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Abstract. We calculate the photonuclear production of heavy quarks in ultraperipheral heavy ion col-
lisions. The integrated cross section and the rapidity distribution are computed employing sound high
energy QCD formalisms like the collinear and semihard approaches as well as the saturation model. In
particular, the color glass condensate (CGC) formalism is also considered using a simple phenomenological
parameterization for the color field correlator in the medium, which allows us to obtain more reliable
estimates for charm and bottom production at LHC energies.

1 Introduction

The recent results from RHIC suggest that relativistic
heavy ion collisions at high energies probe QCD in the
non-linear regime of high parton density [1]. In such a
regime the growth of parton distributions should saturate,
possibly forming a color glass condensate [2] (for a peda-
gogical presentation see [3, 4]), which is characterized by
a bulk momentum scale Qs. In particular, the RHIC data
on the multiplicity distribution of the produced hadrons
as a function of centrality, rapidity, and collision energy
appears to be consistent with the CGC predictions. How-
ever, there are still a number of open questions, mainly
associated to the fact that other models based on different
assumptions reasonably describe the same set of exper-
imental data [5, 6]. For instance, the recent RHIC data
indicate the lack of suppression in the high-pT spectra of
charged hadrons produced in d + Au collisions [7], in con-
trast to the initial expectation of the CGC formalism [1].
The main uncertainty present in those analyses is directly
connected with the poor knowledge of the initial conditions
of the heavy ion collisions. Theoretically, the early evolu-
tion of these nuclear collisions is governed by the dominant
role of gluons [8], due to their large interaction probabil-
ity and the large gluonic component in the initial nuclear
wave functions. Consequently, a systematic measurement
of the nuclear gluon distribution is of fundamental inter-
est to understand the parton structure of nuclei, determine
the initial conditions of the QGP and constrain the QCD
dynamics at high energies.

In the last years, there has been a lot of interest in
the description of electron–nucleus collisions at high ener-
gies, with particular emphasis on the behavior of the nu-

clear structure functions [9] and their logarithmic slope [10]
at small value of the Bjorken variable x, obtaining pre-
dictions which agree with the scarce experimental data.
Moreover, the high energy heavy quark photoproduction
on nuclei targets has been studied in detail in [11, 12],
considering the several scenarios for the QCD dynamics
at high energies available. The results of those analyses
show that future electron–nucleus colliders at HERA and
RHIC [13, 14] probably could determine whether parton
distributions saturate and constrain the behavior of the
nuclear gluon distribution in the full kinematical range.
However, until these colliders become reality we need to
consider alternative searches in the current and/or sched-
uled accelerators which allow us to constrain the QCD
dynamics. Here, we analyze the possibility of using ultra-
peripheral heavy ion collisions as a photonuclear collider
and study the heavy quark production assuming distinct
approaches for the QCD evolution.

The analysis of heavy quark production in ultraperiph-
eral heavy ion collisions has been proposed many years
ago [15], improved in [16–18] and recently revisited in
[19–21]. Most of these approaches calculate the cross sec-
tion assuming the validity of the collinear factorization,
where the cross sections involving incoming hadrons are
given, at all orders, by the convolution of intrinsically non-
perturbative, but universal, quantities – the parton densi-
ties, with perturbatively calculable hard matrix elements,
which are process dependent. In this approach all partons
involved are assumed to be on mass shell, carrying only
longitudinal momenta, and their transverse momenta are
neglected in the QCD matrix elements. However, in the
large energy (small-x) limit, the effects of the finite trans-
verse momenta of the incoming partons become important,
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and the factorization must be generalized, implying that
the cross sections are now k⊥-factorized into an off-shell
partonic cross section and a k⊥-unintegrated parton den-
sity function F(x, k⊥), characterizing the k⊥-factorization
approach [22–24]. The function F is obtained as a solu-
tion of the evolution equations associated to the dynamics
that governs the QCD at high energies. Here, we estimate,
for the first time, the total cross section and the rapid-
ity dependence of the nuclear photoproduction of heavy
quarks in ultraperipheral heavy ion collisions, considering
the k⊥-factorization approach and distinct nuclear uninte-
grated gluon distributions. Moreover, we extend the pre-
vious study for heavy quark production in the color glass
condensate formalism considering a realistic photon flux
and a phenomenological dipole cross section which is en-
ergy dependent, allowing one to obtain reliable estimates
for the rapidity distribution within this formalism. For
comparison, we also present the predictions for the cross
section from the collinear factorization approach.

This paper is organized as follows. In the next sec-
tion we present a brief review of ultraperipheral heavy ion
collisions and write down the main formulas describing
the photonuclear process in these collisions. In Sect. 3 we
discuss some sound models for the heavy quark photopro-
duction in the collinear and k⊥-factorization approaches.
Moreover, we discuss our main assumptions in order to
extend the previous results on the color glass condensate
formalism. Finally, in Sect. 4 we present our results for the
total cross section and rapidity distribution of charm and
bottom production for the LHC energies.

2 Ultraperipheral relativistic heavy ion

collisions

In heavy ion collisions the large number of photons coming
from one of the colliding nuclei will allow one to study
photoproduction, with energies WγN reaching 950 GeV for
the LHC. The photonuclear cross sections are given by the
convolution between the photon flux from one of the nuclei
and the cross section for photon–nuclei scattering. The
photon flux is given by the Weizsäcker–Williams method
[25]. The flux from a charge Z nucleus a distance b away
is

d3N(ω, b2)

dω d2b
=

Z2αemη2

π
2 ω b2

[
K2

1 (η) +
1

γ2
L

K2
0 (η)

]
, (1)

where γL is the Lorentz boost of a single beam and η =
ωb/γL; K0(η) and K1(η) are the modified Bessel functions.
The requirement that photoproduction is not accompanied
by a hadronic interaction (ultraperipheral collision) can be
done by restricting the impact parameter b to have values
larger than twice the nuclear radius, RA = 1.2 A1/3 fm.
Therefore, the total photon flux interacting with the tar-
get nucleus is given by (1) integrated over the transverse
area of the target for all impact parameters subject to
the constraint that the two nuclei do not interact hadron-
ically. An analytic approximation for AA collisions can be

obtained using as integration limit b > 2 RA, producing

dN (ω)

dω
=

2 Z2αem

π ω
(2)

×
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η̄ K0 (η̄) K1 (η̄) +

η̄2

2

(
K2

1 (η̄) − K2
0 (η̄)

)]
,

where η̄ = 2ω RA/γL. The final expression for the produc-
tion of heavy quarks in ultraperipheral heavy ion collisions
is then given by

σAA→QQX

(√
SNN

)
(3)

=

∞∫
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dω
dN (ω)

dω
σγA→QQX

(
W 2

γA = 2ω
√

SNN

)
,

where ωmin = M2
QQ

/4γLmp and
√

SNN is the CMS en-

ergy of the nucleus–nucleus system. The Lorentz factor
for LHC is γL = 2930, giving the maximum CMS γN
energy WγA

<∼ 950 GeV. It is worth mentioning that the
difference between the complete numeric and the analyti-
cal calculation presented above for the photon flux is less
than 15% for most purposes [25].

Before considering the distinct models for the photon–
nucleus cross section, it is interesting to determine the
values of x which will be probed in ultraperipheral heavy
ion collisions. The Bjorken x variable is given by x =
(MQQ/2p)e−y, where MQQ is the invariant mass of the
photon–gluon system and y the center of momentum ra-
pidity. For Pb + Pb collisions at LHC energies the nu-
cleon momentum is equal to p = 2750 GeV; hence x =
(MQQ/5500 GeV)e−y. Therefore, the region of small mass

and large rapidities probes directly the high energy (small
x) behavior of the QCD dynamics present in the γ A cross
section. This demonstrates that ultraperipheral heavy ion
collisions at LHC represent a very good tool to constrain
the high energy regime of the QCD dynamics, as already
verified for two-photon processes [26–28].

3 Models for nuclear heavy quark production

For our further analysis of photonuclear production of
heavy quarks we will consider distinct available high energy
approaches. First, we take into account the usual collinear
approach, where the production cross section is driven by
the collinear gluon distribution on the nuclei. This contains
a lot of information about nuclear shadowing, EMC, and
anti-shadowing effects. Second, the k⊥-factorization for-
malism is introduced, where the relevant quantity is now
the nuclear unintegrated gluon distribution. For this pur-
pose, we analyze two simple parameterizations for it which
are consistent with the data description on inclusive and
diffractive DIS. Finally, we take into account the color
glass condensate formalism, where the scattering process
is viewed as the interaction of the probe particles with the
strong nuclear color field treated in a classical approxima-
tion. The main quantity is the correlator of two Wilson
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lines, which is related to the dipole cross section and at
lowest order has no energy dependence. We present a sim-
ple phenomenological parameterization which introduces
higher orders corrections to the classical approximation
and allows us to produce more realistic estimates for the
cross section.

3.1 The collinear approach

In hard photon–hadron interactions the photon can be-
have as a point-like particle in the so-called direct photon
processes or it can act as a source of partons, which then
scatter against partons in the hadron, in the resolved pho-
ton processes (for a recent review see [29]). Resolved in-
teractions stem from the photon fluctuation into a quark–
antiquark state or a more complex partonic state, which
both are embedded in the definition of the photon struc-
ture functions. Recently, the contribution of resolved pho-
ton processes in ultraperipheral heavy ion collisions was
discussed in [20] and studied in detail in [21]. One of the
main results is that at LHC, these contributions are ≈ 15
and 20% of the total charm and bottom photoproduction
cross sections, respectively; comparable to the shadowing
effect. Here, we will consider only the direct photon con-
tribution.

At high energies the main subprocess occurring when
the photon probes the structure of the nucleus is the pho-
ton–gluon fusion producing the heavy quark pair. It can
be described through perturbative QCD, with the cross
section given in terms of the convolution between the ele-
mentary cross section for the subprocess γg → QQ and the
probability of finding a gluon inside the nucleus, namely
the nuclear gluon distribution. In this collinear approach
the heavy quark photoproduction cross section is given by

σγA→QQ(WγA) =

∫ W 2

γA

4m2

Q

dM2
QQ

dσγg→QQ

dM2
QQ

gA(x, µ2) , (4)

where the quantity dσQQ/dM2
QQ

is calculable perturba-

tively, and MQQ is the invariant mass of the heavy quark

pair with x = M2
QQ

/W 2
γA. The CMS energy of the γA

system is labelled WγA, and gA(x, µ2) is the gluon density
inside the nuclear medium, with µ being the factoriza-
tion scale and mQ the heavy quark mass. For our pur-
pose here we will use µ2 = 4m2

Q, with mc = 1.5 GeV and
mb = 4.5 GeV. The differential cross section in leading
order is given by [30]

dσγg→QQ

dMQQ

=
4π αemαs(µ

2) e2
Q
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×
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2
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)
− (1 + β)

√
1 − β

]
,

where eQ is the heavy quark charge and β = 4m2
Q/M2

QQ
. In

our further calculation in the collinear approach one con-
siders that xgA(x, Q2) = Rg(x, Q2) × xgN (x, Q2), where

the Rg parameterize the medium effects as proposed in [31]
and xgN is the nucleon gluon distribution given by the
GRV98(LO) parameterization [32]. It is worth mentioning
that different choices for the factorization scale and quark
mass produce a distinct overall normalization to the to-
tal cross section at photon–nucleus and ultraperipheral
nucleus–nucleus interactions. For details see [12], where
the heavy quark photoproduction at eRHIC and THERA
energies has been discussed. In Sect. 4 we discuss the de-
pendence of our results on the choice of the quark mass
and parton distribution parameterization.

3.2 The k⊥-factorization formalism

In the k⊥-factorization (or semihard) approach, the rele-
vant QCD diagrams are considered with the virtualities
and polarizations of the initial partons, carrying infor-
mation on their transverse momenta. The scattering pro-
cesses are described through the convolution of off-shell
matrix elements with the unintegrated parton distribution,
F(x,k⊥) (see [33] for a review). The latter can recover the
usual parton distributions in the double logarithmic limit
by its integration over the transverse momentum of the
k⊥ exchanged gluon. The gluon longitudinal momentum
fraction is related to the CMS energy, Wγ A, in the heavy
quark photoproduction case by x = 4m2

Q/W 2
γ A, as in the

collinear case. The cross section for the heavy quark pho-
toproduction process is given by the convolution of the
unintegrated gluon function with the off-shell matrix ele-
ments [33–36]. Considering only the direct component of

the photon we see that σphot
tot reads [35]

σphot
tot (WγA)

=
αem e2

Q

π

∫
dz d2p1⊥ d2k⊥

αs(µ
2) F(x,k2

⊥; µ2)

k
2
⊥

×
{

[z2 + (1 − z)2]

(
p1⊥
D1

+
(k⊥ − p1⊥)

D2

)2

+ m2
Q

(
1

D1
+

1

D2

)2
}

, (6)

where D1 ≡ p2
1⊥ + m2

Q and D2 ≡ (k⊥ − p1⊥)2 + m2
Q. The

transverse momenta of the heavy quark (antiquark) are
denoted by p1⊥ and p2⊥ = (k⊥ − p1⊥), respectively. The
heavy quark longitudinal momentum fraction is labeled by
z. The scale µ in the strong coupling constant in general
is taken to be equal to the gluon virtuality, in close con-
nection with the BLM scheme [37]. Here, we will use the
prescription µ2 = k

2
⊥ + m2

Q.
In order to perform a phenomenological analysis within

the k⊥-factorization approach, in the following we use two
distinct parameterizations for the unintegrated gluon dis-
tribution (for details see [12]). First, one considers the
derivative of the collinear nuclear gluon parton distribu-
tion function; this is quite successful in the proton case
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and tested in the nuclear case in [12]. It simply reads

Fnuc (x, k
2
⊥; A) =

∂ xGA(x, k
2
⊥)

∂ lnk
2
⊥

, (7)

where xGA(x, Q2) is the nuclear gluon distribution, which
was taken from the EKS parameterization [31] for the
medium effects and the GRV94(LO) for the nucleon par-
ton distribution [38]. The latter choice is supported by the
good description of heavy quark photoproduction in the
full kinematical region [12]. As a consequence, with this
procedure we include in our calculations the medium ef-
fects (shadowing, anti-shadowing, EMC and Fermi motion
effects) estimated by that parameterization. Moreover, we
emphasize that this nuclear gluon distribution is a solution
of the DGLAP evolution equations, which is associated to
a linear dynamics that does not consider dynamical satu-
ration effects.

The second parameterization is given by the model in-
troduced in [39], which provides an extension of the ep
saturation model through the Glauber–Gribov formalism.
In this model the cross section for the heavy quark pho-
toproduction on nuclei targets is given by [11,39]

σγ A
tot (W, A) (8)

=

∫ 1

0

dz

∫
d2r |ΨT(z, r, Q2 = 0)|2 σA

dip(x̃, r2, A) ,

where the transverse wave function is known (see e.g. [40]).
As |ΨL|2 ∝ Q2, the longitudinal piece does not contribute
for Q2 = 0. The nuclear dipole cross section is given by

σA
dip(x̃, r2, A) (9)

=

∫
d2b 2

{
1 − exp

[
−1

2
A TA(b) σp

dip

(
x̃, r2

)]}
,

where b is the impact parameter of the center of the dipole
relative to the center of the nucleus, and the integrand gives
the total dipole–nucleus cross section for fixed impact pa-
rameter. The nuclear profile function is labelled by TA(b),
which will be obtained from the three-parameter Fermi
distribution for the nuclear density [41]. The parameter-
ization for the dipole cross section takes the eikonal-like
form, σp

dip(x̃, r2) = σ0

[
1 − exp

(
−Q2

s (x̃) r2/4
) ]

, where

one has used the parameters from [42], which include the
charm quark with mass mc = 1.5 GeV and the definition
x̃ = (Q2 + 4m2

Q)/W 2
γA. The saturation scale Q2

s (x) =

(x0/x)
λ

GeV2 gives the onset of the saturation phenome-
non for the process.

The equation above sums up all the multiple elastic
rescattering diagrams of the qq pair and is justified for a
large coherence length, where the transverse separation r
of partons in the multiparton Fock state of the photon be-
comes as good a conserved quantity as the angular momen-
tum, namely the size of the pair r becomes an eigenvalue
of the scattering matrix. The corresponding unintegrated
gluon distribution can be recovered from a Bessel–Fourier

transform to the momentum representation [39],

Fnuc (x, k
2
⊥, b) =

Nc

π
2αs

(
k

2
⊥

Q2
s

)
(10)

×
∞∑

m=1

m∑

n=0

(
− 1

2 A TA(b) σ0

)m

m !
Cn

m

(−1)n

n
exp

(
− k

2
⊥

nQ2
s

)
,

which depends on the transverse momentum k⊥ through
the scaling variable τ ≡ k

2
⊥/Q2

s . The unintegrated gluon
vanishes asymptotically at k

2
⊥ → 0, ∞ and its maximum

can be identified with the saturation scale QsA(x) [39,43].
The model recovers the original one for the proton case,
taking A=1 and the normalization condition

∫
d2bTA(b)=1.

In [11], it was verified that the resummation at the
proton level is less sizeable in the final results at nuclear
level. Therefore, this fact allows us to take just the color
transparency behavior on the dipole–nucleon cross sec-
tion. Hence, in such a particular case one can compute
analytically the unintegrated gluon distribution, which is
expressed as

Fnuc(x,k2
⊥, b) =

Nc

2αsπ
2

(
k

2
⊥

Q2
sA(x)

)
exp

(
− k

2
⊥

Q2
sA(x)

)
,

(11)
where Q2

s A(x) = 1
2A TA(b) σ0 Q2

s (x) define the nuclear sat-
uration scale. Such an approximation is justified in the
heavy quark case, which is dominated by small dipole con-
figurations (a large transverse momentum k

2
⊥ ≃ m2

Q). It

is clear that (11) presents a scaling pattern on the variable
τ = k

2
⊥/Q2

sA, which implies scaling on τ in the nuclear
heavy quark production. Recently, this feature has been
shown also in the nucleon case [44].

Some comments are in order here. In our analysis we
have disregarded higher-order Fock states in the photon
wave function and considered only the evolution in the
dipole cross section. In principle, at leading order and
for inclusive processes this is a reasonable approximation.
However, for diffractive processes, for example, the qqg
component cannot be disregarded. The recent results for
the NLO corrections for the impact factor [45] will allow
one to verify the validity of the color dipole approach at
higher orders. Another point which deserves discussion is
that we have assumed the validity of the k⊥-factorization
in photon–nucleus interactions. At high energies and in-
termediate densities, this is a reasonable assumption, since
the derivation of the k⊥-factorization presented in [46] can
be directly extended for the nuclear heavy quark photopro-
duction. However, for very large parton densities a break-
down of the k⊥- (and collinear) factorization is expected,
mainly associated to the effects of the non-linearity of the
non-Abelian gluon field [2,47,48]. Finally, we also have dis-
regarded the resolved photon contribution in the semihard
approach. For completeness, let us quote the estimates for
the resolved component on the nucleon level. In [36] it
gives a contribution of order 20–30%, rising faster with
energy (hence important mostly at large rapidities) than
the direct photon component and being stable under dif-
ferent choices for the unintegrated gluon distributions and
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quark mass. Moreover, the resolved contribution is some-
what higher than in the collinear approach due to the
non-zero transverse momentum transfer effect. We expect
a similar trend in photon–nucleus interactions.

3.3 The color glass condensate formalism

At small x and/or large A one expects the transition of the
regime described by the linear dynamics (DGLAP, BFKL)
(for a review, see e.g. [49]), where only the parton emissions
are considered, to a new regime where the physical pro-
cess of recombination of partons becomes important in the
parton cascade and the evolution is given by a non-linear
evolution equation. In this regime a color glass condensate
(CGC) is expected to be formed [2], being characterized by
the limitation on the maximum phase-space parton density
that can be reached in the hadron/nuclear wave function
(parton saturation) and very high values of the QCD field
strength Fµν ≈ 1/

√
αs [50]. The large values of the gluon

distribution at saturation (large occupation number of the
soft gluon modes) suggests the use of semi-classical meth-
ods, which allow one to describe the small-x gluons inside
a fast moving nucleus by a classical color field. This color
field is driven by a classical Yang–Mills equation whose
source term is provided by faster partons. When the en-
ergy further increases, the structure of the classical field
equations does not change, but only the correlations of the
color source. This change can be computed in perturba-
tion theory and expressed as a functional renormalization
group equation for the weight function, in which the “fast”
partons are integrated out in steps of rapidity and in the
background of the classical field generated at the previous
step. This approach enables one to calculate cross sections
in a high gluon density environment. Recently, this ap-
proach has been applied for the eA [47,51], pA [47,52,53]
and AA processes [48].

In [19] the heavy quark production in ultraperipheral
heavy ion collisions has been analyzed in the color glass
condensate formalism. In particular, those authors have
considered the photon–nuclei interaction, taking into ac-
count the electromagnetic interaction to lowest order in
the coupling and the interactions with the strong color
background field to all orders. The quantum evolution is
not included in the calculations. Their prediction for the
rapidity (y) distribution of the heavy quark (or antiquark)
is given by

dσAA→QQX

dy
= πR2

A

Nc(Zαem)2e2
q

6π
4

γL

mQ∫

2RA

d2b

b
2

+∞∫

0

dk
2
⊥C(k⊥)

×



1 +

4(k2
⊥ − m2

Q)

k⊥

√
k

2
⊥ + 4m2

Q

arcth
k⊥√

k
2
⊥ + 4m2

Q



 , (12)

with Nc being the color number and eq the quark charge.
The color field correlator C(k⊥) in the medium is given by

C(k⊥) ≡
∫

d2r e i k⊥·r e−B2(r)

=

∫
d2r e i k⊥·r 〈U(0)U†(r)〉ρ, (13)

with 〈. . .〉ρ representing the average over all configurations
of the color fields in the nucleus. The unitarity matrix
U(r) contains the information related to the interactions
between the quark and the colored glass condensate (clas-
sical color field of the nucleus) and is expressed in terms
of the color sources in the nucleus. Therefore, C(k⊥) de-
pends on the structure of the color sources describing the
target nucleus, and it describes the interactions of a high
energy probe with the target.

In [19] the McLerran–Venugopalan model for the cor-
relator C(k⊥) was considered. In this model the function
B2(r) in (13) is approximated as follows:

B2(r) ≈ Q2
s A r2

4π

ln

(
1

r Λ

)
, (14)

where the saturation scale Qs A at this classical level does
not depend on the rapidity (energy) and Λ is an infrared
cutoff related to the scale at which color neutrality oc-
curs. In principle, Λ is at least as large as ΛQCD. For a
saturated target, it can be probed that color neutrality
occurs over transverse spatial scales as small as 1/Qs [54].
Let us summarize the results coming from applying the
approximation above and Λ = ΛQCD in (12). Supposing
Qs A/ΛQCD = 10 (y = 2.3) one obtains dσ/dy = 355 mb
for charm and dσ/dy = 11 mb for bottom with the rapidity
distribution being flat on y.

In principle, extending the previous calculation to in-
clude the quantum evolution is just a matter of chang-
ing the C(k⊥) present in the previous calculations by one
that has been calculated considering the evolution of the
sources. However, the general solution of the functional
renormalization group equation for the weight function is
not known, but only approximate solutions in some limit-
ing kinematical regimes have been obtained [55]. In gen-
eral, the quantum corrections lead to a modification of
the distribution function of the hard sources when the en-
ergy increases, which implies a rapidity dependence for the
correlator C(k⊥).

In order to go further and introduce an energy depen-
dence in the calculations one makes use of the fact that the
function C(k⊥) is directly related to the Fourier transform
of the dipole–nucleus total cross section, as follows:

C (x,k⊥) ≡ (15)

1

2πR2
A

∫
d2r e i k⊥·r [σdip(x, r → ∞) − σdip(x, r)] .

For this definition of the correlator, we have a direct re-
lation between this quantity and the unintegrated gluon
density, given by F(x,k⊥) = (3R2

A/8π
2αs) k

2
⊥ C (x,k⊥).

In our analysis we will employ an educated guess for the
dipole–nucleus cross section:

σA
dip(x, r) = 2πR2

A

[
1 − exp

(
−Q2

s A(x) r2

4

)]
, (16)
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Fig. 1. The rapidity distribution for the distinct high energy approaches: collinear approach (long-dashed lines), semihard for-
malism (solid and dotted lines), saturation model (dot-dashed lines) and color glass condensate (dashed lines). The corresponding
mass values are mc = 1.5 GeV and mb = 4.5 GeV

where we assume that Q2
s A(x) = A1/3×Q2

s (x). This model
is inspired by the saturation model for the dipole–proton
scattering proposed in [42], and encodes the main prop-
erties of the high density approaches, namely color trans-
parency for small pair separations (r → 0) and saturation
for large pair separations (r → ∞). Moreover, the nuclear
A dependence assumed for the saturation scale agrees with
the recent analysis for the scattering of a small dipole in
a nuclear target in the McLerran–Venugopalan model and
fixed coupling BFKL dynamics [56]. However, the energy
dependence of the saturation scale still is an open question.
Recently, several groups have studied the solutions of the
Balitski–Kovchegov equation [57, 58], with x dependence
for Qs slightly different from the ansatz used here.

Embedding (16) in the definition of (15) we obtain the
following analytical expression for the color field correlator:

C̃ (x,k⊥) =
4π

Q2
s A(x)

exp

(
− k

2
⊥

Q2
s A(x)

)
, (17)

which also obeys the normalization condition

∫
d2kC̃(x,k⊥)/(2π)2 = 1.

In the next section, we compute the photonuclear cross
section using the correlator above and in addition consider
the complete photon flux instead of the approximation
leading to (12). The final expression now reads

dσAA→QQX

dY
= ω

dN(ω)

dω

αeme2
q

2π
2

+∞∫

0

dk
2
⊥ πR2

A C̃ (k⊥) (18)

×



1 +

4(k2
⊥ − m2

Q)

k⊥

√
k

2
⊥ + 4m2

Q

arcth
k⊥√

k
2
⊥ + 4m2

Q



 ,

where we define the rapidity Y ≡ ln(1/x) = ln(2ωγL/4m2
Q)

and the variable transformation between ω and Y should
be carried out. The equivalent photon flux is taken from (2).

4 Results and discussions

In this section we present the numerical calculation of the
rapidity Y distribution and total cross section for charm
and bottom photonuclear production. In particular, we are
focusing mostly on the LHC domain where small values of
x would be probed. At RHIC, x = (MQQ/200 GeV)e−y,

which implies x > 10−2 and, consequently, small devia-
tions between the high energy QCD approaches. In the
following, one considers the charm and bottom masses
mc = 1.5 GeV and mb = 4.5 GeV, respectively. Moreover,
for PbPb (A = 208) collisions at LHC, one has the CMS
energy of the ion–ion system

√
SNN = 5500 GeV and the

Lorentz factor γL = 2930.
In Fig. 1 are shown the rapidity distribution, for the

distinct high energy approaches considered before. The
collinear result is denoted by the long-dashed curves, where
use has been made of (3) and (4) employing the EKS98
parameterization for the collinear nuclear gluon function.
The solid and dotted lines label the semihard (k⊥-fac-
torization) results, where one has used (6) and the ansatz
given by (7) for the unintegrated gluon function. Two pos-
sibilities for the nucleon gluon distribution are considered:
(I) GRV94(LO), the solid line, and
(II) GRV98(LO), the dotted line.

The saturation model results are denoted by the dot-
dashed lines, with the input given by (8). The color glass
condensate prediction (dashed lines), is given by our phe-
nomenological ansatz using expressions (17) and (18). The
predictions for the collinear approach and the semihard
formalism are similar for both charm and bottom pro-
duction and give somewhat larger values than the satu-
ration and CGC results. One possible interpretation for
the similarity between the predictions of the semihard ap-
proach and the collinear one is that the expected enhance-
ment in the k⊥-factorization formalism, associated to the

resummation of the
(
αs ln

√
s

mQ

)n

in the coefficient func-

tion [22], is not sizeable for inclusive quantities in the kine-
matic region of the future colliders. This feature entails the
trend already verified at nucleon level as in photon–proton
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Table 1. The photonuclear heavy quark total cross sections
for ultraperipheral heavy ion collisions at LHC (

√
SNN =

5500 GeV) for PbPb

QQ Collinear SAT-MOD SEMIHARD I (II) CGC

cc̄ 2056 mb 862 mb 2079 (1679.3) mb 633 mb

bb̄ 20.1 mb 10.75 mb 18 (15.5) mb 8.9 mb

and photon–nuclei collisions [12]. Even inclusive cross sec-
tions in hadroproduction provide similar results between
collinear and semihard (dipole) approaches [59]. Probably,
a more promising quantity to clarify this issue would be
the transverse momentum p⊥ distribution. In this case, the
semihard approach seems to be in better agreement with
experimental data in the pp collisions than the collinear
approach [34].

Our phenomenological ansatz within the CGC formal-
ism gives similar results as the saturation model, but it
should be noticed that the physical assumptions in those
models are distinct. While (9) considers multiple scattering
on single nucleons, our expression for the dipole–nucleus
cross section [see (16)] assumes scattering on a black area
filled by partons coming from many nucleons. It is im-
portant to emphasize that the current experimental data
for the nuclear structure function can only be described if
the first choice is implemented [39]. However, the correct
expression for σA

dip in the kinematical range of the future
colliders is still an open question.

Let us now compute the integrated cross section consid-
ering the distinct models. The results are presented in Ta-
ble 1 for charm and bottom pair production. The collinear
approach gives a larger rate, followed by the semihard ap-
proach, a clear trend from the distribution on rapidity. The
saturation model and CGC formalisms give similar results,
including a closer ratio for charm to bottom production.
Concerning the CGC approach, our phenomenological ed-
ucated guess for the color field correlator seems to produce
quite reliable estimates.

Let us estimate the uncertainties present in our pre-
dictions using the collinear approach. We find that for
bottom production our prediction decreases by ≈ 20% if
we assume mb = 4.75 GeV and by ≈ 10% if we assume that
the factorization scale is µ2 = m2

b . Moreover, if the MRST
gluon density [60] is used instead of the GRV98 parame-
terization, our predictions decrease by ≈ 10%. For charm
production, the differences are larger due to the small val-
ues of x probed in that process. Our results for the total
charm production cross section in the collinear approach
are similar to those computed in [21]. However, they differ
largely for bottom production, even using the same set of
scales and parton distributions. We believe that our results
are reliable, since our prediction for the photon–nucleon
interaction is consistent with the HERA data [12], as well
as with the simple expectation σγA→bbX ≈ A × σγp→bbX .

Regarding the semihard approach we have checked the
uncertainties coming from the quark mass and different
choices for the gluon parameterization as input for the un-
integrated function. In comparison with the default value

mc = 1.5 GeV for charm, we have an enhancement of
≈ 35% using mc = 1.2 GeV, whereas the result decreases
by the same amount for mc = 1.8 GeV (similar results hold
for bottom). Considering the default value for the quark
mass, the uncertainty when using the GRV98 parameter-
ization is of order ≈ 20%. In Table 1 we provide the cross
section using
(I) the GRV94 and
(II) the GRV98 parameterization. There is an additional
uncertainty coming from the energy scale µ2 entering on
the strong coupling constant. Here we have used the opti-
mal choice, giving correct results at the nucleon level and
allowing a simple translation to occur to the dipole (posi-
tion space) representation, since the energy scale does not
depend on the quark transverse momentum.

In order to check if the differences between the satura-
tion approach and CGC come from the integration weights
in (6) and (18) or from a different mass number dependence
for the saturation scales, we have used our ansatz (16) in
the calculation of the photonuclear cross section. We have
found that for lead the CGC ansatz gives a result ≈ 40%
lower than the saturation model, whereas for calcium the
results are almost identical. Therefore, as the deviation
between saturation model and CGC comes mostly from
the different definition for the A dependence of Qs A(x),
an experimental analysis of this process for different nuclei
can be useful.

In conclusion, the photonuclear production of heavy
quarks allow us to constrain already in the current nuclear
accelerators the QCD dynamics since the main features
from photon–nuclei collisions hold in the coherent ultra-
peripheral reactions. As a summary, we have computed the
photonuclear production of heavy quarks in ultraperiph-
eral heavy ion collisions. One obtains the integrated cross
section and the rapidity distribution through well estab-
lished QCD approaches, namely the collinear and semihard
factorization formalisms as well as the saturation model.
For the first time, quantitative predictions for the latter
two approaches are presented, whereas previous collinear
calculations are consistently corroborated. Moreover, the
color glass condensate formalism has been considered us-
ing a simple educated guess for the color field correlator in
the medium, which allowed us to reach reliable estimates
at LHC energies.
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11. V.P. Gonçalves, M.V. Machado, Eur. Phys. J. C 30, 387
(2003)
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42. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 60, 114023

(1999); Phys. Rev. D 59, 014017 (1998)
43. N. Armesto, M.A. Braun, Eur. Phys. J. C 20, 517 (2001)
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