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1. FOREWORD 1

Among the many physics processes at TeV hadron colliders, we look most eagerly for those that display
signs of the Higgs boson or of new physics. We do so however amid an abundance of processes that
proceed via Standard Model (SM) and in particular Quantum Chromodynamics (QCD) interactions,
and that are interesting in their own right. Good knowledge of these processes is required to help us
distinguish the new from the known. Their theoretical and experimental study teaches us at the same
time more about QCD/SM dynamics, and thereby enables us to further improve such distinctions. This is
important because it is becoming increasingly clear that the success of finding and exploring Higgs boson
physics or other New Physics at the Tevatron and LHC will depend significantly on precise understanding
of QCD/SM effects for many observables.

To improve predictions and deepen the study of QCD/SM signals and backgrounds was therefore
the ambition for our QCD/SM working group at this Les Houches workshop. Members of the working
group made significant progress towards this on a number of fronts. A variety of tools were further devel-
oped, from methods to perform higher order perturbative calculations or various types of resummation,
to improvements in the modelling of underlying events and parton showers. Furthermore, various precise
studies of important specific processes were conducted.

A signficant part of the activities in Les Houches revolved around Monte Carlo simulation of
collision events. A number of contributions in this report reflect the progress made in this area. At present
a large number of Monte Carlo programs exist, each written with a different purpose and employing
different techniques. Discussions in Les Houches revealed the need for an accessible primer on Monte
Carlo programs, featuring a listing of various codes, each with a short description, but also providing a
low-level explanation of the underlying methods. This primer has now been compiled and a synopsis of
it is included here as the first contribution to this report (see below for where to obtain the full document).

This report reflects the hard and creative work by the many contributors which took place in the
working group. After the MC guide description, the next contributions report on progress in describing
multiple interactions, important for the LHC, and underlying events. An announcement of a Monte
Carlo database, under construction, is followed by a number of contributions improving parton shower
descriptions. Subsequently, a large number of contributions address resummations in various forms, after
which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After
a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent
progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop.

2. LES HOUCHES GUIDEBOOK TO MONTE CARLO GENERATORS FOR HADRON COL-

LIDER PHYSICS

Editors: M. Dobbs, S. Frixione, E. Laenen, K. Tollefson

Contributing Authors: H. Baer, E. Boos, B. Cox, M. Dobbs, R. Engel, S. Frixione, W. Giele, J. Huston,

S. Ilyin, B. Kersevan, F. Krauss, Y. Kurihara, E. Laenen, L. Lönnblad, F. Maltoni, M. Mangano, S. Odaka,

P. Richardson, A. Ryd, T. Sjöstrand, P. Skands, Z. Was, B.R. Webber, D. Zeppenfeld

1M. Dobbs’ work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.
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Abstract

Recently the collider physics community has seen significant advances in the
formalisms and implementations of event generators. This review is a primer
of the methods commonly used for the simulation of high energy physics
events at particle colliders. We provide brief descriptions, references, and links
to the specific computer codes which implement the methods. The aim is to
provide an overview of the available tools, allowing the reader to ascertain
which tool is best for a particular application, but also making clear the limita-
tions of each tool.

Due to its long length and stand-alone nature, the Monte Carlo Guidebook en-
try in the Les Houches proceedings has been published as a separate document
(hep-ph/0403045). The table of contents follows.

1. Introduction

2. The Simulation of Hard Processes

3. Tree Level Matrix Element Generators

4. Higher Order Corrections – Perturbative QCD Computations

5. Parton Distribution Functions

6. Higher Order Corrections – Showering and Hadronization Event Generators

7. Resummation

8. Combining Matrix Elements with Showering

9. Conclusions

10. Acknowledgments

3. MULTIPLE INTERACTIONS AND BEAM REMNANTS 2

3.1 Introduction

Hadrons are composite systems of quarks and gluons. A direct consequence is the possibility to have
hadron–hadron collisions in which several distinct pairs of partons collide with each other, i.e. multiple
interactions, a.k.a. multiple scatterings. At first glance, the divergence of the perturbative t-channel one-
gluon-exchange graphs in the p⊥ → 0 limit implies an infinity of interactions per event. However, the
perturbative framework does not take into account screening from the fact that a hadron is in an overall
colour singlet state. Therefore an effective cutoff p⊥min of the order of one to a few GeV is introduced,
representing an inverse colour correlation distance inside the hadron. For realistic p⊥min values most
inelastic events in high-energy hadronic collisions should then contain several perturbatively calculable
interactions, in addition to whatever nonperturbative phenomena may be present.

Although most of this activity is not hard enough to play a significant role in the description of
high–p⊥ jet physics, it can be responsible for a large fraction of the total multiplicity (and large fluctu-

ations in it) for semi-hard (mini-)jets in the event, for the details of jet profiles and for the jet pedestal
effect, leading to random as well as systematic shifts in the jet energy scale. Thus, a good understanding
of multiple interactions would seem prerequisite to carrying out precision studies involving jets and/or
the underlying event in hadronic collisions.

2Contributed by: T. Sjöstrand and P. Skands
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In an earlier study [1], it was argued that all the underlying event activity is triggered by the
multiple interactions mechanism. However, while the origin of underlying events is thus assumed to be
perturbative, many nonperturbative aspects still need to be considered and understood:
(i) What is the detailed mechanism and functional form of the dampening of the perturbative cross section
at small p⊥? (Certainly a smooth dampening is more realistic than a sharp p⊥min cutoff.)
(ii) Which energy dependence would this mechanism have?
(iii) How is the internal structure of the proton reflected in an impact-parameter-dependent multiple
interactions rate, as manifested e.g. in jet pedestal effects?
(iv) How can the set of colliding partons from a hadron be described in terms of correlated multiparton
distribution functions of flavours and longitudinal momenta?
(v) How does a set of initial partons at some low perturbative cutoff scale, ‘initiators’, evolve into such a
set of colliding partons? (Two colliding partons could well have a common initiator.) Is standard DGLAP
evolution sufficient, or must BFKL/CCFM effects be taken into account?
(vi) How would the set of initiators correlate with the flavour content of, and the longitudinal momentum
sharing inside, the left-behind beam remnant?
(vii) How are the initiator and remnant partons correlated by confinement effects (‘primordial k⊥’)?
(viii) How are all produced partons, both the interacting and the beam-remnant ones, correlated in colour?
Is the large number-of-colours limit relevant, wherein partons can be hooked up into strings (with quarks
as endpoints and gluons as intermediate kinks) representing a linear confinement force [2]?
(ix) How is the original baryon number of an incoming proton reflected in the colour topology?
(x) To what extent would a framework with independently fragmenting string systems, as defined from
the colour topology, be modified by the space–time overlap of several strings?

Needless to say, we should not expect to find a perfect solution to any of these issues, but only
successively improved approximations. The framework in [1] is very primitive in a number of respects.
Nevertheless, it has turned out to be quite successful. Thus the PYTHIA Tune A of R.D. Field [3] is
capable of describing a host of jet and minimum-bias event data at the Tevatron. The model appears
inadequate to fully describe correlations and fluctuations, however, and we would expect a poor perfor-
mance for several topics not yet studied experimentally.

In particular, only very simple beam remnant structures could technically be dealt with in [1]. One
recent development was the extension of the standard Lund string framework [2] to include a junction
fragmentation description [4] that allows the hadronization of nontrivial colour topologies containing
non-zero baryon number. In the context of multiple interactions, this improvement means that almost
arbitrarily complicated baryon beam remnants may now be dealt with, hence many of the restrictions
present in the old model are no longer necessary.

Here, we report on the development of a new model for the flavour-, colour-, and momentum-
correlated partonic structure involved in a hadron–hadron collision, i.e. partly addressing several of the
points above. We first present the main work on flavour and momentum space correlations, and thereafter
separately the very thorny issue of colour correlations, before concluding. A more complete description
of the model, also including references to experimental data and other theoretical ideas, and with com-
ments on all the issues, may be found in [5]. A toy model study of the first two points is found in [6].
The PYTHIA manual [7] contains some complementary information.

3.2 Correlated Parton Densities

Consider a hadron undergoing multiple interactions in a collision. Such an object should be described
by multi-parton densities, giving the joint probability of simultaneously finding n partons with flavours
f1, . . . , fn, carrying momentum fractions x1, . . . , xn inside the hadron, when probed by interactions at
scales Q2

1, . . . , Q
2
n. However, we are nowhere near having sufficient experimental information to pin

down such distributions. Therefore, and wishing to make maximal use of the information that we do

have, namely the standard one-parton-inclusive parton densities, we propose the following strategy.

5



As described in [1], the interactions may be generated in an ordered sequence of falling p⊥. For
the hardest interaction, all smaller p⊥ scales may be effectively integrated out of the (unknown) fully
correlated distributions, leaving an object described by the standard one-parton distributions, by defini-
tion. For the second and subsequent interactions, again all lower–p⊥ scales can be integrated out, but the
correlations with the first cannot, and so on. Thus, we introduce modified parton densities, that correlate
the i’th interaction and its shower evolution to what happened in the i− 1 previous ones.

The first and most trivial observation is that each interaction i removes a momentum fraction xi

from the hadron remnant. Already in [1] this momentum loss was taken into account by assuming a
simple scaling ansatz for the parton distributions, f(x) → f(x/X)/X, where X = 1 −∑n

i=1 xi is the
momentum remaining in the beam hadron after the n first interactions. Effectively, the PDF’s are simply
‘squeezed’ into the range x ∈ [0,X].

Next, for a given baryon, the valence distribution of flavour f after n interactions, qfvn(x,Q2),
should integrate to the number Nfvn of valence quarks of flavour f remaining in the hadron remnant.
This rule may be enforced by scaling the original distribution down, by the ratio of remaining to original
valence quarks Nfvn/Nfv0, in addition to the x scaling mentioned above.

Also, when a sea quark is knocked out of a hadron, it must leave behind a corresponding antisea
parton in the beam remnant. We call this a companion quark. In the perturbative approximation the sea
quark qs and its companion qc come from a gluon branching g → qs + qc (it is implicit that if qs is a
quark, qc is its antiquark). Starting from this perturbative ansatz, and neglecting other interactions and
any subsequent perturbative evolution of the qc, we obtain the qc distribution from the probability that a
sea quark qs, carrying a momentum fraction xs, is produced by the branching of a gluon with momentum
fraction y, so that the companion has a momentum fraction x = y − xs,

qc(x;xs) ∝
∫ 1

0
g(y)Pg→qsqc(z) δ(xs − zy) dz =

g(xs + x)

xs + x
Pg→qsqc

(
xs

xs + x

)
, (1)

with Pg→qsqc the usual DGLAP gluon splitting kernel. A simple ansatz g(x) ∝ (1 − x)n/x is here used
for the gluon. Normalizations are fixed so that a sea quark has exactly one companion. Qualitatively,
xqc(x;xs) is peaked around x ≈ xs, by virtue of the symmetric Pg→qsqc splitting kernel.

Without any further change, the reduction of the valence distributions and the introduction of com-
panion distributions, in the manner described above, would result in a violation of the total momentum
sum rule, that the x-weighted parton densities should integrate to X: by removing a valence quark from
the parton distributions we also remove a total amount of momentum corresponding to 〈xfv〉, the average
momentum fraction carried by a valence quark of flavour f ,

〈xfvn〉 ≡
∫ X
0 xqfvn(x,Q2) dx
∫ X
0 qfvn(x,Q2) dx

= X 〈xfv0〉 , (2)

and by adding a companion distribution we add an analogously defined momentum fraction.

To ensure that the momentum sum rule is still respected, we assume that the sea+gluon normal-
izations fluctuate up when a valence distribution is reduced and down when a companion distribution is
added, by a multiplicative factor

a =
1 −∑f Nfvn〈xfv0〉 −

∑
f,j〈xfcj0〉

1 −∑f Nfv0〈xfv0〉
. (3)

The requirement of a physical x range is of course still maintained by ‘squeezing’ all distributions into

6
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Fig. 1: (a) The initial state of a baryon, with the valence quarks colour-connected via a central string junction J. (b) Example of

a topology with initiators connected at random. (c) Alternative with the junction in the remnant.

the interval x ∈ [0,X]. The full parton distributions after n interactions thus take the forms

qfn

(
x,Q2

)
=

1

X


Nfvn

Nfv0
qfv0

( x
X
,Q2

)
+ a qfs0

( x
X
,Q2

)
+
∑

j

qfcj

( x
X

;xsj

)

 , (4)

gn(x) =
a

X
g0

( x
X
,Q2

)
, (5)

where qfv0 (qfs0) denotes the original valence (sea) distribution of flavour f , and the index j on the
companion distributions qfcj

counts different companion quarks of the same flavour f .

After the perturbative interactions have each taken their fraction of longitudinal momentum, the
remaining momentum is to be shared between the beam remnant partons. Here, valence quarks receive
an x picked at random according to a small-Q2 valence-like parton density, while sea quarks must be
companions of one of the initiator quarks, and hence should have an x picked according to the qc(x;xs)
distribution introduced above. In the rare case that no valence quarks remain and no sea quarks need
be added for flavour conservation, the beam remnant is represented by a gluon, carrying all of the beam
remnant longitudinal momentum.

Further aspects of the model include the possible formation of composite objects in the beam
remnants (e.g. diquarks) and the addition of non-zero primordial k⊥ values to the parton shower initiators.
Especially the latter introduces some complications, to obtain consistent kinematics. Details on these
aspects are presented in [5].

3.3 Colour Correlations

The initial state of a baryon may be represented by three valence quarks, connected antisymmetrically
in colour via a central junction, which acts as a switchyard for the colour flow and carries the net baryon
number, Fig. 1a.

The colour-space evolution of this state into the initiator and remnant partons actually found in
a given event is not predicted by perturbation theory, but is crucial in determining how the system
hadronizes; in the Lund string model [2], two colour-connected final state partons together define a
string piece, which hadronizes by successive non-perturbative breakups along the string. Thus, the
colour flow of an event determines the topology of the hadronizing strings, and consequently where
and how many hadrons will be produced. The question can essentially be reduced to one of choosing
a fictitious sequence of gluon emissions off the initial valence topology, since sea quarks together with
their companion partners are associated with parent gluons, by construction.

7



The simplest solution is to assume that gluons are attached to the initial quark lines in a random
order, see Fig. 1b. If so, the junction would rarely be colour-connected directly to two valence quarks in
the beam remnant, and the initial-state baryon number would be able to migrate to large p⊥ and small
xF values. While such a mechanism should be present, there are reasons to believe that a purely random
attachment exaggerates the migration effects. Hence a free parameter is introduced to suppress gluon
attachments onto colour lines that lie entirely within the remnant, so that topologies such as Fig. 1c
become more likely.

This still does not determine the order in which gluons are attached to the colour line between
a valence quark and the junction. We consider a few different possibilities: 1) random, 2) gluons are
ordered according to the rapidity of the hard scattering subsystem they are associated with, and 3) gluons
are ordered so as to give rise to the smallest possible total string lengths in the final state. The two latter
possibilities correspond to a tendency of nature to minimize the total potential energy of the system,
i.e. the string length. Empirically such a tendency among the strings formed by multiple interactions is
supported e.g. by the observed rapid increase of 〈p⊥〉 with ncharged. It appears, however, that a string
minimization in the initial state is not enough, and that also the colours inside the initial-state cascades
and hard interactions may be nontrivially correlated. These studies are still ongoing, and represent the
major open issues in the new model.

3.4 Conclusion

A new model for the underlying event in hadron–hadron collisions [5] has been introduced. This model
extends the multiple interactions mechanism proposed in [1] with the possibility of non-trivial flavour
and momentum correlations, with initial- and final-state showers for all interactions, and with several
options for colour correlations between initiator and remnant partons. Many of these improvements rely
on the development of junction fragmentation in [4].

This is not the end of the line. Rather we see that many issues remain to understand better, such
as colour correlations between partons in interactions and beam remnants, whereas others have not yet
been studied seriously, such as the extent to which two interacting partons stem from the same initiator.
Theoretical advances alone cannot solve all problems; guidance will have to come from experimental
information. The increased interest in such studies bodes well for the future.

4. DESCRIBING MINIMUM BIAS AND THE UNDERLYING EVENT AT THE LHC IN

PYTHIA AND PHOJET 3

4.1 Introduction

Our ability to describe parton scatterings through QCD depends on the amount of transverse momenta
with respect to the collision axis (pt) involved in a given scattering [8]. QCD has been fairly successful
in describing quark, anti-quark and gluon scatterings involving large amounts of transverse momenta
(pt >> ΛQCD), also known as “hard” interactions. On the other hand, QCD simply cannot be applied to
interactions with small transverse momenta (or “soft” interactions) because the strong coupling constant,
αs

(
Q2
)
, becomes too large for perturbation theory to be applied and QCD models suffer from diver-

gent cross sections as pt → 0 [8]. Most high-energy hadron collisions are dominated by soft partonic
interactions.

A full picture of high-energy hadron collisions will typically combine perturbative QCD to explain
parton interactions where it is applicable (high-pt scatterings), with an alternative phenomenological
approach to describe soft processes. Examples of these are the Dual Parton Model (DPM) [9] and
modified versions of QCD in which the divergencies presented by the running coupling constant are
phenomenologically corrected to reproduce experimental observations [1].

3Contributed by: A. Moraes, C. Buttar, and I. Dawson
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In this article we investigate two Monte Carlo (MC) event generators, PYTHIA6.214 [10, 11]
and PHOJET1.12 [12, 13], focusing on their models for soft interactions in hadron-hadron collisions.
Aiming to check the consistency of these models, we compare their predictions to wide range of data
for minimum bias and the underlying event. A tuning for PYTHIA6.214 is presented and examples of
its predictions are compared to those generated with PHOJET1.12 . Predictions for levels of particle
production and event activity at the LHC for interactions dominated by soft processes such as minimum
bias interactions and the underlying event associated to jet production are also discussed.

4.2 PYTHIA Model for Hadron Collisions

A comprehensive description of PYTHIA can be found at [11] and references therein. The evolution
of a hadronic event generated by PYTHIA is based on parton-parton scatterings [10, 11]. In this model
the total rate of parton interactions, Nparton−parton, as a function of the transverse momentum scale
pt, is assumed to be given by perturbative QCD. At reasonably large pt values (pt & 2 GeV) parton
scatterings can be correctly described by the standard perturbative QCD, but to extend the parton-parton
scattering framework to the low-pt region a regularisation to correct the divergence in the cross-section
is introduced.

In order to deal with low-pt interactions, PYHTIA introduces a cut-off parameter ptmin
given by

ptmin
(s) = (1.9 GeV)

(
s

1 TeV2

)0.08

(6)

which can be interpreted as the inverse of some colour screening length in the hadron [6]. There are two
strategies, or scenarios, to implement the cut-off parameter defined by equation 6.

In the first one, labelled “simple” scenario, an effective cut-off is established at ptmin
, which means

that dσ/dp2
t = 0 for pt < ptmin

. This model assumes that different pairwise interactions take place
essentially independent of each other, and that therefore the number of interactions in an event is given
by a Poissonian distribution [1]. In the second approach, called the ‘complex’ scenario, the probability
associated with each interacting parton depends on the assumed matter distribution inside the colliding
hadrons. In the ‘complex’ scenario an impact parameter dependent approach is therefore introduced [1].

The parameters defining ptmin
are PARP(81), PARP(82), PARP(89) and PARP(90). The factor

1.9 GeV is defined in the simple scenario by PARP(81) and by PARP(82) in the complex scenario. The
energy scale 1 TeV is defined by PARP(89) and is included in equation (1) to be a convenient tuning
parameter rather than a parameter with physical meaning. PARP(90) gives the power with which ptmin

varies with the centre of mass energy,
√
s. The default option is set as PARP(90)=0.16 [10, 11].

4.3 PHOJET

The physics model used in the MC event generator PHOJET combines the ideas of the DPM [9] with
perturbative QCD [8] to give an almost complete picture of high-energy hadron collisions [12–14].

PHOJET is formulated as a two-component model containing contributions from both soft and
hard interactions. The DPM is used describe the dominant soft processes and perturbative QCD is applied
to generate hard interactions [13].

The model employed by PHOJET is based on the calculation of scattering amplitudes, taking into
account the unitarization principle. Comparisons between the calculated results for cross-sections and
the available data are used to determine the unknown model parameters (couplings, Pomeron intercepts
and slope parameters), which are needed to generate multiparticle final states produced in inelastic inter-
actions [12, 13].

The soft, σsoft, and hard, σhard, cross sections are inclusive cross sections and the average multi-
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plicities of soft and hard scatterings in an inelastic event are

〈ns〉 =
σs

σinel
, 〈nh〉 =

σh

σinel
, (7)

respectively. The hard scatterings are mostly independent of each other, being related only by the sharing
of energy and momentum of the incoming protons. These multiplicities increase with the colliding
centre-of-mass energy. For pp collisions at

√
s = 14 TeV a considerable part of interactions is expected

to have more than one hard or soft scattering.

4.4 Minimum Bias Interactions

Throughout this article, we will associate minimum bias events with non-single diffractive inelas-
tic (NSD) interactions, following the experimental definition used in [15–19]. In the language of
the MC event generators used in this work, this means that subprocesses 94 and 95 are switched
on in PYTHIA6.214 (MSUB(94)=1 and MSUB(95)=1), and processes IPRON(1,1), IPRON(4,1) and
IPRON(7,1) in PHOJET1.12. For both generators, we also adapt the MC distributions to the data by
setting π0,Ks and Λ0 as stable particles.

4.41 KNO Distribution

The KNO distribution [20] has been widely used as an important tool for studying multiple particle
production in inelastic and NSD events. The observed KNO scaling violation for pp collisions at energies
higher than those achieved at ISR [15, 16] has been explained by the rising number of multiple parton
scatterings as s → ∞ [18, 19]. KNO distributions are therefore good tools to exploit how well hadronic
models can describe the event properties associated to multiple parton scattering.

By default PYTHIA is set to use multiple parton interactions. Nevertheless, one still has to define
how the divergency for scatterings with pt < ptmin

will be treated by the event generator. PYTHIA
allows two different phenomenological approaches: simple (MSTP(82)=1) and complex scenarios
(MSTP(82)=2, 3 or 4). Selecting the complex scenario one has also the choice of selecting different
matter distributions for the colliding hadrons: uniform (MSTP(82)=2), single Gaussian (MSTP(82)=3)
and double Gaussian (MSTP(82)=4) matter distributions.
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Fig. 2: KNO distributions for NSD pp collisions at
√

s = 546 GeV: (a) simple scenario and (b) complex scenario distributions

compared to data.
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Figure 2 shows KNO distributions for NSD pp collisions at
√

s = 546 GeV. We compare distribu-
tions generated by PYTHIA’s simple and complex scenarios to UA5 data [16]. Apart from the mentioned
changes in the setting MSTP(82), all other parameters are set to use PYTHIA’s default options, as de-
scribed in [11]. Figure 2(a) shows that using the simple scenario (MSTP(82)=1), which is the default
PYTHIA6.214 option [11], the generated distributions fail to reproduce the data, especially in the region
of high z (z>1.5). This is the region of events with particle multiplicities several times greater than the
average multiplicity. Distributions generated using the complex scenario vary with the hadronic matter
distribution selected for each case, as can be seen in figure 2(b) .

The comparisons of KNO distributions shown in figure 2(b) indicate that the matter distribution
used to describe the colliding hadrons does affect the probability of particle production in minimum bias
events. Although in the comparisons shown in figure 2 the best agreement to the data was obtained by
selecting the complex scenario with the single Gaussian matter distribution option, we shall adopt the
complex scenario with a double Gaussian matter distribution (MSTP(82)=4) as our preferred choice.

This is done because by choosing the double Gaussian option, the user is able to control some
of the properties of this matter distribution. Hadrons described by this distribution have a small core
region of radius a2 containing a fraction β of the total hadronic matter. This core is embedded in a larger
volume of radius a1 containing the remaining fraction of matter, i.e., (1 - β) of the total hadronic matter.
The parameter PARP(83) controls the portion β of the total hadronic matter assigned to the core of the
hadron. The ratio a2/a1 is given by the parameter PARP(84). By default, PYTHIA sets PARP(83)=0.5
and PARP(84)=0.2 describing any given hadron as a body with half of its matter concentrated within a
core which is limited by a radius a2 = 20% of the hadron radius a1 [11].
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Fig. 3: KNO distributions for NSD pp collisions at
√

s = 1.8 TeV: (a) double Gaussian model with different core-sizes, and (b)

PHOJET1.12 compared to the data [18, 19].

As shown in figure 3(a) considerable changes in the high-z tale of the KNO distributions are
observed as the core radius varies from 20% to 50% and 80% of the radius of the colliding hadrons.
As the core is made harder and denser (smaller core-radius) the overlap between two colliding cores
makes high-pt partonic scatterings more likely, yielding higher multiplicity events more often. When
two relatively softer cores (larger radius) overlap in a collision, the generated activity will be smaller and
softer, hence producing high-multiplicity events less frequently.

Figure 3(b) shows a comparison between PHOJET1.12 and the KNO distribution measured by
E735 [18, 19] for NSD pp collisions at

√
s = 1.8 TeV. Describing hadron collisions using the multiple
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Pomeron exchange mechanism proposed by the DPM [9, 13] and the QCD picture for high-pt interac-
tions, PHOJET1.12 is in good agreement to the data.

4.42 Pseudorapidity Distribution

The rate of parton-parton scattering in a hadronic collision is strongly correlated to the observed particle
multiplicity and the pseudorapidity distribution of produced particles. This happens because multiple
parton interactions convert part of the collision energy that would otherwise be carried by the fast moving
system of beam-remnants in the forward regions, into low-pt particles which populate the central region.

In PYTHIA, one of the main parameters used to regulate the rate of parton-parton interactions
is ptmin

given by equation 6. Low values of ptmin
imply in high rates of parton-parton scatterings and

hence in high levels of particle multiplicity. Increasing ptmin
the opposite is expected.
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Fig. 4: Charged particle density distributions,dNch/dη, for NSD pp at
√

s = 900 GeV collisions comparing the data [21] to (a)

PYTHIA6.214 with various ptmin
and (b) PHOJET1.12.

As can be seen in figure 4(a), increasing PARP(82) from 1.7 to 1.9 and 2.1, which effectively
increases the ptmin

used by PYTHIA6.214, the charged particle density, dNch/dη, decreases. Notice that
relatively small changes in PARP(82) (∼ 10%) can cause significant variations in the plateau of dNch/dη.

In PHOJET, multiple Pomeron exchanges predicted by the DPM control the plateau of dNch/dη.
Similarly to PYTHIA, this model also depends on a pcut-off

t which is used to connect the soft and hard
components of a hadronic interaction. PHOJET1.12 has its default options tuned for pcut-off

t = 2.5 GeV.
Figure 4(b) shows dNch/dη generated by PHOJET1.12 with its default cuts, compared to UA5 data [21].
There is a good agreement between PHOJET1.12 predictions and the data.

4.5 The Underlying Event

In a hadronic event containing jets, the underlying event (UE) consists of all event activity except the
two outgoing hard scattered jets [22]. As for minimum bias events, soft interactions and the mechanism
of multiple parton interaction play an important role in the structure of the underlying event and ought to
be carefully considered by any model attempting to describe the underlying event.

The conditions applied to particle selection and to the event region to be investigated are described
in Ref. [22]. The region transverse to the leading jet is used to study the UE and is defined by 60◦ <
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|∆φ| < 120◦, where the angular difference in the azimuthal angle φ is given by ∆φ = φparticle − φljet.

Figure 5(a) shows PYTHIA6.214 - MSTP(82)=4 distributions generated with different values of
PARP(82), i.e. different ptmin

, compared to the data for the average charged particle multiplicity in the
transverse region. Increasing ptmin

, which corresponds to a decrease on the rate of semi-hard parton
scatterings, < Nchg > decreases. This effect is similar to the one observed in figure 4(a) for minimum
bias charged particle density distributions dNch/dη.
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Fig. 5: Average charged particles multiplicity in the transverse region showing PYTHIA6.214 - MSTP(82)=4 with (a) different

values of PARP(82) (i.e. ptmin
) and (b) different values of PARP(84) (core-size).

As shown in figure 5(b), depending on the core size variation (PARP(84)) the plateau level of
< Nchg > can suffer severe changes. For example, changing PARP(84) from 0.2 to 0.5 reduces the
plateau of < Nchg > by nearly a factor of two, while a further increase in PARP(84) from 0.5 to 0.8 only
reduces the plateau by ∼ 15%.

Jets are likely to be produced when there is a core overlap in the hadronic collision. Smaller
and dense cores imply that events with a core overlap have also a large overlap of less dense matter
regions which surround the core, and when overlapped generate high rates of soft interactions causing
the higher plateaus observed in the < Nchg > distributions shown in figure 5(b). Larger cores also imply
in smaller soft surrounding regions in the colliding hadrons, hence producing lower multiplicity (and pt)
distributions in the UE.

Figure 6 shows PHOJET1.12 predictions compared to data for: (a) average multiplicity in the
transverse region and (b) average ptsum

in the transverse region. PHOJET1.12 reproduces reasonably
well the data for the UE multiplicity distribution, as displayed in figure 6 (a). However, it underestimates
the average ptsum

distribution (figure 6(b) ). The measured < ptsum
> distribution is underestimated by

PHOJET1.12 by ∼ 20%.

4.51 UE vs. Minimum Bias

The CDF measurement shows that the underlying event multiplicity forms a plateau for events with
Ptljet

& 5 GeV at < Nchg >∼ 2.3. Supposing that the transverse region in events with Ptljet
& 5 GeV

is uniform in azimuthal angle φ and in pseudorapidity η, this multiplicity corresponds to 3.45 particle
per unit pseudorapidity. Further corrections to detector effects and low-pt extrapolation [22] implies that
there are roughly 10 charged particles per pseudorapidity unit with pt > 0 GeV in the underlying event.
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Fig. 6: PHOJET1.12 predictions compared to CDF data for: (a) average multiplicity in the transverse region and (b) average

ptsum
in the transverse region.

In pp collision at 1.8 TeV, the minimum bias density, which has also been measured by CDF, gives
dNch/dη ∼ 4 for |η| < 1 [17], while the equivalent density for the underlying event is at least a factor
of two larger. This comparison, though not highly accurate due to the uncertainties in estimating the
particle density for the underlying event (i.e. extrapolation to low-pt and several assumptions made on
the particle distribution in φ and η), clearly shows that the underlying event in hard scattering processes
(Ptljet

& 5 GeV) has much more activity than an average minimum bias event.

4.6 PYTHIA6.214 - Tuned VS. PHOJET1.12

Combining the effects of variations in ptmin
and in the core-size we obtained a set of PYTHIA6.214

parameters which considerably improves PYTHIA’s description of minimum bias and underlying event
distributions. Our tuned parameters for PYTHIA6.214 are displayed in table 1.

PYTHIA6.214 - tuned

ISUB: 11,12,13,28,53,68 QCD 2 → 2 partonic scattering

94,95,96 + non-diffractive + double diffractive

MSTP(51)=7 CTEQ5L - selected p.d.f.

MSTP(81)=1 multiple interactions

MSTP(82)=4 complex scenario

+ double Gaussian matter distribution

PARP(82)=1.8 ptmin parameter

PARP(84)=0.5 core radius: 50% of the

hadronic radius

Table 1: PYTHIA6.214 tuned parameters for minimum bias and the underlying event.

Figure 7 shows predictions generated by PYTHIA6.214 - tuned and default, and PHOJET1.12
compared to some minimum bias and underlying event distributions. The description of both minimum
bias and underlying event distributions is improved by using PYTHIA6.214 - tuned compared to the
predictions generated by PYTHIA’s default settings. Notice that PYTHIA6.214 - tuned and PHOJET1.12
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Fig. 7: (a) KNO distributions for NSD pp collisions at
√

s = 900 GeV; (b) dNch/dη for NSD pp at
√

s = 1.8 TeV; (c) dNch/dη

at η = 0 for a wide range of
√

s; and (d) < Nchg > in the transverse region.
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can generate very different predictions when extrapolated to higher energies, as shown in fig. 7(c).

4.7 LHC Predictions
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Fig. 8: (a) Charged particle density distributions, dNch/dη, for NSD pp collisions at
√

s = 14 TeV; (b) Average multiplicity in

the underlying event for jet events in pp collisions at
√

s = 14 TeV.

Figure 8(a) shows dNch/dη distributions for minimum bias pp collisions at
√

s = 14 TeV generated
by PHOJET1.12 and PYTHIA6.214 - tuned. The charged particle density generated by PHOJET1.12
and PYTHIA6.214 - tuned at η = 0 is 5.13 and 6.82, respectively. In the central region (|η| < 2.5)
dNch/dη is ∼ 5.5 and ∼ 7, respectively for PHOJET1.12 and PYTHIA6.214 - tuned. Contrasting to the
agreement shown for pp collisions at

√
s = 1.8 TeV in figure 7(b), at the LHC PYTHIA6.214 - tuned

generates ∼ 27% more charged particle density in the central region than PHOJET1.12.

Compared to the charged particle density dNch/dη measured by CDF at 1.8 TeV (figure 7(b) ),
PYTHIA6.214 - tuned indicates a plateau rise of ∼ 70% at the LHC in the central region while PHO-
JET1.12 suggests a smaller rise of ∼ 35%.

Figure 8(b) displays PYTHIA6.214 - tuned and PHOJET1.12 predictions for the average particle
multiplicity in the UE for pp collisions at the LHC (charged particles with pt > 0.5 GeV and |η| < 1).
The distributions generated by the two models are fundamentally different. Excepting the events with
Ptljet

. 3 GeV, PYTHIA6.214 - tuned generates greater activity than PHOJET1.12 in the UE. The average
multiplicity in the UE for Ptljet

> 10 GeV reaches a plateau at ∼ 6.5 charged particles according to
PYTHIA6.214 - tuned and ∼ 3.0 according to PHOJET1.12. Compared to the UE distributions measured
by CDF at 1.8 TeV (figure 7(d) ), PYTHIA6.214 - tuned indicates a plateau rise of ∼ 200% at the LHC
while PHOJET1.12 suggests a much smaller rise of ∼ 40%.

At the LHC, the minimum bias predictions generated by PYTHIA6.214 - tuned and PHOJET1.12
for the central plateau of dNch/dη, indicate a rise of ∼ 70% and ∼ 35%, respectively. These are smaller
than the predicted increase for the UE suggested by both models. As discussed previously, at the Teva-
tron, for events with Ptljet

> 10 GeV the particle density in the underlying event is at least a factor of
two larger than the equivalent minimum bias prediction. Using similar assumptions as those adopted in
the analysis for the CDF data, LHC events with Ptljet

> 10 GeV are predicted to have a charged particle
density dNch/dη of ∼ 29 charged particles per pseudorapidity unit according to PYTHIA6.214 - tuned
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and ∼ 13 according to PHOJET1.12. In other words, for Ptljet
> 10 GeV the UE at the LHC is predicted

to have a particle density ∼ 4 times larger than its equivalent minimum bias prediction according to
PYTHIA6.214 - tuned, and ∼ 2 times larger according to PHOJET1.12.

Therefore PYTHIA6.214 - tuned predicts not only that the UE particle density will increase at the
LHC, but it will also increase its activity compared to the equivalent minimum bias distribution. On the
other hand, PHOJET1.12 estimates that the increase in charged particle density in the UE at the LHC
will follow the same rate to the minimum bias density measured at the Tevatron. In both cases however,
the underlying event density is greater than its equivalent minimum bias counterpart.

5. USING CORRELATIONS IN THE TRANSVERSE REGION TO STUDY THE UNDERLY-

ING EVENT IN RUN 2 AT THE TEVATRON 4

5.1 Introduction

Fig. 9 illustrates the way QCD Monte-Carlo models simulate a proton-antiproton collision in which a
“hard” 2-to-2 parton scattering with transverse momentum, pT (hard), has occurred. The resulting event
contains particles that originate from the two outgoing partons (plus initial and final-state radiation) and
particles that come from the breakup of the proton and antiproton (i.e., “beam-beam remnants”). The
“underlying event” is everything except the two outgoing hard scattered “jets” and receives contributions
from the “beam-beam remnants” plus initial and final-state radiation. The “hard scattering” component
consists of the outgoing two jets plus initial and final-state radiation.

Fig. 9: Illustration of the way QCD Monte-Carlo models simulate a proton-antiproton collision in which a “hard” 2-to-2 parton

scattering with transverse momentum, pT (hard), has occurred. The resulting event contains particles that originate from the

two outgoing partons (plus initial and final-state radiation) and particles that come from the breakup of the proton and antiproton

(i.e., “beam-beam remnants”). The “underlying event” is everything except the two outgoing hard scattered “jets” and consists

of the “beam-beam remnants” plus initial and final-state radiation. The “hard scattering” component consists of the outgoing

two jets plus initial and final-state radiation.

The “beam-beam remnants” are what is left over after a parton is knocked out of each of the initial
two beam hadrons. It is the reason hadron-hadron collisions are more “messy” than electron-positron
annihilations and no one really knows how it should be modeled. For the QCD Monte-Carlo models
the “beam-beam remnants” are an important component of the “underlying event”. Also, it is possible
that multiple parton scattering contributes to the “underlying event”. Fig. 10 shows the way PYTHIA
[1, 23, 24] models the “underlying event” in proton-antiproton collisions by including multiple parton
interactions. In addition to the hard 2-to-2 parton-parton scattering and the “beam-beam remnants”,
sometimes there is a second “semi-hard” 2-to-2 parton-parton scattering that contributes particles to the
“underlying event”.

Of course, from a certain point of view there is no such thing as an “underlying event” in a
proton-antiproton collision. There is only an “event” and one cannot say where a given particle in
the event originated. On the other hand, hard scattering collider “jet” events have a distinct topology.

4Contributed by: A. Cruz and R. Field
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Fig. 10: Illustration of the way PYTHIA models the “underlying event” in proton-antiproton collisions by including multiple

parton interactions. In addition to the hard 2-to-2 parton-parton scattering with transverse momentum, pT (hard), there is a

second “semi-hard” 2-to-2 parton-parton scattering that contributes particles to the “underlying event”.

On the average, the outgoing hadrons “remember” the underlying the 2-to-2 hard scattering subprocess.
An average hard scattering event consists of a collection (or burst) of hadrons traveling roughly in the
direction of the initial beam particles and two collections of hadrons (i.e., “jets”) with large transverse
momentum. The two large transverse momentum “jets” are roughly “back-to-back” in azimuthal angle.
One can use the topological structure of hadron-hadron collisions to study the “underlying event” [22,
25–29]. Here we study the “underlying event” in the Run 2 using the direction of the leading calorimeter
jet (JetClu, R = 0.7) to isolate regions of η-φ space that are sensitive to the “underlying event”.

Fig. 11: Illustration of correlations in azimuthal angle φ relative to the direction of the leading jet (JetClu, R = 0.7) in the

event, jet#1. The angle ∆φ = φ − φjet1 is the relative azimuthal angle between charged particles and the direction of jet#

1. The “toward” region is defined by |∆φ| < 60◦ and |η| < 1, while the “away” region is |∆φ| > 120◦ and |η| < 1. The

“transverse” region is defined by 60◦ < |∆φ| < 120◦ and |η| < 1. Each of the three regions “toward”, “transverse”, and

“away” have an area in η-φspace of ∆η∆φ = 4π/3. We examine charged particles in the range pT >0.5 GeV/c and |η|<1,

but allow the leading jet to be in the region |η(jet#1)| < 2.

As illustrated in Fig. 11, the direction of the leading jet, jet# 1, is used to define correlations in
the azimuthal angle, φ. The angle ∆φ = φ − φjet1 is the relative azimuthal angle between a charged
particle and the direction of jet# 1. The “toward” region is defined by |∆φ| < 60◦ and |η|<1, while the
“away” region is |∆φ| > 120◦ and |η|< 1. The “transverse” region is defined by 60◦ < |∆φ| < 120◦

and |η| < 1. The three regions “toward”, “transverse”, and “away” are shown in Fig. 11. Each region
has an area in η-φspace of ∆η∆φ = 4π/3. The “transverse” region is perpendicular to the plane of the
hard 2-to-2 scattering and is therefore very sensitive to the “underlying event”. We restrict ourselves to
charged particles in the range pT >0.5GeV/c and |η|<1, but allow the leading jet that is used to define
the “transverse” region to have |η(jet#1)| < 2.

In this analysis we look in more detail at the two “transverse” regions defined in Fig. 12. The
overall “transverse” region in Fig. 11 corresponds to combining the “transverse 1” and “transverse 2”
regions. Comparing these two “transverse” regions on an event-by-event basis provides a closer look
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Fig. 12: Illustration of correlations in azimuthal angle φ relative to the direction of the leading jet (highest ET jet) in the event,

jet#1. The angle ∆φ = φ − φjet1 is the relative azimuthal angle between charged particles and the direction of jet#1. The two

“transverse” regions 60◦ < ∆φ < 120◦ and 60◦ < −∆φ < 120◦ are referred to as “transverse 1” and “transverse 2”. Each of

the two “transverse” regions have an area in η-φ space of ∆η∆φ = 4π/6. The overall “transverse” region defined in Fig. 11

corresponds to combining the “transverse 1” and “transverse 2” regions. Events in which there are no restrictions placed on the

on the second highest ET jet, jet#2, are referred to as “leading jet” events (left). Events with at least two jets with |η(jet)| < 2,

where the leading two jets are nearly “back-to-back” (|∆φ| > 150◦) with ET (jet#2)/ET (jet#1) > 0.8 are referred to as

“back-to-back” events. (right).

at the “underlying event”. Here we refer to events in which there are no restrictions placed on the
second highest ET jet, jet#2, as “leading jet” events. Our previous analysis of the “underlying event”we
only considered “leading jet” events [22, 27–29]. In this analysis we define a second class of events.
Events with at least two jets with |η(jet)| < 2, where the leading two jets are nearly “back-to-back”
(|∆φ| > 150◦) with ET (jet#2)/ET (jet#1) > 0.8 are referred to as “back-to-back” events. “Back-to-
back” events are a subset of the “leading jet” events. The idea here is to suppress hard initial and final-
state radiation thus increasing the sensitivity of the “transverse” region to the “beam-beam remnants”
and the multiple parton scattering component of the “underlying event”.

As in our published Run 1 analysis [22] we consider charged particles only in the region pT >
0.5GeV/c and |η|< 1 where the COT efficiency is high and compare uncorrected data with PYTHIA
Tune A [27, 28] and HERWIG [30–32] after detector corrections (i.e., CDFSIM). Systematic errors are
calculated in the same way as in our Run 1 analysis. We generate every plot twice, once with our chosen
track selection cuts and again with the very tight track cuts. The change in each point in every plot due to
this tighter cut is used as a measure of the systematic error and is added in quadrature with the statistical
error to form the overall error.

5.2 Transverse Average PT vs NCHG

5.21 Definition

We study the average transverse momentum of charged particles in the “transverse” region as a function
of the number of charged particles in the “transverse” region for pT > 0.5GeV/c and |η| < 1. The
average transverse momentum, 〈pT〉, is formed, on an event-by-event basis, and then plotted as a function
of the charged multiplicity. The idea here is to look for correlations between multiplicity and 〈pT〉. If,
for example, there is a mixture of “hard” and “soft” events then one expects that 〈pT〉 will increase with
multiplicity because demanding a large multiplicity will preferentially select the “hard” process that also
has a larger 〈pT〉. On the other hand, it may be possible to get a high multiplicity in a “soft” collision so
the rate that 〈pT〉 rises with multiplicity is a rough measure of the “hard” and “soft” mixture. The steeper
the slope the larger the “hard” component. There is a very nice published CDF Run 1 analysis that looks
at this in “min-bias” collisions [33], but it has never previously been studied in the “transverse” region
of a “hard” scattering process.
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Fig. 13: Run 2 data on the average transverse momentum as a function number of particles for charged particles with pT >

0.5 GeV/c and |η|<1 in the “transverse” region for “leading jet” events defined in Fig. 12 with 30 < ET (jet#1) < 70 GeV

and 130 < ET (jet#1) < 250 GeV. Also shown are the data on the average transverse momentum as a function of the number

particles for charged particles with pT > 0.5 GeV/c and |η| < 1 for “min-bias” collisions at 1.96 TeV. The theory curves

correspond to PYTHIA Tune A at 1.96 TeV (after CDFSIM).

Fig. 14: Run 2 data on the average transverse momentum as a function of the number of particles for particles for charged

particles with pT > 0.5 GeV/c and |η| < 1 in the “transverse” region for “leading jet” events and for “back-to-back” events

defined in Fig. 12 with 30 < ET (jet#1) < 70 GeV. Also shown are the data on the average transverse momentum as a

function of the number particles for charged particles with pT >0.5 GeV/c and |η|<1 for “min-bias” collisions at 1.96 TeV.

The theory curves correspond to PYTHIA Tune A at 1.96 TeV (after CDFSIM).
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5.22 Overall Transverse Region

Fig. 5.21 shows uncorrected Run 2 data on the 〈pT〉 of charged particles versus the number of charged
particles in min-bias collisions and in the “transverse” region for “leading jet” events with 30 <
ET (jet#1) < 70 GeV and 130 < ET (jet#1) < 250 GeV compared with PYTHIA Tune A (after
CDFSIM). The data suggest that there is more “hard” scattering in the “transverse” region (i.e., initial
and final-state radiation) than there is in an average “min-bias” collision.

Fig. 14 shows the 〈pT〉 of charged particles versus the number of charged particles in “min-
bias” collisions and in the “transverse” region for “leading jet” and “back-to-back” events with 30 <
ET (jet#1) < 70 GeV compared with PYTHIA Tune A (after CDFSIM). The “transverse” region for
the “back-to-back” events looks more like an average “min-bias” collision, which is exactly what one
expects since the “back-to-back” requirement suppress hard initial and final-state radiation.

Fig. 15: Run 2 data on the average transverse momentum as a function of the number of particles for charged particles with

pT > 0.5 GeV/c and |η| < 1 in the “transverse” region for “leading jet” events defined in Fig. 12 with 30 < ET (jet#1) <

70 GeV and 130 < ET (jet#1) < 250 GeV compared to HERWIG at 1.96 TeV (after CDFSIM).

Fig. 16: Run 2 data on the average transverse momentum as a function of the number of particles for charged particles with

pT > 0.5 GeV/c and |η| < 1 in the “transverse” region for “leading jet” and “back-to-back” events defined in Fig. 12 with

30 < ET (jet#1) < 70 GeV compared to HERWIG at 1.96 TeV (after CDFSIM).

Fig. 15 compares HERWIG (after CDFSIM) with the data on the 〈pT〉 of charged particles in the
“transverse” region versus the number of charged particles in the “transverse” region for “leading jet”
events with 30 < ET (jet#1) < 70 GeV and 130 < ET (jet#1) < 250 GeV.

21



Fig. 16 compares HERWIG (after CDFSIM) with the data on the 〈pT〉 of charged particles in
the “transverse” region versus the number of charged particles in the “transverse” region for “leading
jet” and “back-to-back” events with 30 < ET (jet#1) < 70 GeV. HERWIG (without multiple parton
interactions) does not describe the data as well as PYTHIA Tune A (with multiple parton interactions).

Fig. 17: Run 2 data on the average number of particles in the “transverse 2” region defined in Fig. 12 as a function of the number

of particles in the “transverse 1” region for charged particles with pT > 0.5 GeV/c and |η| < 1 for “leading jet” events with

30 < ET (jet#1) < 70 GeV (top) and 130 < ET (jet#1) < 250 GeV (bottom). The theory curves correspond to PYTHIA

Tune A and HERWIG at 1.96 TeV after CDFSIM.

5.23 Transverse 1 versus transverse 2

Fig. 17 shows the number of charged particles in the “transverse 2” region versus the number of charged
particles in the “transverse 1” region for “leading jet” events with 30 < ET (jet#1) < 70 GeV and
130 < ET (jet#1) < 250 GeV compared with PYTHIA Tune A and HERWIG after CDFSIM.

Fig. 18 shows the 〈pT〉 of charged particles in the “transverse 2” region versus the number of
charged particles in the “transverse 1” region for “leading jet” events with 30 < ET (jet#1) < 70 GeV
and 130 < ET (jet#1) < 250 GeV compared with PYTHIA Tune A and HERWIG after CDFSIM.

Fig. 19 shows the number and 〈pT〉 of charged particles in the “transverse 2” region versus the
number of charged particles in the “transverse 1” region for “leading jet” and “back-to-back” events with
30 < ET (jet#1) < 70 GeV compared with PYTHIA Tune A (after CDFSIM).

Fig. 20 shows the number and 〈pT〉 of charged particles in the “transverse 2” region versus the
number of charged particles in the “transverse 1” region for “leading jet” and “back-to-back” events
with 30 < ET (jet#1) < 70 GeV compared with HERWIG (after CDFSIM). HERWIG (without mul-
tiple parton interactions) does not do nearly as well describing the “transverse 2” versus “transverse 1”
correlations seen in the data as does PYTHIA Tune A (with multiple parton interactions).

5.3 Summary

This analysis takes a closer look at the “underlying event” in hard scattering proton-antiproton collisions
at 1.96 TeV. We look only at the charged particle component of the “underlying event” and restrict the
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Fig. 18: Run 2 data on the average transverse momentum of particles in the “transverse 2” region defined in Fig. 12 as a function

of the number of particles in the “transverse 1” region for charged particles with pT >0.5 GeV/c and |η|<1 for “leading jet”

events with 30 < ET (jet#1) < 70 GeV (top) and 130 < ET (jet#1) < 250 GeV (bottom). The theory curves correspond to

PYTHIA Tune A and HERWIG at 1.96 TeV after CDFSIM.

Fig. 19: Run 2 data on the average number of particles (top) and the average transverse momentum of particles (bottom) in the

“transverse 2” region defined in Fig. 12 as a function of the number of particles in the “transverse 1” region for charged particles

with pT > 0.5 GeV/c and |η|< 1 for “leading jet” events and “back-to-back” events with 30 < ET (jet#1) < 70 GeV. The

theory curves correspond to PYTHIA Tune A at 1.96 TeV (after CDFSIM).
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charged particles to be in the range pT > 0.5GeV/c and |η| < 1. We use the direction of the leading
calorimeter jet in each event to define two “transverse” regions of η-φ space that are very sensitive to
the “underlying event”. Comparing these two “transverse” regions on an event-by-event basis provides
more details about the “underlying event”. In addition, by selecting events with at least two jets that
are nearly “back-to-back” (|∆φ| > 150◦) we are able to look closer at the “beam-beam remnants” and
multiple parton interaction components of the “underlying event”. PYTHIA Tune A (with multiple
parton interactions) does a good job in describing the “underlying event” (i.e., “transverse” regions)
for both “leading jet” and “back-to-back” events. HERWIG (without multiple parton interactions) does
not have enough activity in the “underlying event”, which was also observed in our published Run 1
analysis [22].

Fig. 20: Run 2 data on the average number of particles (top) and the average transverse momentum of particles (bottom) in the

“transverse 2” region defined in Fig. 12 as a function of the number of particles in the “transverse 1” region for charged particles

with pT > 0.5 GeV/c and |η|< 1 for “leading jet” events and “back-to-back” events with 30 < ET (jet#1) < 70 GeV. The

theory curves correspond to HERWIG at 1.96 TeV (after CDFSIM).

The data presented here show interesting correlations between the two “transverse” regions defined
in Fig. 12. The charged multiplicity and the 〈pT〉 in the “transverse 2” region increases with the charged
multiplicity in the “transverse 1” region. This is a new type of correlation. It might simply be due to a
high multiplicity in “transverse 1” biasing in favor of a harder 2-to-2 scattering (i.e., higher pT (hard))
which would result in a higher multiplicity and larger 〈pT〉 in “transverse 2”. However, we have seen
in previous studies [22, 25–29] that the average charged particle density in the “transverse” region does
not change much as one increases ET (jet#1). It is possible that the “transverse 1” versus “transverse
2” correlations arise from multiple parton interactions. A large multiplicity in the “transverse 1” region
would indicate a small impact parameter collision has occurred with several multiple parton scatterings
which would then cause an increased multiplicity and 〈pT〉 in the “transverse 2” region. The fact that
PYTHIA Tune A (with multiple parton interactions) agrees with the data better than HERWIG (without
multiple parton interactions) is very interesting. However, much more work is necessary to actually
pinpoint the source of the “transverse 1” versus “transverse 2” correlations.
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6. SIMULATION OF THE QCD BACKGROUND FOR tt̄ ANALYSES AT THE TEVATRON

WITH A l±+ JETS FINAL STATE 5

6.1 Introduction

The top quark mass and the cross section of top quark pair production are important measurements at
the Tevatron. Compared to Run I, the precision of these measurements is expected to be much higher
in Run II Ref. [34]. This requires an accurate understanding of all the important backgrounds. In the
semileptonic top decay channel with one lepton and four jets plus missing energy in the final state,
the QCD background is one of the main backgrounds. The cross section of this background is large
compared to the cross section of tt̄ production, but can be reduced strongly with appropriate selection
criteria. In the past, this background was modeled using l± + jets events with non-isolated leptons
coming from experimental data. It is however important that in tt̄ analyses with l± + jets final states
the lepton is isolated in order to reduce backrounds with non-isolated leptons. It is not possible to get
a clean sample of QCD events with isolated leptons directly from the data since these would be mixed
with tt̄ and W + jets events. Therefore, in the following, we instead model the QCD background via
Monte Carlo with bb̄qq̄ and bb̄gg production and subsequent leptonic B-decay.

6.2 Simulation Procedure

⋄ Hard Process: the hard 2 → 4 process is generated with ALPGEN Ref. [35]. The final state
consists of a bb̄ pair together with two other partons (light quarks or gluons). In the following, these
events are referred to as “bb2j” events. They are generated with

√
spp̄ = 1960 GeV , CTEQ5L,

and mb = 4.75 GeV . In order to produce the events in kinematically interesting regions, we
apply the following phase space cuts for all four partons, including the b and b̄: pT (j) > 10 GeV ,
|η(j)| < 3 and ∆R(j, j) > 0.4. In addition, we require at least one b-quark with a transverse
momentum bigger than 30 GeV in order to provide phase space for the leptonic B-decay. The
bb2j cross section including these cuts is about 30 nb.

⋄ Fragmentation: during the fragmentation with PYTHIA Ref. [10] a high pT electron or muon is
produced in a leptonic B-decay. In order to increase the number of events with energetic leptons,
the fragmentation is repeated exactly forty times. For this number of repetitions, we obtain about
one event with a high pT lepton. A constant number of repetitions should not bias the pT spectrum
of the lepton. Events preselected with a lepton with pT of at least 15GeV are written to a HEPEVT
file. The high pT lepton requirement reduces the cross section to 14.5 pb (288864 events, the first
number in Table 2 below), presumably with a large theoretical uncertainty6 .

⋄ CDF detector simulation: The standard CDF software package reads the HEPEVT file, and per-
forms a detailed simulation of the CDF detector response. After the simulation, the events are
reconstructed with the same algorithms as used to reconstruct the Run II data. Finally, the top
working group‘s standard ntuple is written which we examine in the following.

6.3 Comparison with Data

⋄ Preselection: we select events with exactly one lepton7 with ET > 20 GeV and with missing
transverse energy of at least 20 GeV . Furthermore, we ask for at least four jets with |η(j)| < 2.4
and ET (j) > 8 GeV . Three jets per event are required to be high quality jets with |η(j)| < 2.0
and ET (j) > 15 GeV . In addition, we remove events with more than two b-quarks in case of

5Contributed by: V. Drollinger
6The cross section of bb2j is calculated at leading order. Additional background contributions from similar processes like

cc2j are not included.
7We use the CDF baseline selection criteria for high quality lepton identification without the isolation cut. Events with

cosmic muons or more than one lepton are rejected as well.
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simulated events. This mitigates a potential bias8 from the repetition of the fragmentation. In case
of the data, we use good runs only.

⋄ QCD region: in the plane of the lepton isolation variable iso 9 and the distance of the lepton
to the closest jet ∆Rmin(l±, j) we select a region, where we expect almost purely QCD events
in the data. In this region the lepton is non-isolated and is well inside a jet: iso > 0.15 and
∆Rmin(l±, j) < 0.15 rad. Isolated leptons coming from real W± → l±ν decays, are found
typically at low iso and at any value of ∆Rmin(l±, j) which means, those leptons are usually
isolated and also separated from jets.

⋄ Comparison: in order to evaluate the simulated bb2j event simulation, we compare the events in
the QCD region with events from the data which have undergone the same preselection. The data
sets are called btop0g, btop1g, btop0j, and btop1j with the number of events listed in Table 2. All
events correspond to an integrated luminosity of 126 pb−1. In case of the simulated bb2j events
”all events” is the number of events after the full simulation and reconstruction. We compare the
most relevant kinematic variables in Figs. 22 and 21.

event type bb2j data

all events 288864 955870

preselection 846 1669

QCD region 666 1043

Table 2: Number of events after each major selection step.

In order to validate the simulation of bb2j events, we have studied the shapes of kinematic distributions.
Whereas the jets (Fig. 22) are more related to the hard QCD process, the lepton and the neutrino, seen
as missing ET , (Fig. 21) depend rather on the B-decay and fragmentation, respectively. However, the
kinematic properties of the jets, the lepton, and the neutrino are correlated. There are no major differences
between simulated bb2j events and the CDF data.

6.4 Summary

Top physics at the Tevatron has entered the Run II phase with high luminosity and upgraded detectors,
and therefore the measurements obtained in the top sector will reach much higher precision. This requires
a good understanding of all relevant background processes. The use of new Monte Carlo tools enable us
to simulate the QCD background.

We have described the bb2j event generation procedure. After the hard process with four partons
in the final state is generated with ALPGEN, the high pT lepton is obtained from a leptonic B-decay
during the fragmentation with PYTHIA.

We define a region, where we expect to have a clean QCD sample and compare the fully simulated
events with the CDF Run II data. All of the kinematic variables studied, compare well. From this
comparison we conclude, that bb2j events can be used to model the QCD background with a l± + jets
final state.

8The repetition of the fragmentation would cause an artificial enhancement of additional bb̄ pairs coming from gluon splitting
with subsequent leptonic B-decay.

9The lepton isolation variable iso is defined as the fractional calorimeter isolation ET in a cone of R = 0.4 around the
lepton.
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Fig. 21: Comparison of bb2j events with 126 pb−1 of CDF Run II data: normalized distributions of ET of the lepton in respect

to the closest jet axis, ET and η of the lepton, missing ET , ∆φ between missing ET and closest jet, and multiplicities for all

selected jets.

7. MONTE-CARLO DATABASE 10

7.1 Problem description

One of the most general problems for the experimental high energy physics community is Monte-Carlo
(MC) simulation of physics processes. There are numerous publicly available MC generators. However,
the correct MC simulation of complicated processes requires in general rather sophisticated expertise on
the part of their users. Often, a physics group in an experimental collaboration requests experts and/or
authors of MC generators to create MC samples for a particular process. Furthermore, it is common that
the same physics process is investigated by various physics groups in need of the the same MC event
samples. The main motiviation behind the Monte-Carlo Database (MCDB) project is to make MC event
samples, as prepared by experts, available for various physics groups. In this contribution we present a
version of the MCDB that is already operative in the CMS collaboration, and discuss future plans.

There are a number of useful aspects to a central MC Database that motivate its establishment.

1. Correct and reliable MC event generation of most processes of interest requires considerable ex-
pertise. Moreover, most MC generators, in particular those calculating higher order perturbative
corrections, require significant amounts of computer resources. By means of the MCDB, samples
prepared by experts can be distributed easily and used as many times as needed.

10Contributed by: L. Dudko and A. Sherstnev
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Fig. 22: Comparison of bb2j events with 126 pb−1 of CDF Run II data: normalized ET and η distributions of the four leading

jets, and the ∆R distribution of the pair of closest jets to each other. All jet energies shown, are corrected.
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2. Public availability of common event files helps speed up the validation procedure of the events.

3. A central and public location where well-documented MC events and MC generators can be found
would be very useful. It would also allow rapid communication between authors of MC events and
their users.

4. The same MC samples for SM processes can be used for multiple purposes, e.g. to study back-
grounds to various new physics processes.

5. Files containing detector and beam-related backgrounds can also be kept in a common location.

7.2 History

The first MC Database (version 0) – named PEVLIB [36] – was established at CERN, on the AFS file-
system. This database provided CompHEP [37] parton level events for CMS users, but lacked a special
interface. Rather, it was built as a set of directories where event samples were stored. The sample
documentation consisted of ASCII files (README) located in the same directories as the event files.

The next version (version 0.5) of the MC Database was established at Fermilab. This database was
split in two independent parts:

- MC event files, stored via the FNAL tape system ENSTORE [38]

- the events’ documentation, publicly available via the web [39]

The latest version of the MCDB (version 1.0), described in this contribution, CMS MCDB [40], was
created at first for use by the CMS collaboration. This database includes web interfaces both for event
files (enabling download and upload) and documentation. Its main goal is to store events, only at the
parton level, generated by MC experts, for use by the LHC community. Note that all files from PEVLIB
have now been moved to the CMS MCDB.

7.3 General concepts and practical realization of CMS MCDB.

The MCDB must provide persistent storage of event samples, with public and convenient interfaces for
users – mainly consisting of LHC experimentalists – and authors of MC generators, or other experts. The
main features present in the CMS MCDB are:

⋄ the MCDB is based on web technologies.

⋄ the MCDB stores parton level events with a standard interface to the next level of simulation (based
on Les Houches Accord I).

⋄ the MCDB stores detailed documentation for each set of event samples.

⋄ the MCDB make rapid communication between users and experts possible via its web pages.

⋄ the MCDB is divided in two zones:

⊲ a public area, for all users interested in using MC events. Users can find all necessary infor-
mation about available event samples and their generators, and download the corresponding
event files.

⊲ a restricted area for authors. In this area, authors of MC generators or MC experts can
change the content of MCDB dynamically – e.g. upload events for new processes, create
and edit documents, reply to user’s comments and questions and upload new event files and
generators.

⋄ the MCDB requires users to reference the authors of the event sample in case the events are used
in a physics analysis.

The CMS MCDB at CERN is realized as a dedicated web site [40]. The structure of the site
corresponds to the stored physics processes. For example, all event files relevant for studies of top quark
production are collected in the category “TOP”. This category contains files with events involving top
quark production via QCD and the electroweak interaction. When a user clicks on a reference in a certain
category, he/she will see all so-called ”articles” related to the selected physics process.
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The main units of CMS MCDB are HTML documents called articles that describe the event sam-
ples. The articles are created by authors; these are authorized users who can upload new event samples
to the CMS MCDB. There are only a few restrictions on the articles in the CMS MCDB. An author can
create a new article on the basis of a template – this is a web form, where the author fills out various
fields: author name, abstract, category name, article body, etc. The body and the abstract of the article
may include HTML tags for more flexible visualization.

It is easy for users to understand which process is present in the CMS MCDB, via a click on a
reference to the article that describes the corresponding event samples. Users can download these event
files directly from the article web page, together with all other files which authors have uploaded to the
article.

The web intereface of the present version of the MCDB has the following features, in brief:

A. Authorized authors can

⋄ upload files (with events or a MC generator code). There are two different methods to upload file
(through a web browser and/or directly from the AFS file system).

⋄ document each set of files in a new article.

⋄ reply to comments from users (MCDB allows one to organize a special forum for each article).

⋄ change any of the parameters and content of MCDB, according to permissions (including the web
design).

B. Users can

◦ read documentation (MCDB articles) for files uploaded by authors.

◦ download files.

◦ search the CMS MCDB web site (enabled for articles only, not for the event samples themselves).

◦ ask questions about a particular document.

◦ send new articles to moderators.

Event files in the CMS MCDB are stored on the AFS filesystem [41]. If a user has access to AFS,
he/she may download files from AFS directly. To become an authorized author one should send a request
(by e-mail) to the administrators 11 of the CMS MCDB.

7.4 Future plans

The CMS MCDB is designed to store parton level events. This implies that the size of event files should
not be too large (typically smaller then 100Mb). The expected number of physics processes in the CMS
MCDB is several hundred. Note that CMS MCDB is not a SQL database, so that its search engine
cannot serve complex queries, only keyword phonetic searches. These aspects of the CMS MCDB are
not a limitation at present. However, we expect that in a few years users will request a more powerful
MCDB where these restrictions will be removed. The next version of the MCDB now under development
for use, within the CERN LCG framework, by all CERN collaborations. It will be described in the near
future [42].
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8. RESUMMATION AND SHOWER STUDIES 12

8.1 Introduction

The transverse momentum of a colour-singlet massive particle produced in a hadronic collision provides
important information on perturbative and nonperturbative effects. A process like qq → Z0 corresponds
to p⊥Z = 0, while higher-order processes provide p⊥ kicks as the Z0 recoils against quarks and gluons.
At large p⊥Z values the bulk of the p⊥ comes from one hard emission, and perturbation theory is a
reasonable approach. In the small-p⊥Z region, on the other hand, many emissions can contribute with p⊥
kicks of comparable size, and so the order-by-order approach is rather poorly convergent. Furthermore,
in this region nonperturbative effects may start to become non-negligible relative to the perturbative ones.

The traditional solution has been to apply either an analytical resummation approach or a numeri-
cal parton-shower one. These methods to some extent are complementary. The norm today is for showers
to be based on an improved leading-log picture, while resummation is carried out to next-to-leading logs.
However, resummation gives no information on the partonic system recoiling against the Z0, while show-
ers do, and therefore can be integrated into full-fledged event generators, allowing accurate experimental
studies. In both approaches the high-p⊥ tail is constrained by fixed-order perturbation theory, so the
interesting and nontrivial region is the low-to-medium-p⊥ one. Both also require nonperturbative input
to handle the low-p⊥ region, e.g. in the form of a primordial k⊥ carried by the initiator of a shower.

One of the disconcerting aspects of the game is that a large primordial k⊥ seems to be required
and that the required value of this primordial k⊥ can be dependent on the kinematics of the process be-
ing considered. Confinement of partons inside the proton implies a 〈k⊥〉 ≈ 0.3 GeV, while fits to Z0

data at the Tevatron favour ≈ 2 GeV [43] (actually as a root-mean-square value, assuming a Gaussian
distribution). Also resummation approaches tend to require a non-negligible nonperturbative contribu-
tion, but that contribution can be determined from fixed-target data and then automatically evolved to the
kinematical region of interest. In this note we present updated comparisons and study possible shower
modifications that might alleviate the problem. We will use the two cases of qq → Z0 and gg → H0 (in
the infinite-top-mass limit) to illustrate differences in quark and gluon evolution, and the Tevatron and
the LHC to quantify an energy dependence.

8.2 Comparison Status

A detailed comparison of analytic resummation and parton showers was presented in [43]. For many
physical quantities, the predictions from parton shower Monte Carlo programs should be nearly as precise
as those from analytical theoretical calculations. In particular, both analytic and parton shower Monte
Carlos should accurately describe the effects of the emission of multiple soft gluons from the incoming
partons.

Parton showers resum primarily the leading logs, which are universal, i.e. process-independent,
depending only on the initial state. An analytic resummmation calculation, in principle, can resum all
logs, but in practice the number of towers of logarithms included in the analytic Sudakov exponent
depends on the level to which a fixed-order calculation was performed for a given process. Generally,
if a NNLO calculation is available, then the B(2) coefficient (using the CSS formalism [44]) can be
extracted and incorporated. If we try to interpret parton showering in the same language then we say
that the Monte Carlo Sudakov exponent always contains a term analogous to A(1) and B(1) and that an
approximation to A(2) is also present in some kinematic regions.

In Ref. [43], predictions were made for both Z0 and Higgs production at the Tevatron and the
LHC, using both resummation and parton shower Monte Carlo programs. In general, the shapes for the
p⊥ distributions agreed well, although the PYTHIA showering algorithm typically caused the Higgs p⊥
distribution to peak at somewhat lower values of transverse momentum.

12Contributed by: J. Huston, I. Puljak, T. Sjöstrand, E. Thomé
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8.3 Shower Algorithm Constraints

While customarily classified as leading log, shower algorithms tend to contain elements that go beyond
the conventional leading-log definition. Specifically, some emissions allowed by leading log are forbid-
den in the shower description. Taking the PYTHIA [7,10] initial-state shower algorithm [23,24,45] as an
example, the following aspects may be noted (see [46] for further details):
(i) Emissions are required to be angularly ordered, such that opening angles increase on the way in to the
hard scattering subprocess. That is, non-angularly-ordered emissions are vetoed.
(ii) The z and Q2 of a branching a→ bc are required to fulfill the condition û = Q2− ŝ(1−z) < 0. Here
ŝ = (pa + pd)

2 = (pb + pd)
2/z, for d the incoming parton on the other side of the event. In the case that

b and d form a Z0, say, and c is the recoiling parton, û coincides with the standard Mandelstam variable
for the a + d → (Z0 = b + d) + c process. In general, it may be viewed as a kinematics consistency
constraint.
(iii) The evolution rate is proportional to αs((1 − z)Q2) ≈ αs(p

2
⊥) rather than αs(Q

2). Since p2
⊥ < Q2

this implies by itself a larger αs and thus an increased rate of evolution. However, one function of the
Q0 ≈ 1 GeV nonperturbative cutoff parameter is to avoid the divergent-αs region, so now one must
require (1 − z)Q2 > Q2

0 rather than Q2 > Q2
0. The net result again is a reduced emission rate.

(iv) One of the partons of a branching may develop a timelike parton shower. The more off-shell this
parton, the less the p⊥ of the branching. The evolution rate in x is unaffected, however.
(v) There are some further corrections, that in practice appear to have negligible influence: the non-
generation of very soft gluons to avoid the divergence of the splitting kernel, the possibility of photon
emission off quarks, and extra kinematical constraints when heavy quarks are produced.
(vi) The emission rate is smoothly merged with the first-order matrix elements at large p⊥. This is some-
what separate from the other issues studied, and the resulting change only appreciably affects a small
fraction of the total cross section, so it will not be considered further here.

The main consequence of the first three points is a lower rate of x evolution. That is, starting
from a set of parton densities fi(x,Q

2
0) at some low Q2

0 scale, and a matching Λ, tuned such that stan-
dard DGLAP evolution provides a reasonable fit to data at Q2 > Q2

0, the constraints above lead to
x distributions less evolved and thus harder than data. If we e.g. take the CTEQ5L tune [47] with
Λ(4) = 0.192 GeV, the Λ(4) would need to be raised to about 0.23 GeV in the shower to give the same fit
to data as CTEQ5L when the angular-ordering cut in (i) is imposed. Unfortunately effects from points
(ii) and (iii) turn out to be process-dependent, presumably reflecting kinematical differences between
q → qg and g → gg. There is also some energy dependence. The net result of the first three points
suggests that PYTHIA should be run with a Λ(4) of about 0.3 GeV (0.5 GeV) for Z0 (H0) production in
order to compensate for the restrictions on allowed branchings.

One would expect the increased perturbative evolution to allow the primordial k⊥ to be reduced.
Unfortunately, while the total radiated transverse energy,

∑
i |p⊥i|, comes up by about 10% at the Teva-

tron, this partly cancels in the vector sum, p⊥Z = −∑i p⊥i. For a 2 GeV primordial k⊥ the shift of the
peak position of the p⊥Z spectrum is negligible. Results are more visible for p⊥H at the LHC.

Note that a primordial k⊥ assigned to the initial parton at the low Q2
0 scale is shared between

the partons at each shower branching, in proportion to the longitudinal momentum fractions a daughter
takes. Only a fraction xhard/xinitial of the initial k⊥ thus survives to the hard-scattering parton. Since the
typical x evolution range is much larger at the LHC than at the Tevatron, a tuning of the primordial k⊥
is hardly an option for H0 at the LHC, while it is relevant for Z0 at the Tevatron. Therefore an increased
Λ value is an interesting option.

We now turn to the point (iv) above. By coherence arguments, the main chain of spacelike branch-
ings sets the maximum virtuality for the emitted timelike partons, i.e. the timelike branchings occur at
longer timescales than the related spacelike ones. In a dipole-motivated language, one could therefore
imagine that the recoil, when a parton acquires a timelike mass, is not taken by a spacelike parton but
by other final-state colour-connected partons. A colour-singlet particle, like the Z0 or H0, would then be
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unaffected by the timelike showers.

The consequences for p⊥Z and p⊥H of such a point of view can be studied by switching off timelike
showers in PYTHIA, but there is then no possibility to fully simulate the recoiling event. A new set of
shower routines is in preparation [48], however, based on p⊥-ordered emissions in a hybrid between
conventional showers and the dipole approach. It is well suited for allowing final-state radiation at later
times, leaving p⊥Z and p⊥H unaffected at that stage. Actually, without final-state radiation, the two
approaches give surprisingly similar results overall. Both are lower in the peak region than the algorithm
with final-state radiation, in better agreement with CDF data [49]. The new one is slightly lower, i.e.
better relative to data, at small p⊥Z values.

A combined study [46], leaving both the primordial k⊥ and the Λ value free, still gives some
preference to 〈k⊥〉 = 2 GeV and the standard Λ(4) = 0.192 GeV, but differences relative to an alternative
with 〈k⊥〉 = 0.6 GeV and Λ(4) = 0.22 GeV are not particularly large, Fig. 23.
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Fig. 23: Comparison of the CDF p⊥Z spectrum with the new shower algorithm for two parameter sets.

8.4 Further Comparisons

Returning to Higgs production at the LHC, in Fig. 24 are shown a number of predictions for the current
standard PYTHIA shower routines. Using CTEQ5M rather than CTEQ5L results in more gluon radiation
and a broader p⊥ distribution due to the large value of Λ. Likewise turning off timelike showers for
gluons radiated from the initial state also results in the peak of the p⊥ distribution moving outwards.

We can now compare the results with resummation descriptions and other generators, Fig. 25 [50].
As we see, the new PYTHIA routines agree better with resummation descriptions than in the past [43],
attesting to the importance of various minor technical details of the Monte Carlo approach. One must
note, however, that some spread remains, and that it is not currently possible to give an unambiguous
prediction.

8.5 Conclusions

We have studied p⊥Z and p⊥H spectra, as a way of exploring perturbative and nonperturbative effects in
hadronic physics. Specifically, we have pointed out a number of ambiguities that can exist in a shower
approach, e.g. that the shower goes beyond the simpleminded leading-log evolution and kinematics,
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while still making use of leading-log parton densities. Attempts to correct for mismatches in general tend
to increase the perturbative p⊥Z. The need for an unseemly large primordial k⊥ in the shower approach
is thus reduced, but not eliminated. There is still room for, possibly even a need of, perturbative evolution
beyond standard DGLAP at small virtuality scales.

9. NEW SHOWERS WITH TRANSVERSE-MOMENTUM-ORDERING 13

9.1 Introduction

The initial- [23, 24, 45] and final-state [58, 59] showers in the PYTHIA event generator [7, 10] are based
on virtuality-ordering, i.e. uses spacelike Q2 and timelike M2, respectively, as evolution variables. Other
algorithms in common use are the angular-ordered ones in HERWIG [57, 60] and the p⊥-ordered dipole-
based ones in ARIADNE/LDC [61, 62]. All three have been comparably successful, in terms of abil-
ity to predict or describe data, and therefore have offered useful cross-checks. Some shortcomings of
the virtuality-ordering approach, with respect to coherence conditions, have been compensated (espe-
cially relative to HERWIG) by a better coverage of phase space and more efficient possibilities to merge
smoothly with first-order matrix elements.

Recently, the possibility to combine matrix elements of several orders consistently with showers
has been raised [63, 64], e.g. W + n jets, n = 0, 1, 2, 3, . . .. In such cases, a p⊥-ordering presumably
offers the best chance to provide a sensible definition of hardness. It may also tie in better e.g. with the
p⊥-ordered approach to multiple interactions [65]. This note therefore is a study of how the existing
PYTHIA algorithms can be reformulated in p⊥-ordered terms, while retaining their strong points.

The main trick that will be employed is to pick formal definitions of p⊥, that simply and unam-
biguously can be translated into the older virtuality variables, e.g. for standard matrix-element merging.
These definitions are based on lightcone kinematics, wherein a timelike branching into two massless
daughters corresponds to p2

⊥ = z(1− z)M2 and the branching of a massless mother into a spacelike and
a massless daughter to p2

⊥ = (1 − z)Q2. The actual p⊥ of a branching will be different, and e.g. depend
on the subsequent shower history, but should normally not deviate by much.

9.2 Timelike Showers

The new timelike algorithm is a hybrid between the traditional parton-shower and dipole-emission ap-
proaches, in the sense that the branching process is associated with the evolution of a single parton,
like in a shower, but recoil effects occur inside dipoles. That is, a dipole partner is assigned for each
branching, and energy and momentum is ‘borrowed’ from this partner to give mass to the parton about to
branch, while preserving the invariant mass of the dipole. (Thus four-momentum is not preserved locally
for each parton branching a→ bc. It was in the old algorithm, where the kinematics of a branching was
not constructed before the off- or on-shell daughter masses had been found.) Often the two partners are
colour-connected, i.e. the colour of one matches the anticolour of the other, as defined by the preceding
showering history, but this need not be the case. In particular, intermediate resonances normally have
masses that should be preserved by the shower, e.g., in t → bW+ the W+ takes the recoil when the b
radiates a gluon.

The evolution variable is approximately the p2
⊥ of a branching, where p⊥ is the transverse mo-

mentum for each of the two daughters with respect to the direction of the mother, in the rest frame of
the dipole. (The recoiling dipole partner does not obtain any p⊥ kick in this frame; only its longitudinal
momentum is affected.) For the simple case of massless radiating partons and small virtualities rela-
tive to the kinematically possible ones, and in the limit that recoil effects from further emissions can be
neglected, it agrees with the dij p⊥-clustering distance defined in the PYCLUS algorithm [66].

All emissions are ordered in a single sequence p⊥max > p⊥1 > p⊥2 > . . . > p⊥min. That is,

13Contributed by: T. Sjöstrand
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each initial parton is evolved from the input p⊥max scale downwards, and a hypothetical branching p⊥
is thereby found for it. The one with the largest p⊥ is chosen to undergo the first actual branching.
Thereafter, all partons now existing are evolved downwards from p⊥1, and a p⊥2 is chosen, and so on,
until p⊥min is reached. (Technically, the p⊥ values for partons not directly or indirectly affected by a
branching need not be reselected.) The evolution of a gluon is split in evolution on two separate sides,
with half the branching kernel each, but with different kinematical constraints since the two dipoles have
different masses. The evolution of a quark is also split, into one p⊥ scale for gluon emission and one for
photon one, in general corresponding to different dipoles.

With the choices above, the evolution factorizes. That is, a set of successive calls, where the p⊥min

of one call becomes the p⊥max of the next, gives the same result (on the average) as one single call for
the full p⊥ range. This is the key element to allow Sudakovs to be conveniently obtained from trial
showers [64], and to veto emissions above some p⊥ scale, as required to combine different n-parton
configurations efficiently.

The formal p⊥ definition is p2
⊥evol = z(1 − z)(M2 −m2

0), where p⊥evol is the evolution variable,
z gives the energy sharing in the branching, as selected from the branching kernels, M is the off-shell
mass of the branching parton and m0 its on-shell value. This p⊥evol is also used as αs scale.

When a p⊥evol has been selected, this is translated to a M2 = m2
0 + p2

⊥evol/(z(1 − z)). Note that
the Jacobian factor is trivial: dM2/(M2 −m2

0) dz = dp2
⊥evol/p

2
⊥evol dz. From there on, the three-body

kinematics of a branching is constructed as in the old routine. This includes the detailed interpretation of
z and the related handling of nonzero on-shell masses for branching and recoiling partons, which leads
to the physical p⊥ not agreeing with the p⊥evol defined here. In this sense, p⊥evol becomes a formal
variable, while M really is a well-defined mass of a parton.

Also the corrections to b → bg branchings (b being a generic coloured particle) by merging with
first-order a → bcg matrix elements closely follows the existing machinery [59], once the p⊥evol has
been converted to a mass of the branching parton. In general, the other parton c used to define the matrix
element need not be the same as the recoiling partner. To illustrate, consider a Z0 → qq decay. Say the
q branches first, q → qg1. Obviously the q then takes the recoil, and the new q, g1 and q momenta are
used to match to the Z0 → qqg matrix element. The next time q branches, q → qg2, the recoil is taken
by the colour-connected g1 gluon, but the matrix element corrections are based on the newly created q
and g2 momenta together with the q (not the g1!) momentum. That way one may expect to achieve the
most realistic description of mass effects in the collinear and soft regions.

The shower inherits some further elements from the old algorithm, such as azimuthal anisotropies
in gluon branchings from polarization effects.

The relevant parameters will have to be retuned, since the shower is quite different from the old
mass-ordered one. In particular, it appears that the five-flavour ΛQCD value has to be reduced relative to
the current default, roughly by a factor of two (from 0.29 to 0.14 GeV).

9.3 Spacelike Showers

Initial-state showers are constructed by backwards evolution [23], starting at the hard interaction and
successively reconstructing preceding branchings. To simplify the merging with first-order matrix ele-
ments, z is defined by the ratio of ŝ before and after an emission. For a massless parton branching into
one spacelike with virtuality Q2 and one with mass m, this gives p2

⊥ = Q2 − z(ŝ + Q2)(Q2 +m2)/ŝ,
or p2

⊥ = (1 − z)Q2 − zQ4/ŝ for m = 0. Here ŝ is the squared invariant mass after the emission, i.e.
excluding the emitted on-mass-shell parton.

The last term, zQ4/ŝ, while normally expected to be small, gives a nontrivial relationship between
p2
⊥ and Q2, e.g. with two possible Q2 solutions for a given p2

⊥. To avoid the resulting technical problems,
the evolution variable is picked to be p2

⊥evol = (1− z)Q2. Also here p⊥evol sets the scale for the running
αs. Once selected, the p2

⊥evol is translated into an actual Q2 by the inverse relation Q2 = p2
⊥evol/(1− z),
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with trivial Jacobian: dQ2/Q2 dz = dp2
⊥evol/p

2
⊥evol dz. From Q2 the correct p2

⊥, including the zQ4/ŝ
term, can be constructed.

Emissions on the two incoming sides are interspersed to form a single falling p⊥ sequence,
p⊥max > p⊥1 > p⊥2 > . . . > p⊥min. That is, the p⊥ of the latest branching considered sets the
starting scale of the downwards evolution on both sides, with the next branching occurring at the side
that gives the largest such evolved p⊥.

In a branching a → bc, the newly reconstructed mother a is assumed to have vanishing mass —
a heavy quark would have to be virtual to exist inside a proton, so it makes no sense to put it on mass
shell. The previous mother b, which used to be massless, now acquires the spacelike virtuality Q2 and
the correct p⊥ previously mentioned, and kinematics has to be adjusted accordingly.

In the old algorithm, the b kinematics was not constructed until its spacelike virtuality had been
set, and so four-momentum was explicitly conserved at each shower branching. In the new algorithm,
this is no longer the case. (A corresponding change occurs between the old and new timelike showers, as
noted above.) Instead it is the set of partons produced by this mother b and the current mother d on the
other side of the event that collectively acquire the p⊥ of the new a → bc branching. Explicitly, when
the b is pushed off-shell, the d four-momentum is modified accordingly, such that their invariant mass is
retained. Thereafter a set of rotations and boosts of the whole b + d-produced system bring them to the
frame where b has the desired p⊥ and d is restored to its correct four-momentum.

Matrix-element corrections can be applied to the first, i.e. hardest in p⊥, branching on both sides
of the event, to improve the accuracy of the high-p⊥ description. Also several other aspects are directly
inherited from the old algorithm.

Work on the algorithm is ongoing. In particular, an optimal description of kinematics for massive
quarks in the shower, i.e. c and b quarks, remains to be worked out.

Some first tests of the algorithm are reported elsewhere [67]. In general, its behaviour appears
rather similar to that of the old algorithm.

9.4 Outlook

The algorithms introduced above are still in a development stage. In particular, it remains to combine
the two. One possibility would be to construct the spacelike shower first, thereby providing a list of
emitted partons with their respective emission p⊥ scales. This list would then be used as input for the
timelike shower, where each emission p⊥ sets the upper evolution scale of the respective parton. This is
straightforward, but does not allow a fully factorized evolution, i.e. it is not feasible to stop the evolution
at some p⊥ value and continue downwards from there in a subsequent call. The alternative would be to
intersperse spacelike and timelike branchings, in one common p⊥-ordered sequence.

Obviously the finished algorithms have to be compared with data, to understand how well they
do. One should not expect any major upheavals, since checks show that they perform similarly to the old
ones at current energies, but the hope is for a somewhat improved and more consistent description. The
step thereafter would be to study specific processes, such as W+n jets, to find how good a matching can
be obtained between the different n-jet multiplicities, when initial parton configurations are classified by
their p⊥-clustering properties. The PYCLUS algorithm here needs to be extended to cluster also beam
jets. Since one cannot expect a perfect match between generated and clustering-reconstructed shower
histories, it may become necessary to allow trial showers and vetoed showers over some p⊥ matching
range, but hopefully then a rather small one. If successful, one may expect these new algorithms to
become standard tools for LHC physics studies in the years to come.
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10. MATCHING MATRIX ELEMENTS AND PARTON SHOWERS WITH HERWIG AND

PYTHIA 14

10.1 Introduction

Parton-shower (PS) Monte Carlo event generators are an important tool in the experimental analyses
of collider data. These computational programs are based on the differential cross sections for simple
scattering processes (usually 2 → 2 particle scatterings) together with a PS simulation of additional
QCD radiation that naturally connects to a model of hadronization. As the PS algorithms are based on
resummation of the leading soft and collinear logarithms, these programs may not reliably estimate the
radiation of hard jets, which, in turn, may bias experimental analyses.

Improvements have been developed to correct the emission of the hard partons in the PS. In
PYTHIA [7, 10, 11], corrections were added for e+e− annihilation [68], deep inelastic scattering [69],
heavy particle decays [59] and vector boson production in hadron-hadron collisions [45]. Similarly,
corrections were added to HERWIG [57, 70] in Refs. [71–74] following the method described in [75].

The Catani-Krauss-Kuhn-Webber (CKKW) algorithm is a method for generalizing such correc-
tions [63, 76]. Along with this development, computer programs have become available [35, 77] which
are capable of efficiently generating multi-parton events in a format (the Les Houches format [78]) that
can be readily interfaced with HERWIG and PYTHIA. Here, we report on how to use these programs
combined with the HERWIG and PYTHIA Monte Carlo event generators to implement hard corrections
to PS predictions. Several approaches are explored. One adheres closely to the CKKW algorithm, but
uses HERWIG for adding an additional PS. The second is more closely tuned to the specific PS gener-
ators themselves and calculates branching probabilities numerically (using exact conservation of energy
and momentum) instead of analytically. This is accomplished by generating pseudo-showers starting
from the various stages of a PS history. A comparison is also made with a much simpler method.

10.2 Overview of the Correction Procedure

PS’s are used to relate the partons produced in a simple, hard interaction characterized by a large energy
scale (large means ≫ ΛQCD) to the partons at an energy scale near ΛQCD. At this lower scale, a tran-
sition is made to a non–perturbative description of hadronic physics, with physical, long–lived particles
as the final products. This is possible, because the fragmentation functions for the highly-virtual partons
obey an evolution equation that can be solved analytically or numerically. This solution can be cast in
the form of a Sudakov form factor, which can be suitably normalized as a probability distribution for no

parton emission between two scales. Using the Monte Carlo method, the evolution of a parton can be
determined probabilistically, consisting of steps when the parton’s scale decreases with no emission, fol-
lowed by a branching into sub-partons, which themselves undergo the same evolution, but with a smaller
starting point for the scale. The evolution is ended when the energy scale of parton reaches the hadroniza-
tion scale ∼ ΛQCD. Starting from the initial (simple) hard process, a sampling of PS’s generates many
topologies of many-parton final states, subject to certain phase space and kinematic restrictions. How-
ever, the evolution equation (as commonly used) only includes the soft and collinear fragmentation that
is logarithmically enhanced, so that non–singular contributions (in the limit of vanishing cut-offs) are
ignored. This means that not enough gluons are emitted that are energetic and at a large angle from the
shower initiator, since there is no associated soft or collinear singularity.

In contrast, matrix element (ME) calculations give a description of a specific parton topology,
which is valid when the partons are energetic and well separated. Furthermore, it includes interference
between amplitudes with the same external partons but different internal structure. However, for soft and
collinear kinematics, the description in terms of a fixed order of emissions is not valid, because it does
not include the interference between multiple gluon emissions which cannot be resolved.

The PS description of hard scattering would be improved if information from the ME were

14Contributed by: S. Mrenna
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included when calculating emission probabilities. A systematic method for this can be developed
by comparing the PS and ME predictions for a given fixed topology. Consider a hard scattering
(e+e− → γ/Z → qq̄) followed by a PS off the outgoing qq̄ pair, with each branching i character-
ized by a variable di The variables di represent some virtuality or energy scales that are evolved down to
a cut-off dini. The PS rate for this given topology is a product of many factors: (1) the Born level cross
section for e+e− → qq̄, (2) Sudakov form factors representing the probability of no emission on each
quark and gluon line, and (3) the branching factors at each vertex (or splitting). The ME prediction for
this topology is somewhat more complicated. First, one needs to calculate the cross section for the full
initial- and final-state (here e+e− → qq̄ggq′q̄′). Then, one needs to specify a particular topology. There
is no unique way to do this, but a sensible method is to choose a clustering scheme and construct a PS
history. Ideally, the clustering variable would be the same as the virtuality di used to generate the PS in
the usual way. Having performed the clustering, one can then make a quantitative comparison of the two
predictions.

To facilitate the comparison, we first expand the PS prediction to the same fixed order in αs. This
is equivalent to setting all the Sudakov form factors to unity. In this limit, we see that the PS product
of the Born level cross section and the vertex factors is an approximation to the exact ME prediction.
As long as the values di are all large, the ME description is preferred theoretically, and the Sudakov
form factors are indeed near unity. Therefore, the PS description can be improved by using the exact
clustered ME prediction. When the values di are not all large, and there is a strong ordering of the value
(d1 ≫ d2 · · · ≫ dini) then the PS description is preferred theoretically. In this limit, the ME prediction
reduces to the product of Born level and vertex factors, provided that the argument of αs is chosen to
match that used in the PS (this should be related to di). Therefore, the ME prediction can be used to
improve the PS description in all kinematic regions provided that: (1) the correct argument for αs is
used, and (2) the Sudakov form factors are inserted on all of the quark and gluon lines. This provides
then an interpolation scheme between the PS and the ME prediction. As usual, there is a systematic
uncertainty associated with how one chooses to perform the interpolation.

This corrects the specific topology considered, but what of the rest of the topologies? ME calcula-
tions can be performed for those that are simple enough, but technically there is a limitation. Presently,
e+e− → 6 parton calculations can be performed using computational farms with appropriate cuts. A
practical solution is to choose the cut-off dini large enough that the ME calculations in hand saturate the
dominant part of the cross section. Then, an ordinary PS can be used to evolve the parton virtualities
from dini down to the hadronization scale. It has been shown that the correct method for doing this
consists of starting the PS’s at the scale where a parton was created in the clustered topology, and then
vetoing branchings with virtualities larger than dini [63].

10.3 Results

10.4 Discussion and Conclusions

We have compared three different procedures of matching ME predictions with PS’s using a methodology
close to the CKKW algorithm suggested in [63, 76]: (1) a slightly expanded version of the CKKW

procedure using HERWIG as the PS generator (but not limited in principal to HERWIG) and exploiting
the freedom to choose scales and cut-offs; (2) a version of the CKKW procedure relying on pseudo-
showers and matched closely to the scales and cut-offs of PYTHIA and HERWIG; and (3) a much
simpler procedure based on the approach of M. Mangano. Results are summarized in Figs. 1 (a) and (b).

The HERWIG-CKKW procedure uses all of the elements of the original CKKW procedure, but
expands upon them. Several choices of scale were investigated as starting points for the vetoed PS, and
a wide range of prefactors were explored as arguments to the analytic NLL Sudakov form factor and αS .
The variation of the results with these choices is shown in the figures. Optimized choices were settled
upon based on the smoothness of distributions, the agreement with HERWIG where expected, and the
apparent improvement over the default HERWIG predictions. While this appears to be a tuning, the final
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Fig. 26: (a) Differential kTi-cluster distributions dσ/dkTi at the hadron level generated with the pseudo-shower procedure for

pp̄ → W+ +X collisions at
√

s = 1.96 TeV, for i = 1−5 and also showing the W+ boson transverse momentum. The default

result of PYTHIA is shown as a dashed line, while the result of the pseudo-shower algorithm is shown as a solid black line. The

contribution to the pseudo-shower result from the two (red), three (green), four (blue), five (yellow) and six (magenta) parton

components is also shown. The matching scale 10 GeV is shown as a vertical arrow; (b) Comparison of the ratio of various

kT -cluster distributions from HERWIG and PY using the pseudo-shower procedure, HERWIG using the MLM procedure, and

HERWIG using the CKKW procedure for a matching scale of 15 GeV.
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choices are easily justifiable. Since HERWIG is an angular-ordered shower, a variable such as kT -cluster
values is well suited as a starting point for the HERWIG shower. Because of the details of the HERWIG

shower, a prefactor of 1
2 for the scale used in the Sudakov form factor is understandable, as well as a

prefactor of 1
8 for the scale used in evaluating αS . The results presented are better at the parton level than

at the hadron level, which may require some tuning of the HERWIG hadronization model, and are less
important at higher energies or when the cut-offs are larger.

The pseudo-shower procedure uses the Sudakov form factors of HERWIG and PYTHIA to nu-
merically calculate the Sudakov suppression. Since the Sudakov form factor is a probability distribution
for no parton emissions, the suppression factor can be determined by starting showers from different
stages of the PS history and discarding those events with emissions above a given cut-off. Because of
the nature of this approach, there is less tuning of parameters. To match the argument used in αS by
default in HERWIG and PYTHIA, a different clustering scheme was used: pT clustering or LUCLUS-
clustering. Final results at the hadron level are shown in the figures. In general, the hadron-level results
are better than the parton-level ones. The use of LUCLUS over KTCLUS was driven by the kinematics of
the PYTHIA shower. We have not checked whether KTCLUS works as well or better for the HERWIG

results, and we leave this for future investigation. We should also investigate the advantages of using the
exact clustering scheme of the individual generators: invariant mass and angular ordering for PYTHIA

or just angular ordering for HERWIG. Also, since this work began, a new model of final-state showering
was developed for PYTHIA which is exactly of the LUCLUS type. This should also be tested.

The MLM procedure is a logical extension of the procedure developed by M. Mangano for adding
PS’s to W+multijet events. It entails kT -clustering the parton-level events, adding a PS (with HERWIG

in practice, but not limited to it), and rejecting those events where the PS generates a harder emission
(in the kT -measure) than the original events. This approach yields a matching which is almost as good
as the more complicated procedures based on the CKKW procedures explored in this work. The reason
is not a pure numerical accident. The MLM procedure rejects events (equivalently, reweights them to
zero weight) when the PS generates an emission harder than the lowest kT value of the given kinematic
configuration. This is equivalent to the first step of the pseudo-shower procedure in the calculation of
the Sudakov suppression when applied to the highest multiplicity ME. The remaining difference is in
the treatment of the internal Sudakov form factors and the argument of αS . The agreement between the
pseudo-shower and MLM procedures implies that the product of Sudakov form factors on internal lines
with the factors of αS evaluated at the clustering scale is numerically equivalent to the product of αS

factors evaluated at the hard scale. It is worth noting that, for the process at hand, qq̄′ → W +X, only
two of the cluster values can be very close to the cut-off, and thus only two of the αS(kT ) values can be
very large. Also, at the matching scales considered in this study, 10 − 20 GeV, with a factorization scale

on the order of MW , QF =
√
M2

W + P 2
TW , a fixed order expansion is of similar numerical reliability

as the “all-orders” expansion of a resummation calculation. In fact, the resummation (PS) expansion is
ideally suited for Q≪MW , whereas the fixed order expansion is best applied for Q ∼MW .

Based on the study of these three procedures, we can make several statements on the reliability of
predicting the shapes and rates of multijet processes at collider energies.

1. The three matching procedures studied here can be recommended. They are robust to variation of
the cut-off scale.

2. The relative distributions in kT , for example, are reliably predicted.

3. The variation in the relative distributions from the three procedures depends on the variable. For
variables within the range of the ME’s calculated, the variation is 20%. For variables outside this
range, which depend on the truncation of the ME calculation, the variation is larger 50%. Of
course, it is important to study the experimental observables to correctly judge the senstivity to the
cut-off and methodology of matching.

4. More study is needed to determine the best method for treating the highest multiplicity ME con-
tributions.
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5. The subject of matching is far from exhausted. The procedures presented here yield an improve-
ment over previous matching prescriptions. However, these methodologies are an interpolation

procedure.
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11. W BOSON, DIRECT PHOTON AND TOP QUARK PRODUCTION: SOFT-GLUON COR-

RECTIONS 15

11.1 Introduction

W -boson, direct photon, and top quark production are all processes of considerable interest, useful in
testing the Standard Model and searching for new physics. The hadroproduction cross sections for these
processes have been calculated fully through next-to-leading order (NLO). Threshold corrections are
known to be important in current hadron colliders and attempts have been made to calculate these soft-
gluon corrections at next-to-next-to-leading order (NNLO) and beyond. Here I present results from the
latest calculations.

In general, at each order in perturbation theory the partonic cross section σ̂ for a hard-scattering
process includes “plus” distributions with respect to a kinematical variable, denoted say as s2, that mea-
sures distances from partonic threshold. At n-th order in the strong coupling αs (beyond the leading
order) these distributions are of the type

[
lnl(s2/M

2)

s2

]

+

, l ≤ 2n− 1 , (8)

where M is a hard scale, such as a mass or transverse momentum, relevant to the process at hand.
These logarithmic terms are the soft-gluon corrections and they arise from incomplete cancellations near
partonic threshold between graphs with real emission and virtual graphs. This is due to the limited phase
space available for real gluon emission near partonic threshold. These threshold corrections, calculated in
the eikonal approximation, can be formally shown to exponentiate [79–82] as a result of the factorization
properties of the cross section. The logarithms with l = 2n − 1 are denoted as leading (LL), with
l = 2n − 2 as next-to-leading (NLL), with l = 2n − 3 as next-to-next-to-leading (NNLL), and with
l = 2n − 4 as next-to-next-to-next-to-leading (NNNLL). We note that the virtual corrections appear in
δ(s2) terms. A unified approach and master formulas for the calculation of these corrections for any
process at NNLO have recently been presented in Ref. [83]. For the processes discussed in the next three
sections, the LL, NLL, and NNLL terms have been calculated fully. In the NNNLL terms we have not
included some process-dependent two-loop contributions [83] which, however, we expect to be small.

11.2 W Boson Production

The production of W bosons in hadron colliders is a process of relevance in testing the Standard Model,
calculating backgrounds to new physics such as associated Higgs boson production, and luminosity
monitoring.

The calculation of the complete NLO cross section for W hadroproduction at large transverse mo-
mentum was presented in Refs. [84–86]. The NLO results displayed an enhancement of the differential

15Contributed by: N. Kidonakis
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Fig. 27: The differential cross section, dσ/dQ2
T , for W hadroproduction in pp̄ collisions at the Tevatron at (left)

√
S = 1.8

TeV and (right) 1.96 TeV, with µF = µR = QT . Shown are the Born, NLO, NNLO-NNLL, and NNLO-NNNLL results.

distributions in transverse momentum QT of the W boson. The QT distribution falls rapidly with in-
creasing QT , spanning five orders of magnitude in the 30 GeV < QT < 190 GeV region at the Tevatron.

W -boson production at high transverse momentum receives corrections from the emission of soft
gluons from the partons in the process. The resummation and NNLO-NNLL corrections were studied
in Ref. [87]. More recently the NNLO-NNNLL corrections were studied in Ref. [88]. These threshold
corrections further enhance the cross section and reduce the scale dependence [88].

For the hadronic production of a high-QT W boson, with mass mW , the lowest-order partonic
subprocesses are q(pa)+ g(pb) −→W (Q)+ q(pc) and q(pa)+ q̄(pb) −→W (Q)+ g(pc). The partonic
kinematical invariants in the process are s = (pa + pb)

2, t = (pa −Q)2, u = (pb −Q)2, which satisfy
s2 ≡ s + t+ u− Q2 = 0 at partonic threshold. Here s2 = (pa + pb −Q)2 is the invariant mass of the
system recoiling against the W boson and it parametrizes the inelasticity of the parton scattering. The
partonic cross section σ̂ includes distributions with respect to s2 of the type [lnl(s2/Q

2
T )/s2]+.

In Fig. 27 we plot the transverse momentum distribution, dσ/dQ2
T , for W hadroproduction at the

Tevatron Run I with
√
S = 1.8 TeV and Run II with

√
S = 1.96 TeV. We use the MRST2002 NNLO

parton densities [89]. We set the factorization scale µF and the renormalization scale µR equal to QT .
We focus on the high-QT region where the soft-gluon approximation holds well and the corrections
are important. We see that the NLO corrections provide a significant enhancement of the Born cross
section. The NNLO-NNLL corrections provide a further modest enhancement of the QT distribution. If
we increase the accuracy by including the NNNLL contributions, which are negative, then we find that
the NNLO-NNNLL cross section lies between the NLO and NNLO-NNLL results.

TheK-factors are shown at
√
S = 1.96 TeV in the left frame of Fig. 28. We see that the K-factors

are moderate, and nearly constant over the QT range shown even though the distributions themselves
span two orders of magnitude in this range. It is also easy to see from the NLO/NLO-NLL curve that
in the high QT region the soft-gluon approximation holds very well, as the NLO-NLL cross section is
almost identical to the full NLO result.

The scale dependence of the differential cross section is shown on the right frame of Fig. 28 for
QT = 80 GeV and

√
S = 1.8 TeV. We plot dσ/dQ2

T versus µ/QT over two orders of magnitude:
0.1 < µ/QT < 10. We note the good stabilization of the cross section when the NLO corrections are
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Fig. 28: Left: The K-factors for the differential cross section, dσ/dQ2
T , for W hadroproduction at the Tevatron with

√
S =

1.96 TeV and µF = µR = QT . Right: The µ dependence of the differential cross section, dσ/dQ2
T , for W hadroproduction

at the Tevatron with
√

S = 1.8 TeV and QT = 80 GeV. Here µ ≡ µF = µR.

included, and the further improvement when the NNLO-NNNLL corrections (which include all the soft
and virtual NNLO scale-dependent terms) are added.

11.3 Direct Photon Production

Direct photon production is an important process for determinations of the gluon distribution function.
The NLO cross section for direct photon production has been given in Refs. [90–92]. The role of higher-
order soft-gluon corrections has also been addressed more recently. Threshold resummation and NNLO
corrections for direct photon production have been presented in Refs. [93, 94].

At lowest order, the parton-parton scattering subprocesses are q(pa)+g(pb) → γ(pγ)+q(pJ) and
q(pa) + q̄(pb) → γ(pγ) + g(pJ). We define the Mandelstam invariants s = (pa + pb)

2, t = (pa − pγ)2,
and u = (pb − pγ)2, which satisfy s4 ≡ s + t + u = 0 at threshold. Note that the photon transverse
momentum is pT = (tu/s)1/2. Here we calculate the cross section Eγ d3σ/d3pγ in the MS scheme.
The soft corrections to the cross section appear in the form of plus distributions [lnl(s4/p

2
T )/s4]+.

In order to show the effect of including the NNLO threshold terms, we start with a complete NLO
calculation of the appropriate cross section using a program [95] which employs the phase-space slicing
technique [96]. The original NLO calculation has been extended to include a complete NLO treatment
of the bremsstrahlung contribution. The Set 2 fragmentation functions of [97] are used along with the
CTEQ6M parton distribution functions [98]. In all cases the factorization and renormalization scales
have been set equal to a common scale µ. Once the NLO results are obtained, the approximate NNLO
contributions are then added to them.

In the left frame of Fig. 29 a comparison is made to data from the E-706 Collaboration [99]. The
NNLO-NNNLL curve at µ = pT /2 is practically indistinguishable from the NLO except at high pT .
However, the µ = 2pT NNLO result is much higher than NLO, and as a result the scale dependence
at NNLO is considerably reduced. The theoretical band lies below the data at the lower end of the
range covered by the data. In the right frame of Fig. 29 the rapidity dependence is shown for the UA-6
proton proton data [100]. Again, the NNLO-NNNLL terms give a negligible contribution for the choice
µ = pT /2 and the overall scale dependence is greatly reduced when the NNLO terms are added.
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Fig. 29: NLO and NNLO-NNNLL results for direct photon production in hadronic collisions. Left: theory compared to data

from the E-706 Collaboration [99] at pbeam = 530 GeV/c. Right: theory compared to pp data for the rapidity distribution

from the UA-6 Collaboration [100] at
√

S = 24.3 GeV.

11.4 Top Quark Production

Recent calculations for top hadroproduction include NNLO soft-gluon corrections to the double dif-
ferential cross section [101–103] from threshold resummation techniques. The latest calculation [103]
includes NNNLL and some virtual ζ terms (defined in Ref. [103]) at NNLO. When not all terms are
known there is some difference between single-particle-inclusive (1PI) and pair-invariant-mass (PIM)
kinematics. When NNNLL terms are included, the kinematics dependence of the cross section vanishes
near threshold and is reduced away from it relative to NNLL accuracy. The factorization and renormal-
ization scale dependence of the cross section is also greatly reduced.

We study the partonic process ij → tt with ij = qq̄ and gg. In 1PI kinematics, a single top quark
is identified, i(pa) + j(pb) −→ t(p1) +X[t](p2) where t is the identified top quark of mass m and X[t]
is the remaining final state that contains the t. We define the kinematical invariants s = (pa + pb)

2,
t1 = (pb − p1)

2 −m2, u1 = (pa − p1)
2 −m2 and s4 = s + t1 + u1. At threshold, s4 → 0, and the

soft corrections appear as [lnl(s4/m
2)/s4]+. In PIM kinematics, we have instead i(pa) + j(pb) −→

tt(p) + X(k). At partonic threshold, s = M2, with M2 the pair mass squared. The soft corrections
appear as [lnl(1 − z)/(1 − z)]+, with z = M2/s→ 1 at threshold.

In Fig. 30 we present the NLO and approximate NNLO tt cross sections at
√
S = 1.8 TeV

(left frame) and 1.96 TeV (right frame) for µ = µF = µR = m. We use the MRST2002 NNLO
parton densities [89]. The NNLO results include the soft NNNLL and virtual ζ terms in 1PI and PIM
kinematics. We also show the average of the two kinematics results which may perhaps be closer to the
full NNLO result.

In the left frame of Fig. 31 we show the scale dependence of the cross section, in the region 0.2 <
µ/m < 10, at

√
S = 1.96 TeV. The NLO cross section has a milder dependence on scale than the LO

result. The NNLO cross section exhibits even less dependence on µ/m, approaching the independence of
scale corresponding to a true physical cross section. The change in the NNLO cross section in the range
m/2 < µ < 2m, normally displayed as a measure of uncertainty from scale variation, is less than 3%.
In the right frame of Fig. 31 we show the top quark transverse momentum distributions at

√
S = 1.96

TeV. At NNLO we observe an enhancement of the NLO distribution with no significant change in shape.
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Fig. 30: The tt total cross sections in pp collisions at
√

S = 1.8 TeV (left frame) and 1.96 TeV (right frame) are shown as

functions of m for µ = m. The NLO (solid), and approximate NNLO 1PI (dashed), PIM (dot-dashed) and average (dotted)

results are plotted.

Finally we note that recently [104] NNLO threshold corrections were calculated for top quark
production via flavor-changing neutral-current (FCNC) processes at the Tevatron and HERA colliders.
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12. EXTENDING THRESHOLD EXPONENTIATION BEYOND LOGARITHMS FOR DIS

AND DRELL-YAN 16

12.1 Introduction

Threshold resummation [105, 106] sums terms in cross sections that grow as a production threshold is
approached. There is however empirical [107], theoretical [105, 108–112], as well as speculative [113]
evidence of the fact that the formalism enabling threshold resummation could be extended to include
classes of terms that are either constant or decrease upon the approach of threshold. The resumma-
tions of such terms, once put on a theoretically sound basis, would have significant phenomenological
consequences, as shown in Ref. [107] for the case of Higgs production at hadron colliders.

The first evidence that the dominant non-logarithmic perturbative contributions could be expo-
nentiated goes back to [108], where it was shown that the partonic Drell-Yan cross section in the DIS
factorization scheme contains the ratio of the timelike to the spacelike Sudakov form factor: large per-
turbative contributions are left over in the exponentiated form of this ratio after the cancellation of IR
divergences. This observation was made more precise in Ref. [105]. There, the resummation of thresh-
old logarithms for the Drell-Yan process was proven to all logarithmic orders, making use of a procedure

16Contributed by: T.O. Eynck, E. Laenen, L. Magnea
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NNLO 1PI (dashed), PIM (dot-dashed) and average (dotted) results are shown. Right: The NLO and approximate NNLO top

quark pT distributions are shown.

of refactorization: the Mellin transform of the cross section is expressed near threshold, approached by
letting the Mellin variable N grow very large, as a product of functions, each organizing a class of in-
frared and collinear enhancements; the refactorization is valid up to corrections which are suppressed by
powers of N at large N , so that terms independent of N can be treated by the same methods used to
resum logarithms of N .

It has also been clear for some time [110] that at least a subset of the terms enhanced by logarithms
but suppressed by a power of N can be resummed: in the MS scheme, for example, they arise from
the exponentiation of the MS quark distribution. More recently, a factorization analysis of these terms
was performed [111, 112], for the case of the longitudinal structure function in DIS, where however
(logN)/N terms are the leading ones. It would be of considerable interest to extend this analysis to
other processes. Since these logarithms arise at one loop from finite remainders of collinear singularities,
which are suppressed by infrared power counting, it is conceivable that joint resummation [114] might
provide a framework for an all-order treatment.

Here we report on recent work [115], where the results of Refs. [105,109] were exploited to show
that for processes which are electroweak at tree level (such as DIS and vector boson production through
electroweak annihilation at colliders) the exponentation of N -independent terms is in fact complete.
The generalization of this result to processes with nontrivial color exchange is not straightforward, but
it would of phenomenological interest for many processes to be studied at the LHC, including prompt
photon, heavy quark and jet production.

12.2 Extended exponentiation for electroweak annihilation

Consider the Drell-Yan partonic cross section in the DIS scheme. The refactorization procedure de-
scribed in Ref. [105] leads to the expression

ω̂DIS(N) =
(Γ(Q2, ǫ))2

|Γ(−Q2, ǫ)|4
(
ψr(N, ǫ)

χr(N, ǫ)

)2 Ur(N, ǫ)

V 2
r (N, ǫ)

1

J2
r (N, ǫ)

+ O(1/N) . (9)
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The presence of the final-state jet function Jr(N, ǫ) e.g. is direct consequence of dividing the unfactor-
ized Drell-Yan cross section by the deep-inelastic structure function. A similar expression emerges in
the MS scheme,

ω̂MS (N) =

( |Γ(Q2, ǫ)|2
φv(ǫ)2

) (
ψr(N, ǫ)

2 Ur(N, ǫ)

φr(N, ǫ)2

)
+ O(1/N) . (10)

Notice the absence of Jr , which does not occur in the MS density. Here Γ is the quark form factor;
φ, ψ and χ are different quark distributions, with the same collinear singularities but different finite
contributions: φ, in particular, is the MS distribution, consisting only of collinear poles; U and V are
eikonal functions describing soft radiation at wide angles; finally J is a jet function responsible for soft
and collinear contributions from the final state DIS current jet. All functions exponentiate, and in each
case real (r) and virtual (v) contributions have been separated. Finite virtual contributions in both cases
can be expressed just in terms of the quark form factor. Note that although each function is divergent and
thus depends on ǫ = 2 − d/2, the partonic cross sections are finite.

All functions involved in Eqs. (9) and (10) can be precisely defined in terms of quark fields and
eikonal lines. Renormalization group analysis and explicit evaluation lead to expressions that have the
familiar exponential form [106], with corrections involving N -independent terms. For the DIS scheme
one finds

ω̂DIS(N) =

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2

exp
[
FDIS(αs)

]
exp

[∫ 1

0
dz

zN−1 − 1

1 − z
(11)

×
{

2

∫ (1−z)2Q2

(1−z)Q2

dξ2

ξ2
A
(
αs(ξ

2)
)
− 2B

(
αs

(
(1 − z)Q2

))
+D

(
αs

(
(1 − z)2Q2

))
}]

.

Similarly, for the MS scheme one has the expressioon

ω̂MS (N) =

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2(

Γ(−Q2, ǫ)

φv(Q2, ǫ)

)2

exp
[
FMS (αs)

]
exp

[∫ 1

0
dz
zN−1 − 1

1 − z

×
{

2

∫ (1−z)2Q2

Q2

dξ2

ξ2
A
(
αs(ξ

2)
)

+D
(
αs

(
(1 − z)2Q2

))
}]

. (12)

The functions FDIS and FMS are given to order αs below in Eqs. (15) and (16). As is well-known [105,
106], the function A is responsible for leading logarithms of N to all orders. To achieve NLL accuracy
one must compute it to two loops, obtaining

A(1) = CF , A(2) =
1

2

[
CACF

(
67

18
− ζ(2)

)
− nfCF

(
5

9

)]
. (13)

To NLL accuracy, one also needs the functions B and D to one loop, which are given by

B(1) = −3

4
CF , D(1) = 0 . (14)

The remaining ingredients, collecting N -independent terms, are easily computed at one loop. For the
DIS scheme one needs

∣∣∣∣
Γ(Q2, ǫ)

Γ(−Q2, ǫ)

∣∣∣∣
2

= exp

[
αs(Q)

π
CF (3ζ(2))

]
, FDIS (αs) =

αs

π
CF

(
1

2
+ ζ(2)

)
. (15)

For the MS scheme, one further needs

Γ(−Q2, ǫ)

φv(Q2, ǫ)
= exp

[
αs

π
CF

(
ζ(2)

4
− 2

)]
, FMS (αs) =

αs

π
CF

(
−3

2
ζ(2)

)
. (16)
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Notice finally that by taking the ratio of Eq. (12) and Eq. (11) one finds directly the (square of) the DIS
structure function F2,(MS )(N), factorized in the MS scheme, which can then be computed to the same

accuracy without introducing other information. The ratio of form factors drops out from F2,(MS )(N),

as does the function D [116], except for a contribution to the running between the physical scales Q2

and (1 − x)Q2, which can be systematically reexpressed as a modification of the function B.

All the functions appearing in Eq. (11) and Eq. (12) can be explicitly evaluated at two loops by
matching with the complete two-loop calculation of Ref. [117]. An alternative, and often simpler method
to determine the two-loop coefficients in these expressions uses equations derived from the fact that real
and virtual contributions in the factorized expressions (16) and (10) are separately finite [115].

It is also important to keep in mind that the exponentiation of N–independent terms does not have
the predictive power of the standard resummation of threshold logarithms. In that case, typically, an
entire tower of logarithms can be exactly predicted to all orders by performing just a low order calcu-
lation. Here, on the other hand, functions such as FDIS and FMS receive new nontrivial contribution
at each perturbative order. The exponentiation pattern is nonetheless nontrivial, and higher order terms
predicted by the exponentiation can be considered representative of the size of the complete higher order
correction [115].

13. JOINT RESUMMATION FOR TOP QUARK PRODUCTION 17

The formalism of joint resummation [114, 118] for hadronic cross sections of distributions singular at
partonic threshold and at zero recoil has so far been applied to only a few processes. Recent studies
involve processes that proceed at lowest order through a 2 → 1 electroweak (Z/W production [119]) or
Yukawa interaction (Higgs production [53]). For these cases, the observables are the production cross
sections at fixed mass M and measured QT . Partonic threshold is then defined by z ≡M2/ŝ = 1, where
ŝ is the partonic center of mass (cms) energy squared, and zero recoil by QT = 0. At any finite order, the
distributions take the form of plus-distributions

[
lnk(1 − z)/(1 − z)

]
+

and
[
lnk(M/QT )/QT

]
+

. Note
that in these observables the latter distributions enter the physical cross sections, whereas the former are
defined, after factorization, in the context of a perturbative analysis of the hard scattering.

In Ref. [120] the case of the prompt photon hadroproduction cross section at measured pT was
analyzed, and a preliminary numerical study performed. In this case, a single-particle inclusive process
proceeding through a 2 → 2 reaction at lowest order, the identification of the recoil variable QT can
only be made in the context of a refactorization analysis, just like the threshold variable z. Through
such an analysis, it is possible to identify a reduced hard scattering with cms energy squared s̃ and at
transverse momentum ~QT with respect to the hadronic cms system. Note that this transverse momentum
is invariant w.r.t. longitudinal boosts. In this way, the hard scattering need produce a photon with
transverse momentum ~pT

′ = ~pT − ~QT /2. It still remains to implement a procedure that consistently
matches the joint resummed cross section to finite order calculations. In Refs. [114,120] a simple cut-off
µ̄ was used in the integration over QT , with µ̄ smaller that 2pT . For the prompt photon case, the hard
scattering is singular at QT = 2pT .

In this brief report we present a preliminary study of the application of joint resummation to
another prominent single-particle inclusive cross section, the pT distribution of top quarks produced in
hadronic collisions. Our motivation is to see what effect joint resummation has on a distribution in a TeV
collider process that is nevertheless near threshold. Two key differences with the prompt photon case
are (i) the heavy quark mass m, preventing a singularity in the reduced hard scattering function when
QT = 2pT , and (ii) the possibility of multiple colored states for the produced top quark pair.

17Contributed by: A. Banfi, E. Laenen
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The jointly resummed expression for this observable can be written as

dσAB→tt̄+X

dpT
=

∫
d2QT θ(µ̄−QT )

dσAB→tt̄+X

dpTd2 ~QT

, (17)

where

dσAB→tt̄+X

dpTd2 ~QT

= pT

∫
d2b

(2π)2
ei

~b· ~QT

∫
dN

2πi
φa/A(N,µ) φb/B(N,µ) eEab(N,b)

× e−2 CF t(N) (ReLβ+1)

4πS2

(
M̃2

1(N) + M̃2
8(N)e2 t(N) ReΓ8

)( S

4(m2 + |~pT − ~QT /2|2)

)N+1

.

(18)

where the impact vector ~b is Fourier conjugate to ~QT , and the variable N is Laplace conjugate to the
variable

1 − x2
T = 1 − 4m2

T

S
(19)

where x2
T = 1 defines hadronic threshold. Furthermore

t(N) =

∫ Q/N

Q

dkt

kt

αs(kt)

π
, ReLβ =

1 + β2

2β

(
ln

1 − β

1 + β

)
, ReΓ8 =

CA

2

(
ln
m2

T

m2
+ ReLβ

)
.

(20)

where β =
√

1 − 4m2/s. The exponentional function Eab is given in Ref. [119] and M2
1
(N),M2

8
(N)

are the Laplace moments of the lowest order heavy quark production matrix elements for either the qq̄ or
gg channel, the index labelling the color-state of the heavy quark pair.

In two figures we illustrate the effect of joint resummation over threshold resummation for the
top quark (m = 175 GeV) pT spectrum for at Run II Tevatron, and only for the dominant qq̄ channel.
It produces the top quark pair at lowest order in an octet state. We use αs = 0.1 and toy densities
φa(x) = x(1 − x)3. In Fig. 32 we exhibit the QT profile of Eq. (18) for two rather large pT values,
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Fig. 32: The QT profile for two pT values.

in analogy to Fig. 1 in Ref. [120]. Note that these profiles are only of theoretical relevance, only their
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integral over ~QT can be measured. Recoil effects can be removed by neglecting ~QT in the last factor
in Eq. (18). We observe a small enhancement over the threshold-resummed result, in particular at very
large pT . Although not shown in the figure, there is in our case no divergence when QT approaches 2pT .

To keep the recoil soft with respect to the hard scale, we choose the cut-off µ̄ = 0.2mT . We can
now show, in Fig. 33 the effect of joint resummation on the pT distribution, via Eq. (17). We observe
only a small enhancement at very large pT values. The suppression at lower pT values is a consequence
of the QT cut µ̄. A proper matching procedure should resolve this issue. Actually we note that this
suppression is absent if we choose µ̄ around 200 GeV. The enhancement at large pT is a consequence of
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what is effectively a smearing of the recoilless pT spectrum induced by perturbative radiation.

A more extenstive study including the gg channel and use of realistic parton distribution functions
is forthcoming [121].
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14. A COMPARISON OF PREDICTIONS FOR SM HIGGS BOSON PRODUCTION AT THE

LHC 18

14.1 Introduction

The dominant mechanism for the production of a SM Higgs boson at the LHC is gluon-gluon fusion
through a heavy (top) quark loop. For this reason this channel has attracted a large amount of theoretical
attention [122]. Recently, the total cross section has been calculated to NNLO in the strong coupling con-
stant αs (i.e. at order O(α4

s)) [123–127] and also contributions from multiple soft gluon emission have
been consistently included to NNLL accuracy [128]. In addition to the size of the total rate, a knowledge
of the shape of the Higgs boson pT distribution is essential for any search and analysis strategies at the
LHC. In particular, the pT distribution for the Higgs boson is expected to be harder than the one of its

18Contributed by: C. Balazs, M. Grazzini, J. Huston, A. Kulesza, I. Puljak
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corresponding backgrounds. The Higgs boson pT distribution has been computed with LL parton shower
Monte Carlos (HERWIG [70] and PYTHIA [7]), and through various resummed calculations. The latter
techniques are the more powerful ones, but it is primarily the former that experimentalists at the LHC
have to rely upon, because of their flexibility in allowing to test the effects of the various kinematic cuts
which may optimize search strategies.

In the kinematic region p2
T ≪ m2

H , where most of the events are expected, large logarithmic
corrections appear of the form αn

s lnmm2
H/p

2
T that spoil the validity of the fixed order perturbative

expansion. The pT distribution can be written as

dσ

dp2
T

=
dσres.

dp2
T

+
dσfin.

dp2
T

. (21)

The first term contains all logarithmically-enhanced contributions and requires their resummation to all
orders. The second term is free from logarithmically-enhanced contributions and can be evaluated at
fixed order in perturbation theory. The method to perform the all-order resummation is well known: to
correctly take into account momentum conservation the resummation must be performed in the impact
parameter (b) space [129, 130]. The large logarithmic contributions are exponentiated in the Sudakov
form factor, which in the CSS [131] approach takes the form

Sc =

∫ m2
H

b20/b2

dµ2

µ2

[
Ac (αs(µ)) ln

(
m2

H

µ2

)
+Bc (αs(µ))

]
, (22)

where b0 = 2e−γ and c = q, g. The Ac and Bc functions are free of large logarithmic corrections and
can be computed as expansions in the strong coupling constant αs:

Ac(αs) =
∞∑

n=1

(αs

π

)n
A(n)

c , (23)

Bc(αs) =

∞∑

n=1

(αs

π

)n
B(n)

c . (24)

The functions Ac and Bc control soft and flavour-conserving collinear radiation at scales 1/b∼<µ∼<mH .
Purely soft radiation at a very low scales µ∼< 1/b cancels out because the cross section is infrared safe
and only purely collinear radiation up a scale µ ∼ 1/b remains, which is taken into account by the
coefficients

Cab(αs, z) =
∞∑

n=1

(αS

π

)n
C

(n)
ab (αs, z). (25)

Beyond NLL accuracy, to preserve the process independence of the resummation formula, an additional
(process dependent) coefficient H is needed [132], which accounts for hard virtual corrections and has
an expansion

Hc(αs) = 1 +
∞∑

n=1

(αs

π

)n
H(n)

c . (26)

In the case of Higgs boson production through gg fusion, the relevant coefficients A
(1)
g , A

(2)
g and B

(1)
g

are known [133] and control the resummation up to NLL accuracy 19. The NNLL coefficients C
(1)
ab and

H
(1)
g are also known [132, 135]. The NNLL coefficient B

(2)
g has been computed in Refs. [136, 137],

whereas A
(3)
g is not yet known exactly. In the following we assume that its value is the same that appears

in threshold resummation [138].

19There are two different classification schemes of the LL, NLL, NNLL, etc terms and their corresponding B contents. Here
we use the most popular scheme. Another is discussed in Ref. [134].
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14.2 Predictions for pt spectra and comparisons

In the 1999 Les Houches workshop, a comparison [43, 139] of the HERWIG and PYTHIA (2 versions)
predictions for the Higgs boson pT distribution with those of a pT resummation program (ResBos [52,
140]) was carried out. This comparison was continued in the 2001 workshop and examined the impact
of the B(2) coefficient [122]. In the meantime, a number of new theoretical predictions have become
available, both from resummation and from the interface of NLO calculations with parton shower Monte
Carlos. For these proceedings, we have carried out a comparison of most of the available predictions for
the Higgs boson pT distribution at the LHC. We have used a Higgs boson mass of 125 GeV and either
the MRST2001 or the CTEQ5M pdf’s. The difference between the two pdf’s for the production of a 125
GeV mass Higgs boson is of the order of a few percent. Before comparing the different predictions, we
comment on the various approaches in turn.

Parton shower MC programs such as HERWIG, which implements angular ordering exactly, im-
plicitly include the A(1), A(2) and B(1) coefficients and thus correctly sum the LL and part of the NkLL
contributions. However, in the most straightforward implementations, MC cannot correctly treat hard
radiation. By contrast, the PYTHIA MC, which does not provide an exact implementation of angular
ordering, has a hard matrix element correction 20. Recently, an approach to match NLO calculations to
parton showers generators, MC@NLO [55, 56], has been proposed, and applied, amongst the other, to
Higgs production. This method joins the virtues of NLO parton level generators (correct treatment of
hard radiation, exact NLO normalization) to the ones of MC. It thus can be compared to a resummed
calculation at NLL+NLO accuracy.

As far as resummed calculations are concerned, we first consider two implementation of the CSS

approach. The ResBos code includes the A
(1,2,3)
c , B

(1,2)
c and C

(1)
ab coefficients in the low-pT region and

matches this to the NLO distribution at high pT . NNLO effects at high pT are approximately taken into
account by scaling the second term in Eq. (21) with a K-factor. The matching is performed through a
switching procedure whose uncertainty will be considered in the following. The calculation of Berger
and Qiu [54] also performs a pT resummation in b space and is accurate to NLL. The coefficient B(2)

is included but the matching is still to NLO. Note that in both these approaches the integral of the
spectrum is affected by higher-order contributions included in a non-systematic manner whose effect is
not negligible for Higgs production.

The prediction by Bozzi, Catani, de Florian and Grazzini [51] (labeled Grazzini et al. in the
following) is based on an implementation of the b-space formalism described in [51,132]. The calculation
has the highest nominal accuracy since it matches NNLL resummation at small pT to the NNLO result

at high pT [142]. This approach includes the coefficients C
(2)
ab and H

(2)
g in approximated form. The

main differences with respect to the standard CSS approach are the following. A unitarity constraint is
imposed, such that the total cross section at the nominal (NNLO) accuracy is exactly recovered upon
integration. A study of uncertainties from missing higher order contributions can be performed as it is
normally done in fixed order calculations, that is, by varying renormalization and factorization scales
around the central value, that is chosen to be mH .

Finally, we discuss the pT distribution of Ref. [53] (Kulesza et al.). This is obtained using a joint
resummation formalism, by which both threshold and low-pT logarithmic contributions are resummed
to all orders. This approach has been formally developed to NLL accuracy, but the NNLL coefficients
A(3), B(2), C(1) and H(1) can also be incorporated. The matching is still performed to NLO. Even
though a low mass Higgs boson at the LHC is produced with relatively low x partons, threshold effects
can still be significant due to the large color charge in the gg initial state as well as steep x dependence
of the gluon distribution functions at low x. This leads to an increased sensitivity to Sudakov logarithms
associated with partonic threshold for gluon-induced processes, as shown in Ref. [128].

It is known that the low-pT region is sensitive to non-perturbative effects. These are expected

20Very recently hard matrix element corrections for Higgs productions have been implemented in HERWIG as well [141].
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to be less important in the gluon channel due to the larger colour charge of the gg initial state [43].
Different treatments of non-perturbative effects are included in the ResBos, Berger et al. and Kulesza et
al calculation, whereas Grazzini et al. prediction is purely perturbative.
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Fig. 34: The absolute predictions for the production of a 125 GeV mass Higgs boson at the LHC.

The absolute predictions for the cross sections are shown in Figure 34. All curves are obtained
in the mtop → ∞ limit. HERWIG and PYTHIA cross sections are significantly smaller than the other
predictions, their normalization being fixed to LO. In the high-pT region, the HERWIG prediction drops
quickly due to the lack of hard matrix element corrections. PYTHIA, in contrast, features the hard matrix
element corrections. We also note that PYTHIA prediction is significantly softer than all the other curves,
and thus its overall shape is fairly different from all the other predictions.

The MC@NLO cross section, about 32.4 pb, is roughly twice that of the HERWIG and PYTHIA
predictions, being fixed to the NLO total cross section.

Two predictions (step, smooth) are shown for ResBos which differ in the manner in which the
matching at high pT is performed. Their difference can be considered as an estimate of the ambiguity
in the switching procedure. The two curves correspond to the same total cross section of about 36.2
pb, which is about 8 % higher than the NLO cross section. This is the effect of the higher-order terms
that enter the prediction for the total rate in the context of the CSS approach. A slightly softer curve is
obtained by Berger and Qiu. The predicted cross section (37 pb) is close to that of ResBos.

The Grazzini et al. prediction has an integral of about 39.4 pb, which corresponds to the total
cross section at NNLO. Contrary to what is done in Ref. [51], here the curve is obtained with MRST2002
NNLO partons and three-loop αs. The difference with the result obtained with MRST2001 NNLO PDFs
is completely negligible.

Concerning the Kulesza et al curve, the subleading terms associated with low x emission (i.e. in
the limit opposite to partonic threshold) and of which only a subset is included in the joint resummation
formalism, play an important role numerically. As a result, the total cross section turns out to be 35 pb,
about 10% lower than the pure threshold result, which is 39.4 pb [53].
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We now want to examine in more detail the relative shapes of the predictions plotted in Figure. 34.
In Figure. 35 all the predictions are normalized to the Grazzini et al. cross section of 39.4 pb.
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Fig. 35: The predictions for the production of a 125 GeV mass Higgs boson at the LHC, all normalized to the same cross

section for better shape comparison.

In the region of small and moderate pT (say, smaller than 100 GeV) all of the predictions are
basically consistent with each other, with the notable exception of PYTHIA, which predicts a much
softer spectrum. The curve of Kulesza et al. is also softer than the others.

For larger pT , HERWIG gives unreliable predictions, since the transverse momentum is generated
solely by means of the parton shower, and therefore it lacks hard matrix element effects. The Grazzini et
al. and ResBos curves are harder than MC@NLO for large pT . There are two reasons for this. Grazzini
et al. implement the NNLO matrix elements exactly, corresponding to the emission of two real partons
accompanying the Higgs in the final state [142]; ResBos mimics these contributions, by multiplying the
NLO matrix elements by the K factor. MC@NLO, on the other hand, contains only NLO matrix elements
(one real parton in the final state). Secondly, Grazzini et al. and ResBos choose the renormalization and
factorization scales equal to mH , whereas in MC@NLO these scales are set equal to the transverse mass

of the Higgs,
√
m2

H + p2
T . The difference is small at the level of total rates, but it is not negligible in the

tail of the pT distribution.

14.3 Conclusions

Up to now, the ATLAS and CMS experiments have relied primarily on the predictions from HERWIG
and PYTHIA in designing both their experiments as well as defining their search and analysis strate-
gies. In the last few years, a number of tools for and predictions of the Higgs boson cross section at the
LHC have become available, with the inclusion of beyond-the-leading-order effects at different level of
accuracy. In the case of total rates, NNLO results have recently become available; their consistent inclu-
sion in experimental analysis will allow to further decrease the estimated lower bound on the integrated
luminosity to be collected for discovery.
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In this contribution, we primarily focused on the predictions for the pT spectrum, comparing the
results of Monte Carlos with those obtained with analytically-resummed calculations. In contrast to
the situation in 1999, all of the predictions, with the exception of PYTHIA, result in the same general
features, most notably in the position of the peak. However, differences do arise, because of different
treatments of the higher orders. It is an interesting question beyond the scope of this review that of
whether these differences are resolvable at the experimental level, which may lead to modify the strategy
for searches. In order to answer this, studies including realistic experimental cuts must be performed
with the newly available tools.

15. MATRIX-ELEMENT CORRECTIONS TO gg/qq̄ → HIGGS IN HERWIG 21

15.1 The Higgs transverse momentum

In order to investigate Higgs boson production via gg → Higgs (see Ref. [143]), one needs to account for
multi-parton radiation for the sake of performing trustworthy phenomenological analyses [43, 122, 144].
Standard Monte Carlo (MC) algorithms [7, 57, 70] describe parton radiation in the soft and/or collinear
approximation of the parton shower (PS), but can have regions of phase space, so-called ‘dead zones’,
where no radiation is allowed. Here, one can however rely on higher-order tree-level results, as in
this region the radiation is neither softly nor collinearly enhanced. Several methods have been recently
suggested in order to match PS and fixed-order matrix elements (MEs) [59,75], also including the virtual
one-loop terms [55, 56, 145].

15.2 The HERWIG implementation

In this note, we briefly mention that the same strategy which has already been used to implement real ME
corrections to e+e− annihilation into quark pairs [71], Deep Inelastic Scattering (DIS) [72], top quark
decay [73] and vector boson hadro-production [74] has now also been adopted for the case of Higgs
hadro-production via gluon-gluon fusion, in the context of the HERWIG event generator [57, 70]. That
is, the dead zone is here populated by using the exact next-to-leading order (NLO) tree-level ME result
and the PS in the already-populated region is corrected using the exact amplitude any time an emission
is capable of being the hardest so far.

15.3 Numerical results and comparisons

The MEs squared for the real corrections to gg → H that we have used can be found in [146], where top
mass effects are fully included. The real NLO corrections to qq̄ → H are instead rather straightforward:
the formulae we used can be read from Eq. (3.62) of [147] with appropriate Yukawa couplings and
crossing. In the new HERWIG default version, in line with [74], ME corrections use the Higgs transverse
mass m2

T = q2T + m2
H as the scale for αS and for the Parton Distribution Functions (PDFs) while the

gg, qq̄ → H contributions use m2
H . We shall also assume that the intrinsic transverse momentum of the

initial-state partons is equal to qT,int = 0, the HERWIG default value.

By adopting the HERWIG defaults, we first consider Higgs production at the Tevatron and the
LHC within the MC itself, by plotting the qT distribution with (solid histogram) and without (dotted)
ME corrections: see Fig. 36. Beyond qT ≃ mH/2 the ME-corrected version allows for many more
events. In fact, one can prove that, within the standard algorithm, qT is constrained to be qT < mH .
At small qT the prediction which includes ME corrections displays a suppression. By default, after the
latter are put in place, the total normalization still equals the LO rates. Hence, it is obvious that the
enhancement at large qT implies a reduction of the number of events which are generated at small qT
values.

21Contributed by: G. Corcella, S. Moretti
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Fig. 36: Higgs transverse momentum distribution according to HERWIG with (solid) and without (dotted) ME

corrections, at Tevatron (left,
√
spp̄ = 2 TeV) and LHC (right,

√
spp = 14 TeV). We have set the Higgs mass to

mH = 115 GeV.

Fig. 37: Left: comparison of ME-corrected HERWIG predictions (solid) to the ‘H + jets’ result from [146] (dotted).

Centre: comparison of ME-corrected HERWIG predictions (solid) to the NLO and resummed calculation of [51]

(dotted). Right: comparison of ME-corrected HERWIG predictions (solid) to the MC@NLO results from the code

described in Ref. [148] (dotted). Here, qq̄ → H processes have been turned off.

In Fig. 37 (left plot) we present the improved HERWIG spectrum (solid) for the LHC, along with
the result obtained running the so-called ‘H + jets’ process (dotted), where the hard process is always one
of the corrections to gg → H . In order to perform such a comparison, we have turned the qq̄ → H hard
process off, as ‘H + jets’ in HERWIG does not currently implement the corrections to quark-antiquark
annihilation. Furthermore, we have chosen qTmin = 30 GeV for the ‘H + jets’ generation. As expected,
at small qT the two predictions are fairly different but at large transverse momentum they agree well.

In Fig. 37 (centre plot) we compare the new HERWIG version with the resummed calculation
of Ref. [51]. For the sake of comparison with HERWIG, which includes leading logarithms and only
some subleading terms, we use the results of [51] in the NLL approximation (rather than the default
NNLL one), matched to the NLO prediction. In order for such a comparison to be trustworthy, we
have to make parameter choices similar to [51]: namely, we adopt a top quark with infinite mass in
the loop and mH = 125 GeV, with αS and PDFs (both from HERWIG defaults) evaluated at m2

H .
While the normalization (LO in HERWIG, NLO in Ref. [51]) and the small-qT behaviour of the two
curves are clearly different, the large transverse momentum predictions are in good agreement, as in both
approaches it is the real NLO ME that dominates the event generation at large qT .

Finally, in Fig. 37 (right plot), we compare the results of standard HERWIG after ME corrections
with the MC@NLO event generator (version 2.2) of Ref. [148], the latter implementing both real and
virtual corrections to the hard-scattering process, in such a way that predicted observables (including nor-
malization) are correct to NLO accuracy. As version 2.2 of the MC@NLO includes only the corrections
to Higgs production in the gluon-fusion channel, we again have turned the quark-annihilation process off
in our routines. As observed in the comparison with the resummed calculation, the two spectra differ in
normalization and at small qT , but agree in the large-transverse-momentum region.
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15.4 Conclusions

Between the described implementation and the one available within the MC@NLO option, we believe
that HERWIG is presently a reliable event generator for (direct) Higgs production from parton fusion
at hadron colliders both at small and large transverse momentum. In fact, all currently available ME
corrections will play an important role to perform any analysis on Higgs searches at present and future
colliders. In particular, the option described here may be the most convenient choice for when the phase
space is limited to transverse momentum values such that qT >∼mH .
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16. CAESAR: AUTOMATING FINAL-STATE RESUMMATIONS 22

Event shapes and jet resolution parameters (final-state ‘observables’) measure the extent to which the
energy-flow of the final state departs from that of a Born event. Their study has been fundamental for
measurements of the strong coupling [149, 150] as well as the QCD colour factors [151]; final states
also provide valuable information on the yet poorly understood transition from parton to hadron level
(see [152] for a recent review). In the region where an observable’s value v is small, one should resum
logarithmically enhanced contributions that arise at all orders in the perturbative series. For a number
of observables such a resummation has been carried out manually at next-to-leading logarithmic (NLL)
accuracy [153]. But achieving NLL accuracy requires a detailed analysis of the observable’s properties,
and is often technically involved. We have instead recently proposed [154] a new approach based on a
general NLL resummed master formula valid for a large class of final-state observables (which includes
many of the final-state observables for which a NLL resummation already exists). We have also formu-
lated the formal requirements that an observable should satisfy so as to be within the scope of the master
formula.

To illustrate these requirements we consider a Born event consisting of n hard partons or ‘legs’.
For an observable (a function V of all final-state momenta) to be resummed in the n-jet limit it should:

1. vanish smoothly after addition of an extra soft particle collinear to any leg ℓ, with the following
behaviour:

V ({p̃}, k) ≃ dℓ

(
kt

Q

)aℓ

e−bℓη gℓ(φ) . (27)

Here Q is a hard scale of the problem; {p̃} represents the Born (hard) momenta after recoil from
the emission, which is defined in terms of its transverse momentum kt and rapidity η with respect
to leg ℓ, and where relevant, by an azimuthal angle φ relative to a Born event plane.

2. be recursively infrared and collinear (rIRC) safe: meaning roughly that, given an ensemble of
emissions, the addition of a relatively much softer or more collinear emission does not significantly
alter the value of the observable, no matter how soft and/or collinear the other emissions are.
This condition is necessary to ensure exponentiation of leading logarithms, and is not satisfied for
example by the JADE algorithm three-jet resolution parameter [155].

3. be continuously global, meaning that the observable is sensitive to emissions in the whole of the
phase space (‘global’) in a continuous way, the formal requirement being ∂η∂ln kt lnV ({p̃}, k) = 0
and ∂φ∂ln kt lnV ({p̃}, k) = 0 (kt being defined with respect to the nearest leg). For non-
continuously-global observables one must account for non-global logarithms (known only for large
Nc) [156]. Their evaluation for a general observable would necessitate a (quite non-trivial) deter-
mination of the phase-space boundaries associated with the observable.

22Contributed by: A. Banfi, G.P. Salam, G. Zanderighi
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Given the above conditions, the NLL resummation for the observable’s distribution (the probabil-
ity Σ(v) that the observable’s value is less than v) for a fixed Born configuration is given by the ‘master’
formula [154]:

Σ(v) = e−R(v)F(R′(v)) , R′(v) = −vdR(v)

dv
. (28)

The function R(v) is a Sudakov exponent that contains all leading (double) logarithms and all NLL
(single-log) terms that can be taken into account by exponentiating the contribution to Σ(v) from a
single emission. This function depends parametrically on aℓ, bℓ, dℓ and on the azimuthal average 〈ln gℓ〉;
its full expression is reported in [154]. Multiple emission effects, for example the fact that even if all
V ({p̃}, ki) < v, one might nevertheless have V ({p̃}, k1, . . . , kn) > v, are accounted for by the NLL
function F , which can be computed via a Monte Carlo procedure [157].

The advantage of having introduced a master formula is that the resummation of the observable
can be performed entirely automatically. The master formula and applicability conditions are encoded in
a computer program (CAESAR, Computer Automated Expert Semi-Analytical Resummer), which given
only the observable’s definition in the form of a computer routine, returns the observable’s distribution
Σ(v) at NLL accuracy (where possible).

As an example we present explicit results for the specific case of the (global) transverse thrust in
hadronic dijet production, defined as

τ⊥ ≡ 1 − max
~n⊥

∑
i |~p⊥i · ~n⊥|∑

i p⊥i
, (29)

where the sums run over all particles in the final state, the ~p⊥i are the particle transverse momenta (with
respect to the beam direction) and ~n⊥ is a unit transverse vector. The program, probing the observable
with randomly chosen soft and collinear emissions, is able to verify that the applicability conditions hold
and to determine the parameters aℓ, bℓ, dℓ, as well as the function gℓ(φ). It then applies the Monte Carlo
procedure introduced in [157] to compute the function F . The results from this analysis are then plugged
into the master formula (28) to compute Σ(τ⊥) at NLL accuracy. The resulting differential distribution
D(τ⊥) ≡ dΣ(τ⊥)/d ln τ⊥ (integrated over a range of Born configurations, with the cuts given below)
is shown in figure 38 for the most relevant partonic subprocesses at the Tevatron run II c.o.m. energy√
s = 1.96TeV. We select events with two outgoing jets with E⊥ > 50GeV and |η| < 1.0, use the

CTEQ6M parton density set [98], corresponding to αs(MZ) = 0.118, and set both the renormalisation
and factorisation scale at the Born partonic c.o.m. energy. The curves in figure 38 show a degree of
separation between the various partonic channels — this information could perhaps be exploited in fits
of parton distributions.

To conclude we remark that since the only input to CAESAR is a computer subroutine for an
observable, it offers for the first time the possibility for non-experts to easily obtain rigorous NLL re-
summed predictions. Work remains to be done both to release the first version of CEASAR and to
implement automated matching of NLL resummation with fixed order results. In particular, addressing
this last issue will open the way for a vast amount of phenomenological analyses.

17. COMBINED EFFECT OF QCD RESUMMATION AND QED RADIATIVE CORRECTION

TO W BOSON MASS MEASUREMENT AT THE LHC 23

17.1 Introduction

As a fundamental parameter of the Standard Model (SM), the mass of theW -boson (MW ) is of particular
importance. Aside from being an important test of the SM itself, a precision measurement of MW ,
together with an improved measurement of top quark mass (Mt), provides severe indirect bounds on

23Contributed by: Q.-H. Cao, C.-P. Yuan
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Fig. 38: The resummed differential distribution at NLL accuracy for the global transverse thrust.

the mass of Higgs boson (MH ). With a precision of 15 MeV for MW [158] and 2 GeV for Mt at
the LHC [159], MH in the SM can be predicted with an uncertainty of about 30% [158]. Comparison
of these indirect constraints on MH with the results from direct Higgs boson searches, at the LEP2,
the Tevatron and the CERN Large Hadron Collider (LHC), will be an important test of the SM. In
order to have a precision measurement of MW , the theoretical uncertainties, dominantly coming from
the transverse momentum of the W -boson (PW

T ), the uncertainty in parton distribution function (PDF)
and the electroweak (EW) radiative corrections to the W boson decay, must be controlled to a better
accuracy [158, 160].

At the LHC, most W bosons are produced in the small transverse momentum region. When PW
T

is much smaller than MW , every soft-gluon emission will induce a large logarithmic contribution to
the PW

T distribution so that an order-by-order perturbative calculation in the theory of Quantum chro-
modynamics (QCD) cannot accurately describe the PW

T spectrum and the contribution from multiple
soft-gluon emission, which contributes to all orders in the expansion of the strong coupling constant αs,
needs to be summed to all orders. It has been shown that by applying a renormalization group analysis,
the multiple soft-gluon radiation effects can be resummed to all orders to predict the PW

T distribution
which agrees with experimental data [140, 161]. RESBOS, a Monte Carlo (MC) program [140] resum-
ming the initial-state soft-gluon radiations of the hadronically produced lepton pairs through EW vector
boson production and decay at hadron colliders pp̄/pp → V (→ ℓ1ℓ̄2)X, has been used by the CDF and
DØ Collaborations at the Tevatron to compare with their data in order to determine MW . However,
RESBOS does not include any higher order EW corrections to describe the vector boson decay. The
EW radiative correction, in particular the final-state QED correction, is crucial for precision measure-
ment of W boson mass at the Tevatron, because photon emission from the final-state charged lepton can
significantly modify the lepton momentum which is used in the determination of MW . In the CDF Run
Ib W mass measurement, the mass shifts due to radiative effects were estimated to be −65 ± 20 MeV
and −168 ± 10 MeV for the electron and muon channels, respectively [162]. The full next-to-leading
order (NLO)O(α) EW corrections have been calculated [163,164] and resulted in WGRAD [164], a MC
program for calculating O(α) EW radiative corrections to the process pp̄→ νℓℓ(γ). However, WGRAD
does not include the dominant correction originated from the initial-state multiple soft-gluon emission.
The inclusion of both the initial-state QCD and final-state QED corrections into a parton level MC pro-
gram is urgently required in order to reduce the theoretical uncertainties in interpreting the experimental
data at the Tevatron. It was shown in Refs. [163, 164] that at the NLO, the EW radiative correction in
pp̄ → ℓνl(γ) is dominated by the final-state QED (FQED) correction. Hence, in this paper we present
a consistent calculation which includes both the initial-state multiple soft-gluon QCD resummation and
the final-state NLO QED corrections, and develop an upgraded version of the RESBOS program, called
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Fig. 39: Transverse mass distribution of W + boson

RESBOS-A 24, to simulate the signal events. Here, we only present the phenomenological impacts on
a few experimental observables, the transverse mass of W boson (MW

T ) and the transverse momentum
of charged lepton (pℓ

T ), that are most sensitive to the measurement of MW . We focus our attention on
the electron only, though our analysis procedure also applies to the muon. The detailed formula, the SM
inputting parameters and the kinematics cuts are given in Ref. [165].

17.2 Precision Measurement of W Mass

In Fig. 39, we show various theory predictions on the MW
T distribution. The legend of the figure is

defined as follows:

⋄ LO : including only the Born level initial-state contribution,

⋄ RES : including the initial-state multiple soft-gluon corrections via QCD resummation,

⋄ LO QED : including only the Born level final-state contribution,

⋄ NLO QED : including the final-state NLO QED corrections.

For example, the solid curve (labelled as RES+NLO QED) in Fig. 39(a) is the prediction from our
combined calculation, given by Eqs. (1) and (2) of Ref [165].

As shown in Fig. 39(a), compared to the lowest order cross section (dotted curve), the initial state
QCD resummation effects (dashed curve) increase the cross section at the peak of the MW

T distribution
by about 6%, and the final state NLO QED corrections (dot-dashed curve) decrease it by about −12%,
while the combined contributions (solid curve) of the QCD resummation and FQED corrections reduce
it by 6%. In addition to the change in magnitude, the line-shape of the MW

T distribution is significantly
modified by the effects of QCD resummation and FQED corrections. To illustrate this point, we plot the
ratio of the (RES+NLO QED) differential cross sections to the LO ones as the solid curve in Fig. 39(b).
The dashed curve is for the ratio of (LO+NLO QED) to LO. As shown in the figure, the QCD resum-
mation effect dominates the shape of MW

T distribution for 65GeV ≤ MW ≤ 95GeV, while the FQED
correction reaches its maximal effect around the Jacobian peak (MW

T ≃ MW ). Hence, both corrections
must be included to accurately predict the distribution of MW

T around the Jacobian region to determine
MW . We note that after including the effect due to the finite resolution of the detector (for identifying an
isolated electron or muon), the size of the FQED correction is largely reduced [163, 164].

24A Fortran code that implements the theoretical calculation is presented in this work.
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Although the MW
T distribution is an optimal observable for determining MW at the LHC with

a low luminosity, it requires an accurate measurement of the missing transverse momentum direction
which becomes more difficult to control with a high luminosity option (when multiple scattering be-
comes important). On the other hand, the transverse momentum of the decay charged lepton (pe

T ) is less
sensitive to the detector resolution, so that it can be used to measure MW and provide important cross-
check on the result derived from the MW

T distribution, for they have different systematic uncertainties.
Another important feature of this observable is that pe

T distribution is more sensitive to the transverse
momentum of W boson. Hence, the QCD soft-gluon resummation effects, the major source of pW

T ,
must be included to reduce the theoretical uncertainty of this method. In Fig. 40(a), we show the pe

T

distributions predicted by various theory calculations, and in Fig. 40(b), the ratios of the higher order to
lowest order cross sections as a function of pe

T . The lowest order distribution (dotted curve) shows a clear
and sharp Jacobian peak at pe

T ≃ MW/2, and the distribution with the NLO final-state QED correction
(dot-dashed curve) also exhibits the similar Jacobian peak with the peak magnitude reduced by about
15%. But the clear and sharp Jacobian peak of the lowest order and NLO FQED distributions (in which
pW

T = 0) are strongly smeared by the finite transverse momentum of the W boson induced by multi-
ple soft-gluon radiation, as clearly demonstrated by the QCD resummation distribution (dashed curve)
and the combined contributions of the QCD resummation and FQED corrections (solid curve). Similar
to the MW

T distribution, the QCD resummation effect dominates the whole pe
T range, while the FQED

correction reaches it maximum around the Jacobian peak (half of MW ). The combined contribution of
the QCD resummation and FQED corrections reaches the order of 45% near the Jacobian peak. Hence,
these lead us to conclude that the QCD resummation effects are crucial in the measurement of MW from
fitting the Jacobian kinematical edge of the pe

T distribution.

As shown in Ref. [140], the effect from the initial state QCD gluon resummation to the W trans-
verse mass distribution is dominated by the perturbative Sudkov contribution and is not very sensitive to
the non-perturbative parameters (g1, g2 and g3) of the CSS resummation formalism. On the other hand,
as shown in Fig. 39, the final state QED correction can largely modify the W transverse mass distribution,
though a definite conclusion can only be drawn after including the effect of detector resolution.

In our calculation we have included the contributions from the final state QED correction together
with the initial state QCD resummation to predict the production and decay of W bosons produced at the
LHC. Since the exact matrix elements have been used in the calculation, the spin correlations among the
initial state partons and final state leptons are correctly implemented. Hence, the kinematic distributions

62



of the final state leptons, and the corresponding experimental observables, can be reliably predicted.

In order to study the impact of the presented calculation to the determination of the W boson
mass, the effect due to the finite resolution of the detector should be included, which will be presented
elsewhere.

We thank P. Nadolsky and J.W. Qiu for helpful discussions. This work was supported in part by
NSF under grand No. PHY-0244919 and PHY-0100677.

18. RESUMMATION FOR THE TEVATRON AND LHC ELECTROWEAK BOSON PRODUC-

TION AT SMALL x 25

In the production of electroweak bosons, precise knowledge of the transverse mass MT and transverse
momentum qT provides detailed information about the production process, including the mass of the
boson and associated radiative corrections. At the Tevatron, qT distributions of Z0 bosons offer insight
into soft gluon radiation, and this information is then used for precision extraction of the W boson
mass. At the LHC, good knowledge of the transverse distribution of Higgs bosons H0 will be needed to
efficiently separate Higgs boson candidates from the large QCD background. Accurate predictions for the
small-qT region are obtained via resummation of large logarithms lnn(qT /Q) arising from unsuppressed
soft and collinear radiation in higher orders of perturbation theory.

As we move from the 2 TeV Tevatron to the 14 TeV LHC, typical values of partonic momentum
fractions x for producing W , Z0, and H0 bosons become smaller, thus enhancing ln(1/x) terms in
higher orders of αs. It is not entirely known how these terms (not included in a fixed-order cross section
or conventional qT resummation) will affect W , Z0, and H0 production at the LHC energies, in part
because no Drell-Yan qT data is available yet in the relevant region of x of a few 10−3 or less.

Studies [166, 167] in the crossed channel of semi-inclusive deep-inelastic scattering (SIDIS) sug-
gest that hadronic qT distributions at small x cannot be straightforwardly described within the Collins-
Soper-Sterman (CSS) resummation framework [131], if the nonperturbative Sudakov function behaves
like its large-x counterpart from the Drell-Yan process. A qT distribution in SIDIS at x < 10−2 is
substantially broader than the conventional CSS prediction. The broadening effect can be modeled by
including an extra x-dependent term in the Sudakov exponent. To describe the data, the extra term must
grow quickly as x → 0. It noticeably contributes to the resummed form factor at intermediate impact
parameters (b ∼ 1/qT < 1 GeV−1), which hints at its origin from perturbative physics. A possible inter-
pretation of this term is that it mimics higher-order contributions of the form αm

s lnn(1/x), which are not
included in the resummed cross section. Due to the two-scale nature of the qT resummation problem, the
non-resummed ln(1/x) terms may affect the qT distribution even when they leave no discernible trace
in inclusive DIS structure functions. The DIS structure functions depend on one hard scale (of order Q),
while the CSS resummation formula (cf. Eq. (30)) also includes contributions from large impact param-
eters b (small momentum scales). As b becomes large, the series αm

s (1/b) lnn(1/x) in the CSS formula
may begin to diverge at a larger value of x than the series αm

s (Q) lnn(1/x) in the inclusive structure
functions. For this reason, transition to kT -unordered (BFKL-like [168, 169]) physics may happen at
larger x in qT distributions than in inclusive (one-scale) observables.

The qT broadening discussed above was observed in semi-inclusive DIS processes. In this study,
we explore its possible implications for the (crossed) Drell-Yan process. We begin by examining the
resummed transverse momentum distribution for the Drell-Yan process [131], following notations from
Ref. [170]:

dσ

dydq2
T

=
σ0

S

∫
d2b

(2π)2
e−i~qT ·~b W̃ (b,Q, xA, xB) + Y (qT , Q, xA, xB). (30)

Here xA,B ≡ Qe±y/
√
S, the integral is the Fourier transform of a resummed form factor W̃ given in

25Contributed by: S. Berge, P. Nadolsky, F. Olness, C.-P. Yuan
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impact parameter (b) space, and Y is a regular (finite at qT → 0) part of the fixed-order cross section. In
the small-b limit, the form factor W̃ is given by a product of a perturbative Sudakov exponent e−SP and
generalized parton distributions P(x, b):

W̃ (b,Q, xA, xB)
∣∣∣
b2≪Λ−2

QCD

= e−SP (b,Q) P(xA, b) P(xB , b). (31)

At moderately small x, where the representation (31) for W̃ holds, we write these generalized parton
distributions in the form

P(x, b)
∣∣
b2≪Λ−2

QCD

≃ (C ⊗ f)(x, b0/b) e
−ρ(x) b2 , (32)

where C(x, b0/b) are coefficient functions, f(x, µ) are conventional parton distributions, and b0 =
2e−γE = 1.12... is a commonly appearing constant factor.

The term e−ρ(x) b2 in P(x, b) will provide an additional qT broadening, with an x dependence
specified by ρ(x). For example, it may approximate x-dependent higher-order contributions that are not
included in the finite-order expression for (C⊗f). We parametrize ρ(x) in the following functional form:

ρ(x) = c0

(√
1

x2
+

1

x2
0

− 1

x0

)
, (33)

such that ρ(x) ∼ c0/x for x ≪ x0, and ρ(x) ∼ 0 for x ≫ x0. This parameterization ensures that the
formalism reduces to the usual CSS form for large x (x≫ x0) and introduces an additional source of qT
broadening (growing as 1/x) at small x (x ≪ x0). The parameter c0 determines the magnitude of the
broadening for a given x, while x0 specifies the value of x below which the broadening effects become
important. In principle, c0 and x0 may depend on the hard scale Q; in this first study, we neglect this
dependence. Based on the observed dependence ρ(x) ∼ 0.013/x at x . 10−2 in SIDIS energy flow
data [167], we choose c0 = 0.013 and x0 = 0.005 as a representative choice for our plots.

As x → 0, the additional broadening term in Eq. (32) affects the form factor W̃ both at perturba-
tive (b . 1 GeV−1) and nonperturbative (b & 1 GeV−1) impact parameters. In addition, the resummed
cross section contains conventional non-perturbative contributions from power corrections, which be-
come important at large impact parameters (b & 1 GeV−1). We introduce these corrections by replacing

the impact parameter b in functions SP and (C⊗f) with a variable b∗ = b/
√

1 + b2/(0.25 GeV−2) [131]

and including a nonperturbative Sudakov exponent exp {−SNP (b,Q)}. The function SNP (b,Q) is
parametrized by a 3-parameter Gaussian form from a recent global fit to low-energy Drell-Yan and Teva-
tron Run-1 Z0 data [170]. Combining all the terms, we have:

dσ

dydq2
T

=
σ0

S

∫
d2b

(2π)2
e−i~qT ·~b (C ⊗ f)(xA, b0/b∗) (C ⊗ f)(xB , b0/b∗)

× e−SP (b∗,Q)−SNP (b,Q)−b2ρ(xA)−b2ρ(xB) + Y. (34)

Figs. 41 and 42 show the comparison of the resummed cross section (34) with the additional
broadening term (ρ(x) 6= 0) to the resummed cross section without such a term (ρ(x) = 0). We con-
sider cross sections for the production of Z0 and H0 bosons, calculated according to the procedures in
Refs. [140] and [52], respectively. The numerical calculation was realized using the programs Legacy
and ResBos [140,170], and with the CTEQ6M1 parton distribution functions [171]. The perturbative Su-
dakov factor was included up to O(α2

s), and the functions (C⊗f) up to O(αs). The relevant perturbative
coefficients can be found in Refs. [131–133, 136, 172–175].

Fig. 41(a) shows the differential distribution dσ/dqT for Z boson production in the Tevatron Run-
2, integrated over the rapidity y of the Z bosons. We observe that the distribution (34) with the additional
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Fig. 41: qT distributions of Z0 bosons in the Tevatron Run-2; (a) integrated over the full range of Z boson rapidities; (b) in-

tegrated over the forward regions |y| > 2. The solid curve is a standard CSS cross section, calculated using the 3-parameter

Gaussian parametrization [170] of the nonperturbative Sudakov factor. The dashed curve includes additional terms responsible

for the qT broadening in the small-x region (cf. Eq. (34)).

small-x term (the dashed curve) essentially coincides with the standard CSS distribution (the solid curve).
When y is integrated over the full range, both resummed cross sections are dominated by contributions
from x ∼ 0.05 ≫ x0, where the additional broadening (given by the function ρ(x)) is negligible. For
this reason, the Tevatron distributions that are inclusive in y (e.g., the Run-1 Z0 boson data) will not
be able to distinguish the small-x broadening effects from uncertainties in the nonperturbative Sudakov
function SNP .

In contrast, the small-x broadening does lead to observable differences in the qT distributions in
the forward rapidity region, where one of the initial-state partons carries a smaller momentum fraction
than in the central region. Fig. 41(b) shows the cross section dσ/dqT for Z bosons satisfying |y| > 2.
The peak of the curve with ρ(x) 6= 0 is lower and shifted toward higher qT . While this difference was
not large enough to be observed in the Tevatron Run-1, it seems to be measurable in the Run-2 given the
improved acceptance and higher luminosity of the upgraded Tevatron collider. The small-x broadening
is more pronounced in W boson production due to the smaller mass of the W boson.

We now turn to the LHC, where the small-x broadening may be observed in the whole rapidity
range due to the increased center-of-mass energy. Fig. 42(a) displays the distribution dσ/dqT for Z0

production with and without the small-x terms. Here, the difference is striking even if y is integrated out.
Effects of a similar magnitude are present in W boson production, and they are further enhanced in the
forward regions.

The small-x broadening is less spectacular, but visible, in the production of light Standard Model
Higgs bosons via the effective ggH vertex in the limit of a heavy top quark mass. Fig. 42(b) displays the
resummed cross sections for production of Higgs bosons with a massMH = 120 GeV for several choices
of SNP and the broadening term. We first compare cross sections for ρ(x) = 0 and ρ(x) 6= 0 (thick
lines), where the functions ρ(x) and SNP (b,Q) are taken to be the same as in Z0 boson production. The
difference between the two cross sections is not large, due to a harder qT spectrum in the Higgs boson
case. The peaking in the gg-dominated H0 distribution occurs at qT = 10 − 20 GeV, i.e., beyond the
region where the function ρ(x)b2 play its dominant role. This is different from the qq̄-dominated Z0
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Fig. 42: qT distributions of (a) Z0 bosons and (b) Standard Model Higgs bosons at the Large Hadron Collider, integrated over

the full range of boson rapidities.

distribution, where the peak is located at qT ∼ 5 − 10 GeV and is strongly affected by exp {−ρ(x)b2}.
Hence, for the same function ρ(x) as in the Z0 boson case, the difference between the curves with and
without ρ(x) is minimal.

The harder qT spectrum in the Higgs boson case is induced by a larger leading-logarithm coef-
ficient (CA) in gg channels, as compared to the leading-logarithm coefficient CF in qq̄ channels. This
suggests that the Q-dependent part (and possibly other terms) of the nonperturbative Sudakov function
SNP in Higgs boson production is also multiplied by a larger color factor than in the Drell-Yan process.
We estimate this effect by multiplying SNP by the ratio of the leading color factors in Higgs and Z0 bo-
son production processes, CA/CF = 9/4 (the thin solid line). The resulting change turns out to be small
because of the reduced sensitivity of the Higgs boson cross section to nonperturbative contributions.

The ln(1/x) terms may be enhanced in the case of the Higgs bosons as well, due to the direct
coupling of the Higgs bosons to gluon ladders. At present, we do not have a reliable estimate of the
small-x broadening in gluon-dominated channels. However, this broadening would have to be quite
large to affect qT of 10-20 GeV or more, i.e., in the region where selection cuts on qT of the Higgs boson
candidates will be imposed. For example, increasing the function ρ(x) by a factor of two as compared
to the Z0 boson case would lead to a distribution shown by the thin dashed line. While at qT & 20 GeV
this effect is relatively small as compared to other theory uncertainties (e.g., higher-order corrections), it
may affect precision calculations of qT distributions needed to separate the Higgs boson signal from the
background in the γγ mode.

Additional constraints on the small-x behavior of the resummed cross sections in the gg channel
could be obtained from examination of photon pair production away from the Higgs signal region. As
the mass of the photon pair decreases, γγ production in the gluon fusion channel via a quark box diagram
becomes increasingly important. For instance, the subprocess gg → γγ contributes up to 40% of the
total cross section at Q = 80 GeV [176]. By comparing qT distributions in pp→ γγ and pp→ Z in the
same region of Q, one may be able to separate the qq̄ and gg components of the resummed cross section
and learn about the x dependence in the gg channel.

To summarize, we argue that a measurement of transverse momentum distributions of forward Z
bosons at the Tevatron will provide important clues about the physics of QCD factorization and possibly
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discover broadening of qT distributions associated with the transition to small-x hadronic dynamics.
Based upon the analysis of qT broadening effects observed in semi-inclusive DIS, we have estimated
similar effects in the (crossed) processes of electroweak boson production at hadron-hadron colliders.
While the estimated impact on the Higgs boson cross section dσ/dqT at high qT was found to be minimal,
much larger effects may occur inW and Z boson production in the forward region at the Tevatron Run-2,
and at the LHC throughout the full rapidity range. If present, the small-x broadening will have to be taken
into consideration in precision studies of electroweak boson production. Additionally, its observation will
provide insights about the transition to kT -unordered (BFKL-like) dynamics in multi-scale distributions
at hadron-hadron colliders.
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19. THE HIGH ENERGY LIMIT OF QCD AND THE BFKL EQUATION 26

The Balitsky–Fadin–Kuraev–Lipatov (BFKL) [168, 169, 177–180] formalism resums a class of large
logarithms dominant in the Regge limit of scattering amplitudes, where the center of mass energy

√
s is

large and the momentum transfer
√
−t fixed. The cross–section for a general process A+B → A′ +B′

within this approach in the high energy limit can be written in the factorised form

σ(s) =

∫
d2ka

2πk2
a

∫
d2kb

2πk2
b

ΦA(ka) ΦB(kb) f

(
ka,kb,∆ = ln

s

s0

)
, (35)

where ΦA,B are the impact factors characteristic of the particular scattering process and f (ka,kb,∆) is
the gluon Green’s function describing the interaction between two Reggeised gluons exchanged in the
t–channel with transverse momenta ka,b. When these two transverse momenta are large and of similar
magnitude the Regge scale s0 = |ka| |kb| is chosen as the scaling factor in the large logarithms. The
implicit s0–dependence of the NLL impact factors cancels that of the BFKL gluon Green’s function
so as to render the cross section independent of s0 to this accuracy. In the leading logarithmic (LL)
approximation terms of the form (αs∆)n are resummed, while in the next–to–leading logarithmic (NLL)
approximation [181, 182] contributions of the type αs (αs∆)n are also taken into account.

The gluon Green’s function is obtained as the solution of an integral equation, the so called BFKL
equation, where radiative corrections enter through its kernel. At LL it is possible to construct the
complete eigenfunctions of this kernel and, consequently, calculate the solution analytically. At NLL
this is only possible up to terms directly related to the running of the strong coupling; this means that
solving the BFKL equation at NLL with the full kernel is a very challenging problem. Good progress has
been made in the last few years in this field: Studies of the stability of the perturbative expansion were
performed in [183–193] and of running coupling effects in [194–203]. Among the most recent work
studying the gluon Green’s function an analysis based on a new renormalisation group improved small
x resummation scheme was proposed in Ref. [204]; in Ref. [205] an anomalous dimension including
running couplings effects was constructed; and in Ref. [206,207] the Green’s function and gluon splitting
function were studied including a particular resummation scheme.

In this contribution we report on the progress made in the last year to solve the NLL BFKL equa-
tion exactly in a novel way: Using the numerical implementation of an iterative solution presented in
Ref. [208, 209] found by explicitly separating the virtual contributions to the kernel from the real emis-
sions in transverse momentum space. This is achieved by introducing a phase space slicing parameter in

26Contributed by: J. R. Andersen, V. Del Duca,A. De Roeck, A. Sabio Vera
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dimensional regularisation. How to obtain this solution, which includes the angular correlations present
in the kernel and the running coupling effects, is presented in the next section.

19.1 A novel solution to the NLL BFKL equation 27

It is convenient to introduce the Mellin transform in ∆ space

f (ka,kb,∆) =
1

2πi

∫ a+i∞

a−i∞
dω eω∆fω (ka,kb) (36)

in order to write the NLL BFKL equation in dimensional regularisation as

ωfω (ka,kb) = δ(2+2ǫ) (ka − kb) +

∫
d2+2ǫk K (ka,k + ka) fω (k + ka,kb) , (37)

with the kernel K (ka,k) = 2ω(ǫ) (ka) δ
(2+2ǫ) (ka − k) + Kr (ka,k) depending on the gluon Regge

trajectory, which includes the virtual contributions, and a real emission component [181]. The delta
function in the driving term of the integral equation corresponds to the limit of two gluon exchange.

The phase space slicing parameter, λ, is introduced through the approximation

fω (k + ka,kb) = fω (k + ka,kb)
(
θ
(
k2 − λ2

)
+ θ

(
λ2 − k2

))

≃ fω (k + ka,kb) θ
(
k2 − λ2

)
+ fω (ka,kb) θ

(
λ2 − k2

)
, (38)

which is a valid one for small values of the infrared parameter λ. With this separation it is possible
to show that the ǫ poles cancel when the real emission below the cut off is combined with the virtual
contributions; i.e.

ω0 (q, λ) ≡ lim
ǫ→0

{
2ω(ǫ) (q) +

∫
d2+2ǫkK(ǫ)

r (q,q + k) θ
(
λ2 − k2

)}

= −ᾱs

{
ln

q2

λ2
+
ᾱs

4

[
β0

2Nc
ln

q2

λ2
ln

µ4

q2λ2
+

(
4

3
− π2

3
+

5

3

β0

Nc

)
ln

q2

λ2
− 6ζ(3)

]}
. (39)

Using the notation

ω0 (q, λ) ≡ −ξ (|q|λ) ln
q2

λ2
+ ᾱ2

s

3

2
ζ(3) (40)

and

ξ (X) ≡ ᾱs +
ᾱ2

s

4

[
4

3
− π2

3
+

5

3

β0

Nc
− β0

Nc
ln

X

µ2

]
(41)

the NLL BFKL equation takes the simple form

(ω − ω0 (ka, λ)) fω (ka,kb) = δ(2) (ka − kb)

+

∫
d2k

(
1

πk2
ξ
(
k2
)
θ
(
k2 − λ2

)
+ K̃r (ka,ka + k)

)
fω (ka + k,kb) , (42)

where K̃r (q,q′) can be found in Ref. [208].

Eq. (42) can now be solved using an iterative procedure in the ω plane similar to the one in
[210–212] for the LL approximation. The final solution is obtained after Mellin transform back to energy
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space, ∆. The expression for the gluon Green’s function then reads (using the notation y0 ≡ ∆):

f(ka,kb,∆) = exp (ω0 (ka, λ) ∆)
{
δ(2)(ka − kb) (43)

+
∞∑

n=1

n∏

i=1

∫
d2ki

[
θ
(
k2

i − λ2
)

πk2
i

ξ
(
k2

i

)
+ K̃r

(
ka +

i−1∑

l=0

kl,ka +
i∑

l=1

kl

) ]

×
∫ yi−1

0
dyi exp

[(
ω0

(
ka +

i∑

l=1

kl, λ

)
− ω0

(
ka +

i−1∑

l=1

kl, λ

))
yi

]
δ(2)

(
n∑

l=1

kl + ka − kb

)}
,

where n corresponds to the number of emissions, or, alternatively, to the number of iterations of the
kernel.

This solution has been implemented in a Monte Carlo integration routine to study the behaviour
of the gluon Green’s function. In Ref. [208, 209] it was shown how, for a fixed value of ∆, only a finite
number of iterations contributes to the final value of the solution. As the available energy in the scattering
process increases more terms in the expansion in Eq. (43) are needed. Independence on the λ scale is
achieved when its value is small compared to the initial transverse momenta ka,b.

As an example of the potential of this approach we reproduce here some results. In Fig. 43 the
value of the modulus of kb is fixed and the dependence on the modulus of ka is studied. At LL there
is complete agreement with the analytic solution, while the NLL result is always lower. This plot is
calculated for a particular low value of the energy scale. The discontinuity present in this figure has its
origin in the initial condition of the integral equation and its effect diminishes as the available energy
in the scattering is larger. In Fig. 44 the rise of the gluon Green’s function with energy is calculated.
The slower rise at NLL compared to LL is a well known feature of the NLL corrections. The central
lines for both the LL and NLL results are obtained by choosing the renormalisation scale µ = kb. The
coloured bands correspond to a variation of the renormalisation scale from kb/2 to 2 kb. An advantage
of this numerical method of solution is that it is possible to study the angular dependences in the BFKL
ladder. As an example we show Fig. 45 where the contribution to the NLL solution from different angles
between the two dimensional vectors ka,b is plotted. This analysis shows how the emissions are less
correlated when the energy is larger.

Future work using this approach will include the study of the gluon Green’s function in the non
forward case; the calculation of the solution to the N = 4 Supersymmetric equation; an analysis of the
effect of resumming the strong coupling to all orders; and the investigation of the gluon distribution at
small x including all the scale invariant and running coupling NLL effects.

19.2 BFKL Phenomenology at Colliders 28

When confronting BFKL predictions with data, several points are worth observing. First of all, present
day colliders do not operate at “asymptotic energies” where the high energy exponent dominates the
BFKL prediction, leading to a prediction of an exponential rise in cross section with an intercept of
ᾱs4 ln 2. The logarithms resummed are kinematically generated, and in the derivation of the standard
analytic solution to the BFKL equation, the transverse momentum of the gluons emitted from the BFKL
evolution has been integrated to infinity. It is therefore apparent that any limits on the phase space probed
in an experiment can have a crucial impact on the theoretical prediction. Such limits can either be the cuts
implemented in the measurement or the overall limit on the available energy at a collider. Taking hadronic
dijet production as an example, the energy constraint will obviously not just limit the possible rapidity
separation of the leading dijets, but also the amount of possible radiation from the BFKL evolution,
especially so when the leading dijets are close to the kinematical boundary. For a multi–particle final
state described by two leading dijets with transverse momentum and rapidity (pa/b⊥, ya/b) and n gluons
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Fig. 43: ka dependence of the LL and NLL gluon Green’s function at µ = kb = 30 GeV for two values of ∆.

described by (ki⊥, yi), the square of the total energy of the event is given by ŝ = xaxbs where
√
s is the

energy of the hadron collider and

xa(b) =
pa⊥√
s
e(−)ya +

pb⊥√
s
e(−)yb +

n∑

i=1

ki⊥√
s
e(−)yi , (44)

where the minus sign in the exponentials of the right–hand side applies to the subscript b on the left–
hand side. Since in the analytic BFKL approach the contribution to xa(b) from the BFKL radiation is
inaccessible, this approach systematically underestimate the exact value of the x’s, and can thus grossly
overestimate the parton luminosities.

The iterative approach of Refs. [211, 212] to solving the LL BFKL equation solves this problem.
The results of this approach coincides with the LL limit of the solution of the NLL BFKL equation of
Sec. 19.1. At LL the change in the t–channel momentum at each step in the iteration corresponds to
the momentum carried by one emission. The method therefore allows for the reconstruction of the full
final state configurations contributing to the BFKL evolution, and it is possible to study quantities such
as multiplicities and distribution in transverse momentum of the emitted gluons [213]. Only this recon-
struction of the full final state allows for the observation of energy and momentum conservation. The
effects of energy and momentum conservation have been studied in several processes [214–216]. When
no phase space constraints are imposed, the iterative solution reproduces the known analytic solution to
the LL BFKL equation.

In Ref. [215] we have, in light of the recent D0 measurement, re–analysed the Mueller–Navelet
proposal of the study of dijets at hadron colliders in search of BFKL signatures. The main result of
this study is that the difference between D0 and the Mueller–Navelet analysis in the reconstruction of
the parton momentum fractions, the presence of an upper bound on the momentum transfer, and the
contribution of the BFKL gluon radiation to the parton momentum fractions (at Tevatron energies) lower
the parton flux in such a way as to approximately cancel the rise in the subprocess cross section with
increasing dijet rapidity separation (σ̂jj ∼ exp(λ∆y)) predicted from the standard BFKL approach.
This strong pdf suppression is due to the dijet production being driven by the gluon pdf, which is very
steeply falling in x for the region in x of interest. This means that even the slightest change in x has a
dramatic impact on the parton flux and thus the prediction for the cross section. Also, the experimental
cuts implemented have been shown to invalidate the Mueller–Navelet analysis and extraction of a ’BFKL
intercept’.
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Fig. 44: ∆–dependence of the NLL gluon Green’s function evaluated for ka = 25 GeV and kb = 30 GeV.

As shown by this analysis, the expected rise in cross section over the LO QCD results does not
survive once energy and momentum conservation is taken into account at the LHC or the Tevatron.
However, other BFKL signatures should still be present; among those studied the most is the azimuthal
decorrelation of dijets [217, 218]. In Fig. 46 we have plotted the data and prediction for the angular
correlation between the leading dijets as a function of the inter–jet rapidity separation at the Tevatron.
It should be noted that no detailed jet definition was applied in the BFKL prediction. It is, however,
believed that a proper implementation of a jet finding algorithm will not change the partonic LL BFKL
prediction significantly, since the gluons emitted from the BFKL evolution are typically well separated in
rapidity. It is seen from Fig. 46 that the BFKL prediction respecting energy and momentum conservation
is predicting slightly too much azimuthal decorrelation, but far less than an estimate based on a naive LL
BFKL analysis ignoring the energy taken up by the BFKL radiation. On the other hand, a fixed NLO
analysis shows too little decorrelation, while the prediction from HERWIG is in agreement with data.
This shows that the decorrelation is dominated by soft gluon effects.

19.3 Experimental Opportunities at the LHC 29

Studies of low-x and BFKL dynamics at colliders typically require experiments with a large acceptance.
Presently five experiments are planned at the LHC. Two of these, CMS [219] and ATLAS [220] are gen-
eral purpose experiments with an acceptance in pseudorapidity η of roughly |η| < 2.5 for tracking based
measurements and |η| < 5 for calorimeteric based measurements. Here η is defined as − ln tan θ/2,
with θ the polar angle of the particle. Hadronic jets can be detected and measured up to approximately
η = 4.5 while muons and electrons can be identified up to about η = 2.5. Extensions of the detector
range are being investigated, as discussed below.

The TOTEM experiment [221] will use the same interaction point as the CMS experiment.
TOTEM is an experiment to measure the elastic and total cross section and will use roman pot detectors
to measure scattered protons in elastic and diffractive pp interactions, and charged particle detectors for
tagging inelastic events in the regions 3 < |η| < 5 (T1) and 5.3 < |η| < 6.5 (T2). CMS is studying
to add a calorimeter, called CASTOR, in the forward region directly behind T2. CASTOR will have
an electromagnetic and hadronic readout section and an acceptance in the range 5.4 < |η| < 6.7. The
TOTEM trigger and data readout will be such that these can be included in the CMS datastream, such

29Contributing authors: A. De Roeck
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that both experiments can run as one experiment. That way, a full detector with good coverage for jets
and electrons/photons with rapidities of up to 7 will be available. The position of the T1, T2 trackers and
the forward calorimeter, along the beamline and integrated with CMS, is shown in Fig. 47.

Roman pot detectors are presently also considered by ATLAS [222]. ATLAS further plans for a
cerenkov/quartz fiber detector, called LUCID, for luminosity monitoring, which will cover the region
5.2 < η < 6.2. This detector could possibly be used for the tagging of rapidity gaps in an event.

The extended coverage of the detectors will allow to probe processes at low-x via Drell–Yan, jets,
W and direct photon production. E.g. the Drell–Yan process qq → e+e− has a simple experimental
signature. The x1,2 values of the two incoming quarks relate to the invariant mass of the two electron
system Mee as x1 · x2 · s ≃ M2

ee, hence when one of the x1,2 values is large (say x > 0.1), very low-x
can be probed with low mass Drell–Yan pairs. From Fig. 48 [223] we observe that in order to reach small
masses (small scales) and low-x, will require to probe large values of η. Thus the resulting electrons will
dominantly go in the very forward direction.

If low mass Drell–Yan pairs, prompt photons or jets (which have the same kinematics) can be
measured in the CMS/TOTEM forward detectors, the parton distributions can be probed down to values
of 10−6 − 10−7, i.e. at lower values than for any other collider. Depending on the low-x dynamics,
the predictions for jet, Drell–Yan and other cross sections can differ by a factor two or more in this
region [224]. Experimental challenges on extracting the low-x signals with respect to machine and QCD
backgrounds are still under study.

The extended detector capabilities also allow for larger rapidity distances (i.e longer gluon lad-
ders) between two measured hard jets, one of the golden BFKL measurements at a hadron collider (see
Sec. 19.2). Note that the experiments will also measure all activity in between these two jets. Since
BFKL does not have strong kT ordering the number and energy spectrum of the mini–jets produced
along the ladder may be a significant footprint for BFKL. The main challenge will be to define a suitable
trigger for this two jet channel. The presently foreseen trigger thresholds in ATLAS and CMS are around
150-200 GeV for one and two jet events, while for BFKL studies particularly jets in the energy range
of 20-100 GeV are more of interest, since the distributions of these will be less distorted by kinematical
constraints.

In principle it is also possible to run the LHC at lower energies, e.g. at 3 and 8 TeV, with significant
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Fig. 46: Dijet angular correlation at the Tevatron. D0 data are marked by the diamonds, BFKL prediction (LL supplemented

by running coupling and including energy/momentum conservation) given by the stars. The LL BFKL prediction without

energy/momentum conservation is marked by the solid line. Figure taken from Ref. [212].

luminosities (> 1032cm−2s−1), allowing to make parton density independent ratios of di–jet production
at different energies, over a large range of rapidity.

For luminosities up to 1033cm−2s−1 or below, the number of overlap events in one bunch cross-
ing is small enough such that rapidity gaps can be used to detect interactions with colour singlet ex-
change [225]. The extended range covered in η will allow to study events with multi–gaps. Hard diffrac-
tive phenomena, often linked to small-x dynamics, can be studied further in detail via the tagging of the
scattered protons in the roman pot detectors along the beam–line. Together with the measurement of
the hard probes in the central LHC detectors, these events will allow for a detailed study of diffractive
phenomena in pp collisions at the highest energies.

Fig. 47: Position of the inelastic event tagging detectors of TOTEM, T1, T2 and CASTOR integrated with CMS

73



10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

fixed

target
HERA

x
1,2

 = (M/14 TeV) exp(±y)

Q = M

LHC parton kinematics

M = 10 GeV

M = 100 GeV

M = 1 TeV

M = 10 TeV

66y = 40 224

Q
2   

 (
G

eV
2 )

x

Fig. 48: The kinematic plane (x,Q2) and the reach of the LHC, together with that of the existing data (HERA, fixed target).

Lines of constant pseudo–rapidity are shown to indicate the kinematics of the produced objects in the LHC centre of mass

frame [223].

74



20. PION PAIR PRODUCTION AT THE LHC: COMPARING QCD@NLO WITH PYTHIA 30

20.1 Introduction

The indirect mass bounds for the Higgs boson from precision measurements indicate that the favoured
range is below 200 GeV. A prominent search channel for neutral Higgs bosons in the mass window
80 GeV < mH < 140 GeV is the rare decay H → γγ, as electromagnetic signals are preferable
compared to hadronic ones due to huge backgrounds for the latter. The important backgrounds for this
channel are prompt di-photon production and processes with one real photon and a jet with an isolated
neutral meson. In addition, the abundant two jet rate at the LHC leads to a large reducible background
where a meson in both jets produces an electromagnetic signature in the detector. This background needs
to be rejected very efficiently. It is thus an important question to predict the respective rates as precisely
as possible to allow for reliable simulations.

Experimental studies dominantly use PYTHIA [10] to predict the reaction rates for signal and
background processes. PYTHIA is based on leading order 2 → 2 matrix elements combined with initial
and final state parton showers coupled to a hadronization model. One can expect that calculations in
next-to-leading order in the QCD coupling lead to an improvement of the predictions in two respects.
Firstly, distributions which are sensitive to hard radiation of an extra parton will not be described properly
by a parton shower which is on the other hand expected to describe the collinear regions in phase space
more reliably than a fixed order calculation. Secondly, inclusion of loop effects typically reduces the
dependence on unphysical scales and thus leads to more reliable predictions.

The experimental studies show that the reducible pion+photon and di-pion contribution can be
reduced by isolation cuts to a level which is acceptable for Higgs searches in the two photon channel
[226, 227]. It is the aim of this study to cross check if this statement holds also at next-to-leading order
(NLO) precision. We compare in the following production rates of pion pairs at high pT calculated
with PYTHIA and the DIPHOX code [228]. The latter contains partonic matrix elements at NLO for
the production of photon pairs, photon+hadron and hadron pairs and is flexible enough to account for
diverse experimental cuts which can be modeled on the partonic level. For the description of hadrons
in DIPHOX the model of collinear fragmentation is used. Partonic matrix elements are folded with
fragmentation functions, Dp→h(x,Q) which stand for the probability to find a hadron h with an energy
fraction z relative to the jet formed by the initial parton p = g, q. This probability is scale dependent. The
scale dependence is governed by Altarelli-Parisi evolution. Initial distributions are fitted to experimental
data in a certain x range and extrapolated to the high (low) x range by some standard parameterizations.
We note at this place that in the case of severe isolation cuts typically the tails of the fragmentation
functions become numerically important which are not experimentally well restricted [229].

DIPHOX has been confronted with many different data sets from fixed target experiments to
Tevatron data and showed an excellent agreement between di-pion or di-photon observables, whenever
the condition for fixed order perturbative calculations were fullfilled [228, 230, 231]. We are thus in
a situation to make a NLO prediction for photon pair, photon+pion and pion pair production at the
LHC [229, 232, 233]. We want to mention that there is another calculation for di-hadron production at
NLO available [234]31.

A similar study for photon+pion production was presented by us in a previous Les Houches report
[134]. We found good agreement between PYTHIA and DIPHOX for loose isolation cuts whereas for
severe isolation cuts the PYTHIA rates were above the NLO predictions. Qualitatively we observed that
isolation cuts are more efficient for the NLO calculation than in the PYTHIA result. We were lead to the
conclusion that the experimental studies are conservative for the photon pion background.

30Contributed by: T. Binoth, K. Lassila-Perini
31In [176] corrections for two photon production via a quark loop at the two-loop level are taken into account.
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20.2 Comparison: PYTHIA VS. DIPHOX

The basic underlying reaction for the production of pion pairs at leading order is two jet production with
numerous different subprocesses like q + q̄ → q′ + q̄′, q + q̄′ → q + q̄′, q + q̄ → g + g, q + g → p+ g,
g + g → g + g. It is a priori not clear, if there is a dominant process for different kinematical regions
and experimental cuts. All subprocesses have to be considered. At NLO virtual corrections to the 2 → 2
processes have to be combined with numerous 2 → 3 matrix elements with one unresolved particle.
Details of the calculation can be found in [228].

We compared two distributions relevant for Higgs boson searches, first the invariant mass dis-
tribution of the pion pair, dσ/dMππ with Mππ = (pπ1

+ pπ1
)2 and second the transverse momentum

distribution of the pion pair, dσ/dqT with qT = |~pT π1
+ ~pT π2

|.
PYTHIA [10] version 6.205 was used to generate the events. High pT QCD processes were

simulated and the events with two neutral pions were accepted. The pions were required to have pT >
25 GeV and to be in the pseudo-rapidity range of |η| < 2.5. The isolation was implemented by setting
a threshold to the sum of ET of all particles (excluding the pion itself) in the isolation cone ∆R =√

(∆η)2 + ∆φ)2.

The default parameters were chosen, apart from the longitudinal fragmentation function, where a
hybrid scheme was used and for the multiple parton interactions, where a set of parameters tuned with
the collider data [235] were used. The pile-up effects from collisions within the same bunch crossing
were not taken into account, as we are here basically interested in a comparison of event rates of partonic
interactions. We note that the multiple interactions belong to the regime of soft QCD, which is modeled
in PYTHIA. The relevance of multiple interactions is restricted to pT values which are much below the
scales used in our study. We are not in a regime where these effects are expected to become numerically
sizable.

As already mentioned DIPHOX contains all matrix elements indicated above together with their
next-to-leading order virtual and real emission corrections. Using the same experimental cuts defined
above, the same distributions as with PYTHIA were produced by varying the renormalization (µ), fac-
torization (M ) and fragmentation (Mf ) scales. We took µ = M = Mf = cMππ/2 with c = 1/2, 1, 2.
For the parton distribution functions we used [236], for the pion fragmentation function we used a recent
parametrization of Kramer, Kniehl and Pötter (KKP) [237] and an older one from Binnewies, Kramer
and Kniehl (BKK) [238]. This was done to get an idea about the uncertainties due to fragmentation
functions, although the KKP set should be more reliable, as it contains newer data.

In Fig. 49 we show the invariant mass distribution for two different isolation criteria, ETmax =
20, 100 GeV in a cone ∆R < 0.4. LO and NLO matrix elements were used for the DIPHOX predictions
for three different choices of the scales. Higher scales mean lower cross sections in the plot. In the left
plot KKP fragmentation functions were used, on the right the BKK parametrization. The PYTHIA pre-
diction is shown as a full line. One observes that for ETmax = 100 PYTHIA undershoots the DIPHOX
curves considerably. For the KKP fragmentation functions there is difference between a factor 2 to 6 for
LO and 3 to 6 for NLO matrix elements. By using the BKK fragmentation functions, LO matrix ele-
ments and high scales (c = 2) the accordance is improved. For the harder isolation cut, ETmax = 20, the
PYTHIA prediction shows a fair agreement with the DIPHOX result for both fragmentation functions.
It is inside the scale variation of the NLO result apart for the last bin which is slightly below in the KKP
case. One observes that the isolation cut acts more efficiently in DIPHOX than in PYTHIA. This was
observed already in a earlier study [134]. It has to do with the different fragmentation models used. For
more severe isolation preliminary results indicate that the PYTHIA distributions start to fall below the
DIPHOX curves 32.

The inclusion of NLO matrix elements increases the cross section. In Fig.50 the ratio of NLO and
LO result for KKP (left figure of Fig.49) is shown. Evidently the K-factors defined as this ratio depend

32The curve for ETmax = 10 GeV is not included because more statistics is needed to make a definite statement.
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Fig. 49: The invariant mass distribution of pion pairs at LHC for loose (ETmax = 100 GeV, ∆R < 0.4) and a more realistic

isolation (ETmax = 20 GeV, ∆R < 0.4) criterion. The full line is the PYTHIA prediction. For DIPHOX NLO (full triangle)

and LO (open triangle) matrix elements were used for 3 different scale choices µ = M = Mf = c Mππ/2, c = 0.5 (upper),

c = 1 (middle), c = 2 (lower). The left plot uses the KKP, the right plot the BKK fragmentation functions for the neutral pions.

on the scale choice and the experimental cuts, they vary between 1 and 2 for ETmax = 100 GeV and 2
and 3 for ETmax = 20 GeV, see Fig. 50. The inclusion of higher order terms improves the stability of
the DIPHOX prediction under scale variations. This is much less pronounced for the harder isolation cut
withETmax = 20 GeV. Here compensations between LO and NLO terms are spoiled by the isolation cut.
We note that asymmetric pT cuts, not applied here, lead to larger K-factors for the same reason [233].

Finally we present the transverse momentum distribution of the pion pair in Fig. 51. Now, only the
NLO prediction is shown as this distribution is sensitive to 2 → 3 matrix elements not present in the LO
calculation. For a partonic 2 → 2 reaction there is a kinematical restriction pT < ETmax. Distributions
beyond this point are filled by the parton shower in the PYTHIA case and with hard 2 → 3 matrix
elements in DIPHOX which are not present in PYTHIA. For ETmax = 100 GeV this does not affect the
plotted range. Again, whereas PYTHIA undershoots the NLO curves considerably for ETmax = 100
GeV, the shape is very similar. Fair agreement is found for ETmax = 20 GeV for not too high values of
qT . The drop in statistics of the PYTHIA curve can be understood by the missing 2 → 3 matrix elements
which are important for high qT values in the case of hard isolation.

20.3 Conclusion

We have presented a comparison between PYTHIA version 6.205 and DIPHOX version 1.2 for the pair
production of high pT pions at the LHC. This is an important reducible background for Higgs search
in the two photon channel. We observe that for loose isolation cuts the NLO result of DIPHOX is
significantly higher than from PYTHIA which is due to matrix elements not present in PYTHIA and
different fragmentation models in both codes. As isolation cuts act harder in DIPHOX than in PYTHIA,
due to different fragmentation models, there is a fair agreement of both codes for a harder isolation cut.
The trend is that for more severe isolation cuts PYTHIA will even overshoot the NLO predictions. We
note that a further suppression of the dipion rate than shown in our plots is possible for example by using
asymmetric pT cuts and pion/photon identification methods, but this is beyond the scope of this study.
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Fig. 50: K factors (top) and relative scale variations (bottom) for the two isolation criteria. The scale variations are plotted

for the LO (dashed) and the NLO prediction (full). The scales have been varied as explained in the text. KKP fragmentation

functions have been used.

Fig. 51: The qT distribution of the pion pair. PYTHIA vs. DIPHOX NLO. KKP (full triangle) and BKK (open triangle)

fragmentation functions are used.
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We arrive at the tentative conclusion that experimental studies based on PYTHIA seem to be
slightly below the more complete NLO calculation although the discrepancie is not dramatic. We have to
stress that this statement depends strongly on the behaviour of the fragmentation model. Hard isolation
means that fragmentation models are tested at high x (the ratio between the pion energy and the jet
energy). Currently the fragmentation functions are not well constrained experimentally in the high x
tails. Hopefully the situation improves soon by analyzing high pT pions at the Tevatron. Our study
strongly motivates a refitting of the fragmentation functions which eventually leads in turn to a good
understanding of the two photon rate at the LHC which is, apart from Higgs search, an interesting
observable concerning our understanding of QCD.

Acknowledgements

We would like to thank Sasha Nikitenko for many useful discussions and also the conference organizers
for the pleasant workshop.

21. QCD-INDUCED SPIN PHENOMENA IN TOP QUARK PAIR PRODUCTION AT THE

LHC 33

21.1 Introduction

The NLO QCD corrections to hadronic tt̄ production have been known for quite some time [239–242].
These results were refined by resummation of soft gluon [243] and threshold [102,244] logarithms. These
predictions were made for the production of tt̄ pairs averaged over their spins. Because of the extremely
short top-quark lifetime the spin properties of top quarks are transferred to its decay products without be-
ing diluted by hadronization. Thus quantities that involve the t and/or t̄ spin are also “good” observables
in the sense that they can be reliably calculated perturbatively, in particular within perturbative QCD. It
is expected that such observables will be very useful in exploring the interactions that are involved in top
quark production and decay. Besides standard model (SM) studies they allow, for instance, the search
for non-SM interactions, in particular CP violating interactions of top quarks [245–247], or to pin down
the nature of heavy resonances that strongly couple to top quarks [247, 248], if such objects exist.

Needless to say, searches for new interactions with top spin observables will require, on the the-
oretical side, rather precise SM precictions. While SM interactions induce only small polarizations of t
and t̄ quarks in hadronic tt̄ production, the QCD-induced correlation between the t and t̄ spins is large.
They can be studied both at the Tevatron and at the LHC by means of double differential angular distri-
butions of tt̄ decay products. In this contribution we present results [249–252] for these distributions at
NLO QCD.

21.2 Theoretical framework

We consider hadronic tt̄ production and subsequent decay into the following channels:

h1 h2 → tt̄+X →





ℓ+ ℓ′− + X

ℓ± jt̄(t) + X

jt jt̄ + X

(45)

Here h1,2 = p, p̄, ℓ, ℓ′ = e, µ, τ , and jt (jt̄) denotes a jet originating from nonleptonic t (t̄) decay. A
complete next-to-leading order QCD analysis of (45) involves the parton reactions

gg, qq̄
tt̄−→ bb̄+ 4f, (46)

33Contributed by: W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer
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gg, qq̄
tt̄−→ bb̄+ 4f + g, (47)

g + q(q̄)
tt̄−→ bb̄+ 4f + q(q̄). (48)

where f = q, ℓ, νℓ. In view of the fact that the total width of the t quark is much smaller than its mass,
Γt/mt ≈ 1%, it is adequate to use the leading pole approximation (LPA) in calculating the NLO dif-
ferential cross sections of the above parton reactions. Within the LPA, the radiative corrections can be
classified into factorizable and non-factorizable contributions. The factorizable corrections were com-
puted in [249–252] in the narrow width approximation Γt/mt → 0 for which the contributions to the
squared matrix element M of the respective parton reaction are schematically of the form

|M|2 ∝ Tr [ρRρ̄] = ρα′αRαα′,ββ′ ρ̄β′β. (49)

Here R denotes the density matrix which describes the production of on-shell tt̄ pairs in a specific
spin configuration, and ρ, ρ̄ are the density matrices describing the decay of polarised t and t̄ quarks,
respectively, into specific final states. The subscripts in (49) denote the t, t̄ spin indices. The spin-
averaged production density matrices yield the NLO cross sections for tt̄ being produced by qq̄, gg, gq,
and gq̄ fusion, which were first determined by [239–242]. At NLO the qq̄ and gg fusion reactions receive
also non-factorizable corrections. They were computed by [253] in the semi-soft gluon approximation.
While these contributions have an impact on, e.g., the t, t̄, and tt̄ invariant mass distributions, they cancel
in the integrated NLO cross sections of the above reactions [254, 255]. Moreover, it can be shown [252]
that these non-factorizable corrections do not contribute either to the double differential distributions
which will be discussed below. Therefore we will not discuss them here any further.

The factorizable contributions (49) must be consistently evaluated to order α3
s . This involves

also the matrix elements to order αs of the main SM decay modes of the (anti)top quark in a given
spin state, that is, the semileptonic modes t → bℓ+νℓ, bℓ

+νℓg (ℓ = e, µ, τ), and the non-leptonic decays
t→ bqq̄′, bqq̄′g where qq̄′ = ud̄, cs̄ for the dominant channels. For the computation of the double angular

distributions (53) the matrix elements of the 2-particle inclusive parton reactions i
tt̄−→ a1 + a2 +X are

required. Here a1, a2 denotes a lepton or a jet. In the LPA this involves the 1-particle inclusive t decay
density matrix 2ρt→a1

α′α = Γ(1)(1l + κ1 τ · q̂1)α′α, where q̂1 is the direction of flight in the t rest frame
and Γ(1) is the partial width of the respective decay channel. An analogous formula holds for t̄ decay.
The factor κ1 is the t spin analyzing power of particle/jet a1. It is clear that its value is crucial for the
experimental determination of top spin effects, in particular of tt̄ spin correlations. For the standard
V − A charged current interactions these coefficients are known to order αs for semileptonic [256] and
non-leptonic [257] modes. The charged lepton is a perfect analyzer of the top quark spin, which is due
to the fact that

κℓ = 1 − 0.015αs . (50)

In the case of hadronic top quark decays the spin analysing power of jets can be defined. A detailed
analysis was made in [257]; we give here only two examples:

κb = −0.408 × (1 − 0.340αs) = −0.393 , (51)

κj = +0.510 × (1 − 0.654αs) = +0.474 , (52)

where κb is the analysing power of the b jet and κj refers to the least energetic non-b-quark jet defined
by the Durham algorithm. Using hadronic final states to analyze the spins of t and/or t̄ results in a loss of
analyzing power. However, this is (over)compensated by the gain in statistics and by the efficiency with
which the t (t̄) rest frames can be reconstructed.

Let us now discuss double angular distributions σ−1dσ/d cos θ1d cos θ2 for the channels (45)
which are appropriate observables to measure the (QCD induced) tt̄ spin correlations. Here θ1(θ2) is
the angle between the direction of flight of particle/jet a1(a2) in the t(t̄) rest frame with respect to ref-
erence directions â (b̂) which will be specified below. We define the t (t̄) rest frame by a rotation-free
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boost from the tt̄ zero-momentum frame, for reasons given below. As mentioned above, non-factorizable
corrections do not contribute, at NLO, to this type of distributions [252]. Thus, to this order in the QCD
coupling â (b̂) can be interpreted as t(t̄) spin quantization axes, see below. Integrating over the full phase
space and choosing â, b̂ as given below it can be shown [252] that these distributions have the generic
form34

1

σ

dσ

d cos θ1d cos θ2
=

1

4
(1 − C cos θ1 cos θ2). (53)

The coefficient C which signals the correlation between the tt̄ spins depends, for a given reaction, on the
choice of â and b̂. For the factorizable corrections the exact (to all orders in αs) formula C = κ1κ2D
holds [251]. Here D is the tt̄ double spin asymmetry

D =
N(↑↑) +N(↓↓) −N(↑↓) −N(↓↑)
N(↑↑) +N(↓↓) +N(↑↓) +N(↓↑) , (54)

where N(↑↑) denotes the number of tt̄ pairs with t (t̄) spin parallel to the reference axis â (b̂), etc. Thus
â and b̂ can be identified with the quantization axes of the t and t̄ spins, respectively, and D directly
reflects the strength of the correlation between the t and t̄ spins for the chosen axes.

For tt̄ production at the Tevatron it is well known that the so-called off-diagonal basis [260], which
is defined by the requirement that σ̂(↑↓) = σ̂(↓↑) = 0 for the process qq̄ → tt̄ at tree level, yields a
large coefficient D. It has been shown in [251] that the beam basis, where â and b̂ are identified with
the hadronic beam axis, is practically as good as the off-diagonal basis. A further choice is the helicity
basis, which is suitable for the LHC.

An important theoretical issue of top quark spin physics beyond leading-order QCD is the con-
struction of infrared and collinear safe observables at the parton level. In the case at hand it boils down to
the question in which frame the reference directions â and b̂ are to be defined. It has been shown [252]
that, apart from the t and t̄ rest frames, the tt̄ zero momentum frame (ZMF) is the appropriate frame for
defining collinear safe spin-momentum observables. The off-diagonal, beam, and helicity bases which
we refer to in the next section are defined in the tt̄ ZMF. Details will be given in [252].

21.3 Spin correlations at nlo: predictions for the Tevatron and the LHC

We have computed the 2-particle inclusive differential cross sections for (45) and, in particular, the
double angular distributions (53) to NLO QCD, with αs and the top mass being defined in the MS and
in the on-shell scheme, respectively. The mass factorization was performed in the MS scheme.)

In Table 3 we list our predictions [252] for the spin correlation coefficient C in the double differ-
ential distribution (53) at the Tevatron for the three different choices of references axes â, b̂ discussed
above. We use the CTEQ6L (LO) and CTEQ6.1M (NLO) parton distribution functions (PDF) [171].
Numbers are given for the dilepton, lepton+jet and all-hadronic decay mode of the tt̄ pair, where in the
latter two cases the least energetic non-b-quark jet (defined by the Durham cluster algorithm) was used
as spin analyser. One sees that the spin correlations are largest in the beam and off-diagonal basis. The
QCD corrections reduce the LO results for the coefficients C by about 10% to 30%.

For the LHC it turns out that the spin correlations w.r.t. the beam and off-diagonal basis are quite
small due to a cancellation of contributions from the gg and qq̄ initial states. Here, the helicity basis is
a good choice, and Table 4 shows our results for the C coefficient in that case. The QCD corrections
are smaller for the LHC than for the Tevatron; they vary between 1 and 10%. For both colliders the
relative corrections |(CNLO − CLO)/CLO| are largest for the all-hadronic decay modes and smallest for
the dilepton decay modes.

34QCD (or SM) generated absorptive parts in the parton scattering amplitudes induce a small t and t̄ polarization, which to
order α3

s is normal to the qq̄, gg → tt̄ scattering planes [258, 259].
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dilepton lepton+jet jet+jet

Chel LO −0.471 −0.240 −0.123

NLO −0.352 −0.168 −0.080

Cbeam LO 0.928 0.474 0.242

NLO 0.777 0.370 0.176

Coff LO 0.937 0.478 0.244

NLO 0.782 0.372 0.177

Table 3: LO and NLO results for the spin correlation coefficient C of the distribution (53) in the case of pp̄ collisions at
√

s = 1.96 TeV for different tt̄ decay modes. The PDF CTEQ6L (LO) and CTEQ6.1M (NLO) of [171] were used, and

µ = mt = 175 GeV.

dilepton lepton+jet jet+jet

Chel LO 0.319 0.163 0.083

NLO 0.326 0.158 0.076

Table 4: Results for Chel for pp collisions at
√

s = 14 TeV using the same PDF and parameters as in Table 3.

An interesting aspect of these double distributions is their high sensitivity to the quark and gluon
content of the proton [251]; the reason being that the contributions to C from qq̄ and gg initial states
have opposite signs. Table 5 shows, for dilepton final states, the dependence of the NLO results on the
choice of the PDF. While the results for the recent CTEQ6.1M and MRST2003 [261] PDF agree at the
percent level (this is not the case for previous versions of the CTEQ and MRST PDF), the GRV98 [262]
PDF give significantly different results at the Tevatron. This shows that measurements of (53) may offer
the possibility to further constrain the quark and gluon content of the proton.

Tevatron

CTEQ6.1M MRST2003 GRV98

Chel −0.352 −0.351 −0.313

Cbeam 0.777 0.777 0.732

Coff 0.782 0.782 0.736

LHC

Chel 0.326 0.327 0.339

Table 5: Spin correlation coefficients at NLO for different PDF for pp̄ at
√

s = 1.96 TeV (upper part) and pp at
√

s = 14 TeV

(lower part) for dilepton final states.

All the results above were obtained with µ ≡ µR = µF = mt = 175 GeV. A variation of the
scale µ between mt/2 and 2mt changes the central results for C at µ = mt by roughly ±5%. Varying
mt from 170 to 180 GeV changes the results for C at the Tevatron by less than 5%, while for the LHC,
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Chel changes by less than a percent.

21.4 Conclusion

Top-antitop spin correlations, which are predicted to be large within the SM, are expected to become a
good tool for analyzing in detail top quark pair production and decay dynamics. They can be studied at
the Tevatron and – in view of the expected large tt̄ data samples – especially at the LHC in the dilepton,
single lepton and all-hadronic decay channels by measuring suitably defined double angular distributions.
While the NLO QCD corrections to these distributions are of the order of 10 to 30% for the Tevatron,
they are below 10% for the LHC. Work on soft gluon and threshold resummations will further reduce the
theoretical uncertainties.

22. QCD RADIATIVE CORRECTIONS TO PROMPT DIPHOTON PRODUCTION IN ASSO-

CIATION WITH A JET AT THE LHC 35

22.1 Introduction

Higgs production in association with a jet of high transverse energy with a subsequent decay into two
isolated photons, pp → H + jet → γγ + jet, is considered a very promising discovery channel for a
Higgs boson of intermediate mass (100 GeV ≤ mH ≤ 140 GeV) [263–265]. The main background to
this signal is the pp → γγ + jet channel, where the photons are isolated. In this channel the signal is a
small and narrow peak on a flat background [265]. Thus the QCD prediction is not needed for predicting
the background, which can be well measured from the sidebands, but rather to optimize the selection and
isolation cuts for the experimental search. For this purpose usually a Monte Carlo program is used [70],
which however, does not take into account the QCD radiative corrections. These corrections are large
and strongly dependent on the photon isolation parameters [265] and therefore cannot be ignored in the
analysis.

In perturbative QCD, the cross section for the production of a single isolated photon in a collision
of two hadrons A and B of momenta pA and pB , respectively, has the following general form:

dσAB(pA, pB ; pγ) =
∑

a,b

∫
dxa dxb fa/A(xa, µF )fb/B(xb, µF ) dσ̂isol

ab,γ(xapA, xbpB; pγ ;µR, µF , µγ)

+
∑

a,b,c

∫
dxa dxb dz fa/A(xa, µF )fb/B(xb, µF ) dσ̂isol

ab,c

(
xapA, xbpB ;

pγ

z
;µR, µF , µγ

)
Dγ/c(z, µγ) .

(55)

The first term is called the direct component, where the subtracted partonic cross sections dσ̂isol
ab,γ get con-

tributions from all the diagrams with a photon leg. The second term is called fragmentation component,
where the subtracted partonic cross sections dσ̂isol

ab,c get contributions from diagrams with only coloured
external partons, with one of the partons eventually fragmenting into a photon, in a way described by
the (perturbatively uncalculable but universal) parton-to-photon fragmentation function Dγ/c. If there
are two isolated photons, the equation contains four terms, a double direct, two single-fragmentation
and a double-fragmentation component [228]. The direct and fragmentation components are not defined
unambiguously (except for the case of the ‘smooth’ photon isolation to be used here), finite terms can be
shifted among the terms, only the sum is meaningful physically. The precise definition of the direct and
fragmentation terms, valid to all orders in perturbation theory, can be found for instance in Ref. [266].

In perturbation theory beyond leading order, the isolated photon cross section is not infrared safe.
To define an infrared safe cross section, one has to allow for some hadronic energy inside the photon
isolation cone. In a parton level calculation it means that soft partons up to a predefined maximum

35Contributed by: V. Del Duca, F. Maltoni, Z. Nagy, Z. Trócsányi
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energy are allowed inside the cone. This is also natural in the experiment: complete isolation of the
photon is not possible due to the finite energy resolution of the detector.

There are two known ways to implement the photon isolation. The standard way of defining an
isolated prompt photon cross section, that matches the usual experimental definition, is to allow for
transverse hadronic energy inside the photon isolation cone up to E⊥,max = εpγ⊥, with typical values
of ε between 0.1 and 0.536, and where pγ⊥ is taken either to be the photon transverse momentum on
an event-by-event basis or to correspond to the minimum value in the pγ⊥ range. Using this isolation
prescription, both the direct and the fragmentation terms contribute to Eq. (55). In Ref. [266] it was
shown that a small isolation cone for the photon leads to unphysical results in a fixed order computation.
For a small cone radius Rγ , an all-order resummation of αS ln(1/R2

γ) terms combined with a careful
study of the border line between perturbative and non-perturbative regions has to be undertaken.

Even with resummation, the very narrow isolation cone is not favoured from the practical point of
view. The ratio of the fragmentation component to the direct one slowly increases with decreasing Rγ .
Since the fragmentation function is non-perturbative, therefore, it has to be measured and the available
functions have relatively large errors. The fragmentation component is also strongly dependent on ε,
increasing rapidly with increasing ε. Thus, the theoretical uncertainty related to the photon fragmentation
can be decreased with large cone sizes and small ε.

In order to avoid completely the uncertainties related to the fragmentation component, Frixione
introduced a ‘smooth’ photon-isolation when the fragmentation contribution is zero [267]. This isolation
means that the energy of the soft parton inside the isolation cone has to converge to zero smoothly if the
distance in the η − φ plane between the photon and parton vanishes. Explicitly, the amount of hadronic
transverse energy E⊥ (which in our NLO partonic computation is equal to the transverse momentum of
the possible single parton in the isolation cone) in all cones of radius r < Rγ must be less than

E⊥,max = εpγ⊥

(
1 − cos r

1 − cosRγ

)n

. (56)

The smooth isolation prescription can be viewed as if the singularity in the quark-photon splitting were
factorized into the fragmentation component using phase-space cuts such that the finite remainder in the
fragmentation is shifted completely into the direct component in a perturbatively computable way.

The two prescriptions have their own advantages and less appealing features. The standard isola-
tion is easier to employ experimentally, but has the following disadvantages from the theoretical point
of view: (i) it involves a non-perturbative component in its theoretical prediction (fragmentation) with
large errors due to pure experimental information; (ii) the theoretical prediction of the fragmentation is
more difficult to compute than that of the direct component. The smooth isolation is easier to implement
in NLO perturbation theory. However, it is less favoured in the experiment because (i) it is difficult to
employ it due to the finite granularity of the detector; (ii) it was found to be less efficient for isolat-
ing photons from jets than the cone isolation, approaching the efficiency of the latter with n tending to
zero [268].

Experimentally the standard cone isolation is recovered from the smooth isolation when n → 0.
The smooth isolation leads to smaller cross sections for the same values of the cone radius and ǫ, because
it means a more severe cut into the phase space. However, due to the finite granularity of the detector,
the two prescriptions yield equal cross sections even for small, but non-zero values of n. Small values of
n can be chosen in perturbation theory, but n = 0 cannot be taken without including the fragmentation
component. If we are interested only in the Higgs-boson search, we need a perturbative prediction that
is reliable for those values of the isolation parameters which are found useful to increase the signal
significance. Studying the dependence of the perturbative prediction with the smooth prescription on the
isolation parameters, we can estimate the reliability of the theoretical predictions.

36In experiments, often a fixed value of E⊥,max in the order of several GeV is used.
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In order to assess the dependence of the radiative corrections on the isolation parameters, we use
a partonic Monte Carlo program which employs the dipole subtraction method [269], slightly modified
for better numerical control [270] as implemented in the NLOJET++ package [271], and use the smooth
isolation prescription at the parton level. We compute cross section values at leading order and at NLO
for a Large Hadron Collider (LHC) running at 14 TeV. The values shown at leading order were obtained
using the leading order parton distribution functions (p.d.f.’s) and those at NLO accuracy were obtained
using the NLO p.d.f.’s of the CTEQ6 package [98] (tables cteq6l1 and cteq6m, respectively). We used
the two-loop running of the strong coupling at NLO with ΛQCD = 226 MeV and one-loop running with
ΛQCD = 165 MeV at leading order. The renormalization and factorization scales are set to µR = µF =
xµµ0, where for the reference value µ0 we use µ2

0 = (m2
γγ + p2

jet⊥)/4 with mγγ the invariant mass of the
photon pair. This definition reduces to the usual scale choice for inclusive photon pair production if pjet⊥

vanishes. Our prediction for the γγ + jet production cross section is intended for use in the detection
of a Higgs boson lighter than the top quark, therefore, we assume 5 massless flavours and restrict all
cross sections to the range of 80 GeV ≤ mγγ ≤ 160 GeV. The electromagnetic coupling is taken at the
Thomson limit, αem = 1/137. We use a jet reconstruction algorithm and a set of event selection cuts,
expected to be typical in Higgs searches. In particular, in order to find the jet, we use the midpoint
cone algorithm [272] with a cone size of R =

√
∆η2 + ∆φ2 = 1, with ∆η the rapidity interval and

∆φ the azimuthal angle37. Then, we require that both the jet and the photons have p⊥ > 40 GeV and
rapidity within |η| < 2.5. These are the same selection cuts as used in Ref. [273] for computing the
gluon initiated O(α3

S) corrections. Furthermore, we isolate both photons from the partons in a cone of
size Rjγ .

22.2 Results

In Fig. 52(a) we plot the invariant mass distribution of the photon pair. Here we see the continuum back-
ground on which the Higgs signal is expected to manifest itself as a narrow resonance in the intermediate-
mass range. The dotted (red) line is the leading order prediction and the solid (red) one is the differential
cross section at NLO accuracy. The striking feature of the plot is the rather large correction. The large
corrections are partly due to the appearance of new subprocesses at NLO as can also be read off the
figure. The gluon-gluon scattering subprocess begins to appear only at NLO accuracy, and therefore
it is effectively leading order. It is shown with a long dashed-dotted (magenta) line: it yields a very
small contribution. The bulk of the cross section comes from quark-gluon scattering both at leading
order and at NLO, shown with sparsely-dotted (blue) and long-dashed (blue) lines. The quark-quark
scattering receives rather large corrections because the leading order subprocess can only be a quark-
antiquark annihilation process, shown with short-dashed (green) line, while at NLO, shown with short
dashed-dotted (green) line, there are (anti-)quark-(anti-)quark scattering subprocesses. Thus at NLO the
parton luminosity is sizeably larger. In addition, more dynamic processes are allowed, which include
t-channel gluon exchange. These contribute to enlarge the cross section in phase space regions which
are disfavoured at leading order.

A part of the large radiative corrections is accounted for by the new subprocesses; another part
is due simply to the enlarged phase space, as can be seen from of Fig. 52(b), where the differential
distributions in the distance Rjγ =

√
|ηj − ηγ |2 + |φj − φγ |2 between the jet and the photons in the

η-φ plane are shown, with a selection cut at Rjγ ≥ 0.4. From the distribution for the harder photon
we see that the radiative corrections recieve contributions from a larger part of the phase space than the
prediction at leading order. In fact, on one hand a cut on Rjγs > 1.5 affects the leading order and the
NLO evaluation in the same way because they have the same shape. Thus in that case the cut does not
reduce the correction to the mγγ distribution. On the other hand, a cut on Rjγh

> 1.5 cuts the NLO
correction, but does not cut the leading order, so the correction is reduced. Nevertheless, the reduction
is less then 10 %, thus cutting on Rjγ at Rjγ ≥ 1.5 reduces the NLO correction to the invariant mass

37In our NLO computation the midpoint and seedless cone algorithms yield identical cross sections.
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Fig. 52: (a) The invariant mass distribution of the photon pair at LHC energy for smooth isolation with Rγ = 0.4 and ǫ = 0.5.

(b) The distributions in the distances between the jet and the photons in the η-φ plane. The photons and the jet are required

to have transverse momentum |p⊥| ≥ 40 GeV and lie in the central rapidity region of |η| ≤ 2.5. The jet is reconstructed

according to the midpoint algorithm.

distribution of the photon pair, but marginally. In the rest of this study we require Rjγ ≥ 1.5 and
pγγ⊥ ≥ 40 GeV, in addition to the same selection cuts as used in Fig. 52.

Next we consider the dependence of the isolated cross section on the power n in the definition of
the smooth isolation Eq. (56). We show the dependence on n for Rγ = 0.4, ǫ = 0.5 and Rγ = 0.7,
ǫ = 0.1 in Fig. 53(a). We see that the radiative corrections are much more than 100 % and depend on n
strongly if the isolation cone is narrow and ǫ is large, therefore, the fixed-order perturbative prediction
at the NLO accuracy is not reliable in this case. On the other hand, the dependence on n is much milder
and remains well below 100 % for Rγ = 0.7, ǫ = 0.1. Thus, the n = 0.1 line can be considered a good
approximation to the prediction with standard photon isolation.

In order to assess the stability of the predictions against scale variations, we show the cross section
in a 3 GeV bin around mγγ = 120 GeV, that is the background for a hypothetical Higgs signal for a Higgs
particle of mass 120 GeV. Fig. 53(b) shows the cross section for two sets of photon-isolation parameters.
We show the scale variations for varying the renormalization and factorization scales separately, keeping
the other scale fixed, as well as varying them simultaneously. The lower three curves represent the
leading order predictions. At leading order the dependence on the renormalization and factorization
scales is rather small, especially when the two scales are set equal (densely dotted line). Observing the
predictions we conclude that the scale dependence at leading order does not represent the uncertainty
of the predictions due to the unknown higher orders. The inclusion of the radiative corrections results
mainly in the substantial increase of the cross section. For the isolation parameters Rγ = 0.4 and ǫ = 0.5
the NLO corrections at xµ = 1 are about 120 % of the leading order prediction. In addition, the scale
dependence is not reduced by the inclusion of the radiative corrections. If we require more stringent
photon isolation cuts, then we find smaller corrections and a more stable prediction. For instance, in
Fig. 53(b) we also show the scale dependence of the cross section obtained with Rγ = 1 and ǫ = 0.1.
We find that the cross section at NLO is about 40 % larger than the leading order prediction, and in this
case the scale dependence at NLO is reduced as compared to the one at leading order accuracy. The
reduction of the scale dependence when the stronger cuts (Rγ = 1 with ǫ = 0.1) are used indicates that
the large correction obtained with the looser (default) cuts are due mainly to real emission of soft and
collinear partons.
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Fig. 53: (a) Dependence of the invariant mass spectrum on the isolation parameter n. (b) Dependence on the renormalization

and factorization scales of the cross section in a bin of 118.5 GeV ≤ mγγ ≤ 121.5 GeV at leading-order and at NLO accuracy.

22.3 Conclusions

We conclude by summarizing our observations concerning the QCD radiative corrections to the pp →
γγ + jet process that constitutes part of the irreducible background to the pp → H + jet → γγ + jet
discovery channel of an intermediate-mass Higgs boson at the LHC. We used a smooth photon isolation
that is infrared safe to all orders in perturbation theory and independent of the photon fragmentation into
hadrons. We found large radiative corrections, which are rather sensitive to the selection cuts and photon
isolation parameters. Choosing a mild photon isolation, i.e. a small isolation cone radius Rγ = 0.4
with relatively large hadronic activity allowed in the cone results in more than 100 % correction with as
large residual scale dependence at NLO as at leading order. In this case, the dependence on the isolation
parameter n is also large. Since the radiative correction with standard photon isolation would even be
larger, we conclude that NLO perturbation theory does not yield a reliable theoretical prediction for such
a mild photon isolation. Making the photon isolation more stringent, for instance increasing the cone
radius to Rγ ≥ 0.7 and decreasing the hadronic activity in the cone (using for instance ǫ = 0.1) reduces
both the magnitude of the radiative corrections as well as the dependence on the renormalization and
factorization scales and that on the isolation parameter n. The more stringent isolation is also useful for
decreasing the relative weight of the poorly known fragmentation components in the cross section, and
the prediction obtained with the smooth isolation can be considered a good approximation (valid to the
extent of scale ambiguities) to those with the standard isolation. Our results show that a constant factor
is not appropriate for taking into account the radiative corrections to the irreducible background of the
pp→ H + jet → γγ + jet discovery channel at the LHC.
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23. ELECTROWEAK RADIATIVE CORRECTIONS TO HADRONIC PRECISION OBSERV-

ABLES AT TEV ENERGIES 38

23.1 Weak corrections at TeV scales

At TeV energy scales, next-to-leading order (NLO) Electro-Weak (EW) effects produce leading cor-
rections of the type αEW log2(ŝ/M2

W ), where αEW ≡ αEM sin2 θW , with αEM the Electro-Magnetic
coupling constant and θW the Weinberg angle. In fact, for large enough ŝ values, the centre-of-mass
(CM) energy at parton level, such EW effects may be competitive not only with next-to-NLO (NNLO)
(as αEW ≈ α2

S) but also with NLO QCD corrections (e.g., for
√
ŝ = 3 TeV, log2(ŝ/M2

W ) ≈ 10).

These ‘double logs’ are due to a lack of cancellation between virtual and realW -emission in higher
order contributions. This is in turn a consequence of the violation of the Bloch-Nordsieck theorem in
non-Abelian theories [274]. The problem is in principle present also in QCD. In practice, however, it
has no observable consequences, because of the final averaging of the colour degrees of freedom of par-
tons, forced by their confinement into colourless hadrons. This does not occur in the EW case, where
the initial state has a non-Abelian charge, as in an initial quark doublet in proton-(anti)proton scatter-
ing. Besides, these logarithmic corrections are finite (unlike in QCD), since MW provides a physical
cut-off for W -emission. Hence, for typical experimental resolutions, softly and collinearly emitted weak
bosons need not be included in the production cross section and one can restrict oneself to the calcula-
tion of weak effects originating from virtual corrections only. By doing so, similar logarithmic effects,
∼ αEW log2(ŝ/M2

Z), are generated also by Z-boson corrections. Finally, all these purely weak contribu-
tions can be isolated in a gauge-invariant manner from EM effects which therefore may not be included
in the calculation. In fact, we have neglected the latter here.

In view of all this, it becomes of crucial importance to assess the quantitative relevance of such
weak corrections affecting, in particular, key QCD processes studied at present and future hadron col-
liders. We show here results for the case of b-jet-, prompt-photon and Z-production at Tevatron and
LHC.

23.2 Corrections to b-jet-production

In Fig. 54 (left and right panels) we show the effects of the full O(α2
SαEW) contributions to the pp̄ →

bb̄(g) and pp → bb̄(g) cross sections at Tevatron and LHC, respectively. (For details of the calculation,
see Ref. [275].) Results are shown for the total inclusive b-jet production rate as a function of the jet
transverse energy. (Tree-level EW and NLO QCD effects are also given for comparison.) At Tevatron,
O(α2

SαEW) terms are typically negligible in the inclusive cross section, as the partonic energy available
is too small for the mentioned logarithms to be effective. At LHC, the contribution due to such terms
grows accordingly to the collider energy, reaching the –2% level at transverse momenta of ≈ 800 GeV.

Next, we study the forward-backward asymmetry at Tevatron, defined as follows:

Ab
FB =

σ+[pp̄→ bb̄(g)] − σ−[pp̄→ bb̄(g)]

σ+[pp̄→ bb̄(g)] + σ−[pp̄→ bb̄(g)]
, (57)

where the subscript +(−) identifies events in which the b-jet is produced with polar angle larger(smal-
ler) than 90 degrees respect to one of the two beam directions (hereafter, we use the proton beam as
positive z-axis). The polar angle is defined in the CM frame of the hard partonic scattering. In the center
plot of Fig. 54, the solid curve represents the sum of the tree-level contributions, that is, those of order
α2

S and α2
EW, whereas the dashed one also includes the higher-order ones α2

SαEW. The effects of the
one-loop weak corrections on this observable are rather large, indeed comparable to the effects through
order α3

S [276, 277]. In absolute terms, the asymmetry is of order −4% at the W , Z resonance (i.e., for
pT ≈MW /2,MZ/2) and fractions of percent elsewhere, hence it should be measurable after the end of

38Contributed by: E. Maina, S. Moretti, M.R. Nolten, D.A. Ross
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Run 2. We expect even larger effects at LHC, however, some care is here necessary in order to define the
observable, which depends on the configuration and efficiency of the experimental apparata (so we do
not present the corresponding plot in this instance). The α3

S results presented here are from Ref. [278].

Fig. 54: The corrections (NLO-LO)/LO due to the α2
EW, α2

SαEW and α3
S terms relative to the α2

S ones vs. the transverse

momentum of the b-jet for pp̄ → bb̄(g) and pp → bb̄(g) production at Tevatron and LHC, left and right frame, respectively.

(For LHC, we do not show the corrections due to α3
S terms as results are perturbatively unreliable.) In the middle frame, the

forward-backward asymmetry vs. the transverse momentum of the b-jet for pp̄ → bb̄(g) events at Tevatron, as obtained at

tree-level O(α2
EW) and one-loop O(α2

SαEW) orders.

23.3 Corrections to γ- and Z-production

The neutral-current processes (V = γ, Z)

qq̄ → gV and q(q̄)g → q(q̄)V (58)

are two of the cleanest probes of the partonic content of (anti)protons, in particular of antiquark and
gluon densities. In order to measure the latter it is necessary to study the vector boson pT spectrum. That
is, to compute V production in association with a jet (originated by either a quark or a gluon). We briefly
report here on the full one-loop results for processes (58) obtained through O(αSα

2
EW). (For technical

details of the calculation, see Ref. [279].)

Fig. 55 shows the effects of the O(αSα
2
EW) corrections relatively to the O(αSαEW) Born results

(αEM replaces αEW for photons), as well as the absolute magnitude of the latter, as a function of the
transverse momentum. The corrections are found to be rather large, both at Tevatron and LHC, partic-
ularly for Z-production. In case of the latter, such effects are of order –10% at Tevatron and –15% at
LHC for pT ≈ 500 GeV. In general, above pT ≈ 100 GeV, they tend to (negatively) increase, more or
less linearly, with pT . Such effects are indeed observable at both Tevatron and LHC. For example, at
FNAL, for Z-production and decay into electrons and muons with BR(Z → e, µ) ≈ 6.5%, assuming
L = 2−20 fb−1 as integrated luminosity, in a window of 10 GeV at pT = 100 GeV, one finds 650–6500
Z + j events through LO, hence a δσ/σ ≈ −1.5% EW NLO correction corresponds to 10–100 fewer
events. At CERN, for the same production and decay channel, assuming now L = 30 fb−1, in a window
of 40 GeV at pT = 450 GeV, we expect about 1200 Z + j events from LO, so that a δσ/σ ≈ −12% EW
NLO correction corresponds to 140 fewer events. In line with the normalisations seen in the top frames
of Fig. 55 and the size of the corrections in the bottom ones, absolute rates for the photon are similar to
those for the massive gauge boson while O(αSα

2
EW) corrections are about a factor of two smaller.

Altogether, these results point to the relevance of one-loop O(αSα
2
EW) contributions for precision

analyses of prompt-photon and neutral Drell-Yan events at both Tevatron and LHC, also recalling that
the residual scale dependence of the known higher order QCD corrections to processes of the type (58)
is very small in comparison [84, 280–282]. Another relevant aspect is that such higher order weak terms
introduce parity-violating effects in hadronic observables [283], which can be observed at (polarised)
RHIC-Spin [284].
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Fig. 55: The LO results through O(αSαEW) for the γ- and Z-production cross sections at Tevatron and LHC, as a function of

the transverse momentum (top) as well as the size of the NLO corrections through O(αSα2
EW) relatively to the former.

24. TOWARDS AUTOMATED ONE-LOOP CALCULATIONS FOR MULTI-PARTICLE PRO-

CESSES 39

24.1 Introduction

In this decade experiments at hadron colliders explore the TeV scale. The large center of mass energies
lead generically to multi-particle final states created by QCD initial states. The application of perturbative
methods is justified if the scales of the problem are considerably larger than the proton mass. Then a
systematic separation of long and short distance effects is possible and predictions for cross sections can
be made at the loop level, which is mandatory for a reliable estimate of production rates especially at
hadron colliders.

The calculation of multi-particle production at the one-loop level is very challenging due to the
combinatorial complexity of the Feynman diagrammatic approach. Although the calculation of partonic
2 → 2 amplitudes at one-loop is meanwhile standard, already the number of known 2 → 3 1-loop
amplitudes is very restricted. Up to now not a single Standard Model process which has generic 2 → 4
kinematics is computed at the one-loop level. Needless to say this is highly relevant to many search
channels for the Higgs boson at the LHC, like gluon fusion and weak boson fusion, where additional jets
have to be tagged to improve the signal to background ratio. For signal reactions like PP → H + 0, 1, 2
jets, withH → γγ,WW ∗, τ+τ− which are available at one-loop level, not all amplitude calculations for
the background exist. This is due to the fact that the signal case typically contains only 5-point functions
at 1-loop, whereas the background has generic 2 → 4 kinematics. As an example for such reactions
consider PP → bb̄bb̄ + X, PP → γγ + 2 jets + X or PP → ZZ + γγ + X. These require the
evaluation of hexagon graphs like

The aim of our working group is to develop methods for the calculation of such hexagon ampli-

39Contributed by: T. Binoth, J.Ph. Guillet, G. Heinrich, N. Kauer, F. Mahmoudi
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Fig. 56: Hexagon graphs for multi-particle production. The t in the right graph indicates that the fermion is a top quark.

tudes. The final goal is a tool to tackle the computation of general 2 → 4 processes at the one-loop
level in a completely automated way. A basic ingredient of such a tool are algebraic reduction for-
mulas. Our reduction formalism is described in the next section. As an example for the efficiency of
our methods we discuss the 5-point 1-loop amplitude gg → γγg in Section 24.3. The fully analytical
treatment of hexagon one-loop amplitudes seems to be feasible analogously, if massless particles are
considered. Examples of hexagon amplitudes in the Yukawa model calculated with our approach can be
found in [285, 286]. Other, phenomenologically relevant examples are presently under study. For the
massive case we suggest a numerical evaluation described in Section 24.4.

24.2 Reduction Formalism

We will very briefly discuss the basic reduction formulas for N -point scalar and tensor integrals. More
details can be found in [287, 288].

24.21 Tensor reduction

Feynman diagrams correspond to combinations of tensor integrals. The momentum space representation
of an N -point tensor integral of rank R in D = 4 − 2ǫ dimensions is given by

Iµ1...µR

N =

∫
dDk

iπD/2

kµ1 . . . kµR

∏N
j=1(q

2
j −m2

j)
(59)

Here qj is a linear combination of the loop momentum k and external momenta p1, . . . pN . If N ≥ 5
standard reduction methods lead to a proliferation of terms with complicated denominators. This has
to be avoided, as otherwise a stable numerical evaluation of the amplitude is hardly possible. By using
helicity or projection methods loop momenta can always be combined with external momenta such that
they are expressed by combinations of inverse propagators, e.g. with sj = p2

j , sij = (pi + pj)
2 ,

q1 = k − p1 and q2 = k − p1 − p2:

2k · p2 = (q21 −m2
1) − (q22 −m2

2) + (s12 −m2
2) − (s1 −m2

1) (60)

After expressing products of loop momenta with external vectors by propagators and canceling as many
propagators as possible, one is left with tensor integrals which are irreducible. One finds that at most
rank 1 N -point integrals have to be reduced for an N -point problem. Explicit representations for the
irreducible tensor integrals can be found in [288]. After complete tensor reduction one is left with a
linear combination of scalar integrals.

24.22 Scalar reduction

To achieve as many analytic cancellations as possible the amplitude has to be expressed by a basis of
scalar integrals. To this end scalar N -point integrals have to be reduced further. The scalar N -point
function in momentum and Feynman parameter space is given by

ID
N =

∫
dDk

iπD/2

1
∏N

j=1(q
2
j −m2

j)
= (−1)NΓ(N −D/2)

1∫

0

dNz
δ(1 −∑N

j=1 zj)∑N
i,j=1 Sijzizj/2

(61)
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where Sij = Gij − Gii/2 − Gjj/2 + m2
i + m2

j , Gij = 2 ri · rj , rj = p1 + · · · + pj . The basic

reduction formula relates an N -point scalar integral to (N − 1)-point scalar integrals ID
N−1,j , where the

jth propagator is omitted, and (D + 2)-dimensional remainder terms:

ID
N =

N∑

j=1

bjI
D
N−1,j +





−(1 + 2ǫ)det(G)
det(S) I

D+2
N N = 4

O(ǫ) N = 5

0 N ≥ 6

(62)

The reduction coefficients are bj = −∑N
l=1 S

−1
jl . One finds by iteration that each N -point function

and therefore each amplitude can be expressed by 2- and 3-point functions in D dimensions and 4-point
functions inD+2 dimensions only. These form the basic building blocks for an irreducible representation
of the amplitude in terms of scalar functions. The coefficients of these scalar integrals are expected to
simplify to a large extent.

24.3 Analytic Calculation of gg → γγg

To give an example for our algebraic approach to N -point amplitudes we have reconsidered the 5-point
1-loop amplitude gg → γγg. While this amplitude only had been extracted indirectly from the 5-gluon
amplitude [289] by replacing gluons by photons until recently, we present a direct calculation [290].

For convenience we define all particles as incoming.

γ(p1, λ1) + γ(p2, λ2) + g(p3, λ3, c3) + g(p4, λ4, c4) + g(p5, λ5, c5) → 0 (63)

Out-states can be obtained by crossing rules. In hadronic collisions this amplitude is relevant for the
production of photon pairs in association with a jet and as such a contribution of the background to the
Higgs boson search channel H → γγ + jet. A phenomenological analysis has already been provided
in [265, 273]. The colour structure of this amplitude is simple. It can be written as

Γ{λj},{cj}[γγggg → 0] =
Q2

qg
3
s

iπ2
f c3c4c5Aλ1λ2λ3λ4λ5 (64)

Aλ1λ2λ3λ4λ5 are helicity dependent linear combinations of scalar integrals and a constant term which is a
remnant of two-point functions with coefficients of order (D− 4). Six independent helicity components
exist: +++++,++++ –,– ++++,– – +++, +++ – –, – +++ –. As the amplitude is finite one expects that all
3-point functions which carry spurious infrared poles cancel. The function basis of the problem is thus

reduced to 2-point functions ID
2 (sij) = Γ(1+ǫ)Γ(1−ǫ)2

Γ(2−2ǫ)
(−sij)−ǫ

ǫ , 4-point functions in D + 2 dimensions
written as [286]

F1(sj1j2 , sj2j3, sj4j5) =
1

sj4j5 − sj1j2 − sj2j3

I6
4 (pj1, pj2 , pj3, pj4 + pj5) (65)

and constant terms. From unitarity one expects that the +++++ , ++++ – , – ++++ amplitudes should be
polynomial. The other helicity amplitudes will also contain non-polynomial functions like logarithms
and dilogarithms contained in ID

2 and F1.

To give an example of each case we show here the results for A++++− and A−−+++ only, the
remaining ones which have also compact representations can be found in [290]. The result is expressed
in terms of field strength tensors Fµν

j = pµ
j ǫ

ν
j − pν

j ǫ
µ
j which satisfy the relations

Tr(F±
i F±

j ) = 2 pi · ǫ±j pj · ǫ±i − sij ǫ
±
i · ǫ±j

pi · F±
j · pk = (sij pk · ǫ±j − sjk pi · ǫ±j )/2 (66)
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where ǫ±j are the polarization vectors of the gluons and photons.

For A++++− which is polynomial we find the following result

A++++− =
Tr(F+

1 F+
2 )Tr(F+

3 F+
4 )

s212s
2
34

[
C++++− p1 · F−

5 · p3 − (3 ↔ 4)
]

(67)

The coefficient is given by

C++++− = −s45s13s14
s35s15s24

− s13s45
s15s35

+
s245
s15s24

− s212 + s245 − s12s45
s35s15

+
s13s15
s23s45

+
s13 − s34
s23

−s34s45
s23s15

+
s15 − s25
s45

− s23 + s35
s13

− s23s25
s13s45

+
s34 + s12
s15

(68)

We have checked that the corresponding amplitude has a S2 ⊗ S2 Bose symmetry when the photons and
the gluons with equal helicities are interchanged.

For A−−+++ we split the result into three pieces with indices F,B, 1, which belong to the part
proportional to 6-dimensional boxes F1, a part containing bubble graphs ID

2 , and a constant term, re-
spectively.

A−−+++ = A−−+++
F + A−−+++

B + A−−+++
1 (69)

We find

A−−+++
F =

Tr(F−
1 F−

2 )Tr(F+
3 F+

4 )

s212s
2
34

[
C−−+++

F p1 · F+
5 · p3 − (3 ↔ 4)

]
F1(s13, s14, s25)

−(4 ↔ 5) − (5 ↔ 3) + (1 ↔ 2) − (1 ↔ 2, 4 ↔ 5) − (1 ↔ 2, 5 ↔ 3)

A−−+++
B =

Tr(F−
1 F−

2 )Tr(F+
3 F+

4 )

s212s
2
34

[
C−−+++

B p1 · F+
5 · p3 − (3 ↔ 4)

]
ID
2 (s15)

−(4 ↔ 5) − (5 ↔ 3) + (1 ↔ 2) − (1 ↔ 2, 4 ↔ 5) − (1 ↔ 2, 5 ↔ 3)

A−−+++
1 =

Tr(F−
1 F−

2 )Tr(F+
3 F+

4 F+
5 )

2 s34s45s35
(70)

The indicated permutations have to be applied to the indices of the field strength tensors, momenta and
Mandelstam variables. The coefficients are

C−−+++
F =

1

2

s212 − 2s13s14
s35s15

− s14
s34

− s14
s35

C−−+++
B =

s45
s15

[
s13 + s35
s14 + s45

+
s14 + s45
s13 + s35

]
+
s245s13
s15s235

+
s14s35
s15s45

+ 2
(s15 + s45)

2

s235

−s13 + s35
s15

− s14s45
s15s35

− s245
s35s15

+
s14 + s24
s45

+
s12 − s14 − s35
s14 + s45

+ 2
s14(s15 + s45)

s235

+
s223s15

s235(s13 + s35)
+

2s45 + s15
s13 + s35

− 2
(s15 + s45)s23
s35(s13 + s35)

− (2s45 + s15)

s35
+
s13(2s45 + s15)

s235

In the given expressions the S2 ⊗ S3 symmetry under exchange of the two photons and the three gluons
is manifest after taking into account the omitted colour factor.

The result indicates that with our approach indeed a compact representation of complicated loop
amplitudes can be obtained. The application of our approach to relevant 6-point amplitudes is presently
under study.
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24.4 Numerical Evaluation of Multi-Leg Integrals

As already mentioned, our final aim is a complete automatisation of one-loop calculations. The bottle-
neck for this goal is mainly given by the calculation of the virtual amplitudes: As the number of external
legs increases, the growing number of invariants renders the analytical expressions more and more com-
plicated. If in addition massive particles are involved, the complexity of the resulting expressions rapidly
approaches a limit where the analytical evaluation of the amplitude becomes unfeasible. Therefore, a
numerical approach seems to be more appropriate to tackle different types of one-loop amplitudes in a
unified and efficient way. Of course, it has to be stated what ”numerical” means, as any method should fi-
nally lead to ”numbers” to be compared to data. The important question is at what stage of the calculation
the transition from analytical to numerical evaluation should be made.

The conventional approach to calculate NLO cross sections seeks to keep analytical expressions
in the course of the calculation of a cross section as far as possible. Of course, there are good reasons to
do so: If infrared (and/or ultraviolet) poles are present, they have to be isolated and canceled before any
numerical evaluation can be attempted. Further, analytic expressions are flexible in the sense that they
can be used in ”crossed” processes with different kinematics by analytic continuation. On the other hand,
the analytical approach may be troublesome if the calculation of differential cross sections dσ/dO for
some (infrared safe) observable O and/or the implementation of experimental cuts requires modifications
of the analytic expressions. In addition, concerning the virtual integrals, it is well known that even if a
closed form exists, the implementation into a Monte Carlo program may lead to numerical instabilities
because the expressions are not appropriate for every phase space region.

These drawbacks of the ”maximally analytical” approach suggest to make the transition analytical
→ numerical at an earlier stage of the calculation. A completely numerical approach has been suggested
by D. Soper [291, 292], where the sum over cuts for a given graph is performed before the numerical in-
tegration over the loop momenta, in this way exploiting unitarity to cancel soft and collinear divergences.
This method is very elegant, but choosing appropriate integration contours in the multi-dimensional pa-
rameter space is far from straightforward and therefore might be hard to automate.

In [293], a different approach has been suggested, where the calculation is split into ”virtual”
(loop) and ”real” contributions as in the conventional approach, but a subtraction formalism for the UV
and soft/collinear divergences of the one-loop graphs has been worked out, such that the subtracted
integrals can be performed numerically in four dimensions. While the subtractions act on a graph by
graph basis, the subtraction terms are added back (in analytically integrated form) after having been
summed over the graphs, as only the summation leads to expressions which are simple enough to be
integrated analytically.

Another promising approach in this context is the one of [294], which tries to tackle the problem
of infrared divergences by its very root: Starting from the observation that the clash between the long-
range nature of the interactions in a massless gauge theory and the assumption of asymptotically free
external states causes the appearance of IR singularities in the ”conventional” amplitudes, they show that
an appropriate redefinition of the external states, which includes the long-range interactions, leads to
S-matrix elements which are IR finite and apply it to the case e+e− → 2 jets at NLO.

The method we suggest here to calculate one-loop amplitudes is oriented at the aim of automati-
sation as a main guideline. It follows to a large extent the ”analytical road” in treating virtual and real
emission corrections separately. This is feasible as the isolation of IR/UV divergences is straightforward
if the discussed reduction formalism is used. UV renormalisation is well understood, and systematic
methods for the combination of the IR divergences from the virtual corrections with their counterparts
from the real emission contribution also exist [269, 281, 295–299]. The main problem consists in cal-
culating the remaining finite terms of the N -point one-loop amplitudes, especially for N = 5, 6, and
we will concentrate on this point in what follows. By making the transition from analytical to numerical
evaluation for these terms at an earlier stage than in the conventional approach, complicated cancellations
between numerous dilogarithms can be avoided.
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We should mention that another approach to calculate loop integrals numerically is suggested by
Passarino et al. [300, 301], based on the Bernstein-Tkachov relation [302].

24.41 Reduction to basic building blocks

A one-loop N -point amplitude involving particles with arbitrary masses (including the case m = 0)
will be reduced to basic building blocks using the method of [288], as outlined in Section 24.2 As basic
building blocks, we choose scalar 2-point functions ID

2 and 3-point functions ID
3 in D dimensions and

D+ 2 dimensional box functions ID+2
4 . The latter are infrared finite. Possible UV singularities are only

contained in the 2-point functions and their subtraction is straightforward. The (soft and collinear) IR
singularities are, as a result of the reduction, only contained in 2-point functions and 3-point functions
with one or two light-like legs. In this form, they are easy to isolate and to subtract from the amplitude.
However, the resulting expression in general still has integrable (threshold) singularities which hinder a
successful numerical evaluation. For example, the general 6-point integral (where all internal lines have
different masses mi and all external legs are off-shell, p2

i = si , i = 1 . . . 6) depends on 21 kinematic
invariants with one non-linear constraint among them, and its analytic form contains hundreds of diloga-
rithms. A numerical evaluation of the latter leads to large cancellations in certain kinematic regions and
such a representation is therefore inappropriate.

24.42 Parameter representation of basic building blocks

After reduction and separation of the divergent parts, we are left with finite integrals ID
3 and ID+2

4 . To
evaluate them we first use standard Feynman parametrisation and then perform a sector decomposition40

1 = Θ(x1 > x2, . . . , xN ) + Θ(x2 > x1, . . . , xN ) + · · · + Θ(xN > x1, . . . , xN−1) (71)

for the integration over N parameters (N = 3 for the triangle, N = 4 for the box). Now, we carry out
only one parameter integration. We obtain

ID
3 (s1, s2, s3,m

2
1,m

2
2,m

2
3) =[

SD
Tri(s2, s3, s1,m

2
2,m

2
3,m

2
1) + SD

Tri(s3, s1, s2,m
2
3,m

2
1,m

2
2) + SD

Tri(s1, s2, s3,m
2
1,m

2
2,m

2
3)
]

SD=4
Tri (s1, s2, s3,m

2
1,m

2
2,m

2
3) =

1∫

0

dt1dt2
1

(1 + t1 + t2)

1

At22 +Bt2 + C − iδ

=

1∫

0

dt1
2A√
R

[
log(2A+B −

√
R) − log(B −

√
R) − log(2A+B + T ) + log(B + T )

T +
√
R

− log(2A+B +
√
R) − log(B +

√
R) − log(2A +B + T ) + log(B + T )

T −
√
R

]
(72)

with

A = m2
2 , B = (m2

1 +m2
2 − s2)t1 +m2

2 +m2
3 − s3

C = m2
1t

2
1 + (m2

1 +m2
3 − s1)t1 +m2

3

R = B2 − 4AC + iδ , T = 2A(1 + t1) −B

We show the explicit expressions only for the triangle, the ones for the box are analogous and can be
found in [303]. In the case of vanishing masses or invariants, as long as the functions remain IR finite,
analogous expressions can be derived.

40We define the step function Θ to be 1 if its argument is true, and 0 else.
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24.43 Singularity structure

In order to analyse the singularity structure of the integrands, we explicitly separate imaginary and real
part. One obtains

SD=4
Tri (s1, s2, s3,m

2
1,m

2
2,m

2
3) =

1∫

0

dt1
4A

T 2 −R

{[
log(2A+B + T ) − log(B + T )

]

+Θ(R < 0)
[ log(C) − log(A+B + C)

2

+
T√
−R

(
arctan

(√
−R
B

)
− arctan

( √
−R

2A+B

)
+ π Θ(B < 0 < 2A+B)

)]

+Θ(R > 0)
[T −

√
R

2
√
R

(
log
(
|2A+B −

√
R|
)
− log

(
|B −

√
R|
)
− iπΘ(B <

√
R < 2A+B)

)

−T +
√
R

2
√
R

(
log
(
|2A+B +

√
R|
)
− log

(
|B +

√
R|
)

+ iπΘ(B < −
√
R < 2A+B)

)]}
(73)

Three regions which lead to an imaginary part can be distinguished:

Region I: A+B +C > 0,−2A < B < 0, C > 0 ⇔ (B < ±
√
R < 2A+B).

Region II: A+B + C > 0, C < 0 ⇔ (B <
√
R < 2A+B) and not (B < −

√
R < 2A+B).

Region III: A+B + C < 0, C > 0 ⇔ (B < −
√
R < 2A+B) and not (B <

√
R < 2A+B).

Region I is an overlap region where the imaginary part has two contributions. In regions II and III only
one of the Θ–functions in (73) contributes. All critical regions are shown in Fig. 57, which illustrates the
analytic structure of the integrand. Line segment (a) corresponds to the integration region of a triangle

(a)

(b)
Region III

Region II

I

B/(2A)

A+B+C<0

C/A

R<0

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0.5

Fig. 57: Analytic regions of the box and triangle integrands. Within regions I,II and III the integrand has an imaginary part.

The integrable square-root and logarithmic singularities are located at the boundaries of these regions.

function where only logarithmic singularities are present, while for line segment (b) square-root and
logarithmic singularities are present. Note that the box function ID=6

4 has the same singularity structure.
As ID=4

3 and ID=6
4 are the basic building blocks, this analysis of the singularity structure is done once

and for all.
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24.44 Numerical integration

We now discuss the numerical evaluation of the analytic expressions derived above.41 So far, we showed
that any finite scalar N -point function can be written as a linear combination of the basic building block
SD=4

Tri of Eq. (73) and a similar 2-dimensional integral, SD=6
Box , with coefficients that are rational functions

of the kinematical invariants and masses. To avoid numerical instabilities, the residual dimensions of
SD=4

Tri and SD=6
Box are then integrated over numerically. Since scalar function expressions can contain

dozens of building blocks and an amplitude has to be evaluated many times to calculate a cross section, a
fast method to evaluate the basic building blocks is called for. However, the naive application of standard
numerical integration techniques is not sufficient to achieve this objective. This is due to the presence
of integrable singularities and step discontinuities in the integrands, which the detailed analysis above
revealed. It prevents the naive application of deterministic, integration-rule based algorithms that are
better suited for fast evaluation than the more robust, but significantly slower Monte Carlo techniques
commonly used to evaluate multi-particle cross sections in high energy physics.

Several approaches can be pursued to achieve a sufficiently fast and accurate numerical integration
of the basic building blocks. A first direction are automatic methods, i.e. methods that do not require
knowledge of the exact location and type of the discontinuities. The key to success here are adaptive
algorithms that iteratively divide the integration volume into non-uniform subvolumes and apply basic
numerical integration methods to each subvolume until an optimal partition of the integration volume
minimizes the total error. Using this approach the 1-dimensional integral of SD=4

Tri can be integrated
with negligible time requirements (fractions of a second). The 2-dimensional integral of SD=6

Box is much
more challenging, but can be tackled in the same spirit by combining deterministic and Monte Carlo
integration techniques (see Ref. [304] and references therein). We note that the time required to integrate
all SD=6

Box building blocks of the scalar hexagon function using this approach depends on the kinematical
configuration and, while sufficiently short at this stage, is no longer negligible. If, at a subsequent stage,
i.e. for the calculation of a certain cross section, the SD=6

Box building blocks had to be computed in a time
comparable to the one for the SD=4

Tri functions, a second direction could be pursued. Since the location of
all singularities and step discontinuities is known analytically, one can identify regions with continuous
integrand and in each region flatten the integrand either by transforming integration variables or sub-
tracting singular approximations. The resulting bounded integrands could then be integrated numerically
with standard deterministic methods at a speed that would facilitate millions of amplitude evaluations in
a reasonable amount of time.

To demonstrate the practicality of our method to evaluate multi-leg integrals, we show in Fig. 58
a scan of the 2mt = 350 GeV threshold of the 4-dimensional scalar hexagon function for a kinematical
configuration appropriate for the Feynman diagram to the right in Fig. 56.

24.5 Conclusion

We have outlined new algebraic/numerical approaches for 1-loop calculations. We have shown that our
algebraic formalism leads to compact representations of complicated 1-loop amplitudes. Furthermore we
have constructed numerical methods for general hexagon kinematics. The presented methods are parts
of a project to describe multi-particle/jet production at TeV colliders with 2 → 4 kinematics at the 1-loop
level.
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Fig. 58: Scan of the 2mt = 350 GeV threshold of the 4-dimensional scalar hexagon function which corresponds topologically

and kinematically to the rightmost Feynman diagram of Fig. 56.

number 05HT1WWA2.

25. INFRARED DIVERGENCES AT NNLO 42

25.1 Introduction

Fully differential NNLO calculations are needed to increase the accuracy of theoretical predictions and
are relevant to high-energy collider experiments, in particular for the Tevatron and the LHC. They involve
a variety of technical complications, such as the calculation of two-loop amplitudes, a method for the
cancellation of infrared divergences and stable and efficient numerical methods for the final computer
program. There has been a significant progress in the calculation of two-loop amplitudes in the past
years [305–317]. Here we review the state of the art for the cancellation of infrared divergences at
NNLO.

Infrared divergences occur already at next-to-leading order. At NLO real and virtual corrections
contribute. The virtual corrections contain the loop integrals and can have, in addition to ultraviolet
divergences, infrared divergences. If loop amplitudes are calculated in dimensional regularisation, the
IR divergences manifest themselves as explicit poles in the dimensional regularisation parameter ε =
2 −D/2. These poles cancel with similar poles arising from amplitudes with additional partons but less
internal loops, when integrated over phase space regions where two (or more) partons become “close”
to each other. In general, the Kinoshita-Lee-Nauenberg theorem [318,319] guarantees that any infrared-
safe observable, when summed over all states degenerate according to some resolution criteria, will be
finite. However, the cancellation occurs only after the integration over the unresolved phase space has
been performed and prevents thus a naive Monte Carlo approach for a fully exclusive calculation. It is
therefore necessary to cancel first analytically all infrared divergences and to use Monte Carlo methods
only after this step has been performed.

At NLO, general methods to circumvent this problem are known. This is possible due to the
universality of the singular behaviour of the amplitudes in soft and collinear limits. Examples are the
phase-space slicing method [281, 295, 296] and the subtraction method [269, 298, 299, 320, 321]. It is
worth to examine a simple NLO example in detail to understand the basic concepts which are currently
under discussion for an extension to NNLO. We consider the NLO corrections to γ∗ → 2 jets. The real
corrections are given by the matrix element for γ∗ → qgq̄ and read, up to colour and coupling factors

|A3|2 = 8(1 − ε)

[
2

x1x2
− 2

x1
− 2

x2
+ (1 − ε)

x2

x1
+ (1 − ε)

x1

x2
− 2ε

]
, (74)

42Contributed by: G. Heinrich, S. Weinzierl
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where x1 = s12/s123 and x2 = s23/s123. This term is integrated over the three particle phase space

∫
dφ3 =

4−4+3επ−5/2+2ε

Γ(1 − ε)Γ(3
2 − ε)

s1−2ε
123

∫
d3xδ

(
1 −

3∑

i=1

xi

)
x−ε

1 x−ε
2 x−ε

3 . (75)

Singularities occur at the boundaries of the integration region at x1 = 0 and x2 = 0. Historically,
phase space slicing [281,295,296] has been the first systematic method to treat the infrared singularities.
Here, one splits the integration region into different parts, shown in fig. 59: A soft region, given by
x1 < xmin and x2 < xmin, two collinear regions, corresponding to x1 < xmin, x2 > xmin and
x1 > xmin, x2 < xmin and a hard region region x1 > xmin, x2 > xmin. The hard region is free
of singularities and the integration can be performed numerically there. In the remaining regions the
matrix element is approximated by the soft or collinear factorisation formulae and the integration over a
one-parton phase space can then be performed analytically. Phase space slicing has the advantage, that
different factorisation formulae may be used in different regions of phase space. However, there are also
some disadvantages: The method introduces a systematic error of order xmin, it becomes rather intricate
for colour-subleading terms and it poses a numerical problem: The hard region gives a contribution of
the form

a ln2 xmin + b lnxmin + c. (76)

The logarithms ln2 xmin and lnxmin cancel against the contributions from the other regions, but this
cancelation happens only numerically.

Within the subtraction method [269,298,299,320,321] one subtracts a suitable approximation term
dσA from the real corrections dσR. This approximation term must have the same singularity structure as
the real corrections. If in addition the approximation term is simple enough, such that it can be integrated
analytically over a one-parton subspace, then the result can be added back to the virtual corrections dσV .

σNLO =

∫

n+1

dσR +

∫

n

dσV =

∫

n+1

(
dσR − dσA

)
+

∫

n


dσV +

∫

1

dσA


 . (77)

Since by definition dσA has the same singular behaviour as dσR, dσA acts as a local counter-term and
the combination (dσR − dσA) is integrable and can be evaluated numerically. Secondly, the analytic
integration of dσA over the one-parton subspace will yield the explicit poles in ε needed to cancel the
corresponding poles in dσV . The subtraction method overcomes the short-comings of the slicing method,
but there is a price to pay: The approximation term is subtracted over the complete phase space and has
to interpolate between different singular regions. At NLO this requires an interpolation between soft and
collinear regions. For the example discussed above the approximation term can be taken as a sum of two
(dipole) subtraction terms:

dσA =
∣∣A2(p

′
1, p

′
3)
∣∣2 1

s123

[
2

x1(x1 + x2)
− 2

x1
+ (1 − ε)

x2

x1

]

+
∣∣A2(p

′′
1, p

′′
3)
∣∣2 1

s123

[
2

x2(x1 + x2)
− 2

x2
+ (1 − ε)

x1

x2

]
(78)

The momenta p′1, p′3, p′′1 and p′′3 are linear combinations of the original momenta p1, p2 and p3. The first
term is an approximation for x1 → 0, whereas the second term is an approximation for x2 → 0. Note that
the soft singularity is shared between the two dipole terms and that in general the Born amplitudes A2 are
evaluated with different momenta. The subtraction terms can be derived by working in the axial gauge. In
this gauge only diagrams where the emission occurs from external lines are relevant for the subtraction
terms. Alternatively, they can be obtained from off-shell currents. Antenna factorisation [322–325]
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Fig. 59: Partitioning of the Dalitz plot for three final-state particles: (a) phase space slicing, (b) sector decomposition.

allows to reduce the number of subtraction terms needed and interpolates smoothly between the x1 → 0
and x2 → 0 regions. We briefly sketch how to obtain the antenna function from off-shell currents. The
amplitude for γ∗ → qgq̄ is constructed from the quark and antiquark currents J and J̄ as follows:

A3(p1, p2, p3) = J̄(p1, p2) εγ · γ J(p3) + J̄(p1) εγ · γ J(p2, p3). (79)

εγ is the polarisation vector of the photon, contracted into the Dirac matrix γµ. Singular contributions
can only arise from the currents J̄(p1, p2) and J(p2, p3). With a suitable pair of reconstruction functions
p̂1(p1, p2, p3) and p̂2(p1, p2, p3) one achieves that the Born amplitude A2 is evaluated with the same set
of momenta and one can approximate the amplitude A3 by

Ant(p1, p2, p3; p̂1, p̂2) A2(p̂1, p̂2) (80)

Note that in general the momenta p̂1 and p̂2 are non-linear functions of the original momenta p1, p2 and
p3.

Once suitable subtraction terms are found, they have to be integrated over the unresolved phase
space. Here, one faces integrals with overlapping divergences, as one can already see from our simple
example:

∫
d3xδ

(
1 −

3∑

i=1

xi

)
x−ε

1 x−ε
2 x−ε

3

[
2

x1(x1 + x2)
− 2

x1
+ (1 − ε)

x2

x1

]
(81)

The term 1/(x1 +x2) is an overlapping singularity. Sector decomposition [326–328] is a convenient tool
to disentangle overlapping singularities. Here one splits the integration region into two sectors x1 > x2

and x1 < x2, as shown in fig. 59. In the fist sector one rescales x2 as x′2 = x2/x1, while in the second
sector one rescales x′1 = x1/x2. Sector decomposition is discussed in detail in sect. 25.3.

25.2 The subtraction method at NNLO

The following terms contribute at NNLO:

dσ
(0)
n+2 =

(
A(0)

n+2

∗
A(0)

n+2

)
dφn+2,

dσ
(1)
n+1 =

(
A(0)

n+1

∗
A(1)

n+1 + A(1)
n+1

∗
A(0)

n+1

)
dφn+1,

dσ(2)
n =

(
A(0)

n

∗ A(2)
n + A(2)

n

∗A(0)
n + A(1)

n

∗ A(1)
n

)
dφn, (82)

where A(l)
n denotes an amplitude with n external partons and l loops. dφn is the phase space measure for

n partons. Taken separately, each of these contributions is divergent. Only the sum of all contributions

100



p1p2p3p4
Fig. 60: Splitting topology.

is finite. We would like to construct a numerical program for an arbitrary infrared safe observable O.
Infrared safety implies that whenever a n + l parton configuration p1,...,pn+l becomes kinematically
degenerate with a n parton configuration p′1,...,p′n we must have

On+l(p1, ..., pn+l) → On(p′1, ..., p
′
n). (83)

To render the individual contributions finite, one adds and subtracts suitable pieces [329, 330]:

〈O〉NNLO
n =

∫ (
On+2 dσ

(0)
n+2 −On+1 ◦ dα(0,1)

n+1 −On ◦ dα(0,2)
n

)

+

∫ (
On+1 dσ

(1)
n+1 + On+1 ◦ dα(0,1)

n+1 −On ◦ dα(1,1)
n

)

+

∫ (
On dσ

(2)
n + On ◦ dα(0,2)

n + On ◦ dα(1,1)
n

)
. (84)

Here dα
(0,1)
n+1 is a subtraction term for single unresolved configurations of Born amplitudes. This term

is already known from NLO calculations. The term dα
(0,2)
n is a subtraction term for double unresolved

configurations. Finally, dα
(1,1)
n is a subtraction term for single unresolved configurations involving one-

loop amplitudes.

To construct these terms the universal factorisation properties of QCD amplitudes in unresolved
limits are essential. QCD amplitudes factorise if they are decomposed into primitive amplitudes. Prim-
itive amplitudes are defined by a fixed cyclic ordering of the QCD partons, a definite routing of the
external fermion lines through the diagram and the particle content circulating in the loop. One-loop
amplitudes factorise in single unresolved limits as [324, 331–336]

A(1)
n = Sing(0,1) · A(1)

n−1 + Sing(1,1) · A(0)
n−1. (85)

Tree amplitudes factorise in the double unresolved limits as [323, 337–342]

A(0)
n = Sing(0,2) · A(0)

n−2. (86)

To discuss the term dα
(0,2)
n let us consider as an example the Born leading-colour contributions to

e+e− → qggq̄, which contribute to the NNLO corrections to e+e− → 2 jets. The subtraction term

has to match all double and single unresolved configurations. It is convenient to construct dα
(0,2)
n as a

sum over several pieces,

dα(0,2)
n =

∑

topologies T

D(0,2)
n (T ). (87)

Each piece is labelled by a splitting topology. An example is shown in fig. 60. The term D(0,2)
n (T )

corresponding to the topology shown in fig. 60 approximates singularities in 1/s12, 1/(s12s123) and part
of the singularities in 1/s2123. Care has to be taken to disentangle correctly overlapping singularities like
1/(s12s23). Details can be found in [329].
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25.21 One-loop amplitudes with one unresolved parton

Apart from dα
(0,2)
n also the term dα

(1,1)
n , which approximates one-loop amplitudes with one unresolved

parton, is needed at NNLO. If we recall the factorisation formula (85), this requires as a new feature
the approximation of the one-loop singular function Sing(1,1). The corresponding subtraction term is

proportional to the one-loop 1 → 2 splitting function P(1,1)
(1,0) a→bc. An example is the leading-colour part

for the splitting q → qg [330]:

P(1,1)
(1,0) q→qg,lc,corr = −11

6ε
P(0,1)

q→qg,+S
−1
ε cΓ

(−sijk

µ2

)−ε

y−ε

{
g1,corr(y, z) P(0,1)

q→qg + f2
2

sijk

1

y
p/e [1 − ρε(1 − y)(1 − z)]

}
. (88)

This term depends on the correlations among the remaining hard partons. If only two hard partons are
correlated, g1 is given by

g1,intr(y, z) =

− 1

ε2

[
Γ(1 + ε)Γ(1 − ε)

(
z

1 − z

)ε

+ 1 − (1 − y)εzε
2F1 (ε, ε, 1 + ε; (1 − y)(1 − z))

]
. (89)

Here, y = sij/sijk, z = sik/(sik + sjk) and f2 = (1 − ρε)/2/(1 − ε)/(1 − 2ε). The parameter
ρ specifies the variant of dimensional regularisation: ρ = 1 in the conventional or ’t Hooft-Veltman
scheme and ρ = 0 in a four-dimensional scheme. For the integration of the subtraction terms over the
unresolved phase space all occuring integrals are reduced to standard integrals of the form

1∫

0

dy ya(1 − y)1+c+d

1∫

0

dz zc(1 − z)d [1 − z(1 − y)]e 2F1 (ε, ε; 1 + ε; (1 − y)z) = (90)

Γ(1 + a)Γ(1 + d)Γ(2 + a+ d+ e)Γ(1 + ε)

Γ(2 + a+ d)Γ(ε)Γ(ε)

∞∑

j=0

Γ(j + ε)Γ(j + ε)Γ(j + 1 + c)

Γ(j + 1)Γ(j + 1 + ε)Γ(j + 3 + a+ c+ d+ e)
.

The result is proportional to hyper-geometric functions 4F3 with unit argument and can be expanded into
a Laurent series in ε with the techniques of [343, 344]. For the example discussed above one finds after
integration [330]:

V(1,1)
(1,0) q→qg,lc,intr = − 1

4ε4
− 31

12ε3
+

(
−51

8
− 1

4
ρ+

5

12
π2 − 11

6
L

)
1

ε2

+

(
−151

6
− 55

24
ρ+

145

72
π2 +

15

2
ζ3 −

11

4
L− 11

12
L2

)
1

ε
− 1663

16
− 233

24
ρ+

107

16
π2 +

5

12
ρπ2

+
356

9
ζ3 −

1

72
π4 − 187

24
L− 11

12
ρL+

55

72
π2L− 11

8
L2 − 11

36
L3

+iπ

[
− 1

4ε3
− 3

4ε2
+

(
−29

8
− 1

4
ρ+

π2

3

)
1

ε
− 139

8
− 11

8
ρ+ π2 +

15

2
ζ3

]
+ O(ε), (91)

where L = ln(sijk/µ
2).

25.3 Isolation of infrared poles by sector decomposition

As is well known, for ultraviolet divergences a general subtraction scheme to all orders can be established
[326, 345, 346]. For infrared poles, i.e. soft and collinear poles in Minkowski space, the situation is less
settled. Of course, general cancellation theorems like the KLN theorem [318, 319] exist, but a local
subtraction scheme acting on a graph by graph basis and being valid to all orders is not available.
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On the other hand, the use of dimensional regularisation in combination with Feynman (or alpha
[347]) parameters allows in principle to isolate the infrared poles as powers in 1/ε for an arbitrary graph.
The problem is that the corresponding parameter integrals get extremely complicated the more loops
and scales are involved, in particular they exhibit an overlapping structure. A simple example of an
overlapping singularity already has been given in eq. (81).

To address this problem, an automated algorithm43 presented in [328] and sketched below has
been constructed which disentangles the overlapping regions in parameter space by decomposing them
iteratively into subsectors until the divergent contributions factorise. Arrived at the factorised form,
subtractions can be implemented easily. The resulting parameter integrals for the pole coefficients are
in general too complicated to be integrated analytically, but as they are finite, they can be integrated
numerically.

25.31 Multi-loop integrals

The straightforward automatisation of the algorithm is one of its virtues, and this is in particular true
when applied to virtual loop integrals, because the latter, after Feynman parametrisation, have a ”standard
form”: An L-loop graph G in D dimensions with N propagators is, after momentum integration, of the
form

G = (−1)NΓ(N − LD/2)

∞∫

0

dNx δ(1 −
N∑

l=1

xl)
U(~x)N−(L+1)D/2

F(~x, {sij ,mi})N−LD/2
. (92)

The functions U and F can be straightforwardly derived from the momentum representation, or they can
be constructed from the topology of the corresponding Feynman graph [347, 348]. U is a polynomial of
degree L in the Feynman parameters, F is of degree L+ 1 and also depends on the kinematic invariants
of the diagram. The sector decomposition uses representation (92) as a starting point and proceeds as
follows:

⋄ The integration domain is split into N parts, using the identity

∫ ∞

0
dNx =

N∑

l=1

∫ ∞

0
dNx

N∏

j=1

j 6=l

θ(xl − xj) , (93)

such that G becomes a sum over N integrals Gl, where in each ”primary sector” l the variable xl

is the largest one.

⋄ The variables are transformed in each primary sector l as follows:

xj =





xltj j < l

xl j = l

xltj−1 j > l

⋄ By construction, xl factorises from U and F . We eliminate xl in each Gl using

∫
dxl/xl δ(1 − xl(1 +

N−1∑

k=1

tk)) = 1 .

By applying the sector decomposition iteratively, one finally arrives at a form where all singularities are
factorised explicitly in terms of factors of Feynman parameters like t−1−κε

j . Subtractions of the form

∫ 1

0
dtj t

−1−κε
j F(tj , ti6=j) = − 1

κε
F(0, ti6=j) +

∫ 1

0
dtj t

−1−κε
j

{
F(tj , ti6=j) −F(0, ti6=j)

}

43The method of sector decomposition has been used first in [326] for overlapping UV divergences, and applied in a different
context in [327].
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for each j, where limtj→0 F(tj , ti6=j) is finite by construction, and subsequent expansion in ε leads to a
representation of the graph G as a Laurent series in ε:

G =

2L∑

k=−l

Ck(~x, {sij ,mi})
εk

. (94)

The pole coefficients Ck(~x, {sij ,mi}) are sums of integrals over functions of Feynman parameters. Of
course they also contain the kinematic invariants {sij ,mi} defined by the graph. For the numerical
integration of those functions, two cases can be distinguished: If the diagrams depend only on a single
scale, this scale can be factored out and the pole coefficients are just numbers which can be calculated
once and for all. For diagrams depending on several scales, like for example the Mandelstam variables s
and t in the case of the massless L-loop box, the kinematic invariants have to be fixed to certain values at
which the diagram is evaluated. These have to be in the Euclidean region in order to avoid that thresholds
spoil the numerical integration.

As an example for a one-scale problem, we give the result for a five-loop propagator diagram,
shown in Fig. 61. Examples of diagrams depending on four scales are given in Fig. 62, where the two

G[5] = (−s)−4−5εΓ(4 + 5ε) 40.53

Fig. 61: A 5-loop propagator graph

straight lines flowing through the graphs denote massive propagators which can have different masses.
These graphs are the most complicated ones occurring in the calculation of two-loop Bhabha scattering.

(a) (b) (c)

Fig. 62: The two-loop four point master topologies relevant for Bhabha scattering. The wavy lines are massless and the straight

lines are massive, with external legs on-shell. The topologies from left to right are denoted by Ga, Gb, Gc.

Only topology Ga, for the case of one single mass scale, has been calculated analytically so far by
Smirnov [349]. A calculation of all three graphs only exists in the massless approximation [305]. Our

numerical results at two different points for Ga,b,c(s, t, u,m
2,M2) = Γ2(1 + ε)

2∑
i=0

Pi/ε
i are given in

Table 6.

25.32 Phase space integrals

As already explained in detail above, solving the problem of isolating and subtracting the infrared poles
occurring in NNLO phase space integrals, and of integrating over the divergent subtraction terms, is a
major step towards a (partonic) Monte Carlo program calculating processes like for example e+e− → 2
or 3 jets at NNLO. The method of sector decomposition can also be very useful for this task, as it is
a general method to isolate (overlapping) poles in parameter space. Its first application to phase space
integrals can be found in [350], further developments of the method will be sketched in the following.

In order to be able to use the automated sector decomposition procedure for phase space integrals,
the phase space has to be cast into a ”standard form”, similar to (92) for loop integrals. For example, a
1 → 4 parton phase space is most conveniently written as

∫
dPS4 = KΓ (q2)

3D
2
−4

∫ { 6∏

j=1

dxj Θ(xj)
}
δ(1 −

6∑

i=1

xi)
[
− λ(x1x6, x2x5, x3x4)

]D−5
2

Θ(−λ) ,
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(−s,−t,−u,m2,M2) (1/5, 3/10, 7/2, 1, 1) (5/3, 4/3, 5, 1, 3)

Ga Gb Gc Ga Gb Gc

P2 -1.561 -0.5255 -1.152 -0.08622 -0.03483 -0.05832

P1 -5.335 -0.2024 -3.690 -0.04195 0.07556 0.05389

P0 1.421 3.606 1.555 0.7323 0.1073 0.6847

Table 6: Results for the double box graphs for Bhabha scattering

where the parameters xi are rescaled Mandelstam invariants, defined by

x1 = s12/q
2, x2 = s13/q

2, x3 = s23/q
2, x4 = s14/q

2, x5 = s24/q
2, x6 = s34/q

2

and KΓ = (2π)4−3DV (D − 1)V (D − 2)V (D − 3) 21−2D , V (D) = 2πD/2/Γ(D/2).
λ(x1x6, x2x5, x3x4) is the Källen function, λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz).

In order to calculate the real emission part where up to two particles can be unresolved using the
method of sector decomposition, there are several ways to go, ranging from the use of this method only
as a check for integrals over subtraction terms calculated analytically to an almost completely numerical
approach relying largely on this method. The former has been employed in [351], where it has been
shown that any term appearing in a phase space integral of a 1 → 4 matrix element in massless QCD
can be expressed as a linear combination of only four master integrals, where one of them is the ”trivial”
integral over the phase space alone. In the notation introduced above, the remaining three master integrals
are

R6 = (q2)−2

∫
dPS4

1

(x2 + x4 + x6)(x3 + x5 + x6)
(95)

R8,a = (q2)−4

∫
dPS4

1

x2x3x4x5
(96)

R8,b = (q2)−4

∫
dPS4

1

x2x3(x2 + x4 + x6)(x3 + x5 + x6)
. (97)

Their analytical evaluation could be achieved by calculating R8,a explicitly and deriving the others from
unitarity relations involving known results for three-loop two-point functions. The numerical results
obtained by the sector decomposition algorithm,

R6 = SΓ(q2)−2ε
[
0.64498 + 7.0423ε + 40.507ε2 + O(ε3)

]

R8,a = SΓ(q2)−2−2ε

[
5.0003

ε4
− 0.0013

ε3
− 65.832

ε2
− 151.53

ε
+ 37.552 + O(ε)

]

R8,b = SΓ(q2)−2−2ε

[
0.74986

ε4
− 0.00009

ε3
− 14.001

ε2
− 52.911

ε
− 99.031 + O(ε)

]

SΓ =
(4π)3ε

211π5

(q2)−ε

Γ(1 − ε)Γ(2 − 2ε)
,
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agree with the analytical results within a numerical precision better than 1%.

The algorithm can also be employed to avoid complicated analytical integrations over subtraction
terms completely. The singularities can be extracted as outlined above, and the pole coefficients can be
calculated numerically to a high precision to check their cancellation against the double virtual respec-
tively one-loop virtual plus single-real-emission counterparts. The remaining functions are finite, and
the combination with an arbitrary (infrared safe) measurement function is straightforward as it does not
hamper the numerical integration. In this way, fully differential Monte Carlo programs for 1 → n parti-
cle/jet processes can be constructed. A first step in this direction already has been undertaken in [352],
where the contribution proportional to Nf of e+e− → 2, 3 or 4 jets has been calculated using sector
decomposition techniques.

Certainly, the automated sector decomposition algorithm applied to phase space integrals can also
be useful in cases where massive particles are involved. As has been already proven by explicit examples
in the case of loop integrals [353], masses do not present a principle problem for the method, but of
course care has to be taken that thresholds do not destroy the numerical stability.
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[48] T. Sjöstrand, these proceedings.

[49] T. Affolder et. al.,, CDF Collaboration Phys. Rev. Lett. 84 (2000) 845–850,
[hep-ex/0001021].

[50] C. Balazs et. al., these proceedings.

[51] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B564 (2003) 65–72,
[hep-ph/0302104].

[52] C. Balazs and C. P. Yuan, Phys. Lett. B478 (2000) 192–198, [hep-ph/0001103].

[53] A. Kulesza, G. Sterman, and W. Vogelsang, Phys. Rev. D69 (2004) 014012,
[hep-ph/0309264].

[54] E. Berger and J. Qiu, Phys. Rev. D67 (2003) 034026, [hep-ph/0210135].

[55] S. Frixione and B. Webber, JHEP 06 (2002) 029, [hep-ph/0204244].

[56] S. Frixione, P. Nason, and B. Webber, JHEP 08 (2003) 007, [hep-ph/0305252].

[57] G. Corcella et. al., JHEP 01 (2001) 010, [hep-ph/0011363].
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