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Abstract A modified equation of Burgers type with
a quadratically cubic (QC) nonlinear term was recently
pointed out as a new exactly solvable model of math-
ematical physics. However, its derivation, analytical
solution, computer modeling, as well as its physical
applications and analysis of corresponding nonlinear
wave phenomena have not been published up to now.
The physical meaning and generality of this QC non-
linearity are illustrated here by several examples and
experimental results. The QC equation can be lin-
earized and it describes the experimentally observed
phenomena. Some of its exact solutions are given. It
is shown that in a QC medium not only shocks of
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compression can be stable, but shocks of rarefaction
as well. The formation of stationary waves with finite
width of shock front resulting from the competition
between nonlinearity and dissipation is traced. Single-
pulse propagation is studied by computer modeling.
The nonlinear evolutions of N- and S-waves in a dissi-
pative QC medium are described, and the transforma-
tion of a harmonic wave to a sawtooth-shaped wave
with periodically recurring trapezoidal teeth is ana-
lyzed.

Keywords Strongly nonlinear systems · Nonlinear
partial differential equation · Exact analytical
solutions · Quadratically cubic equation ·
Shock fronts · Nonlinear acoustics and turbulence ·
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1 Introduction

The Burgers equation was until recently the only known
nonlinear partial differential equation of the second
order which simultaneously has the two important
properties that: (i) it can be exactly linearized by a
simple transformation (using the Hopf–Cole substitu-
tion), and (ii) it has a significant physical meaning.
Suggested initially as a model to describe turbulent
spectra [1], it became the basic mathematical model
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768 O. V. Rudenko, C. M. Hedberg

of nonlinear waves in systems where the propagation
velocity does not depend on frequency [2]. The Burgers
equation adequately describes the physical phenom-
ena of high-intensity wave propagation in dissipative
non-dispersive media with quadratic nonlinearity. Its
predictive efficiency has been verified many times in
comparisons between experiments and numerical sim-
ulations [3–5].

A second nonlinear partial differential equation
which can be linearized by a simple substitution was
indicated recently by the authors [6–8]. This is a
quadratically cubic (QC) Burgers-type equation. Its
derivation and physical applications and the analysis
of the corresponding nonlinear wave phenomena have
not been published prior to this current paper. Like the
usual Burgers equation, the QC equation also has a
significant physical meaning, but its manifestations are
completely different.

A version of Burgers’ equation is written here for a
nonlinear acoustic wave as [2]:

∂p′

∂z
=

ǫ

c3ρ
p′ ∂p′

∂τ
+

b

2c3ρ

∂2 p′

∂τ 2
. (1)

Here p′ is the disturbance of pressure, ρ is the equi-
librium density, ǫ is the nonlinear coefficient, τ =
t − z/c is the time measured in a coordinate system
accompanying the wave along the z-axis with sound
velocity c, and b is the effective dissipation which
depends on the shear and bulk viscosities and the ther-
mal conductivity [2].

For the mathematical analysis, it is convenient to
rewrite the Burgers equation in a dimensionless form:

∂V

∂ Z
= V

∂V

∂θ
+ Γ

∂2V

∂θ2
. (2)

The following normalized variables are used in formula
(2):

Z =
z

zSH
, θ = ωτ, V =

p′

p′
0

,

Γ =
zSH

zDISS
=

bω

2ǫp′
0

. (3)

Here ω and p′
0 are the typical frequency and amplitude

of the initial wave, and zSH and zDISS are typical shock
formation and dissipation lengths defined by

zSH =
c3ρ

ǫωp′
0

, zDISS =
2c3ρ

bω2
(4)

The dimensionless parameter combination Γ —known
as the acoustical Reynolds number or Goldberg’s
number—is the only similarity criterion for one-
dimensional nonlinear waves in dissipative media. At
Γ ≫ 1 dissipation dominates over nonlinearity, and at
Γ ≪ 1 nonlinearity is stronger.

The QC Burgers-type equation can be written, by
using the same variables as in (3), in the following
dimensionless form [6–8]:

∂V

∂ Z
=

1

2

∂

∂θ
(|V |V ) + Γ

∂2V

∂θ2
. (5)

The difference between Eqs. (5) and (2) is that a QC
nonlinearity |V |V is present in (5), instead of the
quadratic nonlinearity V 2 of the Burgers equation. The
term |V |V is functionally rather similar to V 3 in its
symmetry. Therefore one can say that the usual cubic
nonlinearity V 3 [9,10] is modeled here by the piece-
wise quadratic relation |V |V . This function is continu-
ous, as is its first derivative, while the second derivative
has a singularity at V = 0. Equation (5) is possible to
linearize by using the substitution [8]

|V | = 2Γ
∂

∂θ
ln U ⇒

∂U

∂ Z
= Γ

∂2U

∂θ2
+ CU. (6)

Therefore Eq. (5) can be solved much more eas-
ily than the Burgers-type equation with the common
cubic nonlinearity V 3. But the formal replacement
V 3 → V |V | is useful not only for the qualitative analy-
sis of cubic nonlinear phenomena. It is more crucial to
know that real systems with the nonlinearity V |V | exist.
Examples of such will be provided in the next section.

2 Examples of physical systems with quadratically

cubic nonlinearity

The first example is related to a strong shear wave prop-
agating in the structure shown in Fig. 1. It consists of
rigid plates located periodically along the z-axis. The
plates are only allowed to move up and down in the x-
direction (Fig. 1a). At equilibrium, the center of each
plate lies on the z-axis. They are connected by linear
elastic forces (Hookean springs) as shown in Fig. 1b.
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The quadratically cubic Burgers equation 769

Fig. 1 a Shear wave in the
structure of plane-parallel

plates interconnected by
elastic forces, b image patch
of three neighboring plates
and springs is given for the
derivation of equation of
motion

The displacement of the center of the n-th plate up from
z-axis is ξn(t). An initial displacement of one or more
of the plates from equilibrium leads to a shear wave
propagating along the z-axis. In deriving an equation
of motion, we consider Fig. 1b where a is the spatial
period of the structure, and d is the thickness of the
deformable layer where the elastic force acts. Let us
now consider three neighboring plates, each having the
same mass M . The equation of motion for the plate
with number n is:

M
d2ξn

dt2
= Fn−1 + Fn+1. (7)

The force acting from plate number n − 1 is:

Fn−1 = −k

[
√

(ξn − ξn−1)2 + d2 − d

]

cos α. (8)

Here k is the stiffness coefficient of the linear spring.
As we are interested in the projection of the restoring
force on the x-axis, the factor cos α appears:

cos α =
ξn − ξn−1

√

(ξn − ξn−1)2 + d2
. (9)

The displacements are considered to be small in com-
parison with the thickness d of the elastic layer. In this
approximation the force (8) is:

Fn−1 = −k
(ξn − ξn−1)

3

2d2
. (10)

The force acting from plate number n + 1 is calculated
analogously, and Eq. (7) takes the form:

M
d2ξn

dt2
= −k

(ξn − ξn−1)
3

2d2
− k

(ξn − ξn+1)
3

2d2
. (11)

If all plates except the plate with number n are fixed,
this equation becomes

d2ξn

dt2
+

k

M d2
ξ3

n = 0. (12)

It is similar to the well-known Duffing equation but
is missing the linear term kξn . This ordinary differen-
tial equation, which lacks a transition to linear vibra-
tion at infinitesimally small amplitude, was used by W.
Heisenberg in his nonlinear quantum field theory [11].

We will pass now from the discrete chain of Eq. (11)
to the continuum limit. Let the wavelength be much
longer than the period a of the structure in Fig. 1.
Assuming that in (11)

ξn = ξ(z), ξn+1 = ξ(z + a), ξn−1 = ξ(z − a),

(13)

and expanding the displacements (13) in powers of a:

ξn±1 = ξ(z ± a) ≈ ξ(z) ± a
∂ξ

∂z
+ a2 ∂2ξ

∂z2
(14)

we derive the nonlinear partial differential equation

∂2ξ

∂t2
= 3β

(

∂ξ

∂z

)2
∂2ξ

∂z2
, β =

k a4

M d2
. (15)

It is now convenient to pass from Eq. (15) written for
the displacement ξ to an equation for the dimensionless
variable ζ = ∂ξ/∂z, which describes the deformation
of the structure:

∂2ζ

∂t2
= β

∂2ζ 3

∂z2
. (16)

The linear term is missing in Eq. (16). Consequently,
there is no limiting transition to a linear wave equa-
tion even for very weak disturbances. Therefore, in
accordance with the classification suggested in Ref. [7],
Eq. (16) describes a strongly nonlinear wave of the third
type.
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A simpler equation of the first order corresponding
to the second-order Eq. (16) is:

∂ζ

∂t
=

√

3β|ζ |
∂ζ

∂z
. (17)

This can be proven by differentiating both sides of (17)
with respect to t , and then switching the t-derivative
to the z-derivative in the right-hand side using Eq. (17)
once more. Thus, the existence of QC nonlinearity (17)
for nonlinear shear waves is shown. This type of non-
linearity is essential for shear waves in soft biological
tissues where a quadratic nonlinearity does not exist
because of symmetry reasons, and the stress–strain
relationship has no linear region [12].

Let us now briefly discuss other physical systems
with QC nonlinearities. The nonlinear acoustic prop-
erties of an orifice drilled in a plate were studied in
Ref. [13]. It was shown experimentally how the relation
between pressure and velocity approaches a quadratic
law at large disturbances: p′ ∼ u2 . Because the veloc-
ity reverses its sign during oscillation, this relation
must be rewritten as p′ ∼ u |u| [13]. In the Cauchy–
Lagrange integral for the case of a potential oscillat-
ing flow, an equivalent term with an absolute value
would appear. More examples of general relations for
obstacles in oscillating flows are known in engineering
hydraulics [14]. In general, the pressure disturbance is
the sum of two terms. The first term pAC is caused
by the compressibility of the fluid, and the second term
pHY D is connected with the oscillating flow around the
obstacle:

p′ = pAC + pHYD = c2ρ′ + γρu|u|. (18)

Here γ is the coefficient of hydraulic resistance which
depends on the shape of the body placed in the flow
[14], and ρ′ is the density disturbance caused by the
acoustic wave. The QC nonlinearity also describes the
nonlinear loss in the throat of Helmholtz resonator
operating as a high-intensity sound absorber [15], and
some models of dry friction are based on QC nonlin-
earity [16].

Interesting manifestations of QC nonlinearity were
experimentally observed in solids. In grainy media the
measured amplitude of the third harmonic depends
on the squared amplitude of fundamental frequency
wave (∼p′2

0 ) and linearly on the distance traversed in
the medium (∼z). This may be compared to a nor-
mal quadratic nonlinear medium where the third har-

monic governed by Burgers equation is proportional
to the cube of the amplitude of the fundamental har-
monic (∼p′3

0 ) and grows with distance as z2. The
unusual behavior of polycrystalline aluminum alloy
was explained by nonlinear friction at the grain bound-
aries [17]. A theoretical explanation of such dependen-
cies (∼p′2

0 and ∼z) is not difficult.
The series expansion of the exact solution of QC

Eq. (5) at Γ = 0 was calculated in Ref. [6]:

V =
∞
∑

n=1

[1 − (−1)n]
2

nZ

[

(

2

nπ
− En(nZ)

)2

+ J 2
n (nZ)

]1/2

sin(nθ + φn(Z)). (19)

The derivation of an analogous expansion for a truly
cubic system is given in Ref. [18]. In the expansion (19),
which contains only odd harmonics, En is the Weber
function and Jn is the Bessel function. The result (19)
represents an analog of the Bessel–Fubini solution for
quadratic nonlinearity [2]. At small nonlinear distances
Z it follows from (19) that:

V ≈
4

3π
Z sin(3θ), p′ ≈ p′2

0 z
4

3π

ζω

c3ρ
sin 3ωτ.

(20)

The second formula in (20) is written in physical
dimensional variables. One can see that the third har-
monic in a QC medium really is proportional to the
squared amplitude of the fundamental harmonic ∼p′2

0
and grows with distance as z1.

An additional advanced research area is connected
with the solid-state physics. Some solids like mica con-
tain crystal planes of heavy cells with weak bonds
between neighboring planes. These types of systems,
shown in Fig. 1, can be described by similar mathemat-
ical models [19].

3 Self-similar solutions of the quadratically cubic

equation

The summary of systematic analysis of Lie group sym-
metries for Burgers’ equation is given by Ibragimov
in Ref. [20]. The infinitesimal symmetries of this equa-
tion form 5D Lie algebra stretched over the five linearly
independent operators. Unfortunately, the occurrence
of a module in the QC equation eliminates most of
these symmetries. Nevertheless, some of the remain-
ing symmetries generate exact solutions which carry
important physical meanings.
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The quadratically cubic Burgers equation 771

Let us at first consider the self-similar solution.
Using the substitution following from the dilation sym-
metry group:

V =
√

2Γ

Z
Ψ

(

ξ =
θ

√
2Γ Z

)

. (21)

we can reduce (5) to an ordinary differential equation:

d2Ψ

dξ2
+ 2|Ψ |

dΨ

dξ
+ ξ

dΨ

dξ
+ Ψ = 0. (22)

Integrating once, we get

dΨ

dξ
+ |Ψ |Ψ + ξΨ + C = 0. (23)

By transformation of variables |Ψ | = Y ′/Y the
Eq. (23) can be reduced to linear form:

Y ′′ + ξY ′ + CY sgn(Ψ ) = 0. (24)

The solution of (24) at C = 0 [2] describes a unipolar
pulse for which |Ψ | = Ψ . Therefore, this solution satis-
fies Burgers equation as well and does not deal with any
QC nonlinearity. The simplest non-trivial QC-specific
solution corresponds to C = 1, where

Y1 = exp

(

−
ξ2

2

) (

C1 +
∫ ξ

0
exp

(

t2

2

)

dt

)

,

Ψ > 0,

Y2 = C2ξ + exp

(

−
ξ2

2

)

+ ξ

∫ ξ

0
exp

(

−
t2

2

)

dt,

Ψ < 0. (25)

By matching the two branches of solution (25) we can
determine the arbitrary constants C1 and C2. Let both
branches (25) vanish in some point ξ0, i.e., Y1(ξ0) =
Y2(ξ0) = 0. The derivatives at ξ = ξ0 must be equal
to:

dΨ

dξ

∣

∣

∣

ξ0

= −C = −1,

1

Y1

d2Y1

dξ2
= −

1

Y2

d2Y2

dξ2
= −1. (26)

These matching conditions lead to the following rela-
tions between the constants C1, C2, and ξ0:

Fig. 2 The shape of single pulses described by the self-
similar solution. Curves 1–4 are constructed for ξ0 =
−0.01,−0.25,−1,−2

C1 =
1

ξ0
exp

(

ξ2
0

2

)

+
∫ −ξ0

0
exp

(

t2

2

)

dt,

C2 = −
√

π

2
Φ

(

ξ0√
2

)

. (27)

Here

Φ(x) =
2

√
π

∫ x

0
exp

(

−
t2

2

)

dt

is the error integral. By specifying the matching point
ξ0, we can calculate the constants C1 and C2 and con-
struct the analytical solution (25), (27). This result is
shown in Fig. 2. At small values of |ξ0| (curve 1), the
matching point is close to the origin of coordinates.
The shape of the corresponding single pulse is similar
to a non-symmetric N-wave. The positive area is big-
ger than the negative one and contains a smooth shock
of compression at the leading front. With increase in
|ξ0|, the negative area becomes bigger, and a rarefaction
front appears, which increases in steepness. The behav-
ior and structure of the fronts are clarified by means of
an exact solution given below.

The next Lie group symmetry passed on from Burg-
ers’ equation to the QC equation is the translation sym-
metry. This will generate a stationary wave conserving
its shape during propagation.

4 Stable and unstable shock waves of compression

and rarefaction in a quadratically cubic medium

Some physically interesting solutions to Eq. (5)
describe shock waves where the shock width is con-
trolled by dissipation. These solutions can be obtained
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from the invariance with respect to time translation
group and can be sought for as

V (Z , θ) = V (θ∗ = θ + αZ). (28)

Substitution of (28) into (5) transforms it from a partial
differential equation to an ordinary:

Γ
dV

dθ∗
+

1

2
|V |V − αV =

1

2
α2. (29)

The constant α =
√

2 − 1 ≈ 0.414 is determined here
from the boundary condition for the shock of compres-
sion: V (θ∗ → ∞) → 1. For negative values of V

Eq. (29) takes form:

Γ
dV

dθ∗
=

1

2
(V + α)2. (30)

The second boundary condition must be V (θ∗ →
−∞) → −α. Only these compressional shock waves
can be stable. The solution to (30) which satisfies the
condition V (θ∗ = θ0) = 0, where θ0 is an indefinite
constant, is

V = α2 θ∗ − θ0

2Γ

[

1 − α
θ∗ − θ0

2Γ

]−1

,

−∞ < θ∗ < θ0. (31)

For positive V , Eq. (29) takes the form:

Γ
dV

dθ∗
+

1

2
(V − α)2 = α2. (32)

Its solution for the boundary condition V (θ∗ → ∞) →
1 is:

V = α

[

1 +
√

2 tanh

(

α
√

2
θ∗
2Γ

)]

,

θ0 < θ∗ < ∞. (33)

The complete solution must be continuous at θ∗ = θ0

and by matching its two branches (31) and (33), we
determine the constant to be

θ0

2Γ
= −

1

α
√

2
arctanh

√
2

2
≈ −1.52. (34)

It is interesting that the derivative is smooth at V = 0.
And at θ∗ = θ0, both the function V (θ∗) and its first
derivative are continuous.

Fig. 3 The internal structure of stable shocks of compression
and rarefaction

The structure of the rarefaction shock wave can be
calculated in a similar way. Instead of (29), we solve
the following equation:

Γ
dV

dθ∗
+

1

2
|V |V − αV = −

1

2
α2. (35)

The right-hand side of (35) is determined from the
boundary condition V (θ∗ → ∞) → −1, and the
analogs of Eqs. (30) and (32) are:

Γ
dV

dθ∗
= −

1

2
(V − α)2, V > 0, θ∗ < θ0,

Γ
dV

dθ∗
−

1

2
(V + α)2 = −α2V < 0, θ∗ > θ0, (36)

Their solutions are:

V = α2 θ∗ − θ0

2Γ

[

1 + α
θ∗ − θ0

2Γ

]−1

,

−∞ < θ∗ < θ0.

V = −α

[

1 +
√

2 tanh

(

α
√

2
θ∗
2Γ

)]

,

θ0 < θ∗ < ∞. (37)

Stable shocks of both compression and rarefaction
are shown in Fig. 3 for the values of Γ = 0.2 and
Γ = 1.0. The typical front width �θ ∼ Γ increases
with dissipation and decreases with nonlinearity.

The processes of shock waves approaching their
steady-state form are shown in Fig. 4a for a compres-
sion shock, and in Fig. 4b for a rarefaction shock. Both
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The quadratically cubic Burgers equation 773

Fig. 4 Formation of stable fronts of compression (a) and rarefaction (b) for Γ = 0.01. Curves 1–10 correspond to distances Z =
0.01, 8, 16, 24, 32, 40, 48, 56, 64, 72

shocks initially have the shape of a symmetric jump
between −1 and +1. One can see the forerunner mov-
ing away from the shock front. As a result of this, the
shock waves obtain asymptotic values providing sta-
bility. More exactly, the compression shock grows with
time from −α to 1, and the rarefaction shock decreases
from α to −1.

5 An N-wave in a quadratically cubic medium

The so-called N-wave is an asymptotically universal
form of any single pulse with zero linear momentum.
During propagation the leading section of the wave is
compressed and the tail section is stretched. An N-wave
can be formed as result of explosion, or at supersonic
flight at large distances from aircraft [3]. Both the lead-
ing and the tail shocks of a normal N-wave are com-
pressional. A similar problem appears in QC media.
For example, for medical diagnostics, it is necessary
to calculate the shape of a pulsed shear wave in bio-
logical tissue caused by the radiation force of focused
ultrasound [21].

For very weak linear dissipation (Γ → 0) the solu-
tion to the QC Eq. (5) can be constructed employing
a graphic approach (see details in Ref. [2]). The result
is shown in Fig. 5. Here the initial bipolar pulse con-
sisting of two triangular regions is shown by the dotted
line (curve 1). Curves 2, 3, and 4 correspond to increas-
ing distances Z . At Z = 1 (curve 2) two steep shocks
have formed—a leading shock of compression and a
tail shock of rarefaction. Further down the nonlinear

Fig. 5 Nonlinear evolution of a bipolar pulse in a QC medium
with infinitesimal dissipation

evolution (curves 3 and 4), two sections are formed.
The positive pressure shape is trapezoidal, and the rar-
efaction shape is triangular. The two areas of the trapez-
ium and the triangle are equal. The asymptotic form of
the N-wave at Γ → 0, Z > 1 has a simple analytical
representation:

θ1 = −
√

1 + Z , θ2 = −
1

2

(√
1 + 2Z − 1

)

,

V1(θ1) =
1

√
1 + Z

, V1(θ2) =
√

1 + 2Z − 1

2(1 + Z)
,

V2(θ2) = −
√

1 + 2Z + 1

2(1 + Z)
. (38)

The notations used here are shown in Fig. 6, with their
positions marked by the large dots.

In Fig. 7 the evolution of the N-wave is shown for dif-
ferent values of the Goldberg number. Already the ini-
tial bipolar pulse (curves 1) contains two steep shocks.
In Fig. 7a one can still trace the development of trape-
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Fig. 6 Notations to the asymptotic form of N-wave in a QC
medium

zoidal and triangular regions, but as distinct from Fig. 5,
the dissipation causes the shocks to have a finite width.
In Fig. 7b the dissipation is stronger, and the nonlinear
aspect manifests itself much less.

6 An S-wave in a quadratically cubic medium

The S-wave is another asymptotically universal form of
a single pulse with zero linear momentum. Its behavior
is opposite the N-wave in that the leading section is
stretched and the tail section is compressed.

In Fig. 8 the evolution of an initial S-wave containing
one shock (curves 1) is shown. Two shock fronts form
at weak dissipation (Fig. 8a). The leading front is a
rarefaction shock and the tail front is a compression
shock. One can trace the development of trapezoidal
and triangular regions, but as opposed to Figs. 5 and 7,

the rarefaction is ahead of the compression. In Fig. 8b
a strong dissipation suppresses the nonlinear process.
The analytical representation for the S-wave, analogous
to (38) for the N-wave, can be derived fairly easily but
is not presented here.

7 An initially harmonic wave in a quadratically

cubic medium

A continuous periodic wave having a sinusoidal shape
at the input (Z = 0) is fundamental for experiments and
applications, because electromagnetic transducers usu-
ally generate single-frequency vibrations. Such waves
are in quadratic nonlinear media governed by the usual
Burgers equation, which describes the transformation
of a harmonic time signal profile to sawtooth shapes.
Each period has a triangular form and contains a com-
pression shock at the leading front [2–5]. A similar
evolution of one period of a continuous sinusoidal input
wave in a QC medium is shown in Fig. 9. As for the
periodic waves described by the Burgers equation, a
universal sawtooth-shaped profile forms at large dis-
tances. However, for the QC wave each of the teeth
of the saw has a trapezoidal form and contains two
shock waves—one of compression and one of rarefac-
tion. Two additional phenomena exist for a QC wave.
First, the curves in Fig. 9 demonstrate the shift of pro-
file to the left, which means that the wave propagation
velocity is higher. This velocity dependence on inten-
sity is known for quasi-harmonic waves in dispersive

Fig. 7 N-wave dynamics in
a QC nonlinear medium at
finite dissipation: Γ = 0.01
(a) and for distances: 0.01,
1, 2, 4, 8, 16 (curves 1–6). b

is constructed for Γ = 0.1
and distances 0.01, 0.2, 1, 2,
4, 8 (curves 1–6)
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The quadratically cubic Burgers equation 775

Fig. 8 S-wave dynamics in
a QC nonlinear medium at
finite dissipation: Γ = 0.01
(a) and for distances 0.01,
0.2, 1, 2, 4 (curves 1–5). b

is constructed for Γ = 0.04
and the same distances

Fig. 9 Transformation of
an initially harmonic wave
(curve 1) to a periodic
trapezoidal sawtooth-shaped
wave in a QC medium
taking place when the
Goldberg number is
Γ = 0.01 (a), and the
smoother wave obtained for
when Γ = 0.1 (b). The
curves 1–6 correspond to
distances
Z = 0, 1, 4, 8, 16, 32

media as a self-action effect. It exists for odd nonlin-
earities, and QC is one exotic example of this nonlin-
earity type. Secondly, the nonlinear energy loss in the
shock fronts seen in Fig. 9 cannot exist in dispersive
media.

8 Conclusion

In this paper the attention was focused on the possibility
of an exact linearization of the quadratically cubic (QC)
Eq. (5), on its exact solution, as well as on the behavior
of shock fronts and single N-wave and S-wave pulses.
All of these mathematical results for QC models have
physical applications.

The profiles in Figs. 7, 8 and 9, for the dissipa-
tion parameter Γ ≪ 1, can be constructed also by
the matched asymptotic expansion method [22]. The
solutions shown in Fig. 3 can be used as main terms of
the internal expansion, and the solution of the quadrat-
ically cubic equation at Γ = 0 [like formula (38)] can
serve as the main term of the external expansion. After

the profiles have been described analytically, it is then
possible to calculate the spectral content, the nonlinear
loss of energy at the shock fronts, and other physical
characteristics.

Finally, we emphasize that this work is intended
to draw attention to the quadratically cubic equation
model (5) in the belief that detailed studies of it will
continue as other QC-modifications of well-known
equations [6] are valuable from both mathematical and
physical points of view.

One example is to extend the group analysis of these
equations, similar to what has been done for integro-
differential equations [23]. Wave transformations for
integro-differential equations have been treated by sim-
ilar methods [24,25].

Another important modification can be done for non-
linear waves in grainy media [26]. When the shear
nonlinearity is included, an inhomogeneous Burgers
equation appears. It has quadratically cubic proper-
ties, exhibiting interesting mathematical descriptions
of new physical phenomena. We intend on submitting
these results in the nearest future.
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