The LR Transformation-Part 2

9. The Basic Iteration, Conjugate Complex Eigenvalues

The QR transformation consists of forming a sequence
of matrices $\boldsymbol{A}^{(k)}$, where

$$
\boldsymbol{A}^{(1)}=\boldsymbol{A}, \text { the given matrix }
$$

$$
\boldsymbol{A}^{(k: 1)} \boldsymbol{Q}^{(k) *} \boldsymbol{A}^{(k)} \boldsymbol{Q}^{(k)}
$$

The matrix $\boldsymbol{Q}^{(k)}$ is unitary and is chosen so that $\boldsymbol{Q}^{(k) *} \boldsymbol{A}^{(k)}-\boldsymbol{R}^{(k)}$ where $\boldsymbol{R}^{(k)}$ is an upper triangular

In fact we shall use the generalized transformation (12) discussed in Section 8 in which $\boldsymbol{Q}^{(k)}$ is chosen so that $Q^{(k)}\left(\boldsymbol{A}^{(k)}\right.$
the origin shift $\zeta^{(k)}$ accelerates the convergence of the last diagonal clement. We call the transformation of
 of the QR transformation in finding the eigenvalues of non-hermitian matrices which we shall consider to have
been reduced to almost triangular form. If the matrix is real we must expect conjugate complex pairs of eigenvalues to be present. If these pairs are the only eigen-
values of equal modulus-which is likely-we know by theorem 9 that under the transformation the pairs will
 equations.

The method of accelerating the convergence of the last diagonal element by using the generalized trans-
formation is virtually useless when we are concerned formation is virtually useless when we are concerned
with a pair of complex eigenvalues if the origin is shifted only by real quantities. This is clearly because we cannot move arbitrarily close to either of the roots by such a case, and this would appear to involve us in generating complex matrices although the matrix is initially real. To avoid this we develop a more sophisticated tech-
nique. Intuitively we would expect that a scheme of

PROOF. The vector e_{1} is a combination of all the right
 is given by $\boldsymbol{u}_{i}{ }^{*} \boldsymbol{e}_{1}=\bar{u}_{1 i}$ and by theorem 8 none of the

 elements being non-zero. Now from theorem 10 we have
$\left.{ }_{(y)}\right)^{\ell}={ }_{(y)} d_{(y)}^{\prime!} s={ }^{\prime} \boldsymbol{a}_{(y)} S{ }_{(y)} d-{ }^{i} \boldsymbol{a}_{(y)} \amalg$
pue (y)
pue.
 we use for performing a double iteration. At the k th ormation of $A^{(k)}$ such that $A^{(k 2)}-W^{*} A^{(k)} W$ with the sole requirement that
$\boldsymbol{\kappa} \boldsymbol{w}_{1}-\left(\boldsymbol{A}^{(k)}-\zeta^{(k)} \boldsymbol{I}\right)\left(\boldsymbol{A}^{(k)}-\zeta^{(k \quad 1)} \boldsymbol{I}\right) \boldsymbol{e}_{1} \cdots \boldsymbol{\gamma}_{1}$
 either both real or conjugate complex origin shifts.
Thus we do not have to find the transformation by the unitary-triangular decomposition of
 matrix, γ_{t}, which is trivial to compute. The equations (13) formation, but for this method to be stable in practice each new column w_{j-1} has to be "reorthogonalized" against all the previous \boldsymbol{w}_{i}. In fact we shall use an
elimination procedure and this is much more economical; it is described in detail later

Before going into the details of a QR algorithm it is necessary to remark on some of the conditions imposed matrices and on matrices with zero subdiagonal elements α_{i} has been excluded. Yet it would appear that our whole objective is to reduce the elements α_{i} effectively
to zero and to hasten this process by origin shifts as
lose to the eigenvalues as possible.
The shift of origin will certainly tend to make the
matrix $\boldsymbol{A}^{(k)}-\zeta^{(k)} \boldsymbol{I}$ singular, and when singular (or, in practice, nearly singular) the iteration (however computed) will not be fully determined. In theory, if the
$\alpha_{i}^{(k)}$ are non-zero, the matrix after the iteration will be

the two origin shifts on the roots of the submatrix
 sufficiently close to these eigenvalues. arithmetic in the intermediate stages, and appreciably more work than that required by two iterations with real shifts. Since the matrix is real before and after a "double iteration," we are led to look for a purely real - хәן

> Now we know that
$\boldsymbol{A}^{(k \cdot 2)}=\boldsymbol{Q}^{(k \cdot 1) *} \boldsymbol{Q}^{(k) *} \boldsymbol{A}^{(k)} \boldsymbol{Q}^{(k)} \boldsymbol{Q}^{(k \cdot 1)}$
$\left(\boldsymbol{A}^{(k)}-\zeta^{(k)} \boldsymbol{I}\right)\left(\boldsymbol{A}^{(k)}-\zeta^{(k \cdot 1)} \boldsymbol{I}\right) \quad \boldsymbol{Q}^{(k)} \boldsymbol{Q}^{(k \cdot 1)} \boldsymbol{R}^{(k \cdot 1)} \boldsymbol{R}^{(k)}$.
x!ıpu ןea. әyt wioj of aq pinom poytau ouo snyd
 transform $A^{(k)}$ by means of this, giving $A^{(k \cdot 2)}$. This

 o be applied to $\boldsymbol{A}^{(k)}$.

Suppose an almost triangular matrix with real non-
egative subdiagonal elements is similar, through a unitary transformation, to another matrix (whether

 $f_{i j}=\boldsymbol{w}_{i}^{*} A \boldsymbol{w}_{j} \quad$ for $i=1, \ldots, j$

We can thus see that the transformation is uniquely characterized by $\boldsymbol{w}_{\mathbf{1}}$ up to the first zero subdiagonal element $f_{j j: 1}$. If \boldsymbol{w}_{1} can be analysed into a linear
combination of all the right eigenvectors, and there are oo repeated eigenvalues, then \boldsymbol{h} will not vanish till $j-n$. We can now prove an important theorem:

Theorem 11. Suppose that A is a diagonalizable almost triangular matrix with real, positive (non-zero) ubdiagonal elements, and suppose that it is transformed
by a unitary matrix \boldsymbol{W} into another almost triangular matrix $\boldsymbol{W}^{*} \boldsymbol{A} \boldsymbol{W}$ which has real, non-negative subdiagonal lements. Then if the first column of W is given by
1
that arise are concerned with the conjugate complex hat arise are concerned with the conjugate complex
eigenvalues of a real matrix and with equal eigenvalues. Other cases are hardly likely to cause any difficulty (none has occurred in practice) because real origin shifting with a real matrix and complex shifting with a complex matrix are almost certain to break up the groups in question. We have already outlined the strategy for dealing with complex conjugate pairs in a real matrix. and will expound it in detail below. In the theoretical
reatment we have said (theorem 7) that equal eigenvalues of a diagonalizable almost triangular matrix will necessarily be associated from the start with isolated
 of matrices that cannot be diagonalized. Analysis
ndicates that a group of equal eigenvalues, belonging ndicates that a group of equal eigenvalues, belonging
o a non-linear elementary divisor of a non-diagonalizable matrix, will become associated with a principal submatrix, as will most other groups of eigenvalues with
equal modulus.

In practice, on account of round-off crrors, one is concerned not so much with strict equality and whether
the matrix can be diagonalized or not, but with the extent to which very close eigenvalues are well or illdetermined. In the diagonalizable case we shall generally not obtain zero subdiagonal elements in the initial reduction to almost triangular form, and the eigenvalues
will appear in the same submatrix (not exactly equal) in

 technique we can always solve a quadratic to find just
two equal eigenvalues.)

11. Practical Computation

We describe below two different algorithms in which the QR transformation is applied to almost triangular
matrices. Programs using these algorithms have been written for the Pegasus computer. The first is the simplest, but it does not deal very satisfactorily with a real matrix with complex roots; the second is designed
for this problem and is based on the method introduced
teration can be performed in various ways Different methods may or may not require the explicit
formation of either the matrix \boldsymbol{R} or the matrix Q, or Q may exist only as a product of factors. Methods also vary in the number of mustiplications and storage locastability. Almost triangular matrices are certainly best stability. Almost triangular matrices are certainly best
transformed by an elimination procedure, for the number of multiplications will then be proportional to the square,
not the cube, of the order n.

 iteration technique in theory will behave similarly, the Wilkinson (1959) has demonstrated that a process of deflation like this due to Givens (1958) is quite unreliable in practice. With this process the origin is shifted to an arbitrary eigenvalue, and because this shift and the arithmetic cannot be exact it can happen that the ele-
ment of the transformed matrix which should be equal ment of the transformed matrix which should be equal, off-diagonal element is not small. In these circumstances, reducing the order of the matrix will have disastrous onsequences.

Fortunately, however, the objections to the Givens
ransformation do not apply to our case. Primarily his is because we never deflate the matrix until we know that we can-that is, not until the last subdiagonal element is effectively zero. The worst that can happen is that we continue to iterate and however ill-determined
the transformations may be, though they may upset convergence, they cannot radically effect the eigenvalues because we can always ensure that they are unitary. Secondly, the origin shifts we use are essentially of a ype which behave stably in the Givens deflation process
and hence in our iterations leading up to deflation. and hence in our iterations leading up to deflation.
Wilkinson shows that if the nth component of the row cigenvector associated with the origin shift is large, then
the practical process behaves as it should in theory.
 This is exactly the situation we have, for our origin
shifts are based on the eigenvalue to which the nth diagonal element is converging, and obviously the associated eigenvector tends to e_{n}^{*}. Thus we can con-
fidently expect the iterations to be stable, any ill-determinacy not disturbing convergence, and this is confirmed in practice. (The most unstable situation would

 will always suffice to convert the matrix to a form in

 below. When they become effectively zero we partition
or deflate the matrix, and we do this if some are initially zero. If they are small then the transformations will be sufficiently defined, for ratios of two small quantities will not normally be involved. If such ratios are
involved, however, we have a situation closely coninvolved, however, we have a situation closely con-
nected with the effect of unstable near-singularity and,
 number of iterations. In the second method to be described, essential significance is lost in certain transi-
tional subdiagonal elements unless they are scaled up. If this is done the situation is as for the first method. Anotues of equal modulus. The only serious problems

The iteration is quite easily programmed in fixed-
 preserve the unitary property of the transformation by
ensuring that $\left|\mu_{i}\right|^{2}+v_{i}^{2}-1$ for each i (when $i=n, ~$ ensuring that $\left|\mu_{i}\right|^{2}+v_{i}^{2}=1$ for each i (when $i=n$,
$" v_{i} "=0$). This is done by shifting up the double-length quantity $|\beta|^{2}+\alpha^{2}$ in (14) before taking the square root

$-\geq$
$\therefore \div i=00$

-
$-$

First Method
In the first method we shall consider the matrix to be either real or complex. The $n-1$ subdiagonal clements assume to be non-zero and real, are eliminated in turn by a series of elementary unitary transformations starting with a_{21}. This is essentially the process described in Section 3 applied to almost triangular
typical stage in the reduction would be*
\qquad
 and ν. We obtain $\kappa=2 \quad \forall \kappa$ as the diagonal element. If the matrix is real all the arithmetic in an iteration
real; if the elements below the diagonal are real (this is real; if the elements below the diagonal are real (this complex we see that the v_{i} are real and the subdiagonal elements remain real after each iteration. There are bout $4 n^{2}$ multiplications in a real iteration and $12 n^{2}$ in he complex case.

In the Pegasus computer the matrix is stored by columns on a magnetic drum, and efficient access to the
 inefficient, but we deal with this difficulty by a change in the order of the operations. We perform the row operations one column at a time: that is, on eliminating

- - - - -
- - - - - -

,
" シ 》
$\theta \theta$
$\sigma \sigma$
 on its elements before eliminating $a_{i} 2_{1}-1$. This is
 an iteration.

The programs which have been written will find the eigenvalues of arbitrary real matrices (initially reducing
them to almost triangular form). The convergence of

making a simple test on the sum of the moduli of the imaginary parts, and to use real arithmetic for a rea
shift unless this is not sufficiently small. If the program had been written for finding the eigen-

 mined in the same way as the real shifts with a real matrix

The subdiagonal elements $a_{n n, 1}$ and $a_{n, 1 n-2}$ are
 the matrix and print out the one or two eigenvalues
found. Here we can mention another point: while the iterations proceed, all the subdiagonal elements (or at least those separating certain submatrices) are tending to zero, and some may well become zero. We therefore

 also ensures that a condition is fulfilled for some earlier
remarks and theorems to be true.

Second Method

 one real operation.
We know that th

$$
\begin{aligned}
& \text { now that the result of two iterations, } \\
& A^{(k: 2)}=Q^{(k \cdot 1) *} Q^{(k) *} A^{(k)} Q^{(k)} Q^{(k}
\end{aligned}
$$

$$
\cdot\left(\boldsymbol{I}(\mathrm{I}+\boldsymbol{y}) \hat{y}-{ }_{(y) \boldsymbol{V}} \boldsymbol{H}\right)\left(\boldsymbol{I}(y) \text {) }-{ }_{(y)} \boldsymbol{V}\right)=\mathbf{I}
$$

then $\boldsymbol{W}^{*} \boldsymbol{\Gamma}=\boldsymbol{\Delta}$ (say) is an upper triangular matrix. However, we showed in Section 9 that it is unnecessary to form the matrix $\boldsymbol{\Gamma}$ to find \boldsymbol{W}, because $A,{ }^{2}$ is with the almost triangular natures of $\boldsymbol{A}^{(k)}$ and $\boldsymbol{A}^{(k: 2)}$. The first column of $\boldsymbol{\Gamma}, \boldsymbol{\gamma}_{1}$, gives the first column of \boldsymbol{W}
which defines the transformation.

Now \boldsymbol{W}^{*} is a unitary matrix which reduces $\boldsymbol{\Gamma}$ to the
triangle $\boldsymbol{\Delta}$, and \boldsymbol{W} is therefore composed of n unitary
 that $\boldsymbol{W}=N_{1} N_{2} \ldots N_{n}$. The pre-multiplication of $\boldsymbol{\Gamma}$ below the diagonal to be eliminated in turn column by column; the last factor \boldsymbol{N}_{n}^{*} (in which \boldsymbol{M}_{n}^{*} is scalar) merely ensures that $\delta_{n n}$ is positive. From the form of
each N_{i} we see that the first column of W is equal to the first column of $\boldsymbol{N}_{1}-\boldsymbol{M}_{1}$, and this is any unitary matrix the transpose of which eliminates the unwanted elements
in the first column of Γ. (There are two such elements to eliminate because $\boldsymbol{\Gamma}$ is the product of two almost
 first step let us operate on it with \boldsymbol{N}_{1}, which is deter-
mined so that $N_{1}{ }^{*} \gamma_{1}=\boldsymbol{\delta}_{1}=\delta_{11} e_{1}$ by any suitable
 alue according to the principle described in Section 8. We subtract a quantity $\zeta^{(k)}$ from the diagonal of the
matrix before the k th iteration and add it back again matrix before the k th iteration and add it back again
afterwards. Before the k th iteration we find the roots

 differs least from the last diagonal element $a_{n, 1}^{(k)}$ and we call this quantity $\lambda^{(k)}$. We then compare this with the previous similar quantity $\left.\lambda^{(k} 1\right)$ (initially $\lambda^{(0)}-0$),
which we have retained. by testing the size of If this quantity is less than $\frac{1}{2}$ we set

 binary place of significance has been achieved. (See
footnote on page 339 .)

The other case to be considered occurs when the roots of the last 2×2 submatrix are complex. If it is known the real part of these roots as the potential origin shift; the real part of these roots as the potential origin shift;
otherwise, with the present algorithm, we may be compelled to do a complex iteration, for we set $\lambda^{(k)}$ to one of the $2: 2$ roots, compare it with $\lambda^{(k \cdot 1)}$ (disregarding the sign of the imaginary part), and make $\zeta^{(k)}-\lambda^{(k)}$
or 0 . If $\zeta^{(k)}$ is non-zero the iteration, being complex,
 form and we set $\lambda^{(k \cdot 1)}=\lambda^{(k)}$ for the next comparison.
 complex arithmetic necessary, but it was incorporated in the program because the more sophisticated method
discussed later had not been developed at the time.) The arithmetic for a real iteration is performed separate section of the program from that used for a complex one, and it is appreciably faster. Unfortunately
it is not strictly accurate to say that an iteration employing a complex shift followed by one using the conjugate shift returns the matrix to the real form. It is probably possible for the second of a pair of such iterations to
be badly determined, with the effect that some of the maginary parts will not disappear. This has not yet caused any difficulty in practice, and it is possible that
it only can happen in the last two columns in circumstances when the arithmetic will remain complex until deflation occurs, and the situation rights itself. The only purpose of returning each time to a real matrix is to save time when finding real roots. If we give up this
objective (for example, for matrices with few real roots) he difficulty can be overcome by using complex arithmetic once a complex shift has occurred for all subsemit the alternate conjugate shifts. However, because

change the change

where the elements changed by the row and column
operations are underlined and primed respectively．The operations are underlined and primed respectively．The
resulting matrix is no longer almost triangular and so，
 reduce $\boldsymbol{N}_{1} \boldsymbol{A}^{(k)} \boldsymbol{N}_{1}^{*}$ to almost triangular form．This reduction is easily accomplished column by column by any unitary elimination procedure，and since such a
process will use a series of transformations which have jo jonpoıd əц1＂N＂．＂̃ N se wiof әues әч all the transformations on $\boldsymbol{A}^{(k)}$ will have the required derived for a＂double iteration＂is therefore to perform derived for a double iteration＂is therefore to perform
an initial transformation on $\boldsymbol{A}^{(k)}$ ，and to reduce the
 （Wilkinson，1960），obtaining $\boldsymbol{A}^{(k-2)}$ ．The individual
 account of our earlier reasoning their product must be
so，provided the subdiagonal elements of $\boldsymbol{A}^{(k)}$ are

A typical stage in the iteration can be illustrated thus：

$$
\begin{aligned}
& \text { HMNMNEOOO } \\
& \text { けNMNMOOOOミざ }
\end{aligned}
$$

\qquad
NNN NININIOOO nNNMIMNOOO NNNNININOO in in in itis in in in ivitis边过过完行 $\leq 5 \leq 510101$
5 ± 5 ≤ 5
WHNHNOOかいこここ$5=5$
$5=$
 perform all the operations in an iteration with floating－
 be separated from the rest．On Pegasus，however， floating－point operations have to be specially pro－

Householder＇s method has been chosen for carrying and the program is easy to write．With this method the transformation matrices are of the form

$$
N_{i}-N_{i}^{*}=I-2 t_{i} t_{i}^{*}
$$

 elements $t_{i j}$ are given by：
＇ $2+!<$ ！pue ！$>$ ！ $\operatorname{lof} 0=!!$

$$
2 \frac{d_{30}}{\kappa t_{i i}}
$$

 one of the square roots here and reduce the number of
where $\phi-\frac{d_{10}}{\kappa}, \psi_{1}-\frac{d_{20}}{\kappa+d_{10}}$ and $\psi_{2}=\frac{d_{30}}{\kappa+d_{10}}$ ．（15）
These last three quantities cannot be greater than one， and therefore can be stored in fixed－point form for the with floating－point arithmetic there is no difficulty，but if they should be formed with fixed－point arithmetic the unitary property of N_{i} would have to be maintained，
either by shifting up their components（as in the first method）or else by computing ϕ as $\frac{2}{1+1 / 2} \cdots 1$ ． Whatever the inaccuracies in ψ_{1} and ψ_{2} the second mend it in floating－point working for reducing round－off As illustrated above the i th $(i+1)$ th and $(i+2)$ th $\left.\boldsymbol{a}_{i}, \boldsymbol{a}_{i}, \boldsymbol{a}_{i+2}\right]$

 o that，if $\boldsymbol{\eta}=(1+\phi)\left(\boldsymbol{a}_{i}+\psi_{1} \boldsymbol{a}_{i-i}+\psi_{2} \boldsymbol{a}_{i: 2}\right)$ ，$$
z_{i}^{*}=\left[0, \ldots, 0,1, \psi_{1}, \psi_{2}, 0, \ldots, 0\right]-\frac{1}{t_{i j}} \cdot t_{i}^{*}
$$

$$
{ }_{*}^{l} z^{\prime} z(\phi+\mathrm{I})-I-{ }^{!} N \text { ภิu!u!叉⿺qo }
$$

$$
\text { where } \phi-\frac{d_{10}}{\omega}, \psi_{1}-\frac{d_{20}}{1} \text { and } \psi_{2}=\frac{d_{30}}{}
$$ rows and columns are changed when the matrix is

multiplied before and after by \boldsymbol{N}_{i} ．For the operation on the columns we have －
－
ت

 positions $(i+3, i)$ and $(i+3, i+1)$ ，non－zero－they
 that the row operation eliminates d_{20} and d_{30} in posi－ ions $(i+1, i-1)$ and $(i+2, i-1)$ as is required，

 әм ว．IวपL Lit！

 elements，and the size of those off the diagonal，in the

 triangular matrix in immediate－access storage，each row
 can each column operation．On Pegasus，storing the
matrix by columns，we meet the problem of access to rows in a similar way to that described in the first method．
We have stated above that it is essential to partition the matrix and operate on a submatrix when any element $a_{i+1}=0$ ．This is no disadvantage and is in fact the
obvious device used in the first method，mainly to save unnecessary work．（If the elements of the matrix are
 vanish at any stage，but for the purposes of saving work

 iteration to find the smallest q such that all $a_{i=1 i} \neq 0$
The program written for this method also incorporates a further device which often results in a significant
saving of work．When the product of the $(i-1)$ th elements is small enough to be treated as zero，it may be possible to start the iteration
 to do this：we find the initial quantities ϕ, ψ_{1} and ψ_{2}
from $a_{i i}, a_{i i}, a_{i-1}, a_{i-1 i+1}$ and a_{i}, and perform （notionally）the first row operation．The previously

 $-\frac{a_{i i}}{k}-d_{30}$ ．Clearly，if both these are sufficiently small they can be ignored and we can start the iteration
in column i ．A satisfactory criterion for this proves in column i ．A satisfactory criterion for this proves
to be the size of

路
complex shifts, which are alternately conjugate, with an essentially real matrix

12. Conclusion

The principal merits and demerits of the two versions at this stage. The first method has the advantage of being conceptually simple, and the programming would present no difficulties on most machines. Experiments
have shown that it is a powerful technique for finding have shown that it is a powerful technique for finding
the eigenvalues of real unsymmetric matrices when the eigenvalues are all real. Unfortunately this is often not the case, and there are distinct disadvantages when the method is adapted to finding conjugate complex
pairs of eigenvalues of a real matrix, the main one pairs of eigenvalues of a real matrix, the main one
being the increase which becomes necessary in the amount of work and the storage space required by the complex arithmetic. In this instance one would naturally

 The second variation of the algorithm is designed to
deal satisfactorily with the general case of a real unsym-
 metric matrix having both real and complex eigenvalues.
The arithmetic is real throughout and there is no significant distinction between finding real and complex roots. No more storage space is required than that needed for the original matrix. It is remarkable how finding complex pairs of roots, for two complex itera-
 plications as opposed to $5 n^{2}$ multiplications of the double iteration of the second method. (Use of the House-
holder rather than the Givens type of eliminations

 using some sort of floating representation for some of

 have presented it (particularly in the second method) reduction to almost triangular form and iteration-and reduction to almost triangular form and iteration-and
neither involves using multiples greater than one. One would therefore expect the round-off errors to build up only gradually, and in practice this is borne out, no stage requiring greater than single-length precision.
Unitary similarity transformations cannot change the

 process is also one which combines guaranteed linear convergence with convergence of a higher order, and ness and stability as well as efficiency. Deflation is automatic, and criteria for convergence are simple.

 $1 \leqslant q \leqslant p<n$.
 beginning at the q th element of each column. Notice that if $p>q$ it is necessary to change the sign of the

After each iteration the roots of the 2×2 principal submatrix $\left[\begin{array}{ll}a_{n-1 n-1} & a_{n-1 n} \\ a_{n-1} & a_{n-1}\end{array}\right]$ are found, and the subdiagonal elements $a_{n n-1}$ and $a_{n \cdot 1 n-2}$ are inspected. If either or both of these is zero (or effectively zero) the
program prints the appropriate eigenvalue or eigenvalues, and the order of the matrix is reduced by one or two. If the order of the reduced matrix is less than three the
remaining eigenvalues are found and printed; otherwise remaining eigenvalues are found and printed; otherwise
the roots of the new lowest principal 2×2 submatrix are calculated and the new subdiagonal elements $a_{n n-1}$ and $a_{n-1 n-2}$ are tested (as after an iteration), and we else print the appropriate eigenvalues and deflate as

 respectively, and, having retained the two previous

 \qquad tities. If they are both greater than $\frac{1}{2}$ we set

 $\zeta^{(k)}$ and $\zeta^{(k ; 1)}$ to be the real part of either $\lambda^{(k)}$ or $\lambda^{(k \cdots 1)}$,
whichever corresponds to the quantity less than $\frac{1}{2} *^{*}$ We then have $\rho=\zeta^{(k)} \zeta^{(k \cdots 1)}$ and $\sigma=\zeta^{(k)}+\zeta^{(k-1)}$ and proceed to find p and q for the iteration.

The system of origin shifting used here and in the
first method is not the only one possible and may not be the best. For example, there are some advantages in using a "non-restoring" type of shifting, in which any
shift, or pair of shifts, which is set zero in the present system is replaced by the shift or pair of shifts used in

* The experimental work has been done with a criterion of $\frac{1}{2}$,
but this is somewhat arbitrary and there are indications that a 0
0
0
0

Matrix A

Pegasus, on which they have to be specially programmed, but this proportion decreases as the order of the matrix

In Table 2 the number of iterations needed, and the time taken to find the eigenvalues of each of the five
matrices, are set out with some of the other relevant matrices, are set out with some of the other relevant
details. In each case the convergence criterion for the subdiagonal elements was exactly zero. To appreciate
the times given we should mention that Pegasus has an the times given we should mention that Pegasus has an
addition time of about 0.3 msec , and a multiplication time of about 2 msec . Floating-point addition in this

The matrices are given in Tables 3 to 7, and their eigenvalues in Tables 8 to 13 . In the latter, the eigenvalues of $\boldsymbol{A}, \boldsymbol{B}$, etc., are given accurate to 2 or 3 decimal
places; the almost triangular matrices formed are repreplaces; the almost triangular matrices formed are repre-
sented by a subscript T, e.g. C_{T}, and where I know their accurate eigenvalues I give the figures that differ from those of the original matrices. The eigenvalues of $\boldsymbol{A}_{\boldsymbol{F}}$, the figures that differ are given. Notice that the eigenvalues of A_{F} in Table 8 have no figures after the decimal
 matrix \boldsymbol{E} are given in Table 12.

 - timuntoo

abo

 by scaling the rows and columns initially. It should always be possible to take out a scaling factor and

The notation employed is the same informal publica-tion-language version of Algol used by Strachey and
Francis (1961). In the first algorithm it has proved conFrancis (1961). In the first algorithm it has proved con-
venient to extend Algol to allow the type declarators complex and complex array. Where the meaning may
not be quite clear notes are given in the form of comments.

Procedure QR Iteration $1(a)$ order (n) shift (ζ)

 әЧ7 jo snjnpou әч1 sind чग! largest element in the subdiagonal position at each stage

The elements of the matrix are stored in floating-point

 и $1083 \boldsymbol{7} \mathrm{I}_{\mathrm{I}}$
Complex array $a[1: n, 1: n]$

Note.- κ can only be zero when $i=n-1$ because in all other cases $\gamma_{3} \neq 0$ due to the subdiagonal elements
being non-zero.

