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SUMMARY

In this paper, we develop new regression models for the analysis of scored ordinal data (i.e. ordinal
outcomes where the categories are assigned numeric values). The novel feature of these models is
that they enable one to capture and identify nonlinear aspects of the relationship between an ordinal
clinical measurement (used for disease diagnosis) and risk factors. These nonlinearities may be useful in
generating hypotheses about the risk factor’s role in the etiologic process as well as suggesting how to
design future studies of the risk factor. We apply our model to study the effects of race, gender, and family
history on alcohol dependence among a cohort of lifetime drinkers from the 1992 National Longitudinal
Alcohol Epidemiologic Survey.
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1. INTRODUCTION

Diagnosis of alcohol dependence is made by identifying constellations of dependence symptoms set
forth in the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders—
DSM-IV (American Psychiatric Association, 1994). Specifically, an individual is characterized as alcohol
dependent by identifying the presence or absence of at least three of the following seven exchangeable
dependence criteria: tolerance; withdrawal or drinking for relief or avoidance of withdrawal; frequent
drinking in larger amounts or more often than intended; persistent desire or unsuccessful attempts to cut
down on drinking or stop; spending much time getting alcohol, drinking, or getting over the effects of
alcohol; giving up or reducing occupational, social, or recreational activities in favor of drinking; and
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Table 1. Race, gender, and family history composition within levels of number of
dependence symptoms

Number of dependence symptoms
0 1 2 3 4 5 6 7

# 10013 4939 3620 1681 1464 779 547 561
% White 83.7 85.0 85.4 89.2 86.8 85.0 88.8 86.3
% Male 42.3 47.7 51.4 57.8 61.8 64.8 64.0 68.4
% Family history 25.5 34.2 39.2 44.0 49.4 58.3 70.6 77.2

continuing to drink despite physical or psychological problems caused or exacerbated by the alcohol/drug
use. This diagnostic threshold has been somewhat arbitrarily defined by clinicians as a way of identifying
subgroups of the population who (1) are at high risk for future morbidity or mortality and (2) can benefit
from treatment.

The 1992 National Longitudinal Alcohol Epidemiologic Survey (Grant et al., 1994) conducted in-
person interviews of 42 862 subjects, who were 18 years or older and resided in the contiguous United
States. To evaluate the above alcohol dependence for the prior 12 months and for the past, the Alcohol
Disorder and Associated Interview Schedule (AUDADIS; Grant et al., 1995) was administered to each
subject. Hasin and Paykin (1999) analysed these data, with a view towards using risk factors to validate
the three-symptom diagnostic threshold. Toward this end, they used established risk factors to assess
differences among subjects with a DSM-IV diagnosis of alcohol dependence: subjects who manifest
one or two dependence symptoms (‘diagnostic orphans’), and subjects who exhibit no symptoms. They
conducted a subset analysis of 23 604 subjects who had 12 or more drinks during any year in the past and
who did not have a current or past diagnosis of alcohol abuse. In their analysis, they used race, gender, and
family history as risk factors. Race was defined as white or nonwhite and family history was considered
positive if the subject had a biological mother, father, sister, or brother who had a history of alcohol-
related problems. These risk factors were considered because past studies have shown that white males
with a family history are at highest risk of alcohol dependence. The authors found differences in risk
factor profile between subjects with an alcohol diagnosis and diagnostic orphans and differences between
subjects with an alcohol diagnosis and subjects with no symptoms. They used these results as support for
the three-symptom threshold.

In Table 1 we present the race, gender and family history composition within levels of number of
dependence symptoms. Note that these ordered categorical levels are naturally scored by the number
of symptoms. In studying the association between alcohol dependence and risk factors, the standard
epidemiologic approach is to use the diagnostic threshold to define a subject as alcohol dependent and
run logistic regressions to estimate the crude (i.e. ignoring other risk factors) and adjusted (i.e. holding
other risk factors constant) odds ratios. The odds ratios serve as measures of association between risks
factors and alcohol dependence. In Table 2 we present these odds ratios, along with their 95% confidence
intervals. As with past studies, we see that being male and having a family history are strong risk factors
of alcohol dependence diagnosis, while being white is a milder risk factor.

While the above analyses are informative, they may be obscuring a more important relationship
between the risk factors and the number of dependence symptoms. It is this relationship which may be
useful in generating comprehension of the etiology of alcohol dependence. If a risk factor is involved in the
pathologic process, then the crude (adjusted) conditional distribution of the number of symptom groups
given the risk factor(s) should differ over levels of the risk factor. The comparison of these conditional
distributions may yield some clues or generate hypotheses about the risk factor’s etiologic contribution. It
also may be helpful in identifying subgroups of the population who should be sampled for a future study
of the risk factor.
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Table 2. Crude and adjusted odds ratios (with 95% confidence intervals) using a
three-symptom threshold for diagnosis of alcohol dependence. Risk factors include

race, gender, and family history

Crude Adjusted
Risk factor Odds ratio Confidence interval Odds ratio Confidence interval
Race (white) 1.30 [1.18, 1.42] 1.29 [1.17, 1.41]
Gender (male) 1.95 [1.83, 2.07] 2.18 [2.04, 2.33]
Family history 2.72 [2.55, 2.90] 2.95 [2.76, 3.15]

Race Gender Family History
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Fig. 1. Crude (C) and Adjusted (A) log odds ratios for varying thresholds of alcohol dependence diagnosis (lifetime
drinker cohort). Risk factors include race, gender, and family history.

One way of comparing the crude (adjusted) conditional distributions is by computing the crude
(adjusted) odds ratios for all possible thresholds for alcohol dependence diagnosis. For each threshold
k, a subject is considered as alcohol dependent if he/she reports more than k of the dependence criteria
(k = 2 corresponds to the current diagnostic standard). Figure 1 presents the log of these odds ratios as
a function of k, the score assigned to level k. The C and A symbols in these figures denote the crude
and adjusted estimates, respectively. Note that the vertical scales of these figures differ by risk factor.
The proportional odds model for ordinal data (McCullagh, 1980) smooths out these log odds ratios by
assuming that they are a constant function of k. By inspection of Figure 1, we see that this model fails,
in general, to capture the nonlinear nature of the relationship between the outcome and the risk factors.
A more natural, yet parsimonious, model would smooth out these log odds ratios by assuming that they
are quadratic in k. The estimated shape of this quadratic function will provide more information about
the risk factor’s potential role in the etiologic process than the analyses based on the diagnostic threshold.
This idea is the motivation for the models discussed in this paper.
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The paper is organized as follows. We discuss the single risk factor quadratic cumulative odds
regression model in Section 2 and its multiple risk factor extension in Section 4. Section 3 is devoted to
issues of estimation in the single risk factor model, which directly carries over to the multiple risk factor
model. Model fits to the alcohol dependence dataset and their interpretation are presented in Section 5.
The final section is a summary and discussion.

2. SINGLE RISK FACTOR MODELS

Let Y denote a (K + 1)-level, scored ordinal response. Without loss of generality, we assume that
Y takes on values in the range 0, . . . , K and that disease severity increases with Y . Let sk be the score
associated with level k (s0 <, . . . , < sK ). The scores serve as a distance metric between categories. In the
analysis of the alcohol dependence data, we let sk = k, denoting equal distances between adjacent levels
of the outcome. Let X be a risk factor.

To motivate our models for the conditional law of Y given X , note that the random variable Y is
identically equivalent to the K -dimensional random vector (Y (0), Y (1), . . . , Y (K−1)), where Y (k) = I (Y >

k). This is because Y = k if and only if Y (0) = · · · = Y (k−1) = 1 and Y (k) = · · · = Y (K−1) = 0. This
implies that a model for the law of Y given X can be fully specified by simply modeling the marginal laws
of Y (k) given X . One natural modeling strategy is to assume that each of the K marginal laws follow a
logistic model of the form

logit P[Y (k) = 1|X ] = αk + βk X. (1)

Here, exp(αk) is the odds (baseline) that Y is greater than k for subjects with X = 0 and exp(βk) represents
the multiplicative factor by which the odds that Y is greater than k changes as X is increased by one unit.
Since we allow these parameters to vary with k, we refer to this model as the single risk factor saturated
cumulative odds model. The model is saturated with respect to the coefficients. It is also saturated with
respect to the model when X is a binary indicator. This model has 2K parameters; however, the parameter
space is constrained. To preserve the ordering of the conditional probabilities (P[Y (0) = 1|X ] � P[Y (1) =
1|X ] � · · · � P[Y (K−1) = 1|X ]), it is required that

αk − αk+1 + min
x∈support(X)

{(βk − βk+1)x} � 0 (2)

for k = 0, . . . , K − 2.
Estimates of βk are the points labeled C in Figures 1 and 2. As we saw, these points tend to form a

nonlinear function of sk . We argued that a parsimonious, yet flexible, way of capturing and smoothing
these patterns is to further parametrize βk via a quadratic model, i.e. βk = γ0 + γ1sk + γ2s2

k . We refer to
this as the single risk factor quadratic cumulative odds model. If γ2 < 0 or γ2 > 0, then the association is
concave or convex, respectively. In this model, restriction (2) reduces to

αk − αk+1 + min
x∈support(X)

{[γ1(sk − sk+1) + γ2(s
2
k − s2

k+1)]x} � 0 (3)

for k = 0, . . . , K − 2. Note that our quadratic model has K + 3 parameters.
When γ1 = γ2 = 0, the quadratic cumulative odds model is equivalent to the well known proportional

odds model. In contrast to the proportional odds model, our model is not closed under aggregation of
adjacent response levels. That is, the interpretation and estimates of the parameters, γ0, γ1, γ2, changes if
adjacent response levels are collapsed and assigned a new intermediate numeric scale. This is because our
model utilizes the ordinal score, whereas the proportional odds model does not.
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We assume that we observe n independent and identically distributed copies {(Yi , Xi ) : i = 1, . . . , n}
of (Y, X). Formally, our model assumes that for k = 0, . . . , K − 1,

logit P[Y > k|X ] = αk + γ0 X + γ1sk X + γ2s2
k X. (4)

Let β = (α′, γ ′)′ where α = (α0, . . . , αK−1)
′ and γ = (γ0, γ1, γ2)

′. Let Ω denote the set of β satisfying
restriction (3). Let β0 = (α′

0, γ
′
0)

′, where α0 = (α0,0, . . . , αK−1,0) and γ0 = (γ0,0, γ1,0, γ2,0) denote
the true values of α and γ, respectively. We assume that β0 lies in the interior of a compact subset of Ω.
Let β̂ = (α̂′, γ̂ ′)′ denote an estimator of β0. Finally, let

Q(k; γ) = γ0 + γ1sk + γ2s2
k

be a characterization of the relationship between Y and X . We refer to Q̂(·) = Q(·; γ̂) and Q0(·) =
Q(·; γ0) as the estimated and true crude association function for X , respectively.

3. ESTIMATION

To estimate β0 in model (4), we maximize the log-likelihood over Ω. The log-likelihood has the
following multinomial form:

n∑
i=1

K∑
k=0

I (Yi = k) log pk(Xi ; β)

where

pk(X; β) = P[Y = k|X; β] =




1 − π0(X; β) k = 0

πk−1(X; β) − πk(X; β) k = 1, . . . , K − 1

πK−1(X; β) k = K

and

πk(X; β) = exp(αk + γ0 X + γ1sk X + γ2s2
k X)

1 + exp(αk + γ0 X + γ1sk X + γ2s2
k X)

.

To carry out the maximization subject to constraint (3), we follow a two-step approach. First, we
perform unconstrained maximization via a Newton–Raphson (NR) algorithm and check to see if the
solution can be found and if so whether it is feasible. If the solution is infeasible or unattainable, we
then move onto the second stage where we perform constrained maximization via a sequential quadratic
programming (SPQ) algorithm (Fletcher, 1980; Gill et al., 1981). We adopt this two-step strategy because
the NR algorithm is much faster than the SPQ algorithm. In the analyses performed in Section 5, we
utilized MATLAB’s NR function fsolve and the SPQ function fmincon.

The NR algorithm requires the first derivative of the log-likelihood with respect to β. The first
derivative can be expressed as

S(β) =
n∑

i=1

B(Xi ; β)A(Yi , Xi ; β)
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where

B(X; β) =
[
∂p0(X; β)

∂β
,
∂p1(X; β)

∂β
, . . . ,

∂pK (X; β)

∂β

]

∂p0(X; β)

∂β
=




−π0(X; β)(1 − π0(X; β))

zK−1
−π0(X; β)(1 − π0(X; β))X

−π0(X; β)(1 − π0(X; β))s0 X
−π0(X; β)(1 − π0(X; β))s2

0 X




∂pk(X; β)

∂β
=




zk−1
πk−1(X; β)(1 − πk−1(X; β))

−πk(X; β)(1 − πk(X; β))

zK−k−1
πk−1(X; β)(1 − πk−1(X; β))X − πk(X; β)(1 − πk(X; β))X

πk−1(X; β)(1 − πk−1(X; β))sk−1 X − πk(X; β)(1 − πk(X; β))sk X
πk−1(X; β)(1 − πk−1(X; β))s2

k−1 X − πk(X; β)(1 − πk(X; β))s2
k X




for k = 1, . . . , K − 1, and

∂pK (X; β)

∂β
=




zK−1
πK−1(X; β)(1 − πK−1(X; β))

πK−1(X; β)(1 − πK−1(X; β))X
πK−1(X; β)(1 − πK−1(X; β))sK−1 X
πK−1(X; β)(1 − πK−1(X; β))s2

K−1 X


 .

A(Y, X; β) is the (K + 1)-dimensional vector whose kth element is equal I (Y = k − 1)/pk−1(X; β),
and zk is a k × 1 vector of zeros. MATLAB’s NR algorithm does not require analytic second derivatives.
Instead, it uses finite difference numerical derivatives.

Under mild regularity conditions and the assumption that β0 lies in the interior of a compact subset
of Ω, we know that asymptotically the maximum likelihood estimator, β̂, will be in the interior of Ω.
Thus, we can apply standard asymptotic theory and prove that β̂ is consistent and asymptotically normal
(CAN). The asymptotic variance of β̂ is equal to the inverse of the Fisher information matrix, which
can be estimated by inverting the observed information matrix. By an application of the multivariate
delta method, we can show that (

√
n(Q̂(0) − Q0(0)), . . . ,

√
n(Q̂(K − 1) − Q0(K − 1))) converges in

distribution to Z = (Z0, . . . , Z K−1), where Z is a K -dimensional multivariate normal random vector
with mean zero. Then the continuous mapping theorem tells us that maxk=0,...,K−1 |√n(Q̂(k) − Q0(k))|
converges in distribution to maxk=0,...,K−1 |Zk |. These latter facts are useful for constructing a confidence
band for Q0(·).

The above normality results are asymptotic. In finite samples with a constrained parameter space, the
distribution of the standardized parameter estimates may be quite skewed. One way around this difficulty
is to use the parametric or nonparametric bootstrap (Efron and Tibshirani, 1993). In the parametric
bootstrap, we first construct B datasets, each with n subjects. Then, for each subject, the risk factor
is drawn from the empirical distribution of X , and Y is drawn from model (4) with β replaced by β̂.
For each dataset, indexed by b = 1, . . . , B, we estimate β under the quadratic cumulative odds model

using constrained maximum likelihood and refer to this estimate as β̂
(b)

. From β̂
(b)

, we can compute
standard errors and confidence intervals for the components of β̂ and β0, respectively. The bootstrapped
standard error of the j th component of β̂ is the standard deviation of the corresponding component of the
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bootstrapped estimates of β. Similarly, a (1 − α) bootstrapped confidence interval for the j th component
of β0 can be found by selecting the α/2 and (1 − α/2) percentiles of the histogram of these bootstrapped
estimates. In the nonparametric bootstrap, each of the B datasets are formed by drawing a random sample
of n subjects with replacement from the observed data.

If we knew the value of cα such that P[maxk=0,...,K−1 |Zk | � cα] = 1 − α, then a (1 − α) confidence
band for Q0(·) would take the form Q̂(·) ± cα/

√
n. While it is possible to find cα as the solution to

a complicated equation, it is simpler to approximate it using the above bootstrapped samples. For each

sample, use β̂
(b)

to estimate the quadratic association function and denote it by Q̂(b)(·). Then, compute
maxk=0,...,K−1 |√n(Q̂(b)(k) − Q̂(k))|. Finally, plot a histogram of the resulting maxima and select cα as
the (1 − α) percentile of the histogram.

4. MULTIPLE RISK FACTOR MODELS

The extension to multiple risk factors is straightforward. Suppose that there are P risk factors, X =
(X1, . . . , X P ). To model the law of Y given X, it is sufficient to model the marginal laws of Y (k) given
X. As before, a natural modeling strategy is to assume that the K marginal laws follow logistic models of
the form

logit P[Y (k) = 1|X] = αk + β
(1)
k X1 + β

(2)
k X2 + · · · + β

(P)
k X P k = 0, . . . , K − 1.

Here, exp(αk) is the odds (baseline) that Y is greater than k for subjects with X1 = · · · = X P = 0 and
exp(β

(p)
k ) represents the multiplicative factor by which the odds that Y is greater than k changes as X p

is increased by one unit and the other risk factors are held fixed. Since we allow these parameters to vary
with k, we refer to this model as the multiple risk factor saturated cumulative odds model. As before, this
model is saturated with respect to the coefficients. This model has (P + 1)K parameters. The restrictions
in this model are

αk − αk+1 +
P∑

p=1

min
x p∈support(X p)

{(β(p)
k − β

(p)

k+1)x p} � 0 (5)

for k = 0, . . . , K − 1.
Estimates of β

(p)
k are labeled as the points A in Figures 1 and 2. To capture the nonlinearity of these

estimates as a function of k, a parsimonious and flexible way of capturing and smoothing these patterns
is to assume that β

(p)
k = γ

(p)

0 + γ
(p)

1 sk + γ
(p)

2 s2
k for p = 1, . . . , P . This defines the multiple risk factor

quadratic cumulative odds model, with K + 3P parameters. In this model, restriction (5) reduces to

αk − αk+1 +
(p)∑
p=1

min
x p∈support(X p)

{[γ (p)

1 (sk − sk+1) + γ
(p)

2 (s2
k − s2

k+1)]x p} � 0 (6)

for k = 0, . . . , K − 1. When γ
p

1 = γ
p

2 = 0 for all p, then the model reduces to the proportional odds
model.

We assume that we observe n independent and identically distributed copies {(Yi , Xi ) : i = 1, . . . , n}
of (Y, X). Formally, our model assumes that for k = 0, . . . , K − 1,

logit P[Y > k|X ] = αk + γ ′ · [X′, skX′, s2
k X′]′ (7)

where γ is now redefined as the vector (γ
(1)
0 , . . . , γ

(P)
0 , γ

(1)
1 , . . . , γ

(P)
1 , γ

(1)
2 , . . . , γ

(P)
2 )′ and γ0 =

(γ
(1)
0,0 , . . . , γ

(P)
0,0 , γ

(1)
1,0 , . . . , γ

(P)
1,0 , γ

(1)
2,0 , . . . , γ

(P)
2,0 )′ is the true value of γ. Now, Ω is defined as the set of
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Fig. 2. Crude and adjusted association functions (with confidence bands). Crude (C) and Adjusted (A) log odds ratios
for varying thresholds of disease diagnosis.

β satisfying restriction (6). We again assume that β0 lies in the interior of a compact subset of Ω. Let
β̂ = (α̂′, γ̂ ′)′ denote an estimator of β0. Finally, let

Q(p)(k; γ) = γ
(p)

0 + γ
(p)

1 sk + γ
(p)

2 s2
k

be a characterization of the adjusted relationship between Y and X p. We refer to Q̂(p)(·) = Q(p)(·; γ̂)

and Q(p)

0 (·) = Q(p)(·; γ0) as the estimated and true adjusted association function for X p, respectively.
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Table 3. Estimates and confidence for the γ coefficients from the single risk and multiple
risk factor quadratic cumulative odds models (intervals)

Single risk factor Multiple risk factor
Risk factor Parameter Estimate Confidence interval Estimate Confidence interval
Race (white) γ0 0.1842 [0.1104, 0.2538] 0.1738 [0.1012, 0.2546]

γ1 0.0251 [−0.0315, 0.0814] 0.0216 [−0.0333, 0.0798]
γ2 −0.0073 [−0.0178, 0.0043] −0.0070 [−0.0186, 0.0043]

Gender (male) γ0 0.4677 [0.4159, 0.5203] 0.5434 [0.4935, 0.5918]
γ1 0.0998 [0.0615, 0.1414] 0.1151 [0.0726, 0.1580]
γ2 −0.0074 [−0.0162, 0.0006] −0.0084 [−0.0170, 0.0001]

Family history γ0 0.7857 [0.7269, 0.8394] 0.8391 [0.7815, 0.8955]
γ1 0.0555 [0.0120, 0.1003] 0.0691 [0.0258, 0.1160]
γ2 0.0240 [0.0149, 0.0340] 0.0217 [0.0126, 0.0313]

Parameter estimation in model (7) proceeds in the same fashion as presented in Section 4. The only
differences are that πk(X; β) is replaced by

πk(X; β) = exp(αk + γ ′ · [X′, skX′, s2
k X′]′)

1 + exp(αk + γ ′ · [X′, skX′, s2
k X′]′) ,

X is replaced by X and constraint (3) is replaced by constraint (6). Under mild regularity conditions, we
can show that β̂, our estimator for β0, is CAN. Finally, we can use the parametric or nonparametric
bootstrap to generate confidence bands for Q(p)

0 (·), standard errors for the components for β̂, and
confidence intervals for the components of β0.

5. APPLICATION TO ALCOHOL DEPENDENCE

Table 3 presents the parameter estimates (with 95% confidence intervals) obtained from fitting the
single and multiple risk factor quadratic cumulative odds models. The confidence intervals were formed
via parametric bootstrap. Figure 2 presents the crude and adjusted association functions (with 95%
confidence bands) for each of the risk factors: race, gender and family history.

The single and multiple risk factor analyses tell the same story. We see that the estimated association
between race and number of dependence criteria is concave with a maximum odds ratio (1.22, crude; 1.21,
adjusted) occurring at k = 2. Our model suggests that the role of race as a risk factor decreases as the
severity of alcohol dependence increases. Note that due to sampling variability, we cannot rule out a null
effect of race. This can be seen by noting, in Figure 2, that a horizontal line at zero fits within the crude
and adjusted confidence bands for race. Our estimated association functions indicate that being white may
have a mild impact on low levels of alcohol dependence, but severe dependence is due to other factors.
This result may be due to racial differences in levels and type of alcohol consumption, drinking norms,
or socioeconomic status. However, there may be a true racial component as Jones-Webb et al. (1997)
found that, after adjusting for potential confounders, ‘increases in alcohol consumption were associated
with increased drinking consequences for white men, but increased consumption has little effect for black
men.’ To address this issue, it may be useful for future research on the relationship between race and
alcohol to focus on identifying effects that occur at low levels of dependence, after adjusting for the above
factors.

For family history, we see that association is convex and increasing. The minimum and maximum
crude (adjusted) odds ratios are 2.19 (2.31) and 7.26 (7.65), respectively. Note that the proportional odds
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and linear models can be rejected at the 0.05 level as no straight line fits within the crude and adjusted
confidence bands. Our estimated association functions suggest that family history is influencing all levels
of dependence, with the effect increasing with severity. This result is consistent with the literature as
(Hill et al., 1994) report, ‘family history predisposes individuals to greater alcohol consumption and more
severe consequences from use of alcohol and drugs’.

For gender, we see that the association with number of dependence criteria is concave and monotoni-
cally increasing. The minimum and maximum crude (adjusted) odds ratios are 1.60 (1.72) and 2.23 (2.54),
respectively. The proportional odds, but not the linear, model can be rejected at the 0.05 level. Like family
history, the estimated association function suggests that being male influences all levels of dependence,
with the effect increasing with severity, but the effect is less substantial. There are at least two possible
explanations for this finding. First, previous research has suggested that, even after accounting for family
history, ‘women may require a higher susceptibility ‘load’ before expressing alcohol dependence’ (Hill
et al., 1994). Second, the gender effect may be due to ‘differences in men’s and women’s exposures to
drinking opportunities, in how often, in what quantity and with whom they drink, in their physiological
responses to ethanol intake and in the social consequences provoked by their drinking’ (Dawson, 1996).
More research is required to understand how gender relates to the severity of dependence.

Lastly, we note that, in contrast to the results of Hasin and Paykin (1999), our analysis does not support
the three-symptom threshold. However, this does not imply that the diagnostic threshold is not useful, as
its purpose is clinical rather than etiologic. From the latter perspective, using the diagnostic threshold
involves throwing away information which, as seen above, is potentially useful.

6. DISCUSSION

In this paper, we have developed new regression models for the analysis of scored ordinal data. The
novel feature of our models is that they capture and identify nonlinear aspects of the relationship between
the scored ordinal outcome and risk factors. These nonlinearities may be useful in generating context-
dependent hypotheses about the risk factor’s role in the etiologic process. They may also suggest how
to design future studies of the risk factor. Fitting these models provides information that is obscured in
the standard epidemiologic analysis which uses a diagnostic threshold. In our analysis of cross-sectional
data from the 1992 National Longitudinal Alcohol Epidemiologic Survey, we studied the effects of race,
gender, and family history on alcohol dependence among lifetime drinkers. We found that race may have
an impact on low levels of dependence, while family history and gender have an effect at all levels, with
the effect increasing with severity. While the results for family history are well established, the conclusions
about race and gender require further study.

In our analysis, we treated all symptom groups as exchangeable. Even more clues could be discovered
about the role of a risk factor, by evaluating whether it tends to cluster with a consistent set of dependence
criteria. This would provide even more precise hypotheses than the ones generated with our approach.
In addition, we have assumed that self-reports of alcohol dependence criteria are a perfect reflection of
disease state. However, there is some literature to suggest that there may be reporting differentials between
subgroups: for example, gender and family history. That is, two subjects who have the same disease burden
but differ with respect to family history (gender) may report a different number of dependence criteria. If
this reporting differential is substantial, it could affect the conclusions.

The methodology described here is not limited to a quadratic form for the association function.
Depending on the magnitude of K , one can fit a cubic or even a spline model for the sequence of log
odds ratios. It is a simple matter to modify the parameter constraints and likelihood score equations. Of
course, higher-order models may be more difficult to interpret.

We suggest that the quadratic cumulative odds regression models may be useful in medicine and
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epidemiology, particularly in situations where the definition of disease or disorder depends on a diagnostic
threshold which is arbitrary or controversial. Examples include hypertension, type II diabetes, low birth
weight, and depression.
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