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The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations

and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit

is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary

forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues

if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed

large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-

effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment.

Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large

numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the

molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental

evolutionary questions, they are essentially misleading about many others.
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Many lines of inquiry in evolutionary biology share the goal

of identifying the allelic variants that underlie phenotypic vari-

ation and divergence. In fields from evo-devo to population ge-

netics, the hope is that the identities of the functional variants

will reveal the position of nature in the parameter space de-

fined by the extremes of our models: additivity versus pervasive

epistasis, pleiotropy versus modularity, oligogenic versus poly-

genic adaptation, micro- versus macromutation, common versus

rare alleles, protein coding versus cis-regulatory, balancing se-

lection versus mutation-selection balance. If only we could put

our hands on the actual causal variants, the quantitative trait nu-

cleotides (QTNs), maybe we could put these tired old debates

to bed (Tanksley 1993; Orr 1999; Barton and Keightley 2002;

Phillips 2005; Mitchell-Olds et al. 2007; Stern and Orgogozo

2008). This is the QTN program, and its admirable commitment

to empiricism so dominates research in molecular evolutionary

genetics that its premises are rarely questioned. By broad con-

sensus, all we need to do to answer our questions is to identify

the alleles that affect phenotypes. At some point, the catalog

of QTNs will be sufficiently large that patterns and their inter-

pretations will be obvious to all. The major debate currently

seems to be over the question of whether we have already ar-

rived at that point or whether we need to collect more QTNs

(Pennisi 2008, 2009).

For the QTN program to succeed, the allelic variants it dis-

covers must be representative examples of the underlying pool

of QTNs. I argue that this condition is rarely met, and, perhaps,

cannot be met. Progress requires that we carefully distinguish be-

tween questions answerable by the QTN program and those that

demand alternative approaches.
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Statement of the Problem
In January 1848, James Marshall found gold flakes in the millrace

of John Sutter’s saw mill. Within months, news of the discovery

leaked and the rush was on. Thousands left home, rounding the

Cape, crossing the Isthmus, or joining the wagon trains headed

west. Soon the easy pickings were gone, and consortia of min-

ers banded together to blast more flakes from the hills. Extrac-

tion technologies proliferated: first rockers and long toms, then

gravel dredges, and finally hydraulic mining, which washed whole

mountains through giant sluices to recover dense gold flakes from

the riffles.

Modern day QTN prospecting is the Sierra Nevada of the

1850s. The shiny (Mendelian) nuggets are rapidly being collected,

and ever larger teams of researchers with ever more powerful

technologies are now probing whole genomes to find their quarry.

But visible flakes of placer gold represent a small fraction of

the global gold reserve; most gold is in microscopic particles

concealed in low-grade ore (Mudd 2007). These particles are

immune to mechanical separation. If the stuff of evolution is often

alleles of microscopic effect, large-effect nuggets can tell us little

about the material basis for evolution. All of the questions that

the QTN program promises to answer are confounded by a more

basic question: what is the phenotypic effect-size distribution of

evolutionarily relevant mutations?

Although our current catalog of QTNs has provided insights

into both the evolutionary forces and the functional mechanisms

by which alleles shape phenotypic variation and divergence (Stern

and Orgogozo 2009), it represents a biased sample of evolutionary

causes and molecular functions. The answers the catalog provides

may not be germane to many of the questions we asked in the first

place. More general answers about ultimate and proximal causes

of phenotypic variation and evolution may be resting undiscovered

in the piles of waste rock tailings recklessly strewn by our QTN-

mining machinery.

The problem of ascertainment bias is not a new one: it was a

focus of Lewontin’s 1974 book, The Genetic Basis of Evolutionary

Change. The problem, in its basic formulation, is what Lewon-

tin termed an epistemological paradox: “What we can measure

is by definition uninteresting and what we are interested in is by

definition unmeasurable” (p. 23). The difficulty through much of

the 20th century was that the genes underlying phenotypic vari-

ation and divergence were detectable only when they had such

dramatic effects as to behave as Mendelian genes, with genotypes

inferable from phenotypes. These genes were believed to be of

little consequence for evolution, according to Lewontin: “the sub-

stance of evolutionary change at the phenotypic level is precisely

in those characters for which individual gene substitutions make

only slight differences as compared with variation produced by

the genetic background and the environment.” This micromuta-

tionist perspective, with its dismissal of large-effect alleles, was

hardly unique to Lewontin (e.g., Charlesworth et al. 1982). It

was based on the preceding half century of evolutionary biology,

built on the synthesis forged between biometrical and Mendelian

genetics. The critical model underlying this synthesis is the in-

finitesimal, derived from Fisher’s polygenic model of inheritance

(Fisher 1918), a simple abstraction that attributes continuous vari-

ation to very large number of mutations of infinitesimal effect.

Although infinitesimal theory has always been technically wrong

(there are after all a finite number of nucleotides in a genome), its

simplicity facilitated the development of a vast and empirically

successful body of quantitative genetics theory (Crow 2008; Hill

2010). And although it was proposed for the sake of its mathemat-

ical properties, the infinitesimal model fit well with the genetic

interpretation of Fisher’s (1930) geometric model of adaptation,

which held that mutations that influence many traits are likely to

influence some for the worse, so that alleles of small effect are

most likely to be net beneficial (see Note 1 in Supporting informa-

tion). The synthesis, with its infinitesimal model of quantitative

genetics and its geometrical model of adaptation, had no room for

macromutationist theories that attributed evolution to the spon-

taneous appearance of mutants or “sports” (Charlesworth et al.

1982).

Cracks appeared in the micromutationist synthesis around

20 years ago (Orr and Coyne 1992). Systematic genome-wide

approaches to mapping phenotypically relevant alleles (Lander

and Botstein 1989) promised to reveal the quantitative trait loci

(QTLs), the elusive genes whose substitutions make slight dif-

ferences. Over the last two decades, geneticists have discovered

one large-effect QTLs after another (see Note 2 in Supporting

information), refuting the infinitesimal theory (Orr 1999, 2005a).

Gradually, the success of QTL mapping has led to a new consen-

sus, one that views alleles of detectably large effects as the norm

and not the exception (e.g., Farrall 2004; Bell 2009).

Why has the pendulum swung so far? Part of the answer lies

in the development of a theoretical model that seems to anticipate

and justify the importance of large-effect QTLs. The now-standard

history of adaptation genetics (Orr 2005a) begins with Fisher’s

geometric model, which, as noted above, predicts that most ben-

eficial mutations will be of small effect. Kimura (1983) built on

Fisher’s result, recognizing that small-effect mutations are at great

risk of being lost by genetic drift when rare, and consequently mu-

tations of intermediate effect are likely to predominate in adaptive

fixation (see Note 3 in Supporting information). Orr (1998a) ex-

tended Kimura’s result to derive the distribution of effect sizes for

a complete adaptive walk. The result is now the textbook model

for the genetics of adaptive fixation: the effect-size distribution of

adaptive substitutions is approximately exponential, with a few

large- and many small-effect mutations, the former typically sub-

stituting before the latter.
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Orr’s model has been widely embraced. The model is elegant

and its geometry provides a visual intuition for how adaptation

might work. Moreover, empirical data corroborate it: the suite

of mutations fixed during adaptation in microbial experimental

evolution often follows the predicted distribution and sequence

(Bell 2009). Orr’s model removes the Mendelian stigma from

large-effect QTLs: these are not anomalies—these are part of the

stuff of evolution.

The reassessment of large-effect alleles and the revitaliza-

tion of the geometric model have had salutary effects on the

evolutionary genetics research program, and these contributions

had the potential to usher in an age of effect-size empiricism and

pluralism, as endorsed by Orr and Coyne (1992). Instead, in some

research communities, the conclusion that the infinitesimal model

does not always hold has been taken to mean that the geometric

model always does (see Note 4 in Supporting information). Yet

Orr’s version of the geometric model, as he has explained at length

(Orr 1998a, 2005b), deals with a very specific genetic scenario:

a single bout of adaptive evolution to a fixed optimum with no

standing variation. Even in that limited case, its claims about the

effect-size distribution say little about absolute effect sizes; these

are dependent on the dimensionality of phenotype space and on

the actual effect sizes of the realizable molecular mutations (Orr

2005b). Nevertheless, the apparent convergence of theory and

data behind an exponential effect-size distribution has resulted in

a sort of gold fever, where QTL mappers expect every shovelful

of data to yield a large-effect nugget.

Below I provide a critique of the large-effect consensus. I first

argue that QTNs mapped to date are effectively Mendelian, not

simply samples from an exponential distribution, and I describe

biases that undermine the utility of QTL data for characterizing the

effect-size distribution. Second, I show that theory neither requires

nor predicts an abundance of large-effect alleles in most cases, and

I introduce several lines of evidence—eQTLs, genome-wide as-

sociation studies (GWASs), genomic selection results from agri-

culture, and ubiquitous weak selection—documenting the nearly

infinitesimal basis of many quantitative traits. Next, I show that

small-effect alleles are different in kind from large-effect alleles

at the molecular level, underscoring the challenge of using QTN

data to understand the relationship between molecular function

and phenotype evolution. None of the arguments presented here

is novel. I aim to introduce readers in some evolutionary subfields

to results that are well known in others.

Contemporary evolutionary genetics has matured past the

point of simplistic dichotomies. Extreme models, holding that

evolution is always and everywhere a matter of waiting for the

desired sport, or invariably a matter of reshuffling limitless in-

finitesimals, have no adherents. Evolution contains multitudes,

and genetic architectures in nature span the range: mono-, oligo-,

polygenic. My goal is not to make sweeping claims about the

effect-size distributions that underlie evolutionary change, but to

articulate the limits of the QTN program.

Known Causal Variants are Not
Typical QTNs
Despite the surprise that initially met large-effect QTLs, the seg-

regation of large-effect loci was not a new discovery. Such loci

were familiar to Mendel and Fisher. Indeed, the question has

never been whether large-effect loci segregate and contribute to

divergence, it has been whether such loci are typical or aberrant.

The opinion of much of the postsynthesis evolutionary genetics

community of the 20th century landed on the side of aberrant:

these loci are uninformative about most variation and adaptation.

Lewontin wrote

“visibles are neither a random sample of allelic substitution
nor a random sample of loci since they are of such drastic
effect. The same objection applies to the classic visible poly-
morphisms such as banding in snails, pattern polymorphism in
Lepidoptera and ladybirds, or to strongly selected biochemical
polymorphisms such as sickle-cell anemia or thalassemia in
man.” (Lewontin 1974, pages 97–98, citations removed).

Are the loci that we are able to map today merely the molec-

ular alleles corresponding to atypical visible polymorphisms?

Recently, Stern and Orgogozo (2008) compiled a valuable

catalog of the evolutionarily relevant mutations characterized to

date. (As the QTN program seeks all causal variants that affect

phenotypes in nature, I consider the catalog of Stern and Orgogozo

our best current understanding of the nature of QTNs, and I use

“QTN” interchangeably with “evolutionarily relevant mutation”

or “causal variant.”) Very few of the cataloged loci were found

by QTL mapping; the majority derive from candidate gene stud-

ies or linkage mapping of Mendelian genes. Roughly a third of

the cataloged QTNs are from domesticated organisms, includ-

ing, for example, six independent null mutations in myostatin in

different breeds of cattle, mutations that confer completely pene-

trant recessive “double-muscling” in the affected animals. Many

other QTNs have a known and highly specific mechanistic rela-

tionship with the segregating phenotype. In dipterans, resistance

to acetylcholinesterase-targeting insecticides maps to variants in

the targeted gene, AChE. Mutations in this gene comprise 15/331

(4.5%) of the QTNs in the catalog. Pyrethroid-resistant dipterans

have mutations in the Vssc1 sodium channel, mutations that con-

fer up to 11,300-fold resistance relative to wild type (Guerrero

et al. 1997); these mutations are 6.9% of the QTNs (see Note 5

in Supporting information). Many other QTNs underlie discrete

pigmentation phenotypes and fall in the small suite of reliable

candidate genes for such traits: tan, yellow, ebony in flies, MC1R,

agouti, and OCA2 in vertebrates, and genes in the anthocyanin

pathway in flowers (see Note 6 in Supporting information).
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These are old-fashioned Mendelian genes; their identification

does little to ameliorate the concern that the alleles we can discover

are not those that typify complex trait evolution.

Where are the QTNs for complex traits? Where, for example,

are the QTNs for wing shape in Drosophila (Weber et al. 1999;

Mezey and Houle 2005; Mezey et al. 2005; Palsson et al. 2005)?

This is a model complex phenotype. It influences performance

and responds to selection in the lab, drawing on perhaps hundreds

of underlying loci (Weber 1990). It differs among species (Houle

et al. 2003). Dozens of QTLs have been mapped (Weber et al.

1999; Zimmerman et al. 2000; Mezey et al. 2005). Despite hun-

dreds of person years of effort and all the resources available for

the preeminent model insect, there are no mapped QTNs. The best

candidate is a noncoding single nucleotide polymorphism (SNP)

in the promoter of the Egfr gene, mapped by association (Palsson

and Gibson 2004; Palsson et al. 2005). This SNP explains less

than 1% of the trait variance in one population and none in an-

other and may simply be a marker in linkage disequilibrium (LD)

with the causal variant. What if D. melanogaster wing shape is a

typical complex trait?

None of this is to call into question the reality and importance

of large-effect alleles. These are bona fide instances of evolution,

real molecular variants that contribute to diversity and divergence.

Their characteristics may accurately reflect those of the larger uni-

verse of mutations with similar characteristics. The question is,

what universe is that? Stern and Orgogozo embrace that question

by documenting multiple universes, with important differences

among QTNs derived from different kinds of evolution: natural

versus artificial selection, intraspecific variation versus interspe-

cific divergence, physiological traits versus morphological traits.

But it remains possible that the attributes of large-effect alleles are

not the same ones that characterize small-effect alleles. If large-

effect QTNs are the only ones we are capable of mapping, their

discovery is mute about their generality.

Our QTN mapping capabilities are very limited. The path

from QTL to QTN typically requires functional assays, and in

most species the perturbations induced by experimental manip-

ulations are likely to dwarf the effects of all but the largest ef-

fect QTNs. Only in yeast, in which true allelic replacements are

feasible in otherwise isogenic lines, have QTNs with modest ef-

fect been validated (Deutschbauer and Davis 2005; Gerke et al.

2010). In Caenorhabditis elegans, which has experimental re-

sources only slightly less powerful than yeast, all of the QTNs

mapped to date (mutations in npr-1, mab-23, zeel-1, tra-3, plg-1,

scd-2, glb-5, tyra-3, and ppw-1) are effectively Mendelian (i.e.,

there are discrete phenotypic classes and individual can be ac-

curately assigned to classes based on genotype), and in three

of these cases, the mutations actually arose in the laboratory and

were unknowingly selected (Hodgkin and Doniach 1997; de Bono

and Bargmann 1998; Lints and Emmons 2002; Tijsterman et al.

2002; Kammenga et al. 2007; Palopoli et al. 2008; Reiner et al.

2008; Seidel et al. 2008; McGrath et al. 2009; Rockman and

Kruglyak 2009; Bendesky et al. 2011) (see Note 7 in Supporting

information).

In short, our ability to collect gold nuggets may not be in-

formative about the nature of gold ore. Truly glittering nuggets,

such as lactase in humans (Tishkoff et al. 2007) and couch potato

in American D. melanogaster (Schmidt et al. 2008), are nuggets

nonetheless (see Note 8 in Supporting information). Even if we

embrace the geometric model’s prediction of exponential effect-

size distribution, our QTN successes have only sampled the most

extreme outliers in the distribution’s tail. If the largest effect al-

leles are in any respect unusual, the QTN program will fail to

learn it.

The LOD that Failed: QTLs are
Uninformative
Orr and Coyne (1992) noted that “no model—however,

sophisticated—can answer the question of the relative importance

of major versus minor genes in evolution. This is an empirical

question that can only be settled with data.” As typically prac-

ticed, however, QTL analysis does not even address the question.

Why are so many of the QTNs effectively Mendelian? The

simplest explanations are trait selection and publication bias. We

tend to study traits that exhibit dramatic and discrete differences

between populations or species, we invest in genetic studies when

we have some reason to think the genetics will be tractable, and

we publish our results when we have identified QTLs, or, ide-

ally, QTNs (Orr 1998b). It is therefore fair to ask, when we find

QTNs, is it because we are lucky in the traits we study, or be-

cause we are choosy (Phillips 2005)? Below, I discuss data from

studies that do not suffer these biases, studies of arbitrary traits.

But first, the methodological biases of QTL mapping must be

addressed.

QTL mapping studies of inbred line crosses typically dis-

cover a skewed distribution of effect sizes, with a small number

of large-effect loci accounting for the majority of explained vari-

ance. As Bell (2009) notes, “there may be several uninteresting

reasons for this.” Unfortunately, the uninteresting reasons render

the empirically determined distribution uninformative; the esti-

mated QTL effect-size distribution is expected to be L shaped

even when the underlying loci have identical effect sizes (Beavis

1998). Indeed, the same is true for any underlying effect-size

distribution (Bost et al. 2001).

Many of the sources of QTL bias are very familiar: limited

power means that we cannot detect loci of very small effect, we

misestimate the effect sizes of the QTLs we do detect due to LD

between QTNs and to environmental and sampling variance, and

the maximum number of detectable QTLs is set by the size of the
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genetic map (McMillan and Robertson 1974; Beavis 1998; Otto

and Jones 2000; Bost et al. 2001; Barton and Keightley 2002;

Steinmetz et al. 2002; Cornforth and Long 2003; Johnson and

Barton 2005; Palsson et al. 2005; Phillips 2005; Hermisson and

McGregor 2008; Mackay et al. 2009; Huang et al. 2010). The

problem of multiple tightly linked QTNs within a single gene is

also widely recognized, following the landmark work of Stam

and Laurie (1996) on Drosophila ADH activity and McGregor

et al. (2007) on Drosophila trichome patterning, among others

(see Note 9 in Supporting information).

But a deeper problem is underappreciated: the null hypothesis

for most QTL mapping is the absence of a QTL, not an abundance

of infinitesimal QTLs (Lander and Botstein 1989; Churchill and

Doerge 1994). In simulation studies that take the infinitesimal

model seriously (Visscher and Haley 1996; Noor et al. 2001;

Cornforth and Long 2003), inference of a small number of large-

effect QTLs is a common result. One explanation for this pattern

is that chance spatial clustering of infinitesimals with effects in

the same direction will appear to be a large-effect locus. The prob-

lem is compounded by nonuniform recombination rates and gene

densities (Noor et al. 2001), which can facilitate such clustering

in regions with elevated gene:centiMorgan ratios.

In one empirical study that directly compared a QTL model

to an infinitesimal model, a large analysis of the contribution of

D. melanogaster chromosome 3 to wing shape in a cross between

divergently selected lines, the data could not distinguish between

them (Weber et al. 1999).

In the absence of functional, QTN-resolution validation, in-

ferences from distributions of QTL numbers and sizes is, at best,

fraught. The history of QTL mapping replicates the experience

30 years ago with estimating heterozygosities: the experiments

could be done, so they were done, and the failure of the data to

test any hypothesis was no objection (Phillips 2005). The differ-

ence is that heterozygosities were estimated accurately.

This view may seem nihilistic, but the failings of the research

program are now widely acknowledged. As Mackay et al. (2009)

recently concluded, “Despite two decades of intensive effort, we

have fallen short of our long-term goal of explaining genetic

variation for quantitative traits in terms of the underlying genes,

the effects of segregating alleles in different genetic backgrounds

and in a range of ecologically relevant environments as well as

on other traits, the molecular basis of functional allelic effects

and the population frequency of causal variants.” They continue:

“The inescapable conclusions from the past two decades of studies

are that QTL alleles with large effects are rare and that the bulk

of genetic variation for quantitative traits is due to many loci

with effects that were individually or in aggregate (owing to tight

linkage of QTLs with opposite effects) too small to detect because

previous studies were underpowered.”

Theory does not Require a
Preponderance of Large-Effect
QTNs
QTN mappers have sometimes viewed the geometric model of

adaptive fixation as casting a mathematical penumbra of legit-

imacy over the large-effect QTLs and QTNs that predominate

in the literature. In many cases, however, the connection be-

tween theory and data is tenuous, as the theory pertains only

to a limited domain of evolutionary phenomena: discrete bouts

of adaptation from new mutation (Orr 1998a, 2005b). Below I

discuss three contexts in which the theoretical expectation of

large-effect QTNs simply does not apply: adaptation to a mov-

ing optimum, adaptation from standing variation, and nonadaptive

evolution. To the extent that the QTN program proposes to answer

questions in these evolutionary contexts, the geometric model is

uninformative.

In Fisher’s geometrical model, phenotypic changes that im-

prove the fit of organism and environment are necessarily smaller

than the diameter of the hypersphere in phenotype space centered

on the optimal fit and passing through the phenotype’s current

position (Fisher, 1930, p. 39). Theoretical models of genetic evo-

lution based on Fisher’s geometry parameterize mutational size in

terms of the proportional distance to the optimum. For the steps

to be large in absolute terms, the diameter of the sphere must be

large; that is, a bout of adaptation involves a genotype suddenly

transposed into a new environment to which it is badly matched.

A basic question for models of adaptation from new mutations,

then, is how far do we expect populations to be from the opti-

mal phenotype? For Fisher, the sphere was typically quite small,

as populations would adapt by continuous pursuit of a receding

optimum, which, like a carrot on a stick, draws the population

forward but remains forever just out of reach (Fisher 1930; Frank

and Slatkin 1992). This scenario has recently gained theoretical

attention in the context of the moving optimum model (Kopp and

Hermisson 2009a, 2009b), which suggests indeed that small mu-

tational steps predominate rather than the large steps found for

discrete adaptive bouts. Empirical work in Chlamydomonas cor-

roborates these claims: the effect-size distribution of mutations

fixed is shifted toward small effects under a moving optimum

(Collins and de Meaux 2009). In addition, Martin and Lenor-

mand (2008) recently found that for versions of the geometric

model in which the phenotypic space has relatively few evolu-

tionarily independent dimensions, the effect-size distribution of

alleles fixed by selection for an optimum is better described by a

beta distribution, which is truncated on the right and lacks the long

tail of large-effect mutations, than by an exponential (at higher

dimensionality, their results converge on those of Fisher, Kimura,

and Orr).
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As Orr has pointed out, a second context in which the expo-

nential effect-size model does not apply is adaptation from stand-

ing variation, whether it occurs by adaptive fixations or merely

by shifts in allele frequencies. Despite the centrality of standing

variation to the evolutionary synthesis and the widely recognized

ubiquity of heritable variation for most traits in most popula-

tions, recent models of the genetics of adaptive evolution have

tended to focus on new-mutation models, which treat evolution

as a series of sequential selective sweeps dependent on the ap-

pearance of new beneficial mutations. Only in the past few years

have phenotypic and molecular population genetic models be-

gun to treat adaptation from standing variation seriously (Orr and

Betancourt 2001; Innan and Kim 2004; Hermisson and Pennings

2005; Przeworski et al. 2005; Barrett and Schluter 2008; Chevin

and Hospital 2008). The results are clear: adaptive fixation from

standing variation implicates alleles of small effect.

Standing variation has several advantages over new muta-

tions. First, the alleles have already avoided stochastic loss im-

mediately after arising, the process that distinguishes Kimura’s

result from Fisher’s. Second, intermediate allele frequencies al-

low alleles to explain a substantial fraction of a trait’s heritable

(selectable) variation, even if their effects are small. Third, they

have a head start toward fixation relative to new alleles. Even

deleterious mutations maintained at relatively low frequencies

by mutation-selection balance alter the effect-size distribution of

adaptive fixations (Orr and Betancourt 2001). Although analyses

of adaptation from new mutation have been successful within the

domain of phenomena they cover, analyses of standing variation

yield qualitatively different predictions. Figure 1 of Hermisson

and Pennings (2005), which compares the fixation probabilities

of alleles of different effect sizes according to their origins as new

mutations or segregating variants, should be as central to discus-

sions of adaptation genetics as any version of Fisher’s spheres.

The results of recent analyses of human population genomic

data reinforce the idea that much adaptation simply involves sub-

tle shifts in the frequencies of alleles at many loci (Hancock

et al. 2010a, 2010b; Pritchard et al. 2010; Hernandez et al. 2011).

The genetic signatures of the last quarter million years of our

species’ evolution and of the subsequent extensive local adapta-

tion of human populations bear few of the hallmarks of selective

sweeps (Hernandez et al. 2011), and fixed differences among hu-

man populations are exceptionally rare, despite sufficient time

for new mutations to have fixed (Pritchard et al. 2010). Instead,

much local adaptation appears to result from modest changes in

the frequencies of multiple alleles of modest effect, and these

alleles tend to exhibit haplotypic characteristics consistent with

long histories as standing variation (Hancock et al. 2010a).

Recent empirical and theoretical studies of standing variation

have also rediscovered the prevalence and potential importance

of cryptic genetic variants, alleles whose effects are exposed only

under environmental or genetic stresses (Badano and Katsanis

2002; Gibson and Dworkin 2004; Hermisson and Wagner 2004;

Hansen 2006; Gibson 2009; Frankel et al. 2010). Conveniently,

such stresses can be created by environmental changes (including

changes to the genetic composition of the population) to which

the organisms must adapt: a change in the selective regime can

generate new additive genetic variance from existing cryptic vari-

ation. Furthermore, cryptic variation is enriched for potentially

beneficial alleles relative to new mutations, because the alleles

are definitively not unconditionally deleterious (Masel 2006).

One line of data often cited in support of the community’s

shift toward a focus on large-effect mutations comes from studies

of microbial experimental evolution. The vast majority of experi-

mental evolution studies that track genotypes begin without stand-

ing variation and instead conform exactly to the requirements of

Orr’s model: a bout of adaptation to a new fixed optimum en-

tirely dependent on new mutations. One important exception is

the work of Teotonio et al. (2009) studying experimental evolution

of Drosophila populations. Their study found modest replicable

shifts in allele frequencies after more than 100 generations of di-

rectional selection, followed by replicable partial reversion of the

frequencies after 50 generations of reverse directional selection.

The phenotypic responses to selection in both the forward and

reverse phases were dramatic. Overall levels of molecular and

additive genetic diversity showed no change during the experi-

ment. In short, the responses to selection were driven by standing

variation. This study provides molecular confirmation of what

quantitative geneticists have long known: the breeder’s equation

works (Crow 2008; Weiss 2008; Hill 2010; Houle 2010).

The third disconnect between the exponential-effects model

and the QTN program is simple: adaptive fixation is not the whole

of natural selection, and as Fisher said in the first sentence of his

(1930) book, “natural selection is not evolution.” For many evolu-

tionary questions—about the origin and maintenance of variation

in traits under stabilizing selection, for example, or about the

molecular basis and evolutionary causes of robustness, or about

the mechanisms of morphological and developmental evolution

(often mistaken for questions about adaptation, e.g., by Hoekstra

and Coyne [2007]; see Stern and Orgogozo [2008]), or about the

genetics of trait loss under relaxed selection, or about genetic net-

work evolution in the absence of phenotypic change (Weiss and

Fullerton 2000; True and Haag 2001; Haag 2007)—the geometric

model of adaptive fixation provides little or no guidance (nor is it

intended to). The large-effect QTNs mapped in contexts outside

of adaptive change are therefore unable to rely on the geometric

theory to support claims that they are typical.

The geometric model is not the only theoretical context in

which a roughly exponential distribution of effect sizes has been

proposed. A thoughtful essay by Alan Robertson (1967) is now

often cited to support the evolutionary relevance of large-effect
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QTLs. Robertson proposed, as an untested prediction, that “the

distribution of gene effects will probably be of an exponential

kind.” Although Robertson’s point was less that we might expect

some large-effect alleles than that we should expect enormous

numbers of small-effect alleles, and that consequently questions

about the number of loci underlying a trait are meaningless, his

basic prediction is not contentious. The QTN effect-size distri-

bution is certainly neither constant nor uniform; some effects are

large and many are small and their proportions depend on all of

the details of the species and traits and selection regimes under

study (Orr and Coyne 1992; Stern and Orgogozo 2008). But none

of the theory and data generated over the last 20 years force us to

conclude that QTNs of detectably large effect are representative

of the alleles that shape most variation and divergence.

Fisher Redivivus: Unbiased QTNs are
Often Small-Effect Polygenes
Recent work has revealed the exceptionally polygenic basis of

standing variation for many complex traits, implying that evolu-

tion from such raw material is likely to employ a different class of

alleles than evolution from new mutations. I briefly review four

lines of inquiry that make the case: genetics of gene expression,

genome-wide association mapping in humans, genomic selection

in agriculture, and population genetic studies of weak selection.

GENETICS OF GENOME-WIDE GENE EXPRESSION

Brem and Kruglyak (2005) characterized the genetic architectures

of 5727 arbitrary traits, the abundances of each gene’s transcript

in a cross of two Saccharomyces cerevisiae strains. Genetic anal-

ysis of transcript abundance has three major virtues. First, there

are many traits, allowing for generalizations. Second, the traits

are not preselected on the basis of intuitions about ecological ge-

netics or evolutionary regime. And third, the traits integrate over

the entire phenotypic state space of the organism; that is, vari-

ation in organismal phenotypes is likely reflected in transcript

abundances, whether the transcripts are causes of the organismal

phenotypes or effects. In their sample of 112 haploid recombinant

strains, Brem and Kruglyak found that most traits (62%) exhib-

ited very high heritabilities (ĥ2 > 0.685), but more than 40%

of these highly heritable traits exhibited no genetic linkage. A

modeling approach to estimate the number of undetected QTLs

(given the study’s power) suggested that their highest complexity

model, 30 additive loci of equal effect, explained the data better

than less polygenic models for 45% of the highly heritable traits.

Transcript abundances are, if anything, a conservative test bed

for genetic complexity, because line crosses invariably treat the

transcript’s locus as a single QTL, although the locus may har-

bor many cis-regulatory and trans-acting autoregulatory variants

in LD (Stam and Laurie 1996; McGregor et al. 2007); transcript

abundance traits often have large-effect QTLs that map to the

genomic locations of their transcripts (Rockman and Kruglyak

2006). Nevertheless, the yeast data imply that a substantial frac-

tion of transcript abundance traits have as many QTLs as there are

segregating regions of genome in the mapping cross. The preva-

lence of transgressive segregation in the cross, combined with the

absence of detectable linkage for many of the traits, may point

to a large number of small-effect genes linked in repulsion, with

their effects masked by LD in the cross. Such a genetic architec-

ture may be characteristic of traits under stabilizing selection and

suggests an abundance of allelic variation available for a response

to directional selection (Mather 1941; Hansen 2006).

Despite the demonstrated presence of thousands of detectable

QTLs in the yeast cross, and many more that are too small to be

detected, relatively few have been mapped to QTN resolution.

Those that have are, to a large extent, Mendelian (Ehrenreich

et al. 2009). The quantitative trait genes include LEU2, which

segregates in the cross due to an engineered deletion that renders

one of the parental strains auxotrophic; MAT , which controls

mating type, and AMN1, a gene whose derived allele abolishes

clumpy growth and was evidently selected de novo—a sport—

during the laboratory domestication of yeast (Ronald and Akey

2007).

GENOME-WIDE ASSOCIATION STUDIES

One of the objections to QTL mapping is that QTLs are typically

physically large genomic regions that may harbor many linked

variants. An alternative approach to mapping, genome-wide as-

sociation, relies not on LD between QTNs and markers generated

by controlled crosses but instead on LD generated by population

history. Association mapping, like linkage mapping, pinpoints

genomic regions rather than individual QTNs. However, the size

of the associated region (the amount of genome in LD with an

associated variant), is typically orders of magnitude smaller than

the regions spanned by linkage-mapped QTLs.

The recent growth of GWASs in humans has cast serious

doubt on the ubiquity of large-effect variants. Although early suc-

cesses raised hopes that the QTNs underlying quantitative varia-

tion would quickly emerge, the last several years of GWAS have

left the community heartbroken: although significant associations

are routinely found, their individual effects are typically minute,

and they cumulatively explain only a tiny fraction of the heritable

variation in most traits. For example, the 10 strongest associa-

tions in a recent blood pressure GWAS with 29,000 individu-

als jointly explain 1% of the trait variation after taking known

nongenetic determinants into account (Levy et al. 2009), leaving

more than 90% of the heritable variance unexplained. The fail-

ure of enormous, multinational consortia to find phenotypically

important associations has led to the great pseudocontroversy of
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contemporary human genetics: the case of the missing heritability

(Maher 2008; Manolio et al. 2009).

The simplest explanation for the missing heritability is that

it resides in small-effect alleles that GWAS are underpowered to

detect. Strong support for this model comes from a remarkable

and important study of the genetics of schizophrenia, a condition

with heritability of approximately 80% (Purcell et al. 2009). This

case-control study of more than 3000 individuals with schizophre-

nia and 3500 controls identified multiple, replicable associations

with SNPs in the major histocompatibility complex (MHC); this

result is typical of many human diseases. But the authors then

asked whether a Fisherian model of a large number of alleles

of very small effect could account for the remaining heritabil-

ity. They used genotypes to predict risk of case status in a test

population based on genotypic risk scores estimated in another

population. They found that risk scores become better and bet-

ter predictors as more and more independent SNPs with less and

less nominal significance were included in the risk calculation.

Careful model-based analysis of the fraction of population vari-

ance explained by these nonsignificant SNPs yielded an estimate

of ∼34% for the genotyped SNPs, implying a much larger frac-

tion (∼80%) for the actual causal SNPs which are likely to be in

imperfect LD with the marker SNPs. Biologically realistic mod-

els that take imperfect LD into account suggest that more than

10% (and plausibly 100%) of the 74,000 predictor SNPs tag real

causal variants. Moreover, models that invoke rare alleles of large

effect could not account for the pattern of risk score predictive

success. Importantly, the risk score proved to be predictive of

schizophrenia and bipolar disorder, but not of a suite of nonpsy-

chiatric conditions. That is, the LD-tagged causal variants repre-

sent a huge pool of common alleles of small effect that is specific

to particular phenotypic traits, and not merely a signature of sys-

temic unwellness or of population stratification. The International

Schizophrenia Consortium paper is among the most important pa-

pers in empirical evolutionary genetics in years: Fisher (1918) is

vindicated.

The schizophrenia study is not alone. The poster trait for

missing heritability is height. Its heritability was established along

with the very concept of heritability by the biometricians more

than a century ago, and modern data support a heritability (within

generation and nation) of about 80% (Visscher 2008). GWAS on

an exceptional scale, involving upwards of 90,000 individuals,

identified 44 separate height-associated SNPs across the genome

(reviewed in McEvoy and Visscher 2009). The largest allelic sub-

stitution effect is about 0.06 phenotypic standard deviations, and

all of the associated variants together account for much less than

10% of the heritable variation in height (McEvoy and Visscher

2009). Yang et al. (2010), applying methods similar to those of

the Schizophrenia Consortium study to a panel of 3,925 unrelated

individuals, found that the common alleles surveyed by GWAS,

although individually insignificant, could collectively account for

the entire heritability of human height.

Many of the GWAS associations with the largest effects map

to loci characterized by strong recent selection, both geographi-

cally restricted positive selection (e.g., OCA2: Sulem et al. 2007)

and global balancing selection (e.g., the ABO blood group lo-

cus: Stajich and Hahn 2005; Amundadottir et al. 2009). The best

known among these is the MHC region, which is a major-effect lo-

cus for an enormous range of conditions (Johnson and O’Donnell

2009), including schizophrenia risk, as discussed above. Variation

in MHC is incapable of contributing to phenotypic divergence in

these traits, however, because its allelic variation is maintained by

tremendously powerful balancing selection (Hedrick 1999) and

the disease alleles may be unconditionally deleterious sheltered

load (van Oosterhout 2009). The finding that many large-effect

disease loci exhibit strong recent selection is consistent with the

worry that the largest effect loci, the ones that we are capable

of mapping, are atypical: they exhibit strong selection despite

their deleterious pleiotropic side effects, like the myostatin sports

selected in cattle breeding, mutations that do not contribute to

long-term evolution (Stern and Orgogozo 2009). As Lewontin

wrote (albeit in a slightly different context), “it is no use trotting

out that tired old Bucephalus, sickle-cell anemia” (1974, p. 199).

Sickling beta globin, our very first QTN (Ingram 1956), now leads

a cavalry of large-effect QTNs whose relevance to our more gen-

eral questions is no clearer today than it was in 1974 (see Note 10

in Supporting information).

It might be argued that human diseases are particularly poor

models for adaptive genetic variation. But there are many rea-

sons not to dismiss their relevance, not the least that the nature

of genetic variation maintained by mutation-selection balance is

an important topic in itself, and consequential for adaptation (Orr

and Betancourt 2001). Another is that most diseases represent

the tails of continuous phenotypic distributions (Dendrou et al.

2009; Plomin et al. 2009); alleles that contribute to hyperten-

sion, for example, also shape variation in the normotensive range.

Moreover, many of the alleles that contribute to disease may be

ancestral, suggesting that loci shaping disease risk are exactly

those that contribute to ongoing adaptation to modern conditions

(Di Rienzo and Hudson 2005; Gibson 2009; Hindorff et al. 2009;

Hancock et al. 2010a; Pritchard et al. 2010). Finally, objections to

disease models clearly do not apply to studies of human height:

body size and shape are iconic examples of local adaptation, in the

form of Bergmann’s rule and Allen’s rule, and natural selection

on size is well documented in wild animal populations (Grant and

Grant 2002).

A final word about GWAS: even among the significant hits

in GWAS, the conversion of associations to QTNs remains prob-

lematic (Altshuler et al. 2008; Ioannidis et al. 2009), and some

individual associations may themselves reflect multiple QTNs in
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LD with one another (Maller et al. 2006; Graham et al. 2007).

Functional analyses necessary to validate small-effect variants

will require methods and levels of replication not typical (and

perhaps not feasible) for human or model-system genetics (Don-

nelly 2008). Although the mapping resolution of GWAS is an

improvement over conventional QTL mapping, GWAS remains

incapable of pinpointing the causal variants, which is the sine qua

non of the QTN program.

GENOMIC SELECTION

The polygenic models described above for schizophrenia and

height genetics are part of a broader movement in human genetics

toward incorporation of all markers, not merely the statistically

significant ones, into estimation of genetic architectures and pre-

diction of trait values (Schork 2001; Wray et al. 2007; Visscher

2009; Wei et al. 2009; de los Campos et al. 2010; Province and

Borecki 2008) describe an analogous method as “gathering the

gold dust”. This approach is becoming a mainstay in livestock

and crop genetics in the form of genomic selection (VanRaden

et al. 2009). A successor to marker-assisted selection, which used

QTL-linked markers to facilitate breed improvement (with little

success), genomic selection skips the QTL estimation step by

allowing every marker to have an effect on the trait, in keeping

with the traditional (and very successful) methods of estimat-

ing breeding values from pedigrees under an infinitesimal model

(Meuwissen et al. 2001; Goddard 2009). The method requires as-

sumptions about the distribution of allelic effect size, and although

implementation of genomic selection is in its early days, data from

Holstein cattle offer strong support to models assuming that thou-

sands of markers, almost evenly distributed across the genome,

have nonzero effects (Cole et al. 2009; VanRaden et al. 2009).

For most traits, simple models in which every marker is weighted

equally perform as well as those with nonconstant effect-size dis-

tributions. Simulation studies suggest that the equal-weighting

approach should only perform as well as more complex meth-

ods if there are no major loci but a very large number of loci of

small effect, hundreds per Morgan of the genetic map (Daetwyler

et al. 2010; Meuwissen and Goddard 2010). These results “may

explain why the infinitesimal model and standard quantitative ge-

netic theories have worked well,” note VanRaden and colleagues,

in an understatement that recalls the last line of Watson and Crick

(1953).

WEAK SELECTION

A final line of evidence for the ubiquity of small-effect alleles

comes from the limiting case of a quantitative genetics experi-

ment, natural selection. In a quantitative genetic mapping experi-

ment, we attempt to detect alleles that affect traits by estimating

the additive affect of an allelic substitution averaged across a large

number of randomized genetic backgrounds. This sort of random-

ized, replicated, multifactorial perturbation is exactly how natural

selection operates, discriminating among segregating alleles on

the basis of their additive effects on fitness. In both quantitative

genetics and natural selection, the randomization is mediated by

meiosis and therefore results in poor discrimination among—and

interference between—closely linked sites. But more important

for our purposes, the power of both quantitative genetics exper-

iments and natural selection to detect the additive effects of an

allele is determined by effect size and sample size. Sites under

weak selection are fitness QTNs whose effect sizes are on the

order of the reciprocal of the sample size, that is, the effective

population size (Ne).

Effects of weak selection differ among species as a func-

tion of effective population size (Kimura 1968; Eyre-Walker

and Keightley 2007). Sites that exhibit signatures of weak se-

lection in species with large population sizes but do not in species

with small populations are, in the latter species, fitness QTNs

with effect sizes beneath the detection limit of natural selec-

tion. These are fitness infinitesimals, and they are numerous; they

may even govern the evolution of genome architecture (Lynch

2007).

To impact fitness, a variant must affect some aspect of per-

formance or life history. For example, a mutation that generates a

weakly advantageous preferred codon in D. melanogaster is not

a bare fitness allele; it alters the translational efficiency and accu-

racy (among other things) of the gene in which it occurs. These

effects in turn influence the functional dynamics of the network in

which the gene is embedded. The phenotypic specificity of such a

variant can be detected, in some cases, by mapping in a sensitized

background (Dworkin et al. 2003).

The weak selection data imply that a large fraction of all

segregating variants have fitness consequences, even if their mag-

nitudes are too small for selection to detect in typical plant or

animal populations (Lynch 2007). Insofar as these fitness in-

finitesimals segregate in most genes in most populations, and

variation in specific genes impacts specific phenotypes, we may

conclude that specific phenotypes have at least as many under-

lying QTNs as they have underlying molecular genes. For most

continuous traits, this number is large. More than a third of ∼2000

viable gene knockouts in mice affect body size, for example (Reed

et al. 2008). The findings of the International Schizophrenia Con-

sortium study, discussed above, reinforce the notion that the ge-

netic basis for a trait can be both genomically diffuse and phe-

notypically specific. For many human traits studied by GWAS,

sample sizes already exceed estimated human Ne, implying that

many of the causal SNPs underlying the associations evolve as

infinitesimals even if the studied trait is perfectly correlated with

fitness.
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There is a Relationship Between
Phenotypic Effect Size and
Molecular Function
The arguments above make the case that large-effect QTNs are

unusual, that QTL effect sizes are uninformative, that theory does

not support claims that large-effect QTNs are typically expected

or exclusively important, and that empirical data point to a nearly

infinitesimal genetic basis for many traits (although by no means

all). If large-effect QTNs are a random sample of QTN molecular

function, however, then none of these claims matters for questions

about the molecular basis for phenotypic evolution.

The evidence is unequivocal, however, that mutations at sites

with different molecular functions have different distributions of

effect sizes. Below, I adduce the evidence to support the hy-

pothesis of Ayala and McDonald (1980): “there may often be a

profound relationship between the regulatory genes of the molec-

ular geneticist and the minor genes of the quantitative geneticist”

(p. 2; see also Mukai and Cockerham 1977). There are many

other evolutionarily important differences, aside from effect size,

among QTNs from different categories of molecular function, but

I will not treat these here as they have been reviewed elsewhere

at length (Mitchison 1997; Stern 2000; Ohta 2003; Wray 2007;

Carroll 2008; Lynch and Wagner 2008; Stern and Orgogozo 2008,

2009). Here I aim only to demonstrate that QTN effect size and

molecular function are not independent classifications.

Most Mendelian mutations alter protein sequences (Mattick

2009). Summarizing the lessons learned from the 27,000

Mendelian mutations discovered in humans by clinical geneti-

cists through mid-2002, Botstein and Risch (2003) found that

fewer than 1% were regulatory mutations; 59% were missense or

nonsense point mutations. Based on the present catalog of more

than 85,000 mutations, these numbers are 1.6% and 66%, respec-

tively (Stenson et al. 2009).

Botstein and Risch acknowledged that regulatory mutations

might be underrepresented in part because they are hard to iden-

tify. No such discovery bias is possible in C. elegans, however,

in which a catalog of point-mutation alleles generated by muta-

genesis experiments (Sarin et al. 2008; see their supplementary

table 2) reveals a profound paucity of noncoding variants (<5%).

C. elegans researchers work primarily with a single isogenic ref-

erence strain, and recessive Mendelian mutations generated in this

background are typically fine mapped by transgenic complemen-

tation with large-insert clones followed by targeted sequencing of

the mutant strain. When the causal mutations are noncoding, they

are found; the power of positional cloning in C. elegans is what

led to the discovery of noncoding microRNAs (Lee et al. 1993;

Wightman et al. 1993) (see Note 11 in Supporting information).

The nearly exclusive occurrence of protein-coding variants

among Mendelian point mutations in humans and worms implies

one of two things: either protein-coding variants represent the vast

majority of all functional sites, or noncoding variants tend not to

have Mendelian effects. Comparative genomics data refute the

first possibility. Genomes contain large numbers of evolutionarily

conserved—and hence functionally important—noncoding sites.

In humans, there are several times as many conserved noncoding

sites as coding, and in C. elegans 45% of conserved sites are

noncoding (Siepel et al. 2005; Asthana et al. 2007; Oldmeadow

et al. 2010; Meader et al. 2010).

Moreover, evolutionary conservation underestimates the ex-

tent of functional noncoding sequence. The ENCODE project

found that roughly half the functional noncoding elements in hu-

mans exhibit no detectable evolutionary constraint across mam-

mals (Birney et al. 2007). Other targeted studies have also shown

rapid evolutionary turnover of functional regulatory elements

(Ludwig et al. 2000; Moses et al. 2006; McGaughey et al. 2008).

In addition, DNA sequences with no function are suscep-

tible to phenotypically relevant mutations. Mutations in non-

coding sequence can create new functional elements de novo,

and completely functionless sequence can be under selection to

maintain functionlessness (Hahn et al. 2003). Transcription fac-

tor binding sites, miRNA binding sites, and miRNA genes arise

spontaneously at quite considerable rates (Stone and Wray 2001;

Dermitzakis and Clark 2002; MacArthur and Brookfield 2004;

Chen and Rajewsky 2007; Lu et al. 2008). Function also resides

in the higher level organization of DNA sequences, including

intrinsic DNA topology (Parker et al. 2009). Even the humble mi-

crosatellite, a classic neutral marker, is no such thing: short-motif

tandem repeat polymorphisms are widely implicated in transcrip-

tional regulation (Rockman and Wray 2002; Vinces et al. 2009;

Hannan 2010). In short, noncoding DNA is packed with functional

sequences that fail to yield Mendelian effects when mutated.

If Mendelian mutations are disproportionately protein cod-

ing, does that imply that QTLs tend to be noncoding? A common

theme in reviews of human GWAS findings is that a substantial

fraction of associations fall in noncoding regions (Altshuler et al.

2008; McCarthy et al. 2008; Frazer et al. 2009; Manolio et al.

2009). Although GWAS does not permit direct identification of

QTNs, the physical interval containing a QTN is restricted by the

pattern of LD around the associated marker. Visel and colleagues

(2009) conducted a meta-analysis of 1200 SNPs called significant

in GWAS papers published through February 2009. Using what

they describe as conservative parameters for LD, they concluded

that protein-coding sites could be excluded as potential causative

variants for 40% of the associations. This represents a lower bound

on the contribution of noncoding sites to quantitative-effect alleles

(see Note 12 in Supporting information).

Molecular population genetics provides us with access to an-

other specific slice of the effect-size spectrum, nearly neutral mu-

tations. Several studies have cataloged, genome-wide, mutations
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that are neutral in species with small populations but deleterious

in species with large populations. For any given set of species,

these genomic comparisons provide an unbiased glimpse at the

functional nature of small-effect mutations, with the specific slice

of effect-size distribution defined by the difference in long-term

population sizes among the studied species. In comparisons of

hominids and murids, for example, the smaller populations of the

former leave a signature in higher rates of substitution in classes

of functional sequence that are preserved by negative selection

in murids. The signature is stronger in noncoding than in coding

sequence (Keightley et al. 2005a, 2005b; Kryukov et al. 2005;

Eyre-Walker and Keightley 2007), pointing to enrichment of non-

coding mutations within this nearly neutral sliver of effect sizes.

An exciting recent addition to the discussion is the work of

Goode et al. (2010), who analyzed the derived-allele frequency

spectrum of polymorphisms falling within evolutionarily con-

served sequences in humans. Their definition of evolutionary

conservation is quantitative; these sites are not invariant across

mammalian phylogeny, but they exhibit lower rates of substitution

than freely evolving sites. Goode et al. found that the vast majority

of variants segregating at evolutionarily conserved positions in a

global panel of 432 individuals were common in the population

and noncoding. In another analysis, treating the whole genomes

of three individuals, they found that roughly 90% of the inferred-

functional polymorphisms were noncoding; this high proportion

is due to both the greater number and higher average heterozy-

gosities of noncoding relative to coding polymorphisms. These

data reinforce the notion that the population holds an enormous

store of common small-effect QTNs whose molecular function is

disproportionately noncoding.

What Now?
Many possible ways forward—explicit tests of polygene effects

(Le Rouzic et al. 2010; Yang et al. 2010), molecular population

genetic studies (Goode et al. 2010), new approaches to higher or-

der systems genetics (Chen et al. 2008; Rockman 2008; Mackay et

al. 2009)—constitute abandonment of the QTN program in favor

of statistical genetics. Although it is clear that statistical genetics,

particularly in the remarkable new era of inexpensive population

genomic data, has the potential to reanimate long dormant ques-

tions in evolutionary genetics, giving up on QTNs is difficult.

It feels like a cop-out, as Bateson (1909) argued a century ago,

approvingly quoted by Orr (2005a): “By suggesting that the steps

through which an adaptive mechanism arises are indefinite and

insensible, all further trouble is spared. While it could be said

that species arise by an insensible and imperceptible process of

variation, there was clearly no use in tiring ourselves by trying

to perceive that process. This labor-saving counsel found great

favor” (see Note 13 in Supporting information). We have now,

following Bateson’s advice, tired ourselves trying to perceive the

genetic basis of trait variation, and I have argued here that our

exertions availed us little. The epistemological paradox is real.

But still, should we really throw up our hands?

My claim is not so desperate: we should employ experimen-

tal methods suited to our research questions. A less desirable

alternative is to tailor our research questions to our experimental

methods. The least desirable outcome is the present one, in which

we ignore the mismatch between question and method.

At the first instance, it must be reiterated that the large-effect

QTNs that are amenable to discovery are informative about the

genetics of evolution (Stern and Orgogozo 2008; Streisfeld and

Rausher 2011). My critique of their generality in no way dimin-

ishes their reality. Such alleles may or may not underlie complex

trait evolution, but they do segregate and fix and legitimately de-

mand our attention (Watt 1994). Nevertheless, it is as clear today

as it was in 1974 that large-effect QTNs cannot answer general

questions about the maintenance of variation, the evolution of

form, adaptation from standing variation, or the mechanisms of

speciation.

One appealing solution to our dilemma is that proposed by

Stern and Orgogozo (2008): the answers to our questions depend

on biological context, so we must develop a more meaningful

classification of those contexts. We have different predictions

about QTNs depending on the details of our study species: their

population sizes and ecological histories, their mutation rates and

spectra, and their genome sizes, and of our study traits: their

mutational target sizes, the patterns of selection they experience,

and the histories of those patterns. The effects of variation in

these parameters are vast, and in many regions of this parame-

ter space, large-effect alleles will typify the genetic variation we

seek. In those cases, and after explicit assessment of QTN as-

certainment biases, the QTN program may flourish and provide

genuine insights—about those specific and constrained regions of

evolutionary parameter space (Stern and Orgogozo 2008).

A second possible approach is to devote resources to the

discovery of QTNs of smaller and smaller effect. Fine map-

ping arbitrary traits within small, arbitrary regions of genomes

holds promise for revealing “typical” landscapes of genetic varia-

tion (Kroymann and Mitchell-Olds 2005). In fast-breeding model

organisms, recombination mapping within near isogenic lines

(NILs) is a natural approach, eliminating the genetic variance

contributed by all but a tiny region of the genome, which can

then be dissected to any desired resolution (Eshed and Zamir

1995; Darvasi 1998; Cicila et al. 2001; Monforte et al. 2001;

Shao et al. 2010). The subtlest allelic effects, which may be

quite important for evolution, are those revealed only under per-

turbation, and these can be mapped in sensitizing backgrounds

or environments (Dworkin et al. 2003; Carbone et al. 2006;

Paaby and Schmidt 2008). The combination of sensitization and
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NIL-based fine mapping with high levels of replication can, in

principle, answer the question of whether a particular molecular

variant is capable of influencing a particular phenotype. In a for-

tunate few model organisms, precise allele replacements could

achieve the same aims more simply (Deutschbauer and Davis

2005). However, these NIL-based methods are not true solutions

to the problems of the QTN program: they face all the same

problems of detection power, merely to a lesser degree (Darvasi

1998; Keurentjes et al. 2007; Jeuken et al. 2008). Truly small-

effect variants will continue to demand levels of replication not

currently practiced, and perhaps not practicable. Even were it to

work, it would come at a cost: the focal genomic interval of a NIL

is isolated in a foreign genetic background, preventing any under-

standing of its potential epistatic relationship to its native genome.

As Lewontin wrote in the book that defined our epistemological

paradox, “context and interaction are not simply second-order ef-

fects to be superimposed on a primary monadic analysis. Context

and interaction are of the essence” (1974, p. 318).

Lewontin described the crisis of evolutionary genetics in

terms of theoretical machinery incapable of dealing with emerging

data:

“For many years population genetics was an immensely rich
and powerful theory with virtually no suitable facts on which to
operate. It was like a complex and exquisite machine, designed
to process a raw material that no one had succeeded in mining.
Occasionally some unusually clever or luck prospector would
come upon a natural outcrop of high-grade ore, and part of the
machinery would be started to prove to its backers that it really
would work. But for the most part the machine was left to the
engineers, forever tinkering, forever making improvements, in
anticipation of the day when it would be called upon to carry
out full production.

“Quite suddenly the situation has changed. The mother-lode
has been tapped and facts in profusion have been poured into
the hoppers of this theory machine. And from the other end has
issued — nothing. It is not that the machinery does not work,
for a great clashing of gears is clearly audible, if not deafening,
but it somehow cannot transform into a finished product the
great volume of raw material that has been provided.” (1974,
page 189)

The mother-lode of Lewontin’s metaphor was allozyme data,

and 25 years later such data had gone from milestone to millstone

(Lewontin 1991). It seemed that allozymes were not the ore that

the machine was designed to accommodate. The goal of the QTN

program has been to generate the appropriate data, the identities

of the alleles that underlie variation and divergence. I have argued

that, 22 years into the interval-mapping era, the QTN program is

incapable of collecting these data in the systematic manner that

its questions require.

In the end, an embrace of polygenic evolution, whose molec-

ular basis we cannot describe in particulate detail, is not the cop-

out that Bateson suggested: it is cold empiricism. We should

recognize the data that depart from our current narratives and we

should unashamedly adopt macroscopic, statistical descriptions of

genetic architectures when they are required. The QTN program

is motivated by a commitment to collecting the empirical data that

test alternative models, and we should abide by that commitment

even when the empirical data do not take the form of QTNs.
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