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tibility and permeability, verifying that the thermal QCD medium is paramagnetic around

and above the transition temperature, while we also find evidence for weak diamagnetism

at low temperatures.
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1 Introduction

Quantum Chromodynamics (QCD) is the theory of the strong interactions. Its most im-

portant properties are the confinement of quarks and gluons at low energies and asymptotic

freedom at high scales. Lattice simulations of QCD have unambiguously shown that at

zero quark densities these two, fundamentally different regimes are connected by a smooth

crossover-type transition [1, 2]. This transition — through which the dominant degrees

of freedom change from composite objects (hadrons) to colored quarks and gluons — has

several characteristics of both theoretical and phenomenological relevance. Besides the na-

ture and the (pseudo)critical temperature of the transition, one such characteristic is the

equation of state (EoS), which is the fundamental relation encoding the thermodynamic

properties of the system.
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In particular, the EoS gives the equilibrium description of QCD matter, in terms of

relations between thermodynamic observables like the pressure, the energy density or the

entropy density. These observables enter hydrodynamic models that are used to describe

the time evolution of the quark-gluon plasma (QGP) produced in heavy-ion collision exper-

iments [3, 4]. Besides its role in heavy-ion physics, the EoS affects the mass-radius relation

of neutron stars [5] and enters cosmological models of the early universe, with implications,

for example, for dark matter candidates [6].

Of particluar relevance is the response of the EoS to changes of the control parameters

of the system. These parameters include the temperature, the chemical potentials conjugate

to conserved charges and, in the present case, a background (electro)magnetic field B = |B|.
External magnetic fields play an important role in the evolution of the early universe [7], in

strongly magnetized neutron stars [8] and in non-central heavy-ion collisions, see, e.g., the

recent review [9]. Magnetic fields induce a variety of exciting effects in the thermodynamics

of QCD — for example they significantly affect the phase diagram. The first results in this

field were obtained using low-energy models and effective theories of QCD, see the summary

in, e.g., ref. [10]. The QCD transition has also been studied extensively on the lattice; we

refer the reader to reviews on the subject in, e.g., refs. [11–13]. A very relevant question

in this respect has been the dependence of the transition temperature Tc and of the nature

of the transition on the magnetic field. In this paper we also address this issue.

Our main objective is to determine the QCD EoS around the crossover transition

at vanishing chemical potentials, for nonzero background magnetic fields. To this end we

develop a generalization of the so-called integral method [14], which relies on an integration

in the quark masses up to asymptotically large values (a similar integration in the quark

masses at B = 0 was also considered in ref. [15]). We calculate thermodynamic observables

including the pressure, the energy density, the entropy density, the interaction measure,

the magnetization and the susceptibility for magnetic fields of up to eB = 0.7 GeV2 for

a wide range of temperatures 110 MeV < T < 300 MeV, allowing for a comparison with

the Hadron Resonance Gas (HRG) model and with perturbation theory, at low and high

temperatures, respectively. At high T we demonstrate that several aspects of perturbative

QED physics are encoded in the EoS observables. Furthermore, our results confirm the

observation made in refs. [16, 17] that the transition region is shifted to lower temperatures

as B grows. Another phenomenological consequence of the magnetic field is that the

pressure — if defined as the response against a compression at fixed magnetic flux, see

precise definition in section 2 below — becomes anisotropic, and a significant splitting

between the components parallel and perpendicular to B is developed.

The change in the EoS due to the magnetic field has further theoretical implications.

QCD matter may be thought of as a medium with either para- or diamagnetic properties.

We establish that around and above the transition region the magnetization is positive and

thus the thermal QCD medium behaves as a paramagnet, with a magnetic permeability

larger than unity. A possible implication of this paramagnetism for heavy-ion collisions has

been pointed out recently in ref. [18]. In addition, we present evidence for the emergence

of a weakly diamagnetic region at low temperatures due to pions.
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This paper is organized as follows. First we discuss thermodynamic relations in the

presence of the magnetic field from a general point of view in section 2. We proceed by

describing the lattice methods that are used to determine the EoS in section 3, with spe-

cial emphasis on the implications of flux quantization and electric charge renormalization.

Section 4 contains our main results, followed by the conclusions in section 5.

2 Thermodynamics in an external magnetic field

The fundamental quantity of thermodynamics is the free energy or thermodynamic poten-

tial. In terms of the partition function Z of the system it reads F = −T logZ. In the

presence of an external magnetic field the density f = F/V of the free energy in a finite

spatial volume V can be written as [19]

f = ǫ− Ts = ǫtotal − Ts− eB · M, (2.1)

where ǫ is the energy density of the medium, s the entropy density and M the magneti-

zation. Without loss of generality, the magnetic field B = B ez is taken to point in the z

direction, and for later convenience, B is given in units of the elementary charge e > 0. Note

that the total energy of the system, ǫtotal = ǫ+ǫfield, includes the energy of the medium ǫ as

well as the work necessary to maintain the constant external field, ǫfield = eB ·M [20]. The

two expressions in eq. (2.1) thus correspond to two different conventions for the definition

of the energy density. The entropy density and the magnetization can be obtained as

1

V

∂F
∂T

= −s, 1

V

∂F
∂(eB)

= −M. (2.2)

The corresponding differential relation for the pressure is somewhat more involved.

Since the magnetic field marks a preferred direction, the pressures pi in the transverse

(perpendicular to B) and in the longitudinal (parallel to B) directions may be different.

In ref. [21] we have shown that this possible anisotropy depends on the precise definition

of pi. Writing the volume as the product of linear extents V = LxLyLz, the pressure com-

ponents are related to the response of the system to compressions along the corresponding

directions, i.e.

pi = −
1

V
Li
∂F
∂Li

. (2.3)

In order to unambiguously define pi, we have to specify the trajectory in parameter space,

along which the partial derivative is evaluated. In ref. [21], we have distinguished between

a setup where the magnetic field B is kept fixed during the compression (the “B-scheme”),

and a setup where the magnetic flux Φ = eB · LxLy is kept fixed (the “Φ-scheme”). The

B-scheme results in isotropic pressures, whereas the Φ-scheme gives anisotropic pressures:

p(B)
x = p(B)

y = pz, p(Φ)
x = p(Φ)

y = pz − eB · M. (2.4)

The difference in the transverse components for the Φ-scheme is due to the fact that the

compressing force in this case also acts against the magnetic field. Note that the definition

of the pressures as spatial diagonal components of the energy-momentum tensor exhibits
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the Φ-scheme anisotropy [22]. This is due to the fact that the energy-momentum tensor is

usually defined through the variation of the action with respect to the metric at fixed Φ,

see ref. [21]. In contrast to px,y, the longitudinal pressure is independent of the scheme,

and in the thermodynamic limit V →∞ simplifies to

pz = −f. (2.5)

Note that the appropriate scheme to be used depends on the physical situation that one

would like to describe. In particular, it is specified by the trajectory B(Li), along which the

compression perpendicular to the magnetic field proceeds. As will be explained below, in

lattice regularization it is natural to keep the flux fixed, and thus, the lattice measurements

correspond directly to the Φ-scheme. However, this does not represent a limitation of the

lattice approach, since one can easily translate from one scheme into another. The pressure

components for a general B(Li) trajectory (“general scheme”) can be found by combining

our results for the longitudinal pressure and for the magnetization (both are contained in

online resources on the paper’s page),

p(general)x = pz +M · Lx
∂(eB)

∂Lx
. (2.6)

This relation reproduces the B- and Φ-schemes, eq. (2.4), for the trajectories B(Li) = B

and eB(Li) = Φ/(LxLy), respectively.

Another important observable for the EoS is the interaction measure (trace anomaly),

I ≡ ǫ− px − py − pz, (2.7)

which contains the energy of the medium and the three pressures. Thus, I also depends

on the scheme:1

I(B) = ǫ− 3pz, I(Φ) = ǫ− 3pz + 2eB · M, (2.8)

whereas the energy density (like pz) is by construction scheme-independent,

ǫ = I(B) + 3pz = I(Φ) + 3pz − 2eB · M. (2.9)

Eqs. (2.1), (2.5) and (2.8) reveal that the entropy density can also be calculated as

s =
ǫ+ pz
T

. (2.10)

Finally, the derivative of the magnetization with respect to B at vanishing magnetic field

gives the magnetic susceptibility,

χB =
∂M
∂(eB)

∣

∣

∣

∣

B=0

= − 1

V

∂2F
∂(eB)2

∣

∣

∣

∣

B=0

. (2.11)

1One may understand the scheme-dependence of I as follows. The trace anomaly represents the response

to a rescaling of the length scale ξ in the system. To define this rescaling unambiguously, the trajectory

B(ξ) has to be specified, i.e. a scheme has to be chosen. Hence, I becomes scheme-dependent. As a simple

example, consider the magnetic field in the absence of particles. Taking into account the energy B2/2 of

the magnetic field, one obtains I(Φ) = 0, while I(B) = 2B2. Notice that in the Φ-scheme a dimensionless

number characterizes the magnetic field, whereas in the B-scheme we introduced a dimensionful parameter

into the system. This is reflected by the vanishing of the trace anomaly in the former case, and the nonzero

value of I in the latter.
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3 Lattice observables and methods

In what follows we consider a spatially symmetric lattice with isotropic lattice spacing a.

Here the temperature and the three-volume are given by

T = (Nta)
−1, V = (Nsa)

3, (3.1)

where Ns and Nt are the number of lattice sites along the spatial and temporal directions,

respectively.

Using conventional Monte-Carlo methods the free energy F = −T logZ itself is not

accessible on the lattice, but only its derivatives with respect to the parameters of the

theory. For the case of 2 + 1 flavor QCD coupled to a constant external magnetic field,

these parameters are the inverse gauge coupling β = 6/g2, the lattice quark masses mfa

(f = u, d, s labeling the flavors) and the magnetic flux Φ = (Nsa)
2eB. In particular, in the

staggered formulation of lattice QCD, Z is written as

Z =

∫

DUe−βSg

∏

f=u,d,s

[

detM(U, a2qfB,mfa)
]1/4

, (3.2)

where M = ( /D +mf )a is the fermion matrix, and the quark charges are set to qd = qs =

−qu/2 = −e/3. Note that the magnetic field has no dynamics, therefore the charge qf (or,

the elementary charge e) and the magnetic field B do not appear separately in the partition

function, but always in the combination qfB (or eB). The constant Maxwell term B2/2 is

independent of the physical properties of the thermal QCD medium and plays no role in

the thermodynamics of the system. It only enters in the renormalization prescription, see

section 3.2 below.

We work with the tree-level improved Symanzik gauge action Sg, and stout improved

staggered quarks in the fermionic sector. The detailed simulation setup is described in

refs. [16, 23]. The quark masses are set to their physical values along the line of constant

physics (LCP). This means that mfa are tuned as functions of β in a way that “physics

remains the same”, that is to say, ratios of hadron masses measured on the lattice coincide

with their experimental values. This defines the physical quark masses mph
f a for each value

of β. In particular, our LCP is set by fixing the ratio of the kaon decay constant to the

pion mass fK/Mπ and the kaon decay constant to the kaon mass fK/MK . This results in

the fixed ratio of quark masses mu = md ≡ mud = ms/28.15. The lattice spacing a(β) is

set using fK . For additional details on this procedure, see ref. [15].

The derivatives of logZ with respect to β and mfa are the gauge action density and

the quark condensate densities,

a4sg = − 1

N3
sNt

∂ logZ
∂β

, a3ψ̄fψf =
1

N3
sNt

∂ logZ
∂(mfa)

. (3.3)

The interaction measure, eq. (2.7), can be given in terms of the response of the free energy

to an overall change of length scales in the system. On the lattice this amounts to a

derivative with respect to the lattice spacing a. Employing the a-dependence of the lattice
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parameters β and mfa, the densities of eq. (3.3) enter the Φ-scheme interaction measure

in the following way:

I(Φ) = −T
V

∂ logZ
∂ log a

∣

∣

∣

∣

Φ

=
∂β

∂ log a
sg −

∑

f

∂ log(mph
f a)

∂ log a
mf ψ̄fψf . (3.4)

Note that for the B-scheme interaction measure (see eq. (2.8)), an additional term con-

taining the derivative with respect to the lattice flux a2eB appears.

For convenience, we also define the change due to B for any observable X as

∆X ≡ X|B − X|0 . (3.5)

The renormalization of the above observables will be discussed in section 3.2.

3.1 Flux quantization and methods to determine the magnetization

Due to the periodic boundary conditions, the magnetic flux traversing the finite lattice is

quantized as

Φ = (Nsa)
2 · eB = 6πNb, Nb ∈ Z, 0 ≤ Nb < N2

s , (3.6)

where we took into account that the smallest charge in the system (that of the down quark)

is qd = e/3. Note that since the flux is quantized, the lattice setup automatically corre-

sponds to the Φ-scheme defined in section 2. Moreover, due to the quantization condition,

differentiation with respect to eB is in principle ill-defined and therefore the magnetiza-

tion of eq. (2.2) is not accessible directly. Recently, several methods were developed to

circumvent this problem, which we summarize briefly below.

• Anisotropy method. One can make use of the relation (2.4) for the Φ-scheme, and

express the magnetization as the difference between the longitudinal and transverse

lattice pressures. These can be measured as derivatives of logZ with respect to

anisotropy parameters. This approach was developed and successfully applied in

refs. [18, 21]. The advantage of the method is that M is directly obtained as an

expectation value for any B, while its drawback is that anisotropy renormalization

coefficients also need to be determined.

• Half-half method. Instead of the uniform (and, thus, quantized) magnetic field,

one can work with an inhomogeneous field which has zero flux, e.g. one that is positive

in one half and negative in the other half of the lattice. Since the field strength is now

a continuous variable, derivatives of logZ with respect to eB are well defined and can

be measured on a B = 0 lattice ensemble [24]. The second-order derivative directly

gives the magnetic susceptibility. However, higher-order terms become increasingly

noisy, which limits the applicability of the approach to low fields. Note moreover

that the discontinuities in the magnetic field may enhance finite volume effects.

• Finite difference method. The derivative of logZ with respect to eB is an unphys-

ical quantity due to the quantization eq. (3.6). Still, this derivative can be measured

– 6 –
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for any real value of Nb, and its integral over Nb between two integer values gives

the change in logZ between these two fluxes. In this way, logZ(Nb +1)− logZ(Nb)

is constructed as the integral of an oscillatory function. The method is in principle

applicable for any magnetic field, but 10-20 independent simulations are necessary to

go from one integer flux to the next, making large magnetic fields computationally

expensive [25, 26].

• This work: generalized integral method.The method we will use in the present

paper is based on two observations: that magnetic fields have no effect in pure gauge

theory, and that the infinite quark mass limit of QCD (at a fixed magnetic field qB ≪
m2) is pure gauge theory. Based on this, the change in logZ due to the magnetic field

can be expressed as an integral of the quark condensate differences ∆ψ̄fψf over the

quark masses, including unphysically heavy quarks. On a finite lattice, this integral is

well regulated and can be calculated in a controlled manner by using 10-20 indepen-

dent simulations for any given value of the magnetic field. Most of these simulations

are at large quark masses, where the computation is significantly cheaper. Further-

more, the method automatically gives information on the mass-dependence of logZ
as well. This approach was sketched in ref. [27] and will be described in detail below.

3.2 Renormalization

The free energy density contains additive divergences in the cutoff — i.e. in the inverse

lattice spacing. These divergences are independent of eB, except for one logarithmic di-

vergence of the form −b1(eB)2 log(µa), where µ is a renormalization scale. This term is

canceled through a redefinition of the energy B2/2 of the magnetic field itself [28],

B2

2
=
B2

r

2
+ b1(eB)2 log(µa). (3.7)

Eq. (3.7) is equivalent to a simultaneous renormalization of the wave function (magnetic

field B) and of the electric charge e. The combination eB is renormalization group invariant

and, as such, unaffected by this transformation:

Ze = 1 + 2 b1e
2
r log(µa), B2 = ZeB

2
r , e2 = Z−1

e e2r , eB = erBr. (3.8)

The purely magnetic contribution B2
r/2 is trivial and can be omitted from the Lagrangian.

Therefore, the renormalization of the free energy amounts to adding the counter-term

b1(eB)2 log(µa) to ∆f . In the following it will be advantageous to consider the exten-

sive quantity ∆ logZ = −L4∆f at zero temperature, in a box of four-volume L4. The

counter-term then takes the form −b1Φ2 log(µa) with the flux Φ = L2eB. The coefficient

b1 of the divergence is related to the QED β-function [29–31]. Since the magnetic field

is external, i.e. there are no U(1) degrees of freedom in the system, only the lowest order

QED β-function coefficient b1 appears in Ze (however, with a full dependence on the QCD

coupling, see eq. (3.14) below).

– 7 –
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3.2.1 Charge renormalization — free case

It is instructive to first discuss the renormalization procedure in the free case — i.e. for elec-

trically charged quarks in the absence of strong interactions. In this case the free energy can

be calculated analytically (see, e.g., refs. [30–32]). We consider quark flavors of charges qf
and, for simplicity, we assume degenerate masses mf = m for all f . The discussion is easily

generalized to unequal masses. For Nc = 3 colors, the QED β-function coefficient reads

bfree1 =
∑

f

bfree1f , bfree1f =
Nc

12π2
· (qf/e)2. (3.9)

At zero temperature, the expansion of ∆ logZ in the magnetic field is given by

∆ logZ free
r = bfree1 · Φ2 · log(mfa) +O(Φ4)− bfree1 · Φ2 · log(µa), (3.10)

where we also included the counter-term. Taking the derivative with respect to the mass

of the quark flavor f , we obtain the corresponding quark condensate at T = 0,

∆ψ̄fψ
free
f =

1

L4

∂∆ logZ free
r

∂mf
= bfree1f

(eB)2

mf
+O((eB)4), (3.11)

showing that the condensate contains no B-dependent divergences, and that it is also

independent of the renormalization scale µ. Note also that the sign of the magnetic field-

induced change in the condensate is, to leading order, determined by the sign of bfree1f . Since

QED is not asymptotically free, bfree1f is positive and the condensate undergoes magnetic

catalysis at T = 0 to quadratic order in eB (we have already presented this argument in

refs. [27, 32]). Note that approaching the chiral limit (i.e. eB/m2 → ∞), the magnetic

field-expansion in eq. (3.11) becomes ill-defined. In fact, in the mf → 0 limit ∆ψ̄fψ
free
f

vanishes (see, e.g., ref. [33]) for any magnetic field. However, the condensate difference is

expected to be positive if any weak attractive interaction is turned on [34].

Let us now calculate the interaction measure. We resort to the Φ-scheme of section 2,

as this is the natural one in the lattice setup. Contrary to the case of the condensate,

here the counter-term also contributes a finite term bfree1 (eB)2. The remainder of eq. (3.10)

depends only on the combinationmfa, thus the derivative with respect to log a is equivalent

to that with respect to logmf . Using eqs. (3.10) and (3.11), we therefore obtain

∆I free(Φ)
r = − 1

L4
· ∂ logZ

free
r

∂ log a

∣

∣

∣

∣

Φ

= −
∑

f

mf∆ψ̄fψ
free
f + bfree1 (eB)2 = O((eB)4), (3.12)

which is again finite and µ-independent. The trace anomaly difference contains the two

well-known sources of scale violation [35]: the classical breaking through the condensates2

and the anomalous one through the running of the electric charge. In our case, the two

contributions cancel each other to O((eB)2), since at this order a drops out of eq. (3.10).

We shall return to this observation below.

2Note that the usual definition of the condensate (with ψ̄fψf < 0) differs from our convention by a

minus sign.
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We have seen that the condensate difference and the trace anomaly difference are

independent of the renormalization scale. However, in order to define the renormalized

free energy and pressures, we need to specify µ in eq. (3.10). Setting the renormalization

scale equal to the mass, µ = mf , means that all terms quadratic in the magnetic field

are canceled. This scheme3 is intrinsic to the Schwinger proper time representation [28],

and coincides with the one used in ref. [32]. Since in this scheme the expansion of logZ
starts as (eB)4 at T = 0, so do the expansions of the pressures, of the energy density and

of eB · M. Therefore I — being a linear combination of the former — has an expansion

starting with a quartic term as well, consistent with eq. (3.12).

We remind the reader that we excluded the renormalized pure magnetic energy B2
r/2

above, which depends explicitly on the renormalization scale µ. To restore this term in

logZ one needs to add

− B2
r (µ)

2
= −(eB)2

2
· 1

4παem(µ)
, (3.13)

where αem(µ) = e2r(µ)/(4π) is the running QED coupling defined at the scale µ.

3.2.2 Charge renormalization — full QCD

We proceed by applying the renormalization prescription discussed for free quarks above to

the case of full QCD. With the strong interactions taken into account, b1 will contain QCD

corrections, which, in a perturbative expansion in the strong coupling g take the form

b1(a) = bfree1 ·
[

1 +
∑

i≥1

ci g
2i(1/a)

]

a→0−−−→ bfree1 , (3.14)

where the coefficients ci are independent of the quark masses and have been calculated in

the MS scheme up to i = 4 in ref. [38]. Note that the running of the QCD coupling — gov-

erned by the QCD β-function — induces a dependence of b1 on the regulator, which on the

lattice amounts to a dependence on the lattice spacing a. Thus, due to the asymptotically

free nature of the strong interactions, QCD corrections vanish in the continuum limit, and

b1(a) approaches its free value, as indicated in eq. (3.14). We will see that for the lattice

spacings we employ, these corrections are already tiny, see the right panel of figure 3 below.

The consistency with charge renormalization ensures that the free energy is again of

the form eq. (3.10). Contrary to the free case, inside the logarithm of the divergent term,

an additional dimensionful hadronic scale ΛH appears, which may depend on mf . The

expansion of ∆ logZ at zero temperature then reads

∆ logZr = b1(a) · Φ2 · log(ΛHa) +O(Φ4)− b1(a) · Φ2 · log(µa). (3.15)

3We remark that renormalization schemes with different choices for the scale µ have also been used in

the literature. For example, µ is taken to be proportional to
√
eB in the schemes employed in refs. [36, 37],

which are connected to our choice by a finite (albeit mass-dependent) renormalization. Our scheme has the

advantage that the leading magnetic field-dependence of the total free energy is simply B2
r/2. Moreover,

the m → ∞ limit of the magnetization vanishes, in accordance with the expectation that magnetic fields

should have no effect on static non-relativistic particles (see the discussion in ref. [32]).
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From this — in analogy to the free case — we can extract the leading dependence of the

condensate difference and of the interaction measure difference on the magnetic field:

∆ψ̄fψf = b1(a) ·
(eB)2

ΛH
· ∂ΛH

∂mf
+O((eB)4), ∆I(Φ)

r = O((eB)4). (3.16)

We again conclude that the B-dependent divergence is absent from the condensate [16, 21].

Moreover, in the renormalization group invariant combination mf∆ψ̄fψf , multiplicative

divergences cancel as well. To quadratic order in eB the sign of the change of the condensate

is related to the sign of b1 and to that of ∂ΛH/∂mf , which we will revisit in section 4.1.

The interaction measure difference is also explicitly finite, as noted in ref. [21], where

we determined the gluonic and fermionic contributions to ∆I(Φ) separately. Similarly to the

free case, eq. (3.12), ∆I
(Φ)
r receives a finite contribution from the counter-term in ∆ logZr,

1

L4

∂

∂ log a

[

b1(a)Φ
2 log(µa)

]

= (eB)2 ·
[

b1(a)− log(µa) · ∂b1
∂g2
· ∂g2

∂ log(1/a)

]

a→0−−−→ (eB)2 ·bfree1 ,

(3.17)

which, due to eq. (3.14), equals its free-case equivalent in the continuum limit (the QCD β-

function damps the second term in the square brackets as a→ 0). In the continuum limit,

the contribution from the counter-term results in a cancellation to O((eB)2) in the total

interaction measure, as already stated in eq. (3.16). For later reference, the renormalization

of ∆I(Φ) thus reads

∆I(Φ)
r = ∆I(Φ) + bfree1 · (eB)2. (3.18)

To discuss the renormalization of logZ itself, we have to specify the renormalization

scale. We may again choose µ such that the quadratic term in logZ at T = 0 is completely

subtracted in the renormalization process: µ = ΛH. This is the equivalent of the on-shell

renormalization scheme in the free case. The renormalization prescription for the free

energy (and, similarly, for the longitudinal pressure) at T = 0 in this scheme reads

fr = (1− P)[f ], pz,r = (1− P)[pz], (3.19)

where we defined P as the operator that projects out the O((eB)2) term from an observable

X:

P[X] = (eB)2 · lim
eB→0

X

(eB)2

∣

∣

∣

∣

T=0

. (3.20)

We remark that at finite temperature, thermal contributions induce additional finite terms

that are quadratic in eB. Thus, the subtraction of P[X] is to be performed at T = 0, as

indicated in eq. (3.20).

3.3 The integral method at nonzero magnetic fields

To determine the free energy — or, equivalently, the longitudinal pressure pz, see eq. (2.5)

— on the lattice, we employ a variation of the so-called integral method [14]. The basic idea

is to construct pz by integrating its partial derivatives in eq. (3.3) along a particular path

in the parameter space spanned by the parameters {β,mfa,Φ}. Since the magnetization

is not accessible as a derivative (see section 3.1), one is only allowed to integrate along
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a constant-Φ trajectory in this parameter space. For a lattice of fixed size N3
s × Nt, the

magnetic field thus changes as eB ∼ a−2 ∼ T 2 along such a path.

Specifically, we consider a trajectory at constant Φ, from β1 to β2 with the quark

masses tuned along the LCP mph
f a. Then, the integral method is written down for the

change ∆pz in the pressure: the difference of ∆pz at the two endpoints equals the integral

of the gradient of ∆pz along this trajectory. Using the definitions eq. (3.3) of the subtracted

lattice observables ∆sg and ∆ψ̄fψf , we obtain

∆pz(Φ, T2;β2)

T 4
2

− ∆pz(Φ, T1;β1)

T 4
1

= N4
t

∫ β2

β1

dβ



−a4∆sg +
∑

f

∂(mph
f a)

∂β
· a3∆ψ̄fψf



 .

(3.21)

Here, the endpoints βi of the integral correspond to the temperatures Ti, and tuning the

quark masses along the LCP resulted in the factor ∂(mph
f a)/∂β.

The expression (3.21) gives the difference between the dimensionless pressure differ-

ences ∆pz/T
4 at two distinct temperatures for a given Φ. To determine the change in the

pressure at one temperature, for each such Φ additional information is necessary, which

corresponds to fixing an integration constant. In the conventional integral method [14] at

B = 0, one exploits the fact that p/T 4 vanishes at zero temperature, therefore the integra-

tion constant at T = 0 is zero. Here, this method is not applicable, since in the presence of

a magnetic field, the zero-temperature pressure is no longer zero, see eq. (3.15). Instead,

we propose to use a different region of the parameter space to fix the integration constant,

namely the mfa =∞ line, which corresponds to pure gauge theory plus free static quarks.

Since the external magnetic field couples only to quarks, in pure gauge theory B has by defi-

nition no effect, and ∆pz(Φ, T ) is given solely by the contribution ∆pfreez (Φ, T ) of free heavy

quarks, which is naively expected to vanish for any T and any finite Φ in the limitm2
f ≫ qB.

However, in the continuum theory the bare ∆pfreez for static quarks contains the ultra-

violet divergent term ∝ bfree1 Φ2 (higher orders in Φ vanish in the static limit), see eq. (3.10).

Therefore ∆pfreez only vanishes in the infinite mass limit after the renormalization has been

carried out. Nevertheless, in the lattice regularization ∆pfreez is suppressed as 1/(mfa)
4

once the quark mass exceeds the lattice scale 1/a, see appendix A and the discussion in

section 4.1 below. Thus we conclude that at finite lattice spacings, ∆pz vanishes in the

asymptotic quark mass limit. Therefore, integrating down to the physical quark masses

mph
f a at fixed β, we obtain for an arbitrary temperature

∆pz(Φ, T ;β)

T 4
= −N4

t

∑

f

∫ ∞

mph
f

a
d(mfa) a

3∆ψ̄fψf . (3.22)

Thus, the pressure difference is expressed as an integral of ∆ψ̄fψf over all higher-than-

physical quark masses. In practice we first integrate over the two light quark masses up to

the point where all three masses coincide (the Nf = 3 theory with different quark charges).

Second we integrate over the quark masses simultaneously4 up tomfa =∞. The integrand

4Note that any integration path in the {mua,mda,msa} space between the physical point and {∞,∞,∞}
is admissible and gives the same result.
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Figure 1. The change of the condensate ∆ψ̄uψu in lattice units, as a function of the quark mass

on the Nt = 6 lattices at T = 113 MeV (left panel) and at T = 189 MeV (right panel). Different

colors encode different magnetic fields. The dashed lines indicate the physical light and strange

quark masses.

for the up quark is shown in figure 1 as a function of the light lattice quark mass for three

values of the magnetic field, as measured on the Nt = 6 lattices. At T = 113 MeV (left

panel of the figure), the difference ∆ψ̄uψu is positive, reflecting the well-known magnetic

catalysis of the condensate at low temperatures, see, e.g., refs. [34, 39]. As the mass is

increased and the quark decouples, this difference eventually approaches zero.

In the right panel of figure 1 the same observable is shown, but in the high-temperature

phase, at T = 189 MeV. At the physical light quark mass the difference is close to zero (see

also the results presented in ref. [39]), and as the mass is increased a peak-like structure

is revealed. This structure is a consequence of the strong dependence of the transition

temperature Tc on the light quark mass: around Tc chiral symmetry is restored, the con-

densate is strongly suppressed and magnetic catalysis is not effective anymore. While at

the physical point Tc ≈ 150 MeV [40, 41], in pure gauge theory Tc ≈ 260 MeV [42]. At

T = 189 MeV we start in the chirally restored phase, but as the masses are increased,

at some point the transition line is crossed and we enter the chirally broken phase where

magnetic catalysis is dominant and ∆ψ̄uψu is large. Eventually, for m→∞ the difference

again approaches zero. We note that the down quark condensate shows a very similar

behavior for both temperatures T = 113 MeV and T = 189 MeV.

Through eq. (3.22) we have determined the integration constant. Now, complemented

by eq. (3.21), the change of the pressure ∆pz(Φ, T ) can be determined at any temperature T

and at any magnetic flux Φ. Next, the renormalization is performed according to eq. (3.19)

to obtain the renormalized pressure ∆pz,r(Φ, T ). The resulting curves are interpolated to

compute ∆pz,r(eB, T ) for any T and eB. This is finally shifted by the zero-field pressure,

which we take from ref. [43], to obtain the full pressure for a range of magnetic fields and

temperatures. From the longitudinal pressure, all other thermodynamic observables can

be calculated using the relations of section 2.
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mud/m
ph
ud 243 × 6 243 × 8 283 × 10 363×12 483×16 243 × 32

low-T 1 . . . 1200 β = 3.45 β = 3.55 β = 3.625 β=3.695 β=3.81 β=3.45, 3.55

high-T 1 β=3.45 . . . 3.81 β=3.55 . . . 3.94 β=3.625 . . . 4.06

Table 1. Summary of our lattice ensembles.

3.4 Lattice ensembles

Before presenting the results, we briefly describe the lattice ensembles we used. These

consist of two sets of lattice configurations: one at high temperatures, necessary for the

determination of the T -dependence of the EoS, and one at effectively zero temperature,

necessary for the renormalization. The high-T ensemble contains Nt = 6, 8 and 10 lattices

with various values of the inverse gauge coupling β, such that the temperature range

113 MeV < T < 300 MeV can be scanned and a continuum estimate can be given (note

that at a fixed temperature, the lattice spacing is proportional to 1/Nt such that the

continuum limit corresponds to Nt → ∞, see eq. (3.1)). These configurations correspond

to physical quark masses, tuned along the LCP as discussed at the beginning of section 3.

This ensemble was mainly generated in ref. [16] for the study of the phase diagram and is

supplemented in the present analysis by configurations at T = 250 MeV and T = 300 MeV.

Based on detailed comparisons to our zero-temperature 243 × 32 ensembles (see sec-

tion 4.2), it turned out that the renormalization factors can be determined reliably at our

lowest ‘finite-temperature’ point, T = 113 MeV. At this temperature we included two

additional lattice spacings with Nt = 12 and 16, allowing for a determination of the renor-

malization factors down to small lattice spacings, and a matching with perturbation theory.

For each Nt we generated configurations ranging from mud = mph
ud up to mud = 1200 ·mph

ud.

The simulation parameters are listed in table 1.

4 Results

4.1 Condensates, the β-function and a comment on magnetic catalysis

We start the presentation of our results with additional details on and implications of

the generalized integral method. Let us consider the integrand on the right hand side of

eq. (3.22), and expand it in powers of eB. For asymptotically large quark masses, quarks

and gluons decouple, and ∆ψ̄fψf approaches its free theory value. In this limit, we obtain

from eq. (3.11),

P[mf ·∆ψ̄fψ
free
f ]

(eB)2
= bfree1f , (4.1)

where P is the projector defined in eq. (3.20). In figure 2 we plot P[mud∆ψ̄dψd] normalized

by (eB)2 as a function of the light quark mass at T = 113 MeV. We perform a combined

continuum extrapolation of all five lattice spacings (Nt = 6, 8, 10, 12 and 16), assuming

O(a2) discretization errors. The plotted combination has a finite continuum limit (see

the discussion after eq. (3.16)), but discretization errors become large when the lattice

quark mass muda approaches unity. For asymptotically large masses the change of the
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Figure 2. The O((eB)2) contribution to the integrand of eq. (3.22) normalized by (eB)2 for five

different lattice spacings and the continuum extrapolation. The free theory prediction (dashed line)

and the expectation from χPT (dashed-dotted line) are also shown. For asymptotically large quark

masses (muda = 1 for each lattice spacing is marked by the colored bars in the upper right corner)

lattice artefacts become large and P[mud∆ψ̄dψd] drops.

condensate is proportional to (muda)
−5, as shown in appendix A. The finer the lattice,

the later this lattice artefact sets in, and the larger are the quark masses that can be

reached. With our present lattice spacings we can control the continuum extrapolation up

to mud/m
ph
ud ≈ 100− 200. Here the extrapolated values are consistent with the free theory

prediction, eq. (4.1), showing that in the continuum limit ∆ψ̄fψf ∝ 1/mf for large masses

mf ≫ ΛQCD, to quadratic order in eB. This implies that the O((eB)2) contribution to

the integral on the right hand side of eq. (3.22) diverges logarithmically. On the lattice

this divergence is regulated by the inverse lattice spacing such that the cutoff mfa ≈ 1

plays the role of the upper limit of the mass-integral, see the sharp drop in figure 2 for

asymptotically large masses mf & a−1. In the continuum limit the logarithmic divergence

reappears (cf. eq. (3.15)), and has to be subtracted via charge renormalization.

Let us now determine the chiral limit of the combination shown in figure 2 using chiral

perturbation theory (χPT). The lowest excitation in this case is the charged pion, implying

that to leading order ΛH = mπ in eqs. (3.15) and (3.16). Moreover, due to the spin-zero

nature of the pion, the scalar QED β-function appears instead of the spinor β-function.

Using the Gell-Mann-Oakes-Renner relation m2
πF

2 = ψ̄ψ(0)(mu +md) we obtain for the

light flavors f = u, d,

mf

m2
π

· ∂m
2
π

∂mf
=

1

2
,

P[mf ·∆ψ̄fψ
χPT
f ]

(eB)2
=
bfree,scalar1f

4Nc
=

bfree1f

16Nc
, (4.2)

as was already pointed out within the Hadron Resonance Gas (HRG) model [32]. To derive

eq. (4.2), we considered equal masses for the light flavors mu = md. Note that the first

relation in eq. (4.2) is understood to hold at B = 0, where the charged and neutral pion

masses are equal. We indicate the χPT prediction in figure 2 by the dashed-dotted line,

showing a good agreement with the lattice data at physical quark masses, see also the

comparison in ref. [39].
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Figure 3. Left panel: magnetic field-dependence of the bare longitudinal pressure difference at low

temperatures at one lattice spacing. The results of the integral method at T = 113 MeV and at

T = 0, and the result of the half-half method at T = 0 are compared (the points are slightly shifted

horizontally for better visibility). Right panel: quadratic contribution to the bare longitudinal

pressure at T = 113 MeV against the lattice spacing in units of a0 = 1.47 GeV−1.

Altogether we observe that the QCD quark condensate, as determined in a fully non-

perturbative treatment, interpolates between the χPT prediction at small masses and the

free-theory limit at large masses. We have seen in eq. (3.16) that the sign of the condensate

∆ψ̄fψf equals the product of the sign of the factor ∂ΛH/∂mf and that of b1. While for

large quark masses mf ≫ ΛQCD one has ΛH = mf , towards the chiral limit ΛH = mπ

such that the first factor is in both cases positive. It would be quite unexpected to have

an intermediate mass where this factor turned negative, nevertheless, we did not find

any strict proof of this positivity. In any case we conclude that the O((eB)2) magnetic

catalysis of the quark condensate and the positivity of the scalar/spinor QED β-function

are intimately related phenomena. This picture was first described in ref. [32] and also

discussed in ref. [27]. Note that the above argument concerns the O((eB)2) behavior of the

condensate and does not address what happens in the large-B limit, where the dimensional

reduction is expected to be the dominant driving force of magnetic catalysis [34].

4.2 Quadratic contribution to the EoS

Next we calculate the O((eB)2) contribution to the longitudinal pressure at effectively zero

temperature. This term will be subtracted through charge renormalization, according to

eq. (3.19). We perform the integral eq. (3.22) to determine ∆pz at various values of the

magnetic flux (see the left panel of figure 3). To extract the O((eB)2) contribution, we

fit the data to a quadratic function in (eB)2 and take the B → 0 limit of ∆pz/(eB)2,

represented by the bars at eB = 0 in the figure. We perform this analysis for the 243 ×
6 ensemble at our lowest finite-temperature point, T = 113 MeV, and on the 243 × 32

ensemble, which corresponds to T = 0. The B → 0 limits at these two temperatures are

found to coincide within our statistical errors. This implies that thermal contributions to

the O((eB)2) pressure are still strongly suppressed at T = 113 MeV, in agreement with

our previous findings from the anisotropy method [18], with the results of ref. [24] using
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the half-half method and with those of ref. [26] using the finite difference method (for a

brief description of these approaches, see section 3.1). Therefore, we conclude that within

our present statistics, it is safe to use T = 113 MeV as the reference temperature for the

quadratic subtraction. This observation allows us to omit expensive lattice simulations at

T = 0, and to substitute these by cheaper runs at a finite but low temperature.

In addition, we also check the eB → 0 extrapolation of our results by directly deter-

mining the second derivative of ∆pz with respect to the magnetic field at eB = 0 using

the half-half method at T = 0. For this measurement we employ the setup of ref. [24] and

use 400 noisy estimators to calculate the trace of the necessary operators (for details see

ref. [24]). The result is indicated by the black point in the left panel of figure 4, showing

that the two methods agree perfectly. Note that in the generalized integral method we use

results at all B > 0 to extract the quadratic part, resulting in smaller errors. Increasing

instead the statistics at B = 0 for the half-half method, we could also improve the signal-

to-noise ratio of the latter, however finite volume effects should also be studied carefully

in this case. Since the results at eB > 0 will be in any case necessary for calculating

the higher order contributions to the renormalized pressure, it is advantageous to use the

generalized integral method to extract the quadratic term as well.

We proceed by discussing the dependence of P[∆pz] on a. First we perform the B → 0

extrapolation separately for each of our five lattice spacings. The resulting values are

expected to lie on the curve b1(a) · log(ΛHa), see eq. (3.15). We consider the universal

one-loop QCD corrections to b1(a) — i.e. terms up to i = 1 in eq. (3.14). The strong

coupling in the lattice scheme is defined as g2(1/a) = 6/β(a). The so obtained function

b1(a) · log(ΛHa) is fitted to the data with ΛH considered as a free parameter. The result is

indicated by the orange band in the right panel of figure 3. For comparison we also carry

out a similar fit in the free case, which corresponds to a simple linear fit with fixed slope

bfree1 = 0.0169 (which is obtained using eq. (3.9) for three flavors). The two fits agree within

errors for the whole range, indicating that for our lattice spacings, the QCD corrections to

the QED β-function in eq. (3.14) are smaller than our statistical errors.

Exploiting the fact that the free scaling describes our data to a very good accuracy, we

consider an alternative strategy to determine the quadratic contribution to ∆pz. Namely,

we fit the results for ∆pz/(eB)2 at all magnetic fields and lattice spacings together using

a combined inter/extrapolation in a and eB. We consider the fit function

∆pz
(eB)2

= c0 + bfree1 log (a/a0) + (eB)2 ·
(

c1 + c′1a
2 + c′′1a

4
)

+ (eB)4 ·
(

c2 + c′2a
2
)

, (4.3)

which takes into account the logarithmic divergence of the constant term (with the free

scaling coefficient). Here a0 = 1.47 GeV−1 is our largest lattice spacing (corresponding to

Nt = 6). We found it necessary to include O(a4) lattice discretization effects in the (eB)2

part and O(a2) terms in the (eB)4 part of the fit function. The results of this combined

fit are shown in the left panel of figure 4. Considering higher orders in the magnetic field

or more lattice artefacts in eq. (4.3) did not improve the quality of the fit. The eB → 0

limits (colored bars in the figure) equal P[pz]/(eB)2, giving the logarithmically divergent

term c0 + bfree1 log(a/a0) that is subtracted via charge renormalization, as a function of the
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Figure 4. Left panel: combined extrapolation in the magnetic field and interpolation in the lattice

spacing according to eq. (4.3) using several values of the magnetic flux and five lattice spacings.

Only data points with eB < 0.5 GeV2 are shown. Right panel: continuum limit of the renormalized

magnetization for physical mud = mph
ud (red dashed band) and heavier-than-physical mud = 15 ·mph

ud

quark masses (blue dashed band), and a comparison to the HRG model.

c0 c1 c′1 c′′1

−0.0294(5) 0.006(6) GeV−4 0.011(7) GeV−2 0.003(2)

c2 c′2 bfree1 a0

0.007(8) GeV−8 −0.025(9) GeV−6 0.0169 1.47 GeV−1

Table 2. Parameters of the fit function eq. (4.3).

lattice spacing. The fitted coefficients are listed in table 2. As a cross-check we carried out

a similar fit with b1 as a free parameter, resulting in a value consistent with the expected

continuum value bfree1 . Matching eq. (4.3) with eq. (3.15) we read off that at the physical

value of the quark masses

ΛH(m
ph
ud) = ec0/b

free
1 /a0 = 0.120(9) GeV. (4.4)

The scale ΛH depends on the regularization scheme (i.e. on the lattice action). However,

towards the chiral limit it is expected to approach a hadronic scale, ΛχPT
H = mπ (see the

discussion in section 4.1), so that this scheme-dependence should only be mild. We stress

that ΛH is no free parameter but is automatically determined by the lattice implementation

of the renormalization prescription eq. (3.19). ΛH will appear below in the perturbative

description of the pressure as an input from the lattice side.

Subtracting terms quadratic in eB gives the renormalized pressure ∆pz,r = (1−P)[∆pz]
at T = 113 MeV. Its continuum limit is given by the a→ 0 limit of our fit function eq. (4.3)

and is shown in the right panel of figure 4. Note that the positivity of ∆pz,r indicates the

response to be paramagnetic. Besides the curve for the physical quark masses, we also

include here the results obtained for heavier-than-physical quark masses. The analysis is

the same in this case except for the lower endpoint of the integral in eq. (3.22) which we

set to mud = 15 · mph
ud. These light quark masses correspond to a pion mass of about
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Figure 5. Longitudinal pressure (left panel) and interaction measure in the Φ-scheme (right panel),

normalized by T 4 as functions of the temperature, measured on our Nt = 6 ensemble. Both pz,r

and I
(Φ)
r are nonzero at T = 0, which shows up as a quartic divergence at T = 0.

500 MeV, and the fit according to eq. (4.3) gives ΛH(15m
ph
ud) = 159(10) MeV. The plot

shows that the pressure is clearly less sensitive on B as quarks become heavier. In addition

we also indicate the Hadron Resonance Gas (HRG) model prediction [32] for the physical

pion mass. We will get back to the visible discrepancy between the lattice results and the

model curve in section 4.3 below.

4.3 Complete magnetic field dependence of the EoS

With the quadratic contribution determined as a function of the lattice spacing, we can

carry out the renormalization of the pressure according to eq. (3.19), and that of the

interaction measure using eq. (3.18) for arbitrary temperatures. Using these two renormal-

ized observables, all other EoS-related quantities can be calculated via the thermodynamic

relations of section 2.

At B = 0 the usual normalization of, e.g., the pressure is p/T 4. In our case this may

not be the optimal choice, since p contains terms of O((eB)4) at zero temperature, which

give rise to a ∼ 1/T 4 divergence towards T = 0. We demonstrate this in figure 5 for the case

of the longitudinal pressure (left panel) and the interaction measure in the Φ-scheme (right

panel). It is therefore instructive to plot the observables without this normalization with

respect to T 4. First we show the change in the EoS induced by the magnetic field, ∆pz,r

and ∆I
(Φ)
r for two values of eB, see figure 6. We find that in the low-temperature region our

three lattice spacings do not suffice to perform a controlled continuum extrapolation.5 To

allow for a parameterization of our results we consider a continuum estimate as the average

of our Nt = 8 and Nt = 10 results. This estimate is indicated by the gray shaded bands in

the figures and is used in the following analysis. Note the positivity ofM, which indicates

the paramagnetic nature of the thermal QCD medium for the whole temperature range.

5A well-known source of lattice artefact is the taste symmetry breaking of staggered fermions, which may

lead to large discretization effects at low temperatures. Note that not all observables are affected equally

by these artefacts.
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Figure 6. Change in the EoS due to the magnetic field. Shown are the longitudinal pressure

(upper left panel), the Φ-scheme interaction measure (upper right panel), the magnetization (lower

left panel) and the energy density (lower right panel) as functions of the temperature for three

lattice spacings and two values of eB. The shaded areas correspond to our continuum estimates

(see the text).

We proceed by discussing the full EoS at nonzero magnetic fields and concentrate on

the low-temperature region where the HRG model is expected to be a valid description.

In figure 7 we show the longitudinal pressure and the ratio of pressure over total energy

density. Comparing pz,r with the HRG model reveals that the model overestimates the

pressure at nonzero magnetic fields. This mismatch between the model and the lattice

results was not yet visible in our previous comparison [27], where only the Nt = 6 lattice

data were available. The ratio pz,r/ǫ
total (see eq. (2.1) for our definition of ǫtotal) exhibits a

shallow dip in the transition region, which moves towards the left, signaling the reduction

of the transition temperature as B grows, in accordance with our earlier findings with

other thermodynamic observables [16, 17]. This dip is, however, not pronounced enough to

enable us to reliably determine the position of its minimum. We will study the dependence

of the transition temperature on B in section 4.6.

Up to now we only discussed the longitudinal pressure. Depending on which scheme

is used, the magnetic field can induce an anisotropy between the pressure components, see

eq. (2.4). The Φ-scheme describes a situation, in which the transverse compression of the

system proceeds at fixed magnetic flux, thereby inducing an anisotropy that is proportional
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Figure 7. Longitudinal pressure (left panel) and the ratio of pressure over energy density (right

panel) as functions of the temperature, for various values of the magnetic field (note the different

T -ranges). The shaded bands indicate the continuum estimates from the lattice results and the

dashed lines correspond to the HRG model prediction. The dotted line for pz,r/ǫ
total signals the

Stefan-Boltzmann limit 1/3.

to the magnetization. This scheme is adequate for systems where the magnetic field lines

are frozen in the medium — i.e. where the electric conductivity is infinite. The parallel and

perpendicular components of the Φ-scheme pressure are shown in the left panel of figure 8.

The splitting between the components grows as T increases, due to the logarithmic rise of

the magnetization, cf. section 4.4 below. Note that for large magnetic fields the transverse

pressure components become negative. This is due to the positivity of M, which implies

that the free energy decreases with growing B, i.e. the system prefers large magnetic fields.

For fixed Φ, this preference leads to a collapse of the medium in the transverse directions and

is signalled by the negative transverse pressure. This unphysical instability invalidates the

Φ-scheme for large magnetic fields, and is avoided if a finite (physical) electric conductivity

is considered, such that magnetic field lines are not completely frozen and magnetic flux

is not completely conserved. We emphasize again that the notion of transverse pressure

depends on its precise definition (i.e. the scheme) and should be specified for each problem

in question. Our lattice results for pz and forM are reliable for the whole magnetic field

range under study, and can be combined to obtain the transversal pressures in an arbitrary

“general” scheme according to eq. (2.6).

Since the above described analysis to obtain the equation of state involves several

interpolations, we perform one additional consistency check at T = 0. Here the longitudinal

pressure and the energy density coincide (the t- and z-directions are indistinguishable even

in the presence of the magnetic field, i.e. fr = −pz,r = ǫ ), which gives a relation between

the trace of the energy-momentum tensor (the interaction measure in the Φ-scheme) and

the pressures. For the renormalized quantities this reads

T = 0 : 4∆pz,r +∆I(Φ)
r = 2eB · M. (4.5)

The left hand side of this relation can be obtained without new inter/extrapolations. The

renormalization involves subtracting 4[c0+ bfree1 log(a/a0)] · (eB)2 for the pressure part and

– 20 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
7

Figure 8. Left panel: splitting of the Φ-scheme pressure components due to the magnetic field for

a few temperatures. The upper branches correspond to p
(Φ)
z,r , whereas the lower ones to p

(Φ)
x,r = p

(Φ)
y,r .

Right panel: consistency check at T = 0 (see the text).

bfree1 · (eB)2 for the interaction measure part, respectively (the necessary parameter values

are listed in table 2). The right hand side is obtained by interpolating and differentiating

the renormalized longitudinal pressure (as was already done to obtain M of figure 6 at

T > 0), cf. eqs. (2.2) and (2.5). The two sides are compared in the right panel of figure 8

for a zero-temperature lattice at β = 3.55 (corresponding to a = 1.09 GeV−1), showing

nice agreement. Note that the relation eq. (4.5) is only valid at vanishing temperature and

is subject to corrections as T grows.

4.4 Magnetic susceptibility and permeability

The low-B behavior of the magnetization provides the magnetic susceptibility χB, as de-

fined in eq. (2.11). In the left panel of figure 9 we show our results for χB, compared to those

obtained with various other methods (see the discussion in section 3.1). The new results

agree within errors with our previous results employing the anisotropy method [18] and

with the results of ref. [26] using the finite difference method. In these studies the same lat-

tice action (stout improved staggered quarks with physical quark masses, ms/mud = 28.15)

were employed, and the data in each case correspond to a similar continuum estimate as

we discussed above. We stress that the three approaches are completely different, but nev-

ertheless show excellent agreement. We also include the susceptibility obtained in ref. [24],

where the HISQ action with nearly physical quark masses (ms/mud = 20) was used and

the half-half method was employed on Nt = 8 lattices. The susceptibility is observed to

be somewhat smaller than in the other approaches, which may be related to the larger

value of the quark mass. In summary, all lattice results indicate that the susceptibility is

positive and increases as T grows, thus signalling the paramagnetic nature of the thermal

QCD medium for temperatures around and above the transition region.

The susceptibility can also be calculated using the HRG model. Here the EoS is rep-

resented by a sum over contributions of non-interacting hadrons and resonances. At low

temperatures and magnetic fields, the dominant term in the sum is given by the lightest

hadrons, i.e. pions. The pionic contribution to χB is negative (see the discussion in ap-
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Figure 9. Left panel: magnetic susceptibility of QCD as a function of the temperature. Results

with different lattice approaches are collected. Right panel: QCD magnetic permeability in units of

the vacuum permeability µ0, and a comparison to perturbation theory, truncated at various orders

of the strong coupling.

pendix B), suggesting the presence of a (weakly) diamagnetic region at low T . Contrary to

pions, higher-spin hadrons give positive contributions to the susceptibility, such that χB is

expected to bend back towards positive values as T grows. The HRG prediction is plotted in

the left panel of figure 9, indeed exhibiting a negative region at low temperatures. Note that

at O((eB)4), the HRG magnetization receives contributions from the T = 0 vacuum term

as well, which are positive both for pions and for spin-1/2 and spin-1 hadrons. Eventually,

this results in a positive magnetization for magnetic fields exceeding eB ≈ 0.05 GeV2 for

all temperatures [32], in agreement with our lattice results in the lower left panel of figure 6.

In order to extend the temperature range of the lattice results, we include two more

sets of 283×10 lattice ensembles at T = 90 MeV (β = 3.55) and at T = 105 MeV (β = 3.6).

We make use of eq. (3.21) to obtain the magnetic field-dependence of the pressure, which di-

rectly gives the susceptibility. The result is indeed found to be consistent with the HRG pre-

diction, see the red squares in the left panel of figure 9. At T = 90 MeV we also measure χB

using the half-half method, and use the 243 × 32 ensemble for renormalization. Consistent

with the above lattice determination, we find χB(T = 90 MeV) = −0.002(2). Altogether,

the lattice results are compatible with the existence of a weakly diamagnetic region at low

temperatures. Our conclusion from this comparison is that the HRG model correctly cap-

tures the diamagnetic effect of pions, but overestimates their role for T & 120 MeV. Note

that a negative magnetization has also been obtained within the Parton-Hadron-String Dy-

namics approach [44]. This model, however, predicts that the diamagnetic response persists

to higher magnetic fields (eB ≈ 0.2− 0.7 GeV2) and is even enhanced as the temperature

grows. This is in conflict with both the lattice results and the HRG model description

presented above. The magnetic susceptibility has also been calculated in a model with free

quarks coupled to the Polyakov loop, giving results consistent with the lattice data at high

temperatures [45].

The susceptibility can also be translated to the magnetic permeability µ of the thermal

QCD medium. To write down the relation between χB and µ, we need to distinguish
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between the magnetic induction Bind and the external field Bext that would be present in

the absence of the medium. The two fields are connected by the magnetization [19],

Bind = Bext +M · e. (4.6)

In the present study the magnetic field corresponds toBind, since it is the field that traverses

the lattice and that quarks couple to, such thatM(Bind ≈ 0) = χB · eBind. Using this, the

external field Bext can be found from eq. (4.6). Reinserting the factors of e =
√
4παem in

the definitions of χB and ofM, the magnetic permeability reads

µ ≡ Bind

Bext
=

1

1− 4παem · χB
. (4.7)

In the SI system this is the magnetic permeability in units of the vacuum permeability µ0,

cf. ref. [25].

In the right panel of figure 9 we plot µ/µ0, and compare it to perturbation theory. We

discuss some details of this perturbative expansion in the following. It turns out that —

even for the lowest-order perturbative expansion of the susceptibility — a non-perturbative

parameter is necessary to carry out the comparison with the lattice results in a consistent

manner. This parameter is the scale ΛH, which plays the role of the renormalization scale,

µ = ΛH, see the discussion of section 3.2.2. The necessity of using ΛH in this comparison

is related to the entanglement of ultraviolet and infrared divergences in the presence of the

magnetic field: the behavior of the bare free energy at a → 0 is identical6 to that of the

renormalized free energy at T → ∞. Thus, the high-temperature susceptibility is again

governed by the QED β-function [18, 46, 47],

χB(T ) = 2 · b1 · log(T/ΛH). (4.8)

Taking b1 = bfree1 and inserting the value ΛH = 0.12 GeV that we determined in section 4.2

for physical quark masses, we obtain the blue dashed curve in the right panel of figure 9.

To improve this perturbative expression, we also take into account QCD corrections to bfree1

using eq. (3.14), but this time at the thermal scale µth ∼ T instead of at the lattice regulator

1/a. To calculate g2(µth) we use the four-loop running coupling and ΛMS
QCD = 0.34 GeV for

three-flavor QCD [48]. Considering QCD corrections up to various orders in αs = g2/(4π)

we obtain the dashed bands in the figure. The width of the bands correspond to the

uncertainty of the thermal scale, which we allow to vary between πT and 4πT . This range

is physically motivated based on convergence arguments [49]. The perturbative expansion7

6This may be understood as follows. As the temperature increases, T gradually adopts the role of

the largest scale in the system and replaces the scale ΛH in eq. (3.15). The renormalization prescription,

however, remains unchanged and still amounts to the subtraction at a renormalization scale µ = ΛH, as

contained in eq. (3.15). Altogether one obtains, to quadratic order, a logarithmic term log(T/ΛH), from

which eq. (4.8) follows directly.
7We mention that to obtain the perturbative improvement of eq. (4.8) we only considered the QCD

corrections in the coefficient of the leading logarithm and ignored possible corrections that arise in the

sub-leading constant terms (i.e. those that could modify the dependence on the renormalization scale ΛH).

These could be accounted for by considering the scale µth (proportional to T ) instead of T in eq. (4.8). Note

moreover that both the higher-order corrections to the β-function and ΛH depend on the renormalization

scheme, but this dependence must cancel in the susceptibility, being a physical observable.
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Figure 10. Left panel: entropy density normalized by T 3 for various magnetic fields. The lattice

results are compared to the HRG prediction (dotted curves at low T ) and the corresponding Stefan-

Boltzmann limits (see eq. (4.9)) are also indicated (dashed curves). Right panel: normalized entropy

density minus its B = 0 value, compared to the Stefan-Boltzmann limits.

seems to show a fast convergence even for reasonably low temperatures, and agrees nicely

with the lattice data in the temperature region 200 MeV < T < 300 MeV.

It is important to stress that ΛH appeared in the perturbative description due to its

role as the renormalization scale. Since the susceptibility contains an ultraviolet divergence,

its renormalization inevitably introduces an ambiguity, expressed as a dependence on the

renormalization scale. To derive eq. (4.8) we relied on two observations: that the zero-

temperature free energy to O((eB)2) is determined exclusively by the QED β-function and

that at high temperatures T replaces the regulator 1/a in this expression. Eq. (4.8) can

be explicitly checked in the free case [18, 46, 47]. Note that our arguments about charge

renormalization only relate to the O((eB)2) contributions, whereas the full, B-dependent

free energy contains much more information and is also considerably more complicated. Its

calculation to O(αs) was performed recently using the lowest-Landau-level approximation,

valid for large magnetic fields [50].

4.5 Entropy density and the Adler function

As emphasized in section 4.3, most observables contain magnetic field-induced contribu-

tions at T = 0, making the usual normalization (e.g., with respect to T 4 for the pressure)

disadvantageous. In this respect, the entropy density is special: being the derivative of pz,r
with respect to the temperature, it vanishes identically at T = 0. This may be understood

from the fact that the vacuum contribution is a pure quantum effect (it emerges from the

interaction of virtual quarks with the external field) and thus it cannot produce entropy.

Note that at T > 0, the magnetic field changes the thermal distribution and is expected

to modify s.

The vanishing of s(T = 0) allows for a study of the usual normalization s/T 3, plotted

in the left panel of figure 10. Note that the errors become large at low temperatures as B

increases, due to the cancellation of the O(T−3) magnetic field-induced contributions in s.

For the lowest three magnetic fields at low temperatures, we also show the HRG prediction
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Figure 11. Second derivative of the entropy density with respect to eB at high temperatures,

compared to perturbation theory.

in the plot. Moreover, we indicate the Stefan-Boltzmann limits for each value of eB. These

can be calculated from the dependence of the free pressure on T and B,

pfreez,r = −fr =
19π2

36
T 4 + bfree1 (eB)2 log(T/ΛH) + . . . → sfree

T 3
=

19π2

8
+ bfree1

(eB)2

T 4
+ . . . ,

(4.9)

where we considered three massless quark flavors and used the high-temperature limit of

the magnetic susceptibility from eq. (4.8). Note that the renormalization scale ΛH cancels

in the entropy density. In the right panel of figure 10 we show the magnetic field-induced

part ∆s/T 3, compared to the expected perturbative behavior. Note that while s(B = 0)

is by 20 − 30% below its Stefan-Boltzmann limit at our highest temperature, ∆s almost

perfectly follows the free-case prediction, already for T & 170 MeV. A similar behavior is

observed for the pressure and, thus, for all other observables as well. In other words, the

B-dependence of the EoS in the deconfined phase is predominantly dictated by the O(B2)

free-case behavior — in sharp contrast to the B = 0 EoS, which shows strong deviations

from the perturbative predictions within this range of temperatures. Similar conclusions

were drawn using a perturbative treatment of QCD in magnetic fields, where the O(g2)
term was shown to be suppressed with respect to the free-case contribution [50].

The correspondence between the entropy density and perturbative QED physics can

be pushed even further: we find that the second derivative of the entropy density with

respect to the magnetic field at B = 0 is related to the Adler function (for its definition,

see, e.g., ref. [51]) at high temperatures. To understand the origin of this relation, it is

advantageous to consider a (perturbative) diagrammatic representation of the free energy

f(B): it consists of all closed loop diagrams containing virtual quarks and gluons. On the

one hand, taking the second derivative with respect to eB gives the susceptibility χB. On

the other hand, this derivative effectively pulls out two photon legs (these photons corre-

spond to the background magnetic field), giving the photon vacuum polarization diagram

Π. This diagram is usually considered with an inflowing momentum Q, and the Adler func-

tion is defined from it via D(Q) = 12π2 · ∂Π/∂ logQ2. The equivalent of the momentum

Q in our setup is expected to be the largest scale in the system: at high temperatures, for
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example, Q ∼ T (remember that to define χB, the magnetic field has already been set to

zero). Thus, in this region we expect that the Adler function is approached as

D(µth) ←→ 12π2 · ∂χB

∂ log T 2
= 6π2 T · ∂2s

∂(eB)2
, (4.10)

where we interchanged the derivatives with respect to T and to eB. Eq. (4.10) reveals a

relation between the magnetic field-dependence of the entropy and the Adler function at a

thermal scale µth ∼ T . In figure 11 we show our continuum estimate for the right-hand-side

of eq. (4.10) and a comparison to the perturbative expansion [51] of D(µth) (where we used

µth = 2πT ). Note that the above correspondence is only expected to be valid for T ≫ ΛH,

where the relevant scale is uniquely defined by the temperature. Note also that according

to this argument, eq. (4.10) fixes the asymptotic dependence of ∂2s/∂(eB)2 on any external

parameter (e.g., on chemical potentials), as long as this parameter represents the largest

scale in the system. The correspondence between the susceptibility and the Adler function

clearly deserves a more detailed investigation, which we plan to conduct in the near future.

4.6 Phase diagram

Let us now use the dependence of the EoS on T and on B to discuss the QCD phase diagram

in the B − T plane. To this end we need to define Tc(B) through characteristic points of

some observables. We have seen that most observables are nonzero at T = 0, making

the usual normalization by T 4 disadvantageous. The shift in pz,r at zero temperature is

of O((eB)4) and positive, as we have seen in section 4.3. It is simple to show using this

observation and the thermodynamic relations of section 2 that eB · M, I
(Φ)
r and ǫtotal

are also of O((eB)4) and positive at T = 0. Conversely, ǫ and I
(B)
r are of O((eB)4) and

negative at zero temperature. A special combination is ǫtotal − 3pz,r = I
(Φ)
r − eB · M for

which quartic terms also cancel and which is of O((eB)6). Let us consider this combination

in somewhat more detail. It is plotted in the left panel of figure 12. This combination

coincides with the renormalized interaction measure at B = 0. Accordingly, it exhibits a

pronounced peak, which is observed to move towards lower temperatures as B increases.

Eventually, the O((eB)6) terms start to contribute to this combination, making it diverge

at low temperatures and washing out the peak-like structure. Still, up to eB = 0.4 GeV2

we can use the peak of this observable to characterize the transition region.

For a first-order phase transition, the inflection point of this observable would turn into

a discontinuity, thus this point marks the (pseudo-critical) transition temperature Tc(B)

for the crossover. Similarly, the inflection point of s/T 3 (see the left panel of figure 10)

also represents a candidate for defining the transition temperature. Together with the

maximum of (ǫtotal − 3pz,r)/T
4 (which, however, does not correspond to a pseudo-critical

temperature, but is merely a characteristic point), we show the B-dependence of these

definitions in the right panel of figure 12, and compare them to our earlier determinations

of the phase diagram using the strange quark number susceptibility and the light quark

condensates. The results consistently show a reduction of the transition temperature as

B grows. Note that the difference between different determinations of Tc reflects the
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Figure 12. Left panel: the combination (ǫtotal − 3pz,r)/T
4 as a function of T and B. Right

panel: magnetic field-dependence of the characteristic points (inflection point and maximum) of

EoS observables (points), compared to our earlier results [16] for the inflection point of the strange

quark number susceptibility (light blue shaded band) and that of the light quark condensates

(light red shaded band).

crossover nature of the transition. The variance between the four definitions is found to

remain constant within the errors.

5 Summary

Using a novel ‘generalized integral method’, we determined the QCD equation of state

for a wide range of temperatures and magnetic fields up to eB = 0.7 GeV2. Results

were presented for a variety of thermodynamic observables, indicating that the EoS is

significantly affected by the magnetic field, even at moderate values of B. The tabulated

data is available as online resource 1 and 2.

The thermodynamic structure of QCD is altered by the magnetic field in several as-

pects:

• Vacuum term. The magnetic field induces a vacuum contribution to most observ-

ables, such that e.g. the pressure does not vanish at T = 0. This vacuum term

makes the usual normalization of the affected observables (e.g. p/T 4) ill-defined at

low temperatures.

• Pressure anisotropy. The magnetic field creates an anisotropy between the pres-

sure components if the transverse pressure is defined at constant magnetic flux (Φ-

scheme). This anisotropy is sizeable and becomes comparable to the longitudinal

pressure as T or B increase.

• Para-/diamagnetism. The leading-order response of the system to B is character-

ized by the magnetic susceptibility χB. On the one hand, the thermal QCD medium is

a strong paramagnet (χB > 0) around and above the transition region. On the other

hand, there appears to be a weakly diamagnetic region (χB < 0) at low temperatures

T . 100 MeV, where pions dominate.

– 27 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
7

• Validity of HRG and of PT. For the susceptibility, the Hadron Resonance Gas

model breaks down already at T ≈ 120 MeV. However, perturbation theory success-

fully describes the lattice data at suprisingly low temperatures T ≈ 200− 300 MeV.

The presence of the background magnetic field necessitates the renormalization of the

electric charge. This has several implications:

• Renormalization. The pressure undergoes additive renormalization at T = 0. The

divergent term that needs to be subtracted is logarithmic in the lattice spacing and

its coefficient equals the lowest-order QED β-function (with QCD corrections at the

scale 1/a).

• Magnetic catalysis. At zero temperature, the phenomenon of magnetic catalysis

(the enhancement of the quark condensate by the magnetic field) to quadratic order

in eB is related to the positivity of the QED β-function.

• Susceptibility. For high temperatures, the magnetic susceptibility increases loga-

rithmically with T , at a rate given by the QED β-function (with QCD corrections at

the scale T ).

• Adler function. The second derivative of the entropy density with respect to the

magnetic field is related to the perturbative Adler function at high temperatures.

In addition, we considered characteristic points of a few observables to explore the QCD

phase diagram in the B−T plane. This analysis indicates that the transition temperature

decreases as B grows, in agreement with our previous results where other thermodynamic

observables (light quark condensate, strange quark number susceptibility and Polyakov

loop) were used [16, 17]. Lattice results indicating this tendency have also been obtained

using overlap fermions in Nf = 2 QCD [52] and in two-color QCD with four equally charged

staggered quark flavors [53]. The reduction of Tc(B) has been reproduced within the bag

model [37] and is also supported by large Nc arguments [54]. Nevertheless, this feature

remains a property of the chiral/deconfinement transition that most low-energy effective

theories or models cannot reproduce, or only for a limited range of magnetic fields, see,

e.g., refs. [55–57]. Recent studies of the Nambu-Jona-Lasinio model, however, indicate that

taking into account a B-dependent Polyakov loop scale parameter [58], or the magnetic

field-induced running of the strong coupling [59–61] might resolve this discrepancy.
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A Expansion of the quark determinant

In this appendix we calculate the expansion of the determinant for asymptotically large

quark masses. We consider one quark flavor with electric charge q and mass m and for

simplicity, set the lattice spacing to unity. Using chiral symmetry, the fermionic action can

be rewritten as

log detM ≡ log det[ /D+m] =
1

2
log det

[

− /D
2
+m2

]

=
1

2
tr log

[

1− /D
2
/m2

]

+const. (A.1)

Note that the staggered lattice discretization of the Dirac operator only possesses a remnant

U(1) chiral symmetry. This symmetry corresponds to { /D, η5} = 0, (η5 = (−1)nx+ny+nz+nt

is the staggered equivalent of the fifth gamma-matrix) and allowed us to derive eq. (A.1).

The square of the Dirac operator in the magnetic field is rewritten using γ-matrix identities

as

/D
2
= DµDµ − σxyqB 1− 1

2
σµνGµν , (A.2)

where σµν = [γµ, γν ]/(2i) is the spin operator, Gµν = Ga
µνt

a the non-Abelian field strength

with generators ta, and the (Abelian) magnetic field B points in the z direction. Now,

considering the change in the fermionic action due to the magnetic field, and expanding

the logarithm in m−1, we obtain

∆ log detM = −1

2
∆tr

[

/D
2

m2
+

/D
4

m4
+O( /D6

/m6)

]

= − 1

2m4
∆tr

[

DµDµ − σxyqB 1− 1

2
σµνGµν

]2

+O(m−6)

= −(qB)2

2m4
· 4N3

sNtNc +O(m−6).

(A.3)

Here we used that trσxy = tr ta = 0 such that terms linear in qB vanish under the trace,

and that trσ2xy1 = 4N3
sNtNc. Moreover, terms independent of B cancel in ∆ log detM .

Note that at any finite lattice spacing, /D is bounded from above by the largest possible

lattice momentum ∼ a−1.

In the large mass limit quarks and gluons decouple from each other, and the gluonic

contribution to logZ becomes independent of the magnetic field. Therefore, we obtain

∆ logZ ma≫1−−−−→ ∆ log detM ∝ −(a2qB)2/(ma)4 +O((ma)−6), (A.4)

where we reinserted the lattice spacing a. Eq. (A.4) shows that ∆pz falls off as (ma)−4

for large quark masses m ≫ a−1. Thus we have proven that eq. (3.22) holds in the

lattice regularization once the upper endpoint of the integral exceeds the lattice scale.

Accordingly, the derivative with respect to the mass, ∆ψ̄ψ decays as (ma)−5 for large

masses, as observed in section 4.1.

B Magnetic susceptibility in the HRG model

In this appendix we calculate χB within the Hadron Resonance Gas model. The EoS at

nonzero magnetic fields was determined in ref. [32] by writing the free energy density as an
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integral over the longitudinal momentum and a sum over Landau-levels, both of which can

be performed numerically. To obtain χB, it is instead advantageous to use the proper-time

representation [28], where the expansion of f in the magnetic field can be written down

directly. For hadrons with electric charge q and spin s = 0, 1/2 or 1, the energy levels in

the magnetic field read

E(pz, k, sz) =
√

p2z +m2 + qB(2k + 1− 2sz), (B.1)

where sz is the projection of the spin on the magnetic field, and we approximated the

gyromagnetic factor of the hadron as g = 2. To calculate the renormalized susceptibility,

it suffices to determine the difference of free energies at T and at T = 0,

f s(T )−f s(0)=(−1)2s+1 qB

8π2

∫ ∞

0

dt

t2
e−m2t 1

2 sinh(qBt)
·
[

Θ3

(

ϕs, e
−1/(4T 2t)

)

−1
]

·
s

∑

sz=−s

e−2qBszt,

(B.2)

where the prefactor (−1)2s+1 reflects the fermionic/bosonic nature of the hadron, the ellip-

tic Θ-function results from summing over Matsubara-frequencies and the factor 2 sinh(qBt)

from summing over the angular momenta k in eq. (B.1). The first argument of the Θ-

function is ϕs = 0 for s = 0, 1 and ϕs = π/2 for s = 1/2, according to the lowest

Matsubara-mode. The −1 in the square brackets corresponds to the subtraction of the

T = 0 term. Note that eq. (B.2) gives the contribution of a particle and its antiparticle to

the free energy density.

Keeping quadratic terms in the magnetic field gives the susceptibility,

χs
B(T )=−

∂2[f s(T )−f s(0)]
∂(eB)2

∣

∣

∣

∣

B=0

=(−1)2s 1

4π2
(q/e)2

∫ ∞

0

dt

t
e−m2t/T 2

[

Θ3

(

ϕs, e
−1/(4t)

)

−1
]

ωs,

(B.3)

where we performed the sum over sz, resulting in the factors

ω0 = −1/12, ω1/2 = 1/3, ω1 = 7/4, (B.4)

and made a change in the integration variable. The remaining integral over t can be per-

formed numerically. Inspecting the behavior of the Θ-function we see that χs
B(T ) is negative

for s = 0 and positive for s = 1/2, 1: charged pions contribute to diamagnetism (this was

also recognized in ref. [25]), whereas protons and charged ρ-mesons to paramagnetism. This

tendency can be qualitatively understood invoking the following argument (see the discus-

sion in ref. [32]). The susceptibility is determined by the thermal part of the free energy,

which contains exp(−m(B)/T ) where m(B) is the effective mass of the hadron at non-zero

magnetic fields. According to the structure of the lowest Landau-level (eq. (B.1) with

pz = k = 0 and sz = s), for scalar (vector) hadrons this effective mass increases (decreases)

as B grows. Therefore, the magnitude of the thermal free energy is suppressed by the mag-

netic field for pions, whereas it is enhanced for ρ-mesons, responsible for the different signs

of χs
B in the two cases. In the s = 1/2 case, the lowest level is independent of B, thus the

sign of the susceptibility cannot be anticipated from this argument. As already mentioned

in section 4.4, at O(B4) the vacuum part starts to contribute to the free energy as well

and turns the magnetization positive for each spin channel, given that eB & 0.05 GeV2.

– 30 –
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The total susceptibility is obtained as the sum over all hadrons

χB(T ) =
∑

h

dh · χsh
B (T ), (B.5)

with multiplicities dh. The list of hadrons taken into account can be found in ref. [32].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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gluonic (inverse) catalysis and pressure (an)isotropy in QCD, JHEP 04 (2013) 130

[arXiv:1303.1328] [INSPIRE].

[22] E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo and P.L. Springsteen, Equation of state of

a dense and magnetized fermion system, Phys. Rev. C 82 (2010) 065802 [arXiv:1009.3521]

[INSPIRE].

[23] Y. Aoki, Z. Fodor, S.D. Katz and K. Szabó, The equation of state in lattice QCD: with
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