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THE QUADRATIC MATRIX INEQUALITY IN SINGULAR Hoo CONTROL
WITH STATE FEEDBACK*

A. A. STOORVOGEL" AND H. L. TRENTELMANt

Abstract. In this paper the standard Ho control problem using state feedback is considered. Given a
linear, time-invariant, finite-dimensional system, this problem consists of finding a static state feedback such
that the resulting closed-loop transfer matrix has H norm smaller than some a priori given upper bound.
In addition it is required that the closed-loop system is internally stable. Conditions for the existence of a
suitable state feedback are formulated in terms of a quadratic matrix inequality, reminiscent of the dissipation
inequality of singular linear quadratic optimal control. Where the direct feedthrough matrix of the control
input is injective, the results presented here specialize to known results in terms of solvability of a certain
indefinite algebraic Riccati equation.

Key words. H control, state feedback, quadratic matrix inequality, strong controllability, almost
disturbance decoupling
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1. Introduction. In a series of recent papers [1], [2], [5], [8], [10], [15], [18], [23]
the by now well-known H optimal control problem was studied in a perspective of
classical linear quadratic optimal control theory. In these papers it is shown that the
existence of feedback controllers that result in a closed-loop transfer matrix withH
norm less than a given upper bound is equivalent to the existence of solutions of
certain algebraic Riccati equations. Typically, these algebraic Riccati equations are of
the type we encounter in the context of linear quadratic differential games.

The first contributions to this new approach in H optimal control theory were
reported in [8], [10], and [23]. These papers deal with the special case where the
controllers to be designed are restricted to being state feedback control laws. In later
contributions [2], [5], [18] these results were extended to the more general case of
dynamic measurement feedback.

If we take a close look at the type of conditions for the existence of suitable
controllers that are derived in the above references, we see there is a fundamental
distinction between two cases. This distinction is tied up with the question of whether
or not the direct feedthrough matrix of the control input is injective. In 10] and [23],
no assumptions are imposed on the direct feedthrough matrix. The conditions for the
existence of a suitable state feedback control law are formulated in terms of a family
of algebraic Riccati equations, parameterized by a positive real parameter e. It is shown
that there exists an internally stabilizing state feedback control law such that the
closed-loop transfer matrix has H norm less than an a priori given upper bound if
and only if there exists a parameter value e for which the corresponding Riccati
equation has a certain solution. In our opinion, a more satisfactory type of condition
is obtained in [2], [5], and 18]. In these papers it is assumed that the direct feedthrough
matrix of the control input is injective. It is then shown that a suitable state feedback
control law exists if and only if one particular algebraic Riccati equation has a solution
with certain properties.

The purpose of the present paper is to reexamine the H problem with state
feedback as studied in [2] and [18], without making the assumption that the above-
mentioned direct feedthrough matrix is injective. Our aim is to find conditions for the
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existence of suitable state feedback control laws that are of a different type from the
one derived in [8], [10], and [23]. Instead our conditions will be of the type proposed
in [2] and [18]. Stated differently: we will show how it is possible "to get rid of the
parameter e" in the conditions for the existence of suitable state feedback control
laws. Rather than in terms of a particular algebraic Riccati equation, our conditions
will be in terms of a certain "quadratic matrix inequality," reminiscent of the dissipation
inequality appearing in singular linear quadratic optimal control [4], [13], [19]. It will
turn out that the results from [2] and 18] on the special case that the direct feedthrough
matrix is injective can be re-obtained from our results.

The outline of this paper is as follows. In 2 we introduce the problem to be
studied and give a statement of our main result. In 3 we recall some important notions
that will be used in this paper. In 4 we give a description of a decomposition of the
input space, the state space and the output space. This decomposition will be instru-
mental in the proof of our main result. Sections 5 and 6 are devoted to a proof of our
main result. Finally, the paper closes with a brief discussion on our results in 7.

2. Problem formulation and main results. We consider the finite-dimensional,
linear, time-invariant system

(2.1) Ax + Bu + Ew, z Cx + Du,

where x E" is the state, u E is the control input, w E is an unknown disturbance,
and z E P is the output to be controlled. A, B, C, D, and E are real matrices of
appropriate dimensions. In this paper we are primarily interested in state feedback. If
F is a real m x n matrix, then the closed-loop transfer matrix resulting from the state
feedback control law u Fx is equal to

OF(S) C + DF)(Is-A- BF)-IE.

The influence of the disturbance w on the output z is measured by the H norm of
this transfer matrix:

Oll:- sup p[GF(kO)].

Here, p[M] denotes the largest singular value of the complex matrix M. The problem
that we will study in this paper is the following" given a positive real number 7, find
F " such that

Gv [] < y and o-(A + BF) C-.

Here, r(M) denotes the set of eigenvalues of the matrix M and

C-:= {s C[Re s <0}.

A central role in our study of the above problem is played by what we will call
the quadratic matrix inequality. For any real number y > 0 and matrix PE"" we
define a matrix F(P) e E("+"("+" by

(2.2) Fv(P):=(PA+ATP+y-2PEETP+CTC PB+CTD]
BTp+DTC DTD ]"

Clearly, if P is symmetric, then F(P) is symmetric as well. If F(P)>-O, then we will
say that P is a solution to the quadratic matrix inequality at 3’.

In addition to (2.2), for any 3’ > 0 and P eN we define a n x (n + m) polynomial
matrix L(P, s) by

(2.3) Lv(P, s):= (sI, A- y-EETp -B).
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We note that Lv(P, s) is the controllability pencil associated with the system

2=(A+),-2EETp)x+Bu.

The transfer matrix of the system E given by the equations

(2.4) Ax + Bu, y Cx + Du

is equal to the real rational pm matrix G(s)= C(Is-A)-IB+D. The normal rank
of a real rational matrix is defined as its rank as a matrix with entries in the field of
real rational functions, The normal rank of the transfer matrix G is denoted by
normrank G.

In the formulation of our main result we need the concept of invariant zero of
the system E (A, B, C, D). For this definition we refer to 3 (see also [11]). Finally,
let CO := {s C iRe s 0} and let C+ := {s C IRe s > 0}. The following is the main result
of this paper.

TrtEOgEM 2.1. Consider the system (2.1). Assume that (A, B, C, D) has no invariant
zeros in C. Let , > O. Then the following two statements are equivalent:

(i) There exists FRmn such that iIGll< , and o-(A+ BF)c C-.
(ii) There exists a real symmetric solution P >= 0 to the quadratic matrix inequality

at / such that

rankF(P) normrank G

and

(2.6) rank(L(P’s))F(P)
n +normrank G for all sCUC +.

In other words, the existence of a suitable state feedback control law is equivalent
to the existence of a particular positive semidefinite solution of the quadratic matrix
inequality at ,. This solution should be such that two rank conditions are satisfied.

Before embarking on a proof of this theorem we would like to point out how the
results from [2] and [18] for the special case that D is injective can be obtained from
our theorem as a special case. First note that in this case we have

normrank G m.

Define

R,(P) := PA+ ATp + "),-2pEE Tp + CC T (PB + CTD)(DTD)-I(BTp+ DTC).

Furthermore, define a real (n + m) (n + m) matrix by

S(P) := ( I0 -(PB + C TD)(DTD)-1)I.,

Then clearly we have

S(P)F,(P)S(P) T
/
|
Rv(P)

0\
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From this we can see that the pair of conditions F(P) >- 0, rank Fv(P) rn is equivalent
to the single conditionR (P) 0. We now analyze the second rank condition appearing
in our theorem, it is easily verified that for all s C we have

I. -(PB + CTD)(DTD)-’ Lv(

0 Im J Fv(P) /

sI-A-T-2EETp+ B(DTD)-(BTp+ DTc)
R(P)

BrP+DrC

Consequently, if R(P)=0 then the condition

rank (L(P, s)F(P) ]=n+m for allsCLJC+

is equivalent to

rank(sI-A-y-2EETp+B(DTD)-I(BTp+DTC))=n for all sCLJC+

or, equivalently,

cr(A + y-2EE Tp_ B(DTD)-I(BTp + DTc)) C-.

Thus, for the special case that the direct feedthrough matrix D is injective our main
result specializes to Corollary 2.2.

COROLLARY 2.2. Consider the system (2.1) with D injective. Assume that
(A, B, C, D) has no invariant zeros in C. Let y > O. Then the following two statements

are equivalent:
(i) There exists F6 such that ]]GFI]o< )’ and o’(A+BF)cC-.
(ii) There exists a real symmetric solution P >-0 to the algebraic Riccati equation

PA +ATp + y-2pEE Tp + CC T (PB + CTD)(DTD)-I(BTp + DTc) 0

such that

cr(A + T-2EETp B(DTD)-’(BTp + DTc)) C-.

A similar result was obtained in [2] and [18] for the special case that DTc =0

and DTD Ira. Our result differs slightly from those in [2] and [18] in the sense that
we only require P to be semidefinite instead of definite.

3. Preliminaries and notation. In this section we recall some important notions
that will be used in the sequel. First, we recall some facts about polynomial matrices.
Let [s] denote the ring of polynomials with real coefficients. Let "’[s] be the set
of all n x rn matrices with coefficients in [s]. An element of ""[s] is called a

polynomial matrix. A square polynomial matrix is called unimodular if it is invertible.
Two polynomial matrices P and Q are called unimodularly equivalent if there exist
unimodular matrices U and V such that Q UPV. In this paper, if P and Q are

unimodularly equivalent, then we denote P---Q. It is well known [3] that for any
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P "’[s] there exists Enxm[s] of the form

0....0 o... o

= q
.0

6 60...0
with ’i monic polynomials with the property that q,i divides q,+, such that P-q.

The polynomial matrix is called the Smith form of P (see [3]). The polynomials @
are called the invariant factors of P. Their product , := ’1’2" ’r is called the zero
polynomial of P. The roots of @ are called the zeros of P. The integer r is equal to the
normal rank of P; i.e., r normrank P. If s is a complex number then P(s) is an element
of CEm. Its rank is denoted by rank P(s). It is easy to see that normrank P rank P(s)
for all s C if and only if P is unimodularly equivalent to the constant n x m matrix

where L is the r x r identity matrix.
Next, we recall some impoant facts on the structure of the linear system given

by the equations (2.4). As before, this system is denoted by (A, B, C, D) or simply by
N. The system matrix of is defined as the polynomial matrix

P(s)=( Is-AC -2)"
The invariant factors of P are called the transmission polynomials of . The zeros of
Px are called the invariant zeros of E. Clearly, s C is an invariant zero of if and
only if rank Px(s)< normrank Px. It is easy to see that if F" and if we define
Ev := (A + BF, B, C + DF, D), then PxPx.. In paicular this implies that the trans-
mission polynomials of E and Ev coincide and a fortiori that the invariant zeros of E
and Ev coincide. An impoant role in this paper is played by the strongly controllable
subspace of E. Consider the following sequence of subspaces:

o() =0,
(3.1) W+(E)={x"[3wW(E),u s.t. Aw+Bu=x and Cw+Du=O}.
It is well known (see [7]) that W(Z) (i 1, 2,-..) is a nondecreasing sequence that
attains its limit in finitely many steps. The limiting subspace is denoted by W(E) and
is called the strongly controllable subspace of . W(E) is known to be the smallest
subspace of" with the propey that there exists a linear mapping G from P to

" such that (A+GC) and im(B+GD) . From this it is easily seen that
W(E) is (C + DF, A + BF)-invariant for every linear mapping F:" (a subspace

is called (C, A)-invariant if it satisfies A( ker C) ; see also 12]). The system
is called strongly controllable if W(Z)=". If Z is strongly controllable, then (A, B)

is controllable. It is known that is strongly controllable if and only if rank Px(s)
n+rank(C D) for every sC (see [6], [14]). Hence, by the above we find that if
(C D) is surjective, then E is strongly controllable if and only if P is unimodularly
equivalent to the constant matrix (I,+p 0), where I,+p denotes the (n +p) x (n +p)
identity matrix.



SINGULAR H(R) CONTROL 1195

We conclude this section by introducing some notation. We will denote N+ := [0,
2(+) denotes the space of real-valued measurable functions from N+ to such that

I+ Ilxll dt <00. For a given positive integer r we denote by ;(+) the space of
r-vectors with components in 2(N+). The notation is used for the Euclidean norm
on Nr; 112 denotes the usual norm on w;(N+); i.e., Ilx[12 := (In+ Ilxll 2 dt) 1/2.

4. A preliminary feedback transformation. In this section we show that by applying
a suitable state feedback transformation u Fox + v to the system E (A, B, C, D), it
is transformed into a system E Vo := (A+ BFo, B, C + DFo, D) with a very particular
structure. We will display this structure by writing down the matrices of the mappings
A + BFo, B, C + DFo, and D with respect to suitable bases in the input space N", the
state space ", and the output space N p.

First choose a basis of N as follows. Let q,. ., ql, ql+," ", q,, be a basis such
that q+l, ", qm is a basis ofker D (0=< 1 -<_ m). In other words, decompose N
9/2, with 2=ker D and 0- arbitrary. Next, choose a basis of Np as follows. Let
z, , zr, Zr+," ", Zp be an orthonormal basis such that z,. , zr is an orthonormal
basis ofim D and Zr+,’’’, Zp is an orthonormal basis of (ira D) +/- (0-< r<-p). In other
words, write NP LrLr2 with Lr=im D and Lr2= (im D) +/-. If (Zz) is the coordinate
vector of a given z [P, then because of orthonormality we have IIz[I z2)l[ (here
denotes the Euclidean norm). With respect to these decompositions the mapping D
has the form

0

with D invertible. Moreover, B and C can be partitioned as

B=(B, B2) C=(C)C2
It is easy to see that im B2 B ker D and ker C2 C- im D := {x Cx im D}.

Next, define a linear mapping Fo" N" Nm by

(-D-(a Ca)(4.1) Fo :=
0

Then we have

(0)C+DFo=
C2

We now choose a basis of". LetXl,’’’,Xs, Xs+l,’’’,xt, xt+l,’’’,xn (0 <= s <= <--

n) be a basis such that Xs+,’",xt is a basis of -(;)(’1C- im D and xs+,’", x,
is a basis of -(E). In other words, write" @2@3 with2 -(E) f-I C- im D,
f2@3 T(;) and arbitrary. It turns out that with respect to the bases introduced
above, A + BFo, B and C + DFo have a particular form. This is a consequence of the
following lemma.

LEMMA 4.1. Let Fo be given by (4.1). Then we have:
(i) (A + BFo)((E) f3 C- im D) 8-(;),
(ii) im B2 c__ 8-(Y),
(iii) -(E) (’1C-’ im D c_ ker Cz.
Proof (i) 8(E) is (C + DFo, A + BFo)-invariant. This implies that

(A + BFo)( -(E) 71 ker C + DFo))
_
-(E).
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Since ker (C + DFo) ker C2 C -1 im D, the result follows.
(ii) Let -i(E) be the sequence defined by (3.1). Then l(E)= B ker D=im B2.

Since ffi(E) is nondecreasing this proves our claim.
(iii) This follows immediately from the fact that C -1 im D ker C2.
By applying this lemma we find that the matrices of A+ BFo, B, C + DFo, and D

with respect to the given bases have the following form"

{a o A13t {Bll
A+BFo=IA21 A22 Aa3

\A31 A32 A33 \B31
(4.2)

C21 0 C23 0

B22
B32/

:).
If we apply the feedback transformation u Fox + v to the system E (A, B, C, D),
then the resulting system E Fo is given by

(4.3) : (A+ BFo)x + Bv, z (C + DFo)x + Dr.

With respect to the given decomposition, let () be the coordinate vector of a given
ve m. Likewise, we use the notation (x(, xr, x) T and thel). Then equations of
the system E Fo can be arranged in such a way that they have the following form:

(4.4) 2=AllX+(Bll A3) (tl),X3

(2) (A22 A23\l(x:z)+(B:zz] (B21A21](v1)(4.5)
3 -’-\A32 A33] x3 B32//v2-{ B31 A3] Xl’

(4.6) (Zl) (0) (D1 0)(Vl)Z2 C21 0 C23 x

As already suggested by the way that we have arranged these equations, the system
E Fo can be considered as the interconnection of two subsystems. This is depicted as
follows:

Here,

(4.7) X:= A,a, (Bll A13),
C21 0 C23

is the system given by (4.4) and (4.6). It has input space 1 ;T3, state space 1, and
output space P. Zo is the system given by (4.5). It has input space r,T and state
space @3. The interconnection is made via xl and x3, as depicted above. Note
that and XFo have the same output equation. However, in ZFo the variable x3 is
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generated by Eo, whereas in : it is considered as an input and is flee. The systems Eo
and turn out to have a couple of nice structural properties, as shown in Lemma 4.2.

LEMMA 4.2. (i) C23 is injective,
(ii) The system

((A22 A23] (B2] (0 ’),0)(4.8) E;1 :=
\A32 A33], B32],

with input space all:, state space@3 (=if(E;)), and output space g3 is strongly
controllable.

Proof (i) Let (Xlr, xf, x3r) r be the coordinate vector of a given x R". Assume
that C23x3 0. Let E" be the vector with coordinates (O r, O r, x3r) r. Then Y 3. In
addition, -(E;) f-I ker C2 2. Thus Y 0, so x3 0.

(ii) Let -(E1) be the strongly controllable subspace of the system E; given by
G(4.8). We will prove that -(E) 3. First note that there exists G (3) such that

[Aaa A:3+ (0 I)
\A3: A33] G3

Also note that

c -(1).im
B32/_

Now assume that -(E1)C___ 2(3 with strict inclusion. Define W
_
R" by

it0tX2

X3

Clearly,

___
-(E) with strict inclusion. We claim that there exists a linear map

Go: p ...>n such that

(4.9) (A + GoC)
_

(4.10) im (B + GoD)

Indeed, let C+
23 be any left inverse of C23 and define

-A13\
Go := /B G 0

\B31 63 /]
o)

It is then straightforward to verify (4.9) and (4.10). This, however, contradicts the fact
that -(E) is the smallest subspace 7/" for which (4.9) and (4.10) hold (see 3). We
conclude that@3 (E1). ["]

Our next result states that the zero structure of the original system E; (A, B, C, D)
is completely determined by the zero structure of the subsystem ; given by (4.7). A
transmission polynomial of a system is called nontrivial if it is unequal to the constant
polynomial 1.

LEMMA 4.3. The nontrivial transmission polynomials of , and , respectively,
coincide.

Proof According to 3 the transmission polynomials of E; and EFo coincide. Thus,
to prove the lemma it suffices to show that the system matrix Po of EF is unimodularly
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equivalent to a polynomial matrix of the form

where P(s) is the system matrix of . Since E1 is strongly controllable and (0 I) is
surjective, the Smith form of Px, is equal to (11 0) (I1 denotes the identity matrix with
size equal to dim2+ 2 dim 3). In addition, clearly we have

P.t -A32 0

0 / 32 0
A32 -B32

0

so we conclude that

sI A2_ B)_2
-A3:z

is unimodularly equivalent to (I2 0). Here I2 denotes the identity matrix of size
dim2+ dim 3. The proof is then completed by noting that

SI-oAll
-Bll -A13 0 0

D1 0 0 0

P0" / C21 0 C23 0 0 (P S 120 0)
-A21 -B21 -A23 sI-A22 -B22

\ -A31 -B31 sI A33 -A32 -B32
A consequence of the above lemma is that the invariant zeros of E and E, respectively,
coincide.

Our next lemma states that the normal rank of the transfer matrix G(s)=
C(sI-A)-IB+D of the system is equal to the number rank Dl/dim3 or,
equivalently, Lemma 4.4.

LEMMA 4.4. We have

normrank G rank (C23 0).0 D1
Proof. Define L(s):= sI-A. Then we have

(4.11) nrmrank( L0 )=n+normrankG.
We also have

I G0(s)) (0(C(sl-a)-’ OI)(L(So I -(sI-a)-B) I(Fo
sI All 0 -A13 -nil 0

B22
_(sI-(A+BFo) -BD) //-!21 sI A22 -A23 -B21

C + DFo 31 -A32 sI- A33 -B31 -B3:
0 0 D, 00 /\ C21 0 C23 0

Since C23 and D1 are injective, we can make the (1, 3), (1, 4), (2, 4), and (3, 4) blocks
zero by unimodular transformations. Furthermore, we can make a basis transformation
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on the output such that C23 has the form () where r=rank C23 Thus, after suitable
permutation of blocks, the normal rank of the latter matrix turns out to be equal to
the normal rank of

-A21

-A31
C211
C212
0

0 0 0

-A32 s../...A..3.3......B.3.2.
0 Ir 0

0 0 0

0 0 0

0

Here All is a given matrix Since, by Lemma 4.2, the matrix in the center has full row
rank for all s e C and since normrank (s!-/11) dim 1, we find

0 G
n + rank

Combining this with (4.11), we obtain the desired result. U
To conclude this section we want to note that if D is injective, then the subspace

2 in the decomposition of Em vanishes. Consequently, the partitioning of B reduces
to a single block and the partitioning of D reduces to (,) with D1 invertible. It is left
as an exercise to the reader to show that if(E)= 0 if and only if ker D c__ ker B. Thus,
if D is injective, then also -(E)= 0. In that case the subspaces f2 and 3 appearing
in the decomposition of T both vanish and the partitioning of A+ BFo reduces to a

single block.

5. Solvability of the quadratic matrix inequality. In this section we will establish
a proof of the implication (i)=:>(ii) in Theorem 2.1: assuming that a suitable state
feedback control law exists, we show that the quadratic matrix inequality has a solution
with the asserted properties.

Consider our control system (2.1). For given disturbance and control functions w
and u we denote by Xw, and Zw, the corresponding state trajectory and output function,
respectively, with x(0)= 0. We will first formulate a theorem that serves as a basis for
the developments in the rest of this paper. The theorem is concerned with the special
case that in the system (2.1) the direct feedthrough matrix D is injective. The result
in Theorem 5.1 is a generalization of [2, Thm. 2] and of results in [18].

THEOREM 5.1. Consider the system (2.1) and assume that D is injective. Assume
that (A, B, C, D) has no invariant zeros in C. Let y > O. Then the following statements
are equivalent:

(i) (A, B) is stabilizable and, in addition, there exists 6>0 such that for all
w (+) there exists u ’(+) for which Xw,, (R+) and Ilzw,.ll=_-<  )llwll=.

(ii) There exists a real symmetric solution P >-0 to the algebraic Riccati equation

(5.1) PA +A T"P + y-2pEET"P + CT"C -(PB + CrD)(DT"D)-I(B’P + DT"C) O

such that

o’(A + y-2EE Tp_ B(DTD)-,(BTp + DTc)) C-
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Moreover, if the latter holds, then one possible choice for u is given by u Fx, with

F= -(DT"D)-I(BrP + DrC).
For this F we have Iloo < and r(A+ BF)c C-.

Proof. A proof of this theorem can be based on the proof of [18, Thm. 2.1c]. In
the latter paper it is assumed that C is injective and that CrD 0, which implies that
(A, B, C, D) has no zeros at all. The proof of Theorem 2.1c of [18] can, however, be
modified to yield a proof of our result. In doing this the following important point
might need clarification. Since, in our context (C, A) is not necessarily detectable, we
must make a careful distinction between the
and u ’) and the H problem without stability (i.e., no restrictions on x and u).
In the proof of Theorem 2.1 of [18] a version of the maximum principle is used that
gives a sufficient condition for optimality in the case that (C, A) is detectable (for a
finite-horizon version of this result see [9, Chap. 5.2]). However, if we drop the
detectability assumption, this method can still be used for the Hoo problem with stability.
The remainder of the proof in [18] can be checked step by step and remains valid.

Since in our context (C, A) is not necessarily observable (in contrast with [2] and
[18]) our theorem involves a semidefinite solution of (5.1) rather than a definite
one.

Now, again consider the system (2.1), this time without making any assumptions
on the matrix D. Choose bases in the state space, the input space, and the output
space as in 4 and apply the feedback transformation u Fox + v, with Fo given by
(4.1). After this transformation we have

(5.3) 2 (A + BFo)x + Bv + Ew, z (C + DFo)x + Dv.

If we partition E (Er, E, E)r, then in terms of our decomposition (5.3) can be
written as follows:

(5.4) 21=allX1+(B11 al3)(Vl] +ElW,
\IX3

(:2) (A29-A:z3)(x2)(B22 (B21 A21)(Vl)+ V2+ + w,(5,5)
23 \A32 A33] X3 B32,] B31 A31] Xl E3

Xl -lt-
Z2 C21 0 C23 x

For given disturbance and control functions w and v, let Xw. and Zw. denote the state
trajectory and output, respectively, of (5.3), with x(0)=0. The idea that we want to
pursue is the following. If there exists a feedback law u Fx for (2.1) such that
IlG ll < and r(A+BF)cC-, then the feedback law v=(F-Fo)x in (5.3) yields a
closed-loop transfer matrix from w to z with Hoo norm smaller than 3’. In other words,

(5.7) /3 := sup < y.
w’+) Ilwll2

Also, Xw,, (R+). Let 6 := 3’-/3. Then, for a given w, define vl as the first component
of v (F- Fo)xw. and take x3 as the third component of Xw,. Interpret () as an input
for the subsystem defined by (5.4) and (5.6). It then follows from (5.7) that

(-)llwl12.
2
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Moreover, the "input" () and the "state trajectory" Xl. are in 2. The crucial
observation is now that the direct feedthrough matrix of E is injective (see Lemma
4.2). Thus we can apply Theorem 5.1 to establish the existence of a solution to the
algebraic Riccati equation associated with the system E. Before doing this, however,
we should make sure that (All, (Bll, A13)) is stabilizable and that ; given by (4.7)
has no invariant zeros in C. It is easily seen that if (A, B) is stabilizable, then also
(AI, (Bll, A3)) is stabilizable. Furthermore, ire (A, B, C, D) has no invariant zeros
in C, then the same holds for (see Lemma 4.3). Consequently, we have the following
corollary.

COROLLARY 5.2. Consider the system (2.1). Assume that (A, B, C, D) has no
invariant zeros in C. Let / > 0 and assume there exists F Rmn such that GFI] < 7
and tr(A + BF) c C- Then there exists a real symmetric solution Pll ->-- 0 to the algebraic
Riccati equation

(5.8)
P,,All +AP,I +C C21 + T-2pllE1ET1P,1- PllBll(DD1)-IBP,1

(A3P, + c2Tc=,)T(C3C23)-l(Ap, + CC2,) 0

such that

(5.9)
r(A,, + 7-E,ET p,,- B,,(DD,)-’BP,,

-A,3(cT3c3)-’(API, + C3C,)) C-

Our next step is to establish a connection between the algebraic Riccati equation
(5.8) and the quadratic matrix inequality.

It turns out that there is a one-to-one correspondence between the set of solutions
to (5.8) and the set of solutions to the quadratic matrix inequality at y that satisfy the
rank condition (2.5). To prove this, we need the following lemma.

LEMMA 5.3. Assume P R is a solution to the quadratic matrix inequality at
Then if(E) __. ker P.

Proofi Let Fo be given by (4.1). Let be the smallest (C + DFo, A + BFo)-invariant
subspace containing B ker D. We claim that (E). We know that 5r(E) is (C +
DF, A / BF)-invariant for all F and hence also for F Fo. Second, by Lemma 4.1(ii)
we have ’(E)_ ker D. Therefore, we have

_
f(). Conversely, we know that

3G, im (C + DFo)R" s.t. [(A+ BFo)+ GI(C / DFo)]
_ ,

3G2 im D -->" s.t. im (B + G2D) B ker D
__ .

Since Dr(C + DFo)= 0 (this can be checked easily) we can find a linear mapping G
such that Glim(C+DFo)= G1 and G]imD G2 and hence we have found a G such that
(A+GC) and im (B+GD) . Thus we find

_
ff-(Z) and hence if(Z).

Let 3’ > 0 and define

If Fr(P) _>- 0 then also

(5.11) Mv(p)=(p(A+ BFo)+(A+ BFo)7rp+ y-ZPEETp+(C + DFo)T(C + DTDPB )>-0_
We claim that B kerD ker P. Let urn be such that Du =0. Then we find

()7Mr(P)(,)=0 and hence, since Mv(P)>=O, we find Mr(P)(,)=0. This implies
PBu =0. Next we have that ker P is (C + DFo, A+ BFo)-invariant. Assume that x
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ker P f-) ker C + DFo). Then

xT(p(A + BFo)+ (A + BFo)Tp + y--PEE Tp+(C + DFo)T(C + DFo))X O.

Hence, by applying x to one side only, we find P(A+ BFo)x =0 and therefore (A+
BFo)x ker P. Since ff() is the smallest space with these two properties, we must
have ()_ ker P. 1-1

Using the above lemma, we now obtain the following result.
THEOREM 5.4. Let ), > 0 and P n,,. Thefollowing two statements are equivalent:

(i) P is a symmetric solution to the quadratic matrix inequality at y such that
rank Fr(P) normrank G.

(ii) P 0

0

where Pl is a symmetric matrix satisfying (5.8).
Furthermore, if the above holds, then the following two statements are equivalent:

(iii) rank
F(P)

n+normrank G for all seCuc /.

-A13(C T23 C23) -1(APll + C3C9_1))c C-.

Proof By (5.10) we have M(P)>=O if and only if F(P)->0, and we also know
that these matrices have the same rank., Assume a symmetric P satisfies Mr(P)>_O
and rank Mr(P) =normrank G. Since Pff(E) =0 (see Lemma 5.3) we know that we
can write P as

(5.12) P= 0 0
0 0

If we also use the decompositions (4.2) for the other matrices, then we find that Mr(P)
is equal to

(5.13)

T T --2 EET1P 0PllAll + AllPll + C2C21+’Y P
0 0

T T 0AP+CC13 11 23 21

BP 0

0 0

PllA13+CflC23 PB
0 0

cc o
0 DTD
0 0

According to Lemma 4.4 the rank of this matrix equals the rank of the encircled
matrix. Thus, the Schur complement of the encircled matrix must be equal to zero.
Since this condition exactly yields the algebraic Riccati equation (5.8) we find that Pll
is a solution of (5.8).

Conversely, if Pll is a solution of (5.8), then the Schur complement ofthe encircled
matrix in (5.13) is zero. Therefore, it satisfies the matrix inequality (5.13), and the rank
of the matrix is equal to normrank G. Hence P given by (5.12) satisfies the required
properties.

Now assume that (i) or (ii) holds. We will prove the equivalence of (iii) and (iv).
Denote the matrix in (iv) by Z. We will apply the following unimodular transformation
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to the matrix in (iii)"

When we use the decompositions in (4.2), the latter turns out to be equal to

(5.14)

sI A y-EE(PI 0 -A13 -B 0

-A21 /-2E2ETPll sI A22 -A23 -B21 -B22
-A31 "y-EE3EPll -A32 sI A33 -B31 -B32

PllAII+ATllPll+CflCEI+y-2pllE1EPI1 0 PI1AI3+CflC23 PllBll 0

0 0 0 0 0

AaP + c2T3c21 0 Cf3C23 0 0

B "(P 0 0 D D 0

0 0 0 0 0

By using Schur complements, we can get the Riccati equation (5.8) in the 4,1
position and the matrix Z in the 1,1 position of the above matrix. Furthermore, since

DrlD1 is invertible, we can make the 2,4 and 3,4 blocks equal to zero by a unimodular
transformation. Since Pll is a solution of the Riccati equation, the 4,1 block becomes
zero. Thus, we find that (5.14) is unimodularly equivalent to

sI-Z
,
,
0

0

0

0

0

0 0

sI-A22 -A23
-A32 si-A33
0 0

0 0

Cf3C23
0 0

0 0

1
0 1,-B32,
0 0

0 0

DD, 0

0 0

where denotes matrices that are unimportant for this argument.
Now by Lemma 4.2 the encircled matrices together form the system matrix of a

strongly controllable system. Hence this system matrix is unimodularly equivalent to
a constant matrix (I 0), where I denotes the identity matrix of appropriate size.
Therefore, we can make the 2,1 and 3,1 blocks zero by a unimodular transformation.
Thus, after reordering we find

sI-Z
0

0

0

0

0

0

0

0 0 0
sI A22 A23 "-B22
-A32 sI-A33 "-B32

6"
0 0 0

0 0 0

0 0 0

0 0 0

o
0

0

0

DIDll
0

0

o

It follows that the matrix on the left has rank n + normrank G for all s C C+

if and only if or(Z)c C-. This proves that (iii) and (iv) are equivalent. D
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A proof of the implication (i)(ii) in Theorem 2.1 is now obtained immediately
by combining Corollary 5.2 and Theorem 5.4.

6. Existence of state feedback control laws. In this section we give a proof of the
implication (ii)(i) in Theorem 2.1. We first explain the idea of the proof,,Again, we
consider our control system (5.3) as the interconnection of the subsystem 5: given by
(5.4), (5.6) and the subsystem Eo given by (5.5). Suppose that the quadratic matrix
inequality has a positive-semidefinite solution at 2, such that the rank conditions (2.5)
and (2.6) hold. Then according to Theorem 5.4, the algebraic Riccati equation associated
with the subsystem has a positive-semidefinite solution Pll such that (iv) of Theorem
5.4 holds. Thus by applying Theorem 5.1 to the subsystem , we find that the "feedback
law"

(6.1)

(6.2)

vl -(DD,)-’BP,Xl,

x3 -(CC3)-’(AP, + C3C21)x1,

yields a closed-loop transfer matrix for withH norm smaller than y. Now we will
do the following" construct a state feedback law for the original system (5.3) in such
a way that in the subsystem the equality (6.2) holds approximately. The closed-loop
transfer matrix of the original system will then be approximately equal to that of the
subsystem and will therefore also have H norm smaller than y.

In our proof an important role will be played by a result in the context of the
problem of almost disturbance decoupling as studied in [19] and [22]. We will first
recall this result here. For the moment assume that we have the following system"

(6.3) Ax + Bu + Ew, z Cx.

For this system, the almost disturbance decoupling problem with pole placement
(ADDPPP) is formulated as follows. For all e > 0 and for all M , find Fmxn
such that IIGllo< e and cr(A+BF)c {sClRe s<M}. It is shown in [19] and [22]
that conditions for the existence of such F can be stated in terms of the strongly
controllable subspace -(E) associated with the system E (A, B, C, 0). (In fact, in

[19] and [22] this subspace is denoted by (ker C).) The exact result is as follows.
LEMMA 6.1. Consider the system (6.3). Let (E) denote the strongly controllable

subspace associated with E=(A, B, C, 0). Then the following two statements are
equivalent:

(i) For all e > 0 and for all M there exists F mn such that GF I1< e and

or(A+ BF) c {s CIRe s < M}.
(ii) im E c -(E) and (A, B) is controllable.
As an immediate consequence of the above we obtain the following fact. If
(A, B, C, 0) is strongly controllable, then for all e > 0 and for all M there exists

F mn such that IIG < and cr(A+ BF) c {s C [Re s < M}. Thus, in particular,
if Z (A, B, C, 0) is strongly controllable, then for all e > 0 there exists F E"" such
that ]1GF < e and cr(A + BF) C-.

We now formulate and prove the converse of Corollary 5.2.
TqEOREM 6.2. Consider the system (2.1). Assume that (A, B, C, D) has no invariant

zeros in C. Let y > O. Assume there exists a real symmetric solution Pa >-- 0 to the algebraic
Riccati equation (5.8) such that (5.9) holds. Then there exists Fe such that

IIGII< and cr(A+BF) C-.
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Proof Clearly, it is sufficient to prove the existence of such a state feedback law
as v Fx for the system (5.3). Let this system be decomposed according to (5.4)-(5.6).
Choose

, -(D D,)-’B P,,Xl

and introduce a new state variable q by

q := x +(CC)-’(AP,, + CC,)x,.

Then (5.4)-(.6) an be rewritten as

(6.4)

C3) q3"

Here we use the following definitions"

:=A-Aa(CgCa)-’(Ae + CgC) B(DD)-BIPI,

:=A-A(CgC)-I(APll +CC)-B(DD)-BP,

31 := n31-Aa3(CgCa)-(AP + cCl)-B3(DD)-’BP

:=A + CC2)-’(AP,, + CC,)A,,, := -D,(DD,)-’BP,,,
:= C, C(CC)-’(AP,, + CC,),

:= E + CC)-’(AP,, + CC,)E,

According to Theorem 5.1, if in the subsystem formed by (6.4) and (6.6) we have
q 0, then its transfer matrix from w to z has H norm smaller than . Moreover,
we have (A) C- Hence, there exist M > 0 and p > 0 such that for all w and q
in, we have

Also by the fact thatA is stable, there exist M,M > 0 such that for all w and q
in, we have

(6.8) IIx, ll=
We claim that the following system is strongly controllable:

(6.9)
A3 A33] B3
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This can be seen by the following transformation:

/i A33 --/33 -A3 sI A33 "...3.2 ..’..3.2... sI- A33" .3.2

Since the first matrix on the left is unimodular and the second matrix has full row
rank for all s C (see Lemma 4.2), the matrix on the right has full row rank for all
s C. Hence the system (6.9) is strongly controllable.

Now consider the almost disturbance decoupling problem for the system (6.5)
with output q3 and "disturbance" (xd). Because of strong controllability of (6.9) there
exists a feedback law v2 F(’2o3) such that in (6.5) we have

(6.10)

for all w and xl in 2 and such that the matrix

(A22 A.23)(Bz2)A :=
A3: A33]

-F
n3:z

satisfies r()c C-. Combining (6.7), (6.8), and (6.10) gives us

for all w in 2. Summarizing, we have now shown that if in our original system (5.3)
we apply the state feedback law

V -(D(D1)-aBPXl,
(6.11) ( x )2 F

X3 + CC23)-l(APll + CC21)x
then for all w(+) we have [[z[[ < yllw[[. Thus, the H norm of the resulting
closed-loop transfer matrix is smaller than y.

It remains to be shown that the closed-loop system is internally stable. We know
that

(6.12) [[(sI-)-A3][ M2,

(6.13)
A31]

The closed-loop A-matrix resulting from the feedback law (6.11) is given by

Assume (x y zr)r is an eigenvector ofA with eigenvalue I with Re i 0. It can
be seen that

(6.14) x

kA3
x.

(Note that the inverses exist due to the fact that and are stable matrices.)
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Combining (6.12) and (6.14) we find Ilxll M211zll, and combining (6.13) and (6.15)
yields Ilzll2<-1/2Mllxll2. Hence x= z=0. This, however, would imply that (y 0)
is an unstable eigenvector of . Since r()c C-, this yields a contradiction. This
proves that the closed-loop system is internally stable. [3

A proof of the implication (ii)(i) in Theorem 2.1 is now obtained by combining
Theorems 5.4 and 6.2.

Remark 6.3. In the regular case (i.e., D injective) it is quite easy to give an explicit
expression for a suitable state feedback law. Indeed, if P->_0 is a solution to the
algebraic Riccati equation (5.1) such that (5.2) holds, then the feedback law u-
-(D’D)-I(B’P+D’C)x achieves internal stability and [[GF[[o< y. In the singular
case (i.e., D not injective) a state feedback law is given by u Fox + v. Here, Fo is
given by (4.1) and v=(Vrl, vr2) " is given by (6.11). The matrix Pll is obtained by
solving the quadratic matrix inequality or, equivalently, by solving the reduced order
Riccati equation (5.8). The matrix F1 is a "state feedback" for the strongly controllable
auxiliary system (6.5). This state feedback achieves almost disturbance decoupling
between the "disturbance" (xr, wr) r and the "output" q3. The required accuracy of
decoupling is expressed by (6.10). A conceptual algorithm to construct such F1 can
be based on the proof of [19, Thm. 3.36].

7. Discussion and conclusions. In this paper we have shown that if in the
problem with state feedback no assumptions are made on the direct feedthrough matrix
of the control input, then the central role of the algebraic Riccati equation is taken
over by a quadratic matrix inequality. We note that a similar phenomenon is known
to occur in the linear quadratic regulator problem: if the weighting matrix of the control
input is singular, then the optimal cost is given in terms of a (linear) matrix inequality
rather than in terms of an algebraic Riccati equation (see [21]). However, while in the
singular LQ problem optimal inputs in general are distributions, in the H context
also in the singular case suitable statefeedback laws can befound. It is well known that
in the LQ problem a special role is played by solutions of the linear matrix inequality
that minimize the rank of the dissipation matrix (see [4], [13]). It turns out that also
in our context the relevant solutions to the quadratic matrix inequality are rank
minimizing. Indeed, it follows from the proof of Theorem 5.4 that for all symmetric
matrices P we have rank F(P)>-normrank G. Thus, (2.5) can be interpreted as saying
that P minimizes the rank of Fv(P). On the other hand, once we know that rank Fv(P)
normrank G, then obviously for all s C we have

rank(L(P’s)F(P) ]
--< n + normrank G.

Thus, (ii) of Theorem 2.1 can, loosely speaking, be reformulated as follows. There
exists a solution P_->0 to F(P)>-O that minimizes rank Fv(P) and maximizes
rank (Lv(P, s), Fv(P)7") 7" for all s Ct_J C +.

As can be expected, the quadratic matrix inequality and the rank conditions (2.5)
and (2.6) turn out to play an important role in the context of singular linear quadratic
differential games. This connection is elaborated in [16].

Needless to say, several questions remain unanswered in this paper. The most
obvious topic is the extension of the theory of this paper to the case of dynamic
measurement feedback, i.e., the singular counterpart of the problem studied in [2],
[5], and [18]. In [17] it is shown that the existence of suitable dynamic compensators
require solvability of a pair of quadratic matrix inequalities.

Finally, in [20] the ideas of the present paper are used to tackle the finite horizon
"H" control problem by measurement feedback, i.e., the problem of finding a dynamic
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compensator such that the L2[t0, tl]-induced norm (instead of the L2(N+)-induced
norm) of the closed-loop operator is smaller than an a priori given upper bound. In
[20] conditions for the existence of such a compensator are formulated in terms of
quadratic differential inequalities (the extensions of Riccati differential equations).
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