

While the region around Tc is clearly in the non-perturbative regime, for T ≫ Tc QCD

is expected to become perturbative. At large temperatures the axion potential can thus

be computed in perturbation theory, around the dilute instanton gas background, as de-

scribed in [77]. The point is that, at high temperatures large gauge configurations, which

would dominate at zero temperature because of the larger gauge coupling, are exponen-

tially suppressed because of Debye screening. This makes the instanton computation a

sensible one.

The prediction for the axion potential is of the form V inst(a;T ) = −f2
am

2
a(T ) cos(a/fa)

where

f2
am

2
a(T ) ≃ 2

∫

dρn(ρ, 0)e
− 2π2

g2s
m2

D1ρ
2+...

, (3.5)

the integral is over the instanton size ρ, n(ρ, 0) ∝ mumde
−8π2/g2s is the zero temperature

instanton density, m2
D1 = g2sT

2(1 + nf/6) is the Debye mass squared at LO, nf is the

number of flavor degrees of freedom active at the temperature T , and the dots stand for

smaller corrections (see [77] for more details). The functional dependence of eq. (3.5) on

temperature is approximately a power law T−α where α ≈ 7 + nf/3 + . . . is fixed by the

QCD beta function.

There is however a serious problem with this type of computation. The dilute instanton

gas approximation relies on finite temperature perturbative QCD. The latter really becomes

perturbative only at very high temperatures T & 106GeV due to IR divergences of the

thermal bath [78]. Further, due to the exponential dependence on quantum corrections,

the axion mass convergence is even worse than many other observables. In fact the LO

estimate of the Debye mass m2
D1 receives O(1) corrections at the NLO for temperatures

around few GeV [79, 80]. Non-perturbative computations from lattice simulations [81–83]

confirm the unreliability of the LO estimate.

Both lattice [83] and NLO [79] results give a Debye mass mD ≃ 1.5mD1 where mD1

is the leading perturbative result. Since the Debye mass enters the exponent of eq. (3.5)

higher order effects can easily shift the axion mass at a given temperature by an order of

magnitude or more.
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Figure 4. The temperature dependent axion mass normalized to the zero temperature value

(corresponding to the light quark mass values in each computation). In blue the prediction from

chiral Lagrangians. In different shades of red the lattice data from ref. [28] for different lattice

volumes, and in shades of green the preliminary lattice data from [29] for different lattice spacings.

The dotted grey curve shows the interacting instanton liquid model (IILM) result [84].

Given the failure of perturbation theory in this regime of temperatures even the actual

form of eq. (3.5) may be questioned and the full answer could differ from the semiclassical

instanton computation even in the temperature dependence and in the shape of the poten-

tial. Because of this, direct computations from non-perturbative methods such as lattice

QCD are highly welcome.

Recently several computations of the temperature dependence of the topological sus-

ceptibility for pure SU(3) Yang-Mills appeared [30, 31]. While computations in this theory

cannot be used for the QCD axion,13 they are useful to test the instanton result. In particu-

lar in [31] an explicit comparison was made in the interval of temperatures T/Tc ∈ [0.9, 4.0].

The results for the temperature dependence and the quartic derivative of the potential are

compatible with those predicted by the instanton approximation, however the overall size

of the topological susceptibility was found one order of magnitude bigger. While the size

of the discrepancy seem to be compatible with a simple rescaling of the Debye mass, it

goes in the opposite direction with respect to the one suggested by higher order effects,

preferring a smaller value for mD ≃ 0.5mD1. This fact betrays a deeper modification of

eq. (3.5) than a simple renormalization of mD.

Unfortunately no full studies for real QCD are available yet in the same range of

temperatures. Results across the crossover region, for T ∈ [140, 200]MeV, are available

in [28], which used light quark masses corresponding to mπ ≃ 200MeV. Figure 4 compares

these results with the ChPT ones, with nice agreement around T ∼ 140MeV. The plot

13Note that quarkless QCD differs from real QCD both quantitatively (e.g. χ(0)1/4 = 181 MeV vs

χ(0)1/4 = 75.5 MeV, Tc ≃ 300MeV vs Tc ≃ 160MeV) and qualitatively (the former undergoes a first order

phase transition across Tc while the latter only a crossover).
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is in terms of the ratio ma(T )/ma, which at low temperatures weakens the quark mass

dependence, as manifest in the ChPT computation. However, at high temperature this may

not be true anymore. For example the dilute instanton computation suggests m2
a(T )/m

2
a ∝

(mu + md) ∝ m2
π, which implies that the slope across the crossover region may be very

sensitive to the value of the light quark masses. In future lattice computations it is thus

crucial to use physical quark masses, or at least to perform a reliable extrapolation to the

physical point.

Additionally, while the volume dependence of the results in [28] seems to be under

control, the lattice spacing used was rather coarse (a > 0.125 fm) and furthermore not con-

stant with the temperature. Should the strong dependence on the lattice spacing observed

in [31] be also present in full QCD lattice simulations a continuum limit extrapolation

would become compulsory.

More recently, new preliminary lattice results appeared in [29], for a wider range of

temperatures between 150 and 500MeV. This analysis was performed with 4 dynamical

flavors, including the charm quark, but with heavier light quark masses, corresponding to

mπ ≃ 370MeV. These results are also shown in figure 4, and suggest that χ(T ) decreases

with temperature much more slowly than in the quarkless case, in clear contradiction to the

instanton calculation. The analysis also includes different lattice spacing, showing strong

discretization effects. Given the strong dependence on the lattice spacing observed, and

the large pion mass employed, a proper analysis of the data is required before a direct

comparison with the other results can be performed. In particular, the low temperature

lattice points exceed the zero temperature chiral perturbation theory result (given their

pion mass), which is presumably a consequence of the finite lattice spacing.

If the results for the temperature slope in [29] are confirmed in the continuum limit

and for physical quark masses, it would imply a temperature dependence for the topolog-

ical susceptibility (χ(T ) ∼ T−2) departing strongly from the one predicted by instanton

computations. As we will see in the next section this could have dramatic consequences in

the computation of the axion relic abundance.

For completeness in figure 4 we also show the result of [84] obtained from an instanton-

inspired model, which is sometimes used as input in the computation of the axion relic

abundance. Although the dependence at low temperatures explicitly violates low-energy

theorems the behaviour at higher temperature is similar to the lattice data by [28], although

with a quite different Tc.

3.3 Implications for dark matter

The amount of axion dark matter produced in the early Universe and its properties depend

on whether PQ symmetry is broken or not after inflation. If the PQ symmetry is broken

before inflation (HI . fa) and not restored during reheating (Tmax . fa), after the Big

Bang the axion field is uniformly constant over the observable Universe, a(x) = θ0fa. The

evolution of the axion field, in particular of its zero mode, is described by the equation

of motion

ä+ 3Hȧ+m2
a (T ) fa sin

(

a

fa

)

= 0 . (3.6)
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Figure 5. Values of fa such that the misalignment contribution to the axion abundance matches

the observed dark matter one for different choices of the parameters of the axion mass dependence

on temperature. For definiteness the plot refers to the case where the PQ phase is restored after the

end of inflation (corresponding approximately to the choice θ0 = 2.15). The temperatures where

the axion starts oscillating, i.e. satisfying the relation ma(T ) = 3H(T ), are also shown. The two

points corresponding to the dilute instanton gas prediction and the recent preliminary lattice data

are shown for reference.

where we assumed that the shape of the axion potential is well described by the dilute

instanton gas approximation, i.e. cosine like. As the Universe cools, the Hubble parameter

decreases while the axion potential increases. When the pull from the latter becomes

comparable to the Hubble friction, i.e. ma(T ) ∼ 3H, the axion field starts oscillating with

frequency ma. This typically happens at temperatures above Tc, around the GeV scale,

depending on the value of fa and the temperature dependence of the axion mass. Soon

after that the comoving number density na = 〈maa
2〉 becomes an adiabatic invariant and

the axion behaves as cold dark matter.

Alternatively PQ symmetry may be broken after inflation. In this case, immediately

after the breaking the axion field finds itself randomly distributed over the whole range

[0, 2πfa]. Such field configurations include strings which evolve with a complex dynamics,

but are known to approach a scaling solution [64]. At temperatures close to Tc, when

the axion field starts rolling because of the QCD potential, domain walls also form. In

phenomenologically viable models, the full field configuration, including strings and domain

walls, eventually decays into axions, whose abundance is affected by large uncertainties

associated with the evolution and decay of the topological defects. Independently of this

evolution there is a misalignment contribution to the dark matter relic density from axion

modes with very close to zero momentum. The calculation of this is the same as for the case
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Figure 6. The axion parameter space as a function of the axion decay constant and the Hub-

ble parameter during inflation. The bounds are shown for the two choices for the axion mass

parametrization suggested by instanton computations (continuous lines) and by preliminary lat-

tice results (dashed lines), corresponding to the labeled points in figure 5. In the green shaded

region the misalignment axion relic density can make up the entire dark matter abundance, and

the isocurvature limits are obtained assuming that this is the case. In the white region the axion

misalignment population can only be a sub-dominant component of dark matter. The region where

PQ symmetry is restored after inflation does not include the contributions from topological defects,

the lines thus only represent conservative upper bounds to the value of fa. Ongoing (solid) and

proposed (dashed empty) experiments testing the available axion parameter space are represented

on the right side.

where inflation happens after PQ breaking, except that the relic density must be averaged

over all possible values of θ0. While the misalignment contribution gives only a part of the

full abundance, it can still be used to give an upper bound to fa in this scenario.

The current axion abundance from misalignment, assuming standard cosmological evo-

lution, is given by

Ωa =
86

33

Ωγ

Tγ

n⋆
a

s⋆
ma , (3.7)

where Ωγ and Tγ are the current photon abundance and temperature respectively and s⋆

and n⋆
a are the entropy density and the average axion number density computed at any

moment in time t⋆ sufficiently after the axion starts oscillating such that n⋆
a/s

⋆ is constant.

The latter quantity can be obtained by solving eq. (3.6) and depends on 1) the QCD

energy and entropy density around Tc, 2) the initial condition for the axion field θ0, and

3) the temperature dependence of the axion mass and potential. The first is reasonably

well known from perturbative methods and lattice simulations (see e.g. [85, 86]). The

initial value θ0 is a free parameter in the first scenario, where the PQ transition happen
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before inflation — since in this case θ0 can be chosen in the whole interval [0, 2π] only an

upper bound to Ωa can be obtained in this case. In the scenario where the PQ phase is

instead restored after inflation n⋆
a is obtained by averaging over all θ0, which numerically

corresponds to choosing14 θ0 ≃ 2.1. Since θ0 is fixed, Ωa is completely determined as a

function of fa in this case. At the moment the biggest uncertainty on the misalignment

contribution to Ωa comes from our knowledge of ma(T ). Assuming that ma(T ) can be

approximated by the power law

m2
a(T ) = m2

a(1 GeV)

(

GeV

T

)α

= m2
a

χ(1 GeV)

χ(0)

(

GeV

T

)α

,

around the temperatures where the axion starts oscillating, eq. (3.6) can easily be inte-

grated numerically. In figure 5 we plot the values of fa that would reproduce the correct

dark matter abundance for different choices of χ(T )/χ(0) and α in the scenario where

θ0 is integrated over. We also show two representative points with parameters (α ≈ 8,

χ(1GeV)/χ(0) ≈ few 10−7) and (α ≈ 2, χ(1GeV)/χ(0) ≈ 10−2) corresponding respec-

tively to the expected behavior from instanton computations and to the suggested one

from the preliminary lattice data in [29]. The figure also shows the corresponding temper-

ature at which the axion starts oscillating, here defined by the condition ma(T ) = 3H(T ).

Notice that for large values of α, as predicted by instanton computations, the sensitivity

to the overall size of the axion mass at fixed temperature (χ(1GeV)/χ(0)) is weak. However

if the slope of the axion mass with the temperature is much smaller, as suggested by

the results in [29], then the corresponding value of fa required to give the correct relic

abundance can even be larger by an order of magnitude (note also that in this case the

temperature at which the axion starts oscillating would be higher, around 4÷5GeV). The

difference between the two cases could be taken as an estimate of the current uncertainty

on this type of computation. More accurate lattice results would be very welcome to assess

the actual temperature dependence of the axion mass and potential.

To show the impact of this uncertainty on the viable axion parameter space and the

experiments probing it, in figure 6 we plot the various constraints as a function of the

Hubble scale during inflation and the axion decay constant. Limits that depend on the

temperature dependence of the axion mass are shown for the instanton and lattice inspired

forms (solid and dashed lines respectively), corresponding to the labeled points in figure 5.

On the right side of the plot we also show the values of fa that will be probed by ongoing

experiments (solid) and those that could be probed by proposed experiments (dashed

empty). Orange colors are used for experiments using the axion coupling to photons, blue

for the others. Experiments in the last column (IAXO and ARIADNE) do not rely on the

axion being dark matter. The boundary of the allowed axion parameter space is constrained

by the CMB limits on tensor modes [87], supernova SN1985 and other astrophysical bounds

including black-hole superradiance.

When the PQ preserving phase is not restored after inflation (i.e. when both the

Hubble parameter during inflation HI and the maximum temperature after inflation Tmax

14The effective θ0 corresponding to the average is somewhat bigger than 〈θ2〉 = π2/3 because of anhar-

monicities of the axion potential.
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are smaller than the PQ scale) the axion abundance can match the observed dark matter

one for a large range of values of fa and HI by varying the initial axion value θ0. In this

case isocurvature bounds [88] (see e.g. [89] for a recent discussion) constrain HI from above.

At small fa obtaining the correct relic abundance requires θ0 to be close to π, where the

potential is flat, so the the axion begins oscillating at relatively late times. In the limit

θ0 → π the axion energy density diverges. Given the sensitivity of Ωa to θ0 in this regime,

isocurvatures are enhanced by 1/(π − θ0) and the bound on HI is thus strengthened by a

factor π− θ0.
15 Meanwhile, the axion decay constant is bounded from above by black-hole

superradiance. For smaller values of fa axion misalignment can only explain part of the

dark matter abundance. In figure 6 we show the value of fa required to explain ΩDM when

θ0 = 1 and θ0 = 0.01 for the two reference values of the axion mass temperature parameters.

If the PQ phase is instead restored after inflation, e.g. for high scale inflation models,

θ0 is not a free parameter anymore. In this case only one value of fa will reproduce

the correct dark matter abundance. Given our ignorance about the contributions from

topological defect we can use the misalignment computation to give an upper bound on fa.

This is shown on the bottom-right side of the plot, again for the two reference models, as

before. Contributions from higher-modes and topological defects are likely to make such

bound stronger by shifting the forbidden region downwards. Note that while the instanton

behavior for the temperature dependence of the axion mass would point to axion masses

outside the range which will be probed by ADMX (at least in the current version of the

experiment), if the lattice behavior will be confirmed the mass window which will be probed

would look much more promising.

4 Conclusions

We showed that several QCD axion properties, despite being determined by non-

perturbative QCD dynamics, can be computed reliably with high accuracy. In particular

we computed higher order corrections to the axion mass, its self-coupling, the coupling

to photons, the full potential and the domain-wall tension, providing estimates for these

quantities with percent accuracy. We also showed how lattice data can be used to extract

the axion coupling to matter (nucleons) reliably providing estimates with better than 10%

precision. These results are important both experimentally, to assess the actual axion

parameter space probed and to design new experiments, and theoretically, since in the

case of a discovery they would help determining the underlying theory behind the PQ

breaking scale.

We also study the dependence of the axion mass and potential on the temperature,

which affects the axion relic abundance today. While at low temperature such information

can be extracted accurately using chiral Lagrangians at temperatures close to the QCD

crossover and above perturbative methods fail. We also point out that instanton compu-

tations, which are believed to become reliable at least when QCD becomes perturbative

have serious convergence problems, making them unreliable in the whole region of interest.

15This constraint guarantees that we are consistently working in a regime where quantum fluctuations

during inflation are much smaller than the distance of the average value of θ0 from the top of the potential.
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z 0.48(3) l̄3 3(1)

r 27.4(1) l̄4 4.0(3)

mπ 134.98 l7 0.007(4)

mK 498 Lr
7 −0.0003(1)

mη 548 Lr
8 0.00055(17)

fπ 92.2 gA 1.2723(23)

fη/fπ 1.3(1) ∆u+∆d 0.52(5)

Γπγγ 5.16(18) 10−4 ∆s −0.026(4)

Γηγγ 7.63(16) 10−6 ∆c 0.000(4)

Table 1. Numerical input values used in the computations. Dimensionful quantities are given

in MeV. The values of scale dependent low-energy constants are given at the scale µ̄ = 770MeV,

while the scale dependent proton spin content ∆q are given at Q = 2GeV.

Recent lattice results seem indeed to suggest large deviations from the instanton estimates.

We studied the impact that this uncertainty has on the computation of the axion relic abun-

dance and the constraints on the axion parameter space. More dedicated non-perturbative

computations are therefore required to reliably determine the axion relic abundance.
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A Input parameters and conventions

For convenience in table 1 we report the values of the parameters used in this work. When

uncertainties are not quoted it means that their effect was negligible and they have not

been used.

In the following we discuss in more in details the origin of some of these values.

Quark masses. The value of z = mu/md has been extracted from the following lattice

estimates:

z =















0.52(2) [42]

0.50(2)(3) [40]

0.451(4)(8)(12) [41]

(A.1)

which use different techniques, fermion formulations, etc. In [90] the extra preliminary

result z = 0.49(1)(1) is also quoted, which agrees with the results above. Some results are

still preliminary and the study of systematics may not be complete. Indeed the spread from

the central values is somewhat bigger than the quoted uncertainties. Averaging the results

above we get z = 0.48(1). Waiting for more complete results and a more systematic study
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of all uncertainties we used a more conservative error, z = 0.48(3), which better captures

the spread between the different computations.

Axion properties have a much weaker dependence on the strange quark mass which

only enter at higher orders. For definiteness we used the value of the ratio

r ≡ 2ms

mu +md
= 27.4(1) , (A.2)

from [90].

ChPT low energy constants. For the value of the pion decay constant we used the

PDG [43] value:

fπ = 92.21(14) MeV , (A.3)

which is free from the leading EM corrections present in the leptonic decays used for the

estimates.

Following [27] the ratio fη/fπ can be related to fK/fπ, whose value is very well known,

up to higher order corrections. Assuming the usual 30% uncertainty on the SU(3) chiral

estimates we get fη/fπ = 1.3(1).

For the NLO low energy couplings we used the usual conventions of [26, 27]. As

described in the main text we used the matching of the 3 and 2 flavor Lagrangians to

estimate the SU(2) couplings from the SU(3) ones. In particular we only need the values

of Lr
7,8, which we took as

Lr
7 ≡ Lr

7(µ̄) = −0.3(1) · 10−3 , Lr
8 ≡ Lr

8(µ̄) = 0.55(17) · 10−3 , (A.4)

computed at the scale µ̄ = 770MeV. The first number has been extracted from the fit in [37]

using the constraints for Lr
4 in [38]. The second from [38]. A 30% intrinsic uncertainty

from higher order 3-flavor corrections has been added. This intrinsic uncertainty is not

present for the 2-flavor constants where higher order corrections are much smaller.

In the main text we used the values

l̄3 = 3(1) , lr3(µ̄) = − 1

64π2

(

l̄3 + log

(

m2
π

µ̄2

))

,

l̄4 = 4.0(3) , lr4(µ̄) =
1

16π2

(

l̄4 + log

(

m2
π

µ̄2

))

,

extracted from 3-flavor simulations in [38].

From the values above and using the matching in [27] between the 2 and the 3 flavor

theories we can also extract:

l7 = 7(4) 10−3 , hr1 − hr3 − lr4 = −0.0048(14) . (A.5)

Preliminary results using estimates from lattice QCD simulations [91] give l̄3 =

2.97(19)(14), l̄4 = 3.90(8)(14), l7 = 0.0066(54) and Lr
8 = 0.51(4)(12) 10−3. The new

results in [92] using partially quenched simulations give l̄3 = 2.81(19)(45), l̄4 = 4.02(8)(24)

and l7 = 0.0065(38)(2). All these results are in agreement with the numbers used here.
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Proton spin content. While the axial charge, which is equivalent to the isovector spin

content of the proton, is very well known (see discussion around eq. (2.46)) the isosinglet

components are less known.

To estimate gud = ∆u +∆d we use the results in [51–56]. In particular we used [55],

whose value for gA = 1.242(57) is compatible with the experimental one, to estimate the

connected contribution to gud. For the disconnected contribution, which is much more

difficult to simulate, we averaged the results in [53, 54, 56] increasing the error to accom-

modate the spread in central values, which may be due to different systematics. Combining

the results we get

gudconn. + guddisc. = 0.611(48)− 0.090(20) = 0.52(5) . (A.6)

All the results provided here are in the MS scheme at the reference scale Q = 2GeV.

The strange spin contribution only have the disconnected contribution, which we ex-

tract averaging the results in [51–54, 56]

gs = ∆s = −0.026(4) . (A.7)

All the results mostly agree with each others but they are still preliminary or use heavy

quark masses or coarse lattice spacing or only two dynamical quarks. For this reason

the estimate of the systematic uncertainties is not yet complete and further studies are

required.

Finally [53] also explored the charm spin contribution. They could not see a signal

and thus their results can only be used to put an upper bound which we extracted as in

table 1.

B Renormalization of axial couplings

While anomalous dimensions of conserved currents vanish it is not true for anomalous

currents. This means that the axion coupling to the singlet component of the axial current

is scale dependent:

∂µa

2fa

∑

q

cqj
µ
q =

∂µa

2fa

[

∑

q

(

cq −
∑

q′ cq′

nf

)

jµq +

∑

q′ cq′

nf
jµΣq

]

(B.1)

→ ∂µa

2fa

[

∑

q

(

cq −
∑

q′ cq′

nf

)

jµq + Z0(Q)

∑

q′ cq′

nf
jµΣq

]

(B.2)

where Z0(Q) is the renormalization of the singlet axial current jµΣq. It is important to note

that jµΣq only renormalizes multiplicatively, this is not true for the coupling to the gluon

operator (GG̃) which mixes at one-loop with ∂µj
µ
Σq after renormalization (see e.g. [93]).

The anomalous dimension of jµΣq starts only at 2-loops and is known up to 3-loops in

QCD [49, 94]

∂ logZ0(Q)

∂ logQ2
= γA =

nf

2

(

αs

π

)2

+ nf
177− 2nf

72

(

αs

π

)3

+ . . . . (B.3)
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The evolution of the couplings cq(Q) can thus be written as

cq(Q) = cq(Q0) +

(

Z0(Q)

Z0(Q0)
− 1

) 〈cq〉nf

nf
, (B.4)

where we used the short hand notation 〈·〉nf
for the sum of q over nf flavors. Iterating the

running between the high scale fa and the low scale Q = 2GeV across the bottom and top

mass thresholds we can finally write the relation between the low energy couplings cq(Q)

and the high energy ones cq = cq(fa):

ct(mt) = ct +

(

Z0(mt)

Z0(fa)
− 1

) 〈cq〉6
6

,

cb(mb) = cb +

(

Z0(mb)

Z0(mt)
− 1

) 〈cq〉5
5

+
Z0(mb)

Z0(mt)

(

Z0(mt)

Z0(fa)
− 1

) 〈cq〉6
6

,

cq=u,d,s,c(Q) = cq +

(

Z0(Q)

Z0(mb)
− 1

) 〈cq〉4
4

+
Z0(Q)

Z0(mb)

(

Z0(mb)

Z0(mt)
− 1

) 〈cq〉5
5

+
Z0(Q)

Z0(mt)

(

Z0(mt)

Z0(fa)
− 1

) 〈cq〉6
6

, (B.5)

where at each mass threshold we matched the couplings at LO. In eq. (B.5) we can recognize

the contributions from the running from fa to mt with 6 flavors, from mt to mb with 5

flavors and the one down to Q with 4 flavors.

The value for Z0(Q) can be computed from eq. (B.3), at LLO the solution is simply

Z0(Q) = Z0(Q0) e
−

6nf
33−2nf

αs(Q)−αs(Q0)
π . (B.6)

At NLLO the numerical values at the relevant mass scales are

Z0(10
12 GeV) =0.984 , Z0(mt) =0.939(3) ,

Z0(mb) =0.888(15) , Z0(2 GeV) =0.863(24) , (B.7)

where the error is estimated by the difference with the LLO which should capture the

order of magnitude of the 1-loop thresholds not included in the computation. For the

computation above we used the MS values of the quark masses, i.e. mt(mt) = 164GeV

and mb(mb) = 4.2GeV. The dependence of Z0(fa) on the actual value of fa is very mild,

shifting Z0(fa) by less than ±0.5% for fa = 1012±3GeV.

Note that DFSZ models at high energy can be written so that the axion couples only

through the quark mass matrix. In this case no running effect should be present above the

first SM mass threshold (at the top mass). Indeed in this models, 〈cq〉6 = 〈c0q〉6− trQa = 0

and the renormalization effects from fa to mt cancel out.
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[86] S. Borsányi et al., Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B

730 (2014) 99 [arXiv:1309.5258] [INSPIRE].

[87] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation,

arXiv:1502.02114 [INSPIRE].

[88] A.D. Linde, Generation of isothermal density perturbations in the inflationary universe,

Phys. Lett. B 158 (1985) 375 [INSPIRE].

[89] J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Isocurvature forecast in the

anthropic axion window, JCAP 06 (2009) 022 [arXiv:0904.0647] [INSPIRE].

[90] F. Sanfilippo, Quark Masses from Lattice QCD, PoS(LATTICE 2014)014

[arXiv:1505.02794] [INSPIRE].

[91] RBC and UKQCD Collaboration, R. Mawhinney, NLO and NNLO low energy constants for

SU(3) chiral perturbation theory, talk presented at 33rd International Symposium on Lattice

field theory (LATTICE 2015), July 24–30, Kobe, Japan (2015).

[92] P.A. Boyle et al., The low energy constants of SU(2) partially quenched chiral perturbation

theory from Nf = 2 + 1 domain wall QCD, arXiv:1511.01950 [INSPIRE].

[93] G. Altarelli and G.G. Ross, The anomalous gluon contribution to polarized leptoproduction,

Phys. Lett. B 212 (1988) 391 [INSPIRE].

[94] S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys.

Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].

– 36 –

http://arxiv.org/abs/hep-ph/0010327
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010327
http://dx.doi.org/10.1103/PhysRevD.75.074501
http://arxiv.org/abs/hep-lat/0702004
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0702004
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.005
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.005
http://arxiv.org/abs/0908.0324
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0324
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://dx.doi.org/10.1016/j.ppnp.2012.09.003
http://arxiv.org/abs/1207.5999
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5999
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://arxiv.org/abs/1309.5258
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5258
http://arxiv.org/abs/1502.02114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02114
http://dx.doi.org/10.1016/0370-2693(85)90436-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B158,375"
http://dx.doi.org/10.1088/1475-7516/2009/06/022
http://arxiv.org/abs/0904.0647
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.0647
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2014)014
http://arxiv.org/abs/1505.02794
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02794
http://arxiv.org/abs/1511.01950
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01950
http://dx.doi.org/10.1016/0370-2693(88)91335-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B212,391"
http://dx.doi.org/10.1016/0370-2693(93)90053-K
http://dx.doi.org/10.1016/0370-2693(93)90053-K
http://arxiv.org/abs/hep-ph/9302240
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9302240

	Introduction
	The cool axion: T=0 properties
	The mass
	The potential: self-coupling and domain-wall tension
	Coupling to photons
	Coupling to matter

	The hot axion: finite temperature results
	Low temperatures
	High temperatures
	Implications for dark matter

	Conclusions
	Input parameters and conventions
	Renormalization of axial couplings

