
ORIGINAL PAPER

The quantification of low-probability–high-consequences

events: part I. A generic multi-risk approach

Arnaud Mignan • Stefan Wiemer • Domenico Giardini

Received: 13 September 2013 / Accepted: 6 April 2014 / Published online: 18 April 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Dynamic risk processes, which involve interactions at the hazard and risk

levels, have yet to be clearly understood and properly integrated into probabilistic risk

assessment. While much attention has been given to this aspect lately, most studies remain

limited to a small number of site-specific multi-risk scenarios. We present a generic

probabilistic framework based on the sequential Monte Carlo Method to implement

coinciding events and triggered chains of events (using a variant of a Markov chain), as

well as time-variant vulnerability and exposure. We consider generic perils based on

analogies with real ones, natural and man-made. Each simulated time series corresponds to

one risk scenario, and the analysis of multiple time series allows for the probabilistic

assessment of losses and for the recognition of more or less probable risk paths, including

extremes or low-probability–high-consequences chains of events. We find that extreme

events can be captured by adding more knowledge on potential interaction processes using

in a brick-by-brick approach. We introduce the concept of risk migration matrix to evaluate

how multi-risk participates to the emergence of extremes, and we show that risk migration

(i.e., clustering of losses) and risk amplification (i.e., loss amplification at higher losses) are

the two main causes for their occurrence.

Keywords Multi-hazard � Multi-risk � Extreme event � Monte Carlo �
Markov chain

1 Introduction

Multi-risk assessment is still in its infancy and often only refers to the analysis of multiple

single hazards in a same framework (Grünthal et al. 2006; Carpignano et al. 2009; Schmidt
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et al. 2011). Major catastrophes however remind us that multi-risk is not simply the sum of

individual risks but that correlations between natural hazards, technological hazards and

our complex socioeconomic networks lead to greater risks (e.g., 2005 hurricane Katrina,

USA; 2010 eruption of Eyjafjallajökull, Iceland; 2011 Tohoku earthquake, Japan). Inno-

vative methods have been proposed in recent years to tackle the problem of hazard

interactions (e.g., Marzocchi et al. 2012) and of other dynamic aspects of risk, such as

time-dependent vulnerability and exposure (e.g., Selva 2013) or network failures (e.g.,

Adachi and Ellingwood 2008). However, so far, only a limited number of scenario-based

and/or site-specific multi-risk studies have been proposed due to the difficulty and novelty

of the task.

Development of a comprehensive multi-risk framework is hampered by the following

requirements: (1) large amount of input data (2) cross-disciplinary expertise and (3)

innovative risk assessment methods. The first two points are generally solved in dedi-

cated multi-risk projects at the national (e.g., HAZUS-MH, http://www.fema.gov/hazus),

international (e.g., CAPRA, http://www.ecapra.org/) or private sector levels (e.g., Grossi

and Kunreuther 2005; Schmidt et al. 2011). The third point remains to be solved. As

indicated by Kappes et al. (2012), ‘‘despite growing awareness of relations between

hazards, still neither a uniform conceptual approach nor a generally used terminology is

applied’’. Similarly, but based on feedback from civil protection stakeholders, Komen-

dantova et al. (2014) noted that: ‘‘two areas are most problematic. These are (1) the

absence of clear definitions and (2) the lack of information on the added value of multi-

risk assessment’’.

In the present study, we present a novel, generic, multi-risk framework based on the

sequential Monte Carlo Method (MCM) to allow for a straightforward and flexible

implementation of hazard interactions, which may occur in a complex system. Real-world

examples of hazard interactions include: earthquake clustering, storm clustering, tsunamis

following earthquakes or landslides, landslides or fire following earthquakes, storm surges

associated to hurricanes, technological accidents triggered by natural events (i.e., NaTech

events). Time-variant vulnerability and exposure related to hazard clustering are also

considered, although not the primary focus of this study. More generally, time-variant

vulnerability may refer to different processes, such as structure ageing, not-repaired pre-

damage due to past events or damage conditioned on the co-occurrence of several events.

Time-variant exposure supposes the evolution of assets value with time, which may be due

to socioeconomic factors or to previous losses.

Our goal is specifically to capture and quantify extreme (i.e., low-probability–high-

consequences) events using inductive generalization (e.g., Bier et al. 1999) and by fol-

lowing the recommendation of Kameda (2012), which is to ‘‘mobilize ‘‘scientific imagi-

nation’’ in the process of decision’’—by incorporating extreme events in risk modelling if

no observations but sound scientific bases are available (Note that the term ‘‘reasoned

imagination’’ is used by Paté-Cornell 2012). Our approach differs from site-specific and

scenario-based studies (e.g., Adachi and Ellingwood 2008; Marzocchi et al. 2012; Selva

2013) in that we do not define any specific hazard or risk interaction but a framework to

implement any type of interaction. With such an objective, real interaction processes have

to be abstracted to more basic concepts and engineering methods by-passed. The proposed

framework is described in Sect. 2, in which the concept of hazard correlation matrix is

introduced.

Validation of our framework, which should be considered as a proof-of-concept, is

made using generic data and processes defined heuristically. This strategy, that is the use

of intuitive judgment and simple rules, allows for the solving of problems that are
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otherwise difficult to consider. Based on an extensive literature survey, we generalize the

concepts of peril, of peril characterization and of hazard interaction. Our aim, by

abstracting these concepts into basic categories, is to provide some general guidelines for

extreme event quantification. The proof-of-concept is presented in Sect. 3, and a dis-

cussion on the applicability of the proposed framework to real-world conditions is given

in Sect. 4.

Basic hazard and risk terms as well as definitions used in the present article are based,

when available, on the book ‘‘Catastrophe Modelling: A new approach to managing risk’’

by Grossi and Kunreuther (2005). Symbols used in our study are listed in Table 1.

2 Generic multi-risk framework

2.1 Sequential Monte Carlo Method

The proposed multi-risk framework is formed of a core simulation algorithm based on the

MCM. We adopt the MCM for its flexibility when dealing with complex systems. We

generate Nsim time series, sampling events from a Poisson distribution (homogeneous or

non-homogeneous process). Each time series represents one risk scenario, and the analysis

Table 1 List of the symbols used in the present study

Symbols Description

A, B, C, … Peril identifier

Ai, Bi, Ci, … Stochastic event identifier

i, j, k Increment

n Number of events

Nsim Number of simulations

t Time in the interval Dt = [t0; tmax]

e Time lapse between two correlated events (e � Dt)

k Long-term occurrence rate

kmem Time-variant occurrence rate

b Event frequency–intensity ratio

i Hazard intensity

d Mean damage ratio (i.e., system damage)

l Mean of lognormal vulnerability curve

r Standard deviation of lognormal vulnerability curve

c Calibration factor for conditional vulnerability curve

K System loss

E System exposure

e Reconstruction function

Pr(j|i) Probability of occurrence of event j conditional on event i

a Shape parameter of the lognormal distribution for event repeat

DTij Time shift in occurrence rate of event j due to event i

f Coupling factor

/ Index of dispersion
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of N scenarios allows for the probabilistic assessment of losses and for the recognition of

more or less probable risk paths. These risk paths emerge naturally from the system

implemented in the MCM.

A set of stochastic events is defined as input for the MCM, with each event charac-

terized by an identifier, a long-term occurrence rate k and a loss K. The loss is defined as

K = d E with d the mean damage ratio and E the system exposure. d is derived from the

hazard intensity i with each event being represented by one unique hazard footprint. Each

event is therefore implicitly related to one specific source, e.g., an earthquake related to a

given fault segment, a storm related to a given track (see Sect. 3.1.1 for the definition of a

stochastic event set).

Hazard interactions as well as time-variant exposure and vulnerability represent non-

stationary processes, which require additional inputs (see Sects. 3.1.2, 3.1.3) and a

sequential processing strategy. The proposed sequential MCM is defined as follows:

• Multi-hazard assessment: define the simulation set with simulation identifier, event

identifier and event occurrence time t.

1. Generate Nsim random time series: Sample Nsim sets of events over the time

interval Dt = [t0; tmax] drawn from the Poisson distribution with each stochastic

event i characterized by the long-term rate parameters ki. Affix an occurrence time

t to each event following the random uniform distribution. Record the time series

in the simulation set S0, which represents the null hypothesis H0 of having no

interaction in the system. Fix increment j = 1, which indicates the occurrence of

the first event in the time series.

2. For each of the Nsim simulations, record the characteristics of the jth event, which

occurs at tj, in simulation set S1. Resample events k occurring in the interval [tj;

tmax] if the conditional probability Pr(k|j) exists. This conditional probability is

defined in the hazard correlation matrix, described in Sect. 2.2. Affix tk = tj ? e

with e � Dt. Fix j = j ? 1.

3. Repeat step 2 while tj B tmax.

4. Fix j = 1.

• Multi-risk assessment: update the simulation sets S0 and S1 with event loss K.

5. For each of the Nsim simulations, calculate the mean damage ratio dj due to the jth

event, which is potentially conditional on the occurrence of previous events. The

implementation of time-variant vulnerability is described in Sect. 2.3.

6. For each of the Nsim simulations, calculate the loss Kj due to the jth event, which is

potentially conditional on the occurrence of previous events. The implementation

of time-variant exposure is also described in Sect. 2.3. Record Kj.

7. Repeat steps 5 and 6 while tj B tmax.

Figure 1a illustrates the difference between simulation sets S0 and S1. All simulated

time series in S1 start with the same event as in S0, since changes are only conditional on

the occurrence of previous events. Following an event, changes may or may not occur in S1
depending on the conditional probabilities and the effects of sampling. Once an event is

triggered, the trigger/target pair clusters in time with chains of n events potentially

emerging in the time interval [t, t ? ne]. The impact of time-variant exposure and vul-

nerability on event losses are not represented in Fig. 1a. It should be noted that the

proposed framework for hazard interactions is a variant of a Markov chain. In that view,
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the hazard correlation matrix corresponds to a transition matrix, the conditional proba-

bilities to transition probabilities and events to states.

2.2 Hazard correlation matrix

We introduce the concept of hazard correlation matrix to quantify hazard interactions. It

should be noted that we use a loose definition of the word interaction, as we also refer to

one-way causal effects by this term (noted?). The hazard correlation matrix is illustrated

in Fig. 1b where trigger events are represented in rows i and target/triggered events in

columns j. A given peril P consists of n events Pi with 1 B i B n. Each cell of the square

matrix indicates the 1-to-1 conditional probability of occurrence Pr(j|i) = Pr(Pj|Pi) over Dt,

which is used as input in the MCM. We also consider the n-to-1 conditional probability by

incorporating a memory element to the correlation matrix. Various interaction processes

may be implemented, based on empirical, statistical or physical laws. Those are run in the

background with only the conditional probability represented in the hazard correlation

matrix. However, the memory element is defined such that it can alter the process in the

background by informing it of the sequence of previous events. This is illustrated by

several examples in Sect. 3.1.2. The approach is different from a strict Markov chain in the

fact that it is not memoryless and because the matrix does not require
P

j

Pr jjið Þ ¼ 1 (i.e.,

finite chains of events).

We define various terms (noted in italics) to categorize different types of interactions

based on the concept of hazard correlation matrix: An event repeat is described by

Pi ? Pi, an intra-hazard interaction by Pi ? Pj and an inter-hazard interaction by

Ai ? Bj with A and B two different perils. Moreover, perils can be separated into primary

Fig. 1 Generic multi-risk framework (multi-hazard part). a Sequential MCM: the simulation set S0
represents the null hypothesis H0 of having no interaction in the system, while set S1 represents any multi-

risk hypothesis. Grey rectangles represent different simulated time series. b Concept of hazard correlation

matrix: trigger events are represented in rows i and target/triggered events in columns j. A given peril

P consists of n events Pi with 1 B i B n. Each cell of the square matrix indicates the 1-to-1 conditional

probability of occurrence Pr(Pj|Pi) over Dt, which is used as input in the MCM. The n-to-1 conditional

probability is considered by incorporating a memory element to the correlation matrix. The proposed

approach can be seen as a variant of a Markov chain. See text for details
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perils A when kA[ 0 and secondary perils B when kB = 0 and Pr(B|A)[ 0, with k the

long-term occurrence rate. Invisible events i, which do not yield direct losses, should be

included in the system if they trigger events j that do (case Pr(j|i)[ 0, Ki = 0 and Kj[ 0).

2.3 Time-variant exposure and time-variant vulnerability

Cumulative losses due to the occurrence of successive events cannot exceed the total

exposure E. Time-variant exposure can be defined by.

Ei ¼ E0 �
X

i

i¼1

diEi�1 þ ei ð1Þ

where E0 the original exposure, Ei the exposure of the system immediately following event

i and ei a function representing the exposure reconstruction up to the occurrence time of

event i. With a time-variant exposure, the event loss also becomes time-variant with

Ki = diEi-1. Two end-members of Eq. 1 are instantaneous reconstruction (i.e., ei =
P

Ki)

with Ei = E0 and no reconstruction (i.e., ei = 0) with 0 B Ei B E0. Both cases are tested

in Sect. 3. Although not considered in the present study, a time-dependent term e(t) could

be added to Eq. 1 to represent system recovery after a disaster and socioeconomic evo-

lution (e.g., increase in wealth/assets with time).

The clustering of events in time may also influence the vulnerability, which can be

described by the conditional mean damage ratio dj|i. The dependence on the trigger event

i may take different forms, independently of the framework developed here. An example of

vulnerability dependence on hazard intensity is given in Sect. 3.1.3. Time-dependent

vulnerability di(t), such as ageing, is not considered.

3 Proof-of-concept

3.1 Generic data and processes

We generate generic data and processes by following the heuristic method and by abstracting

the concepts of peril, of peril characterization and of hazard interaction into basic categories.

Our approach provides some general guidelines for extreme event quantification and a dataset

for testing the generic multi-risk framework described in Sect. 2. It follows the existing

recommendations on extreme event assessment (Bier et al. 1999;Kameda 2012; Paté-Cornell

2012) by combining inductive generalization and ‘‘scientific imagination’’ to include known

examples of extremes as well as potential ‘‘surprise’’ events in a same framework. We

intentionally do not consider the case of networks (Adachi and Ellingwood 2008). Data and

processes are then implemented in theMCM, and the results analysed in Sects. 3.2 and 3.3. In

the present study, we use Nsim = 105, Dt = [t0 = 0; tmax = 1] and e = 0.01. It should be

noted that the numerous assumptions made below are not a requirement of the proposed

multi-risk framework but are working hypotheses for basic testing purposes.

3.1.1 Building a stochastic event set

We first generate a stochastic event set in which each event is defined by an identifier, a

long-term occurrence rate k and a loss K. Let’s consider peril A consisting of nA events Ai

with 1 B i B nA. First, we define the frequency-intensity distribution
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ki ¼ expð�biiÞ ð2Þ

where ii is the hazard intensity of event Ai, ki the long-term occurrence rate of event Ai and

b the exponential law exponent for peril A. Equation 2 applies to numerous perils, such as

earthquakes (Gutenberg and Richter 1944), volcanic eruptions (Simkin and Siebert 1994)

or asteroid impacts (Brown et al. 2002). Second, we estimate the mean damage ratio d of

repair cost to the replacement cost of the system from a vulnerability curve that relates the

susceptibility of the system to the hazard intensity, with 0 (no damage) B d B 1 (total

destruction). We use the cumulative lognormal distribution

di ¼
1

2
erfc � ln iið Þ � l

r
ffiffiffi

2
p

� �

ð3Þ

where ii is the hazard intensity and di the mean damage ratio due to event Ai. l and r are,

respectively, the mean and standard deviation of the variable’s logarithm and depend on

the peril and asset response type (see Sect. 3.1.3 for a variable l). Equation 3 is well suited

to describe the typical S-shaped vulnerability curve used in damage assessment for

earthquakes (Fabbrocino et al. 2005), volcanic eruptions (Spence et al. 2005; Zuccaro et al.

2008), winds (Wehner et al. 2010), fluvial floods (Reese and Ramsay 2010), tsunamis

(Srivihok et al. 2012) or asteroid impacts (Mignan et al. 2011). In the present case, we

consider a single-damage state, which is an oversimplification compared to standard risk

assessment. This limitation is discussed in Sect. 4.

Let’s now consider additional perils other than A. Direct comparison of hazards (so-called

joint visualization of multiple hazards) would require the use of a rather subjective hazard

intensity classification scheme (e.g., low–medium–high) (Kappes et al. 2012) since intensity i

differs from one peril to another one (e.g., ground shaking, ash load, inundation depth, wind

speed, bolide energy). Thus, we remove i by combining Eqs. 2 and 3, which yields

di ¼
1

2
erfc � ln � ln kið Þð Þ � ln bð Þ � l

r
ffiffiffi

2
p

� �

ð4Þ

Using risk as a common language, we resolve the problem of hazard comparability.

Event loss Ki is then defined by Ki = di E where E = 1 the system exposure. Since a

unique vulnerability curve is used for the full exposure, all losses given in the present study

are mean loss values.

We generate the stochastic event set based on Eq. 4 with 10-4
B ki B 10-1 in 0.1

increments in the log scale. It follows that 31 events are defined per peril with return periods

varying from 10 to 10,000 years. This applies only to primary perils (here A and B), which

occur spontaneously following Eq. 2. We fix bA = ln(10) and bB = 0.5ln(10) (Fig. 2a).

Perils A and B are analogue to earthquakes and volcanic eruptions for instance. Secondary

perils (here C, D and E), by definition, have a null long-term occurrence rate k = 0 and only

occur following primary events. Examples include tsunamis following earthquakes (Suppasri

et al. 2012), storm surges (Irish et al. 2008) or Natech events (i.e., industrial accidents with

natural hazard triggers, Krausmann et al. 2011). Vulnerability curve parameters (Eq. 3,

Fig. 2b) are fixed such that perils A and B show distinctive risks (i.e., different risk ranking),

with peril A dominating risk at short return periods and peril B dominating risk at long return

periods (Eq. 4, Fig. 2c). We use lA = ln(5), rA = 0.4, lB = ln(6) and rB = 0.1. We define

three events per secondary peril (C1–C3,D1–D3 and E1–E3) and use a same vulnerability step

function such that d1 = 0.01, d2 = 0.1 and d3 = 1 for the 3 perils. Table 2 shows the

resulting stochastic event set, which is used as input in the MCM.
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3.1.2 Populating the hazard correlation matrix

Providing a comprehensive review of hazard interactions is out of the scope of this study.

Such a daunting task was for example described by Gill and Malamud (2012) (see also

Kappes et al. 2012). Here, we describe the principal types of hazard interactions that can be

implemented in the correlation matrix to be used for proof-of-concept of the proposed

multi-risk framework. The proposed hazard correlation matrix is shown in Fig. 3. We

consider the three categories of interactions previously defined: event repeat (e.g., Ai ? Ai;

C ? C), intra-hazard interaction (e.g., Ai ? Aj) and inter-hazard interaction (e.g.,

Ai ? Bj). The effect can be positive (i.e., probability increase) or negative (i.e., probability

decrease),, and temporary or lasting (concept of memory). Table 3 lists the different

combinations defined in Fig. 3 and examples of analogies with real perils. More types of

interactions could be envisioned, as not all possible combinations are described here

(primary vs. secondary/interaction category/effect/memory or not).

Event repeat for primary perils is here described by the lognormal distribution

Fig. 2 Characteristics of the generic primary perils A and B. a Power-law frequency–intensity distributions

with frequency k and intensity i (Eq. 2). b Cumulative lognormal vulnerability curves defined by the mean

damage ratio d as a function of intensity i (Eq. 3). c. Risk curves defined by the mean damage ratio d as a

function of frequency k (Eq. 4). The list of parameters is given in Table 3
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Table 2 Stochastic event set defined as input for the MCM

Event id. k K Event id. k K

A1 0.100000 0.00003 B6 0.031623 0

A2 0.079433 0.00008 B7 0.025119 0

A3 0.063096 0.00018 B8 0.019953 0

A4 0.050119 0.00038 B9 0.015849 0

A5 0.039811 0.00073 B10 0.012589 0

A6 0.031623 0.00131 B11 0.010000 0.00003

A7 0.025119 0.00220 B12 0.007943 0.00018

A8 0.019953 0.00350 B13 0.006310 0.00096

A9 0.015849 0.00532 B14 0.005012 0.00394

A10 0.012589 0.00778 B15 0.003981 0.01283

A11 0.010000 0.01099 B16 0.003162 0.03415

A12 0.007943 0.01505 B17 0.002512 0.07620

A13 0.006310 0.02006 B18 0.001995 0.14608

A14 0.005012 0.02611 B19 0.001585 0.24509

A15 0.003981 0.03326 B20 0.001259 0.36727

A16 0.003162 0.04156 B21 0.001000 0.50000

A17 0.002512 0.05104 B22 0.000794 0.62872

A18 0.001995 0.06173 B23 0.000631 0.74063

A19 0.001585 0.07359 B24 0.000501 0.82986

A20 0.001259 0.08662 B25 0.000398 0.89471

A21 0.001000 0.10079 B26 0.000316 0.93851

A22 0.000794 0.11605 B27 0.000251 0.96593

A23 0.000631 0.13227 B28 0.000200 0.98189

A24 0.000501 0.14948 B29 0.000158 0.99104

A25 0.000398 0.16751 B30 0.000126 0.99564

A26 0.000316 0.18634 B31 0.000100 0.99799

A27 0.000251 0.20581 C1 0 0.01

A28 0.000200 0.22559 C2 0 0.1

A29 0.000158 0.24661 C3 0 1

A30 0.000126 0.26717 D1 0 0.01

A31 0.000100 0.28847 D2 0 0.1

B1 0.100000 0 D3 0 1

B2 0.079433 0 E1 0 0.01

B3 0.063096 0 E2 0 0.1

B4 0.050119 0 E3 0 1

B5 0.039811 0

Each event is defined by its identifier, long-term occurrence rate k (relative to Dt) and expected loss K.

Values for primary perils (A and B) are obtained from Eq. 4. Secondary perils (C, D and E) have a long-term
rate k = 0 by definition. The system exposure is fixed to E = 1
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Pr AijAið Þ ¼ r
tmax

t0

1

t
ffiffiffiffiffiffiffiffiffiffi

2pa2i
p exp �ðln tð Þ � 1=kiÞ2

2a2i

 !

dt ð5Þ

where ki is the long-term occurrence rate of event Ai and ai = 1 the shape. In Eq. 5, the

probability over Dt is very low immediately following t0 for Dt � 1/ki and progressively

increases through time. It hence represents a renewal process in which energy is first

released by an event and then accumulates gradually through time due to a loading process.

It applies for example to earthquakes, which occurrence is controlled by tectonic loading

(Parsons 2005). We apply Eq. 5 to perils A and B, which significantly lowers the proba-

bility of occurrence compared to the long-term probability Pr(Ai) = 1 - exp(-ki Dt) for

Dt � 1/ki (Fig. 4). Event repeat for secondary perils is described by

Fig. 3 Hazard correlation matrix with examples of potential interactions. Trigger events are represented in

rows i and target/triggered events in columns j. Each cell indicates the 1-to-1 conditional probability of

occurrence Pr(j|i) over Dt. The n-to-1 conditional probability is considered by incorporating a memory

element to the correlation matrix. See Table 3 for an analogy with real perils and real interaction processes
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Pr(Cj|Ci) = Pr(Dj|Di) = Pr(Ej|Ei) = 0, which indicates that a given peril can only occur

once, whether immediately after the event (case of peril C—no memory) or through

Dt (case of perils D and E—with memory) (Fig. 3; Table 3). Peril C is analogue to a

tsunami or storm surge, which can occur anytime the proper trigger occurs, but only once

per triggering. Perils D and E are analogue to technological accidents. If such an accident

yields non-functionality, the same accident cannot occur again if the critical infrastructure

is not repaired. If it were repaired immediately, it would then be in the peril C class

(Table 3). Memory is here defined by the recording of previous instances of event

occurrences.

We consider that primary perils are due to an underlying loading process, as described

previously for repeating events by Eq. 5. In this case, events are advanced or delayed from

a time shift DTij. We define

Pr jjið Þ ¼ 1� expð�kj;memDtÞ for i 6¼ j ð6Þ

based on the non-homogenous Poisson process with i the trigger event, j the target event

and

kj;memðupdatedÞ ¼
1

1=kj;mem þ DTij
ð7Þ

DTij[ 0 represents a time delay. kj,mem is updated after each event occurrence j, including

the case i = j, and represents the memory of the process (at t0, kj,mem = kj). The same

Table 3 Characteristics of generic perils and processes and analogy with real ones

Peril Type Parameters Analogy

A Primary bA = ln(10),

lA = ln(5),

rA = 0.4

E.g., earthquake

B bB = 0.5ln(10),

lB = ln(6),

rB = 0.1

E.g., volcanic eruption

C Secondary d1 = 0.01,

d2 = 0.1,

d3 = 1

E.g., tsunami

D E.g., Natech (i.e., technological accident with natural hazard

trigger)

E E.g., technological accident

Category Effect Memory Parameters Analogy

Repeat Pr ; Yes a = 1 E.g., earthquake on same fault

Repeat Pr = 0 Yes – E.g., technological accident on same non-repaired

infrastructure impossible

Repeat Pr = 0 No – E.g., second tsunami after same earthquake impossible

Intra-hazard Pr :; Yes f = 0.1 E.g., earthquakes on different faults

Inter-hazard Pr :; Yes E.g., volcanic eruption ? earthquake

Inter-hazard Pr : Yes – E.g., ? technological accident only if infrastructure

still functional

Inter-hazard Pr : No – E.g., earthquake ? tsunami; hurricane ? storm surge

The different combinations correspond to the ones defined in the hazard correlation matrix shown in Fig. 3
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approach is used in earthquake interaction modelling, which is well established with the

theory of stress transfer (Toda et al. 1998; King 2007). This theory also applies to

earthquake/volcanic eruption interactions (Hill et al. 2002; Eggert and Walter 2009). Here,

we apply Eqs. 6 and 7 to intra-hazard interactions (Ai ? Aj; Bi ? Bj) and to inter-hazard

interactions (Ai ? Bj; Bi ? Aj) (Fig. 2). We define the matrix DTij = ± f/ki where f an ad

hoc coupling factor, such that the time shift due to event i is proportional to the return

period of this event (i.e., a rare large event will have a greater effect than a small, more

common, event). Since the spatial relationship between different events is not considered,

we simply fix the sign of DTij randomly for each target event j. We fix f = 0.1 (the role of

different values is discussed in Sect. 3.3).

Secondary perils occur based on the following one-way causal effects: A ? C, C ? D

and D ? E (Fig. 3). Hence, we can produce the domino effect A ? C ? D ? E. We

consider a linear relationship between trigger event i and target event j, such that

jðiÞ ¼ nj � 1

ni � 1
i� 1ð Þ þ 1 ð8Þ

where ni and nj are the number of stochastic events i and j, respectively. This is described

in Fig. 5a for the cases A ? C and C ? D (same for D ? E). It shows that for any event

i, in the range [1, ni], there is an associated event j in the range [1, nj]. Using a relationship

between event increments is however artificial. For real perils, the relationship would

normally relate hazard intensities ii to ij. Examples include the relationship

h = 3.10-5M6.2344 between tsunami height h and earthquake magnitude M (Suppasri et al.

2012) or the relationship between storm surge height and maximum wind speed, as defined

in the Saffir–Simpson hurricane scale (e.g., Irish et al. 2008). Such simple relationships are

Fig. 4 Probability of occurrence Pr(Ai|Ai) of a repeating event based on the lognormal probability

distribution (Eq. 5) compared to the Poisson probability distribution
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controversial, since effects depend on site conditions. The concepts remain however valid

at a more abstract level. In the generic case presented here, we relate event increments

directly for sake of simplicity. To determine the conditional probability Pr(j|i), we assume

a binomial distribution

Pr kjið Þ ¼ nj!

k! nj � k
� �

!

jðiÞ
nj

� �k

1� jðiÞ
nj

� �nj�k

ð9Þ

where 0 B k B nj. k = j except for the case k = 0, which corresponds to the probability of

having no event triggered Pr(Ø|i). Pr(k|i) is shown in Fig. 5b. Note that the higher the

trigger increment i is (i.e., proxy to hazard intensity), the greater is the probability of

triggering a severe target event j; which is a direct consequence of Eq. 8.

3.1.3 Considering time-variant vulnerability

Hazard clustering may also influence the vulnerability of the system. One example, which

has recently been considered, is the increase in vulnerability to ground shaking due to

increased structural load following an ash fall (Zuccaro et al. 2008; Selva 2013). Another

well-known case is the increased vulnerability of structures to successive shakings during

an earthquake cluster (Jalayer et al. 2010). Here, we consider the conditional vulnerability

curve

Fig. 5 Conditional probability of occurrence of secondary perils Pr(C|A) and Pr(D|C). a Ad hoc linear

relationship between trigger increment i and target increment j (i.e., proxy to hazard intensity, Eq. 8).

b Conditional probabilities defined from a binomial distribution (Eq. 9) based on Eq. 8. See text for details
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djji ¼
1

2
erfc �

ln ij
� �

� ljji

rj
ffiffiffi

2
p

 !

ð10Þ

where dj|i the mean damage ratio due to event j conditional on the occurrence of event i and

lj|i = lj - cln(ii). ii and ij are the hazard intensities of events i and j, respectively, and c is

an ad hoc calibration parameter. The proposed generic relationship is based on the idea that

the higher the intensity ii is, the greater is the vulnerability to event j. The validity of such

formulation remains to be verified with the logarithmic term here only proposed for

consistency within Eq. 10. For real data, a different relationship may be obtained empir-

ically or from structural engineering (Zuccaro et al. 2008; Jalayer et al. 2010). Here, we

apply Eq. 10 to perils A and B for the case dA|B where c = 0.3. Figure 6 shows the

vulnerability curve linked to peril A conditional on the occurrence of events B1 to B31. This

process is analogue to increased vulnerability to earthquake shaking due to the occurrence

of a volcanic eruption with ash fall (Zuccaro et al. 2008; Selva 2013).

3.2 Definition of extremes

Extreme events may be defined as events, which are ‘‘rare, severe and outside the normal

range of experience of the system in question’’ (Bier et al. 1999). This definition however

assumes that extreme events are somewhat anomalous. In this line of reasoning, quanti-

fication of extremes would make them normal, i.e., non-extreme. In the present study,

extreme events are simply defined as low-probability–high-consequences events, whether

they seem normal or abnormal. Here, extremes do not only refer to individual events, but

also to groups of events of which only the overall impact is considered. Therefore, the

Fig. 6 Vulnerability curve of peril A conditional on the occurrence of peril B. The curve shifts to higher

damage for a same hazard intensity iA with the intensity iB increasing (Eq. 10)
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definition of an event remains blurry and depends on the level considered in the system

(i.e., an event may be composed of sub-events and a meta-event of events). Then, extremes

are categorized into individual events (Sect. 3.2.1) and multiple events, i.e., coinciding

events or triggered chains of events (Sect. 3.2.2).

In recent years, anomalous events, or outliers, have been repackaged into fancier ani-

mals, some of which made their way into popular culture. Taleb (2007) coined the term

‘‘black swan’’ to describe rare events, which in principle cannot be anticipated. Another

popular term is ‘‘perfect storm’’, which refers to an event resulting of a rare combination of

circumstances (Paté-Cornell, 2012). Finally, the concept of ‘‘dragon king’’ introduced by

Sornette and Ouillon (2012) explains that outliers are due to a physical mechanism not

represented in the distribution tail considered. These different terms are not used in the

present study.

3.2.1 Individual extreme events: concept of heavy tail

Let’s first consider the role of individual events on the overall risk. Figure 7 shows the

metric kiKi. (loss over Dt) for events i characterized by their long-term occurrence rate ki
and loss Ki (Table 2). A related metric is the annual average loss (AAL). As described in

Sect. 3.1.1, peril A dominates the risk at higher frequencies, while peril B dominates at

lower frequencies. The highest loss over period Dt is due to event A15 (at k = 0.0039) for

peril A and to event B21 (at k = 0.0010) for peril B. We see that although we consider most

of the risk in our stochastic event set, we miss a non-negligible part below k = 10-4. It is

common practice in insurance industry to only consider risk scenarios with a return period

that does not exceed 1,000 years (Smolka 2006). In our example and with Dt = 1 year, we

would miss most of the risk using such an arbitrary choice (grey area in Fig. 7). This

illustrates the concept of heavy tail from which extremes are populated. This tail is

however bounded whether by the maximum possible event size (e.g., concept of earth-

quake maximum magnitude in seismic hazard assessment) or by the exposure (i.e., loss

saturation).

Rare unknown perils could also contribute to overall risk, showing the potential

instability of the risk process, as any added information on possible extreme events could

significantly, if not dramatically, alter the risk measure (Fig. 7). The level of knowledge on

extreme individual events is directly linked to the length of the available records (Smolka

2006). New approaches, such as the study of myths (Piccardi and Masse 2007) or of odd

geomorphological structures (e.g., Scheffers et al. 2012) within the scope of scientific

imagination, should help improving these records and reassess the overall risk. This is

however out of the scope of the present study.

3.2.2 Coinciding events and triggered chains of events

Implementation and evaluation of coinciding events and triggered chains of events is the

main purpose of this work. Coinciding events are independent events, which occur in

cluster by chance. Such behaviour is in principle trivial to treat (if all events are known—

see previous section), since it emerges naturally from the Poisson process. This is illus-

trated in Fig. 8 where the distribution of the number of event occurrences k per simulation

for simulation set S0 (homogeneous Poisson process, null hypothesis H0) is shown in light

grey. With the event rate ktot =
P

k = 0.97 (Table 2), we find for instance that the

probability of having k = 5 events occurring during the same simulation is

Pr(k = 5) * 0.003. Large sets of coinciding events are however controlled by the
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moderate-size events with low return periods. More damaging events are rarer and their

random co-occurrence even rarer.

Chains of events are the result of interaction processes. This means that their clustering

is non-random. Here we consider chains of events by adding knowledge to the system by

implementing the generic interaction processes described in Sects. 2.2 (hazard contribu-

tion) and 2.3 (risk contribution). We test four different hypotheses H1 to H4 (four simu-

lation sets S1 to S4), as defined in Table 4. These what-if scenarios are as follows: primary

peril interactions between events of type A and B (H1); primary peril interactions and time-

variant vulnerability linked to the clustering of events of type A and B (H2); primary and

secondary peril interactions (including A ? C ? D ? E chains) and time-variant vul-

nerability (H3); and finally, primary and secondary peril interactions, time-variant vul-

nerability and time-variant exposure (i.e., no reconstruction) (H4). All these hypotheses are

based on the data and processes defined in Sect. 3.1. Results are discussed below.

3.3 Emergence of extremes

3.3.1 Risk migration

In hypothesis H1, events from perils A and B interact following the rules described pre-

viously (Fig. 3; Eqs. 6–7). The number of events per simulation is compared to the one

expected in the null hypothesis H0 in Fig. 8. Using the akaike information criterion (AIC),

we find that the number of event occurrences k per simulation for simulation set S1 (in dark

Fig. 7 Metric kiKi (loss over Dt) for events i characterized by their long-term occurrence rate ki and loss Ki

(Table 2). Using an arbitrary minimum rate in risk assessment, e.g., k C 10-3, may yield an underestimation

of the risk. Rare unknown perils could also contribute to overall risk, showing the potential instability of the

risk process, as any added information on possible extreme events could significantly, if not dramatically,

alter the risk measure. Here, an ad hoc kiKi distribution is shown to illustrate the potential role of an

unknown peril
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grey) is better described by the negative binomial distribution than by the Poisson distri-

bution, which indicates over-dispersion (i.e., clustering of events). Here, we use a coupling

factor f = 0.1 (see Sect. 3.1.2 for the definition of f), which gives the index of dispersion

(variance/mean ratio) / = 4.7. 0\/\ 1 represents under-dispersion and /[ 1 over-

dispersion. A higher f yields a higher /, more coupling yielding more clustering. Let’s note

that one could directly simulate risk scenarios by sampling from the negative binomial

distribution instead of from the Poisson distribution in step 1 of the MCM and by not

applying steps 2–3 (see Sect. 2.1). This approach applies when clustering is not due to

event interactions but to a higher-level process. The negative binomial distribution is

frequently used in storm modelling for instance (Mailier et al. 2006; Vitolo et al. 2009).

This is however not tested in the present study.

In Fig. 8, the probability of having k = 5 events is Pr(k = 5) * 0.04 in set S1 in

contrast with Pr(k = 5) * 0.003 in set S0. For k = 7, Pr(k = 7) * 0.02 in set S1 while

Fig. 8 Probability distribution of the number of events k per simulation showing the migration of risk to

lower-probability–higher-consequences meta-events when hazard interactions are considered. Definition of

hypotheses H0 and H1 is given in Table 4

Table 4 List of tested hypotheses H

H Primary peril

interactions

Secondary peril

interactions

Time-variant

vulnerability

Time-variant

exposure

H0 9 9 9 9

H1 4 9 9 9

H2 4 9 4 9

H3 4 4 4 9

H4 4 4 4 4
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Pr(k = 7) * 0.0004 in set S0. With Nsim = 105, we find a maximum number of events per

simulation kmax = 7 in set S0 and kmax = 41 in set S1. For hypothesis H3, in which the

domino effect A ? C ? D ? E is added (Fig. 3), the index of dispersion increases to /

= 7.0, and we get Pr(k = 5) * 0.05, Pr(k = 7) * 0.03 and kmax = 49 in set S3. This

demonstrates that risk migrates to lower-probability–higher-consequences events when

hazard interactions are considered. Here, we talk about meta-events, the term consequence

being defined as the aggregated loss over the k events of the cluster (assuming in a first

time a homogeneous distribution of losses K over k).

3.3.2 Risk amplification

As defined in Sect. 3.1.2, the time advance or delay DTij of events j due to a given trigger

i increases with the trigger intensity i (for perils A and B—hypothesis H1). Therefore, the

rarer the event is, the stronger is the associated clustering and the higher is the aggregated

loss. Similarly, the higher the intensity i of a trigger is, the higher is the probability of a

larger secondary event (for perils C, D and E; Fig. 5—hypothesis H3). Finally, the higher

the intensity of peril B is, the higher the loss due to peril A is (Fig. 6—hypothesis H2). This

is illustrated in Fig. 9, which shows the mean aggregated losses (Fig. 9a) and the median

aggregated losses (Fig. 9b) observed in simulations where the largest event from peril A is

Ai. We find that by adding more information on the dynamic risk process, losses tend to be

amplified with increasing risk. We can fit the increase in aggregated losses by a power-law

relationship with exponent 2.9 and 3.6 for mean and median aggregated losses, respec-

tively. In comparison, the power-law exponent is 2.7 for individual event losses (with

Ki * 3.10-5i2.7). This indicates a phenomenon of risk amplification for low-probability–

high-consequences events.

Fig. 9 Aggregated losses as a function of maximum event size Ai showing the amplification of risk at

greater risk levels. Definition of hypotheses H1 to H3 is given in Table 4. a Mean aggregated losses;

b median aggregated losses
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Let’s finally remark that aggregated losses saturate to
P

K = E0 = 1 in hypothesis H4

if the exposure is not reconstructed after a loss. Moreover, the renewal process of event

repeats limits the number of occurrences of any given event (Figs. 3, 4; hypotheses H1 and

H3). Such processes counteract risk amplification and avoid the emergence of exploding

chain reactions. Since the data and processes defined in Sect. 3.1 were carefully selected to

be representative of existing perils and interactions based on an extensive survey of the

literature, our results (risk migration and amplification) are believed to represent some

common characteristics of multi-risk. It is evident that both aspects strongly depend on site

conditions and that only the analysis of real sites will permit to determine the real impact of

multi-risk. We have demonstrated that the proposed framework could be used for such a

task.

3.3.3 A multi-risk metric: the risk migration matrix

We can evaluate the role of multi-risk in the emergence of extremes using two different

standard metrics: the exceedance probability (EP) curve (e.g., Grossi et al. 2005; Smolka

2006) and the risk matrix (Cox 1998; Krausmann et al. 2011). Both are different repre-

sentations of the relationship between event frequency and event loss (in the present study,

between frequency of meta-events and aggregated loss). Figure 10 shows EP curves of the

five different simulation sets (Table 4). We see the progressive increase in the area below

the curve and the tail becoming fatter when more information on the risk process is added.

We also see the case of a bounded EP at
P

K = E0 = 1. However, such a metric provides

only limited information on the extreme events that populate the tail of the EP curve.

In contrast, the risk matrix provides a more visual representation of the risk although the

colour code, from green (minimum risk) to red (maximum risk) (Krausmann et al. 2011),

Fig. 10 Exceedance probability (EP) curves for the five hypotheses H0 to H4 defined in Table 4
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remains subjective (Fig. 11, top left). We populate the risk matrix with the risk scenarios or

risk paths generated in the different simulation sets. Each simulation is characterized by an

aggregated loss, which represents one risk scenario. The number of times N the same

aggregated loss is observed gives the frequency N/Nsim of this risk scenario. Here,

aggregated losses are binned into 0.01 cells in the log scale (i.e., 501 different values in the

loss interval 10-4
B K B 10). Each risk scenario is then represented by a point in the risk

matrix (Fig. 11). Using a smaller bin would shift all values to lower frequencies, but the

observed patterns would remain the same. This approach should therefore be considered as

semi-quantitative.

To better evaluate the role of multi-risk in the emergence of extremes, we introduce the

notion of risk migration matrix, which is shown in Fig. 11. It is defined as the difference in

the density of risk scenarios observed between two hypotheses. To avoid a pixellated

result, the densities are first calculated using a Gaussian kernel, here with a standard

deviation large enough to focus on the first-order migration patterns. The right column

shows the case Hi - H0, and the left column shows the case Hi - Hi-1 with i the

hypothesis number (Table 4). Risk scenarios of the first and second hypotheses are rep-

resented by white and black points, respectively. An increase in risk is represented in red

and a decrease in blue. The proposed approach allows us to visualize how the risk migrates

as a function of frequency and aggregated losses when new information is added to the

system. From H0 to H3, we see a progressive shift of the risk to higher frequencies and

higher losses (from yellow to red), indicating that the risk is underestimated when inter-

actions at the hazard and risk levels are not considered. The shift is particularly pronounced

in the case of domino effects with A ? C ? D ? E. Finally, the risk migration matrix

H4 - H3 shows how time-dependent exposure yields a saturation of losses. Feedback from

civil protection stakeholders also showed that a risk matrix view might be preferable to the

use of loss curves for communicating multi-risk results. This is in the context of this

feedback that the concept of risk migration matrix was developed (Komendantova et al.

2014).

4 Applicability to real-world conditions

We have presented a novel, generic and flexible multi-risk framework, which implements

coinciding events, triggered chains of events, time-variant vulnerability and time-variant

exposure. While the sequential MCM is a well-established method to model complex

systems, it is still rarely used as the basis of a multi-risk assessment tool. Figure 12 shows

the difference between standard risk modelling (e.g., Grossi et al. 2005) and the newly

proposed approach (Sect. 2). Application of the approach to real test sites will require two

improvements: (1) a data switch with the transition from generic to real data and processes,

which will be the subject of a companion manuscript by the same authors: ‘‘The Quan-

tification of Low-Probability–High-Consequences Events: Part II. Guidelines to Multi-Risk

Assessment Based on the Virtual City Concept’’ and (2) an integration of engineering

models that are in use in existing risk tools (e.g., moving from a single-damage state

equation (Eq. 3) to more realistic multi-damage states as described for instance in

Fig. 11 Risk migration matrices showing how risk migrates as a function of frequency and aggregated

losses when new information is added to the system. Risk increase is represented in red and risk decrease in

blue. Risk scenarios are represented by points, in white for the first hypothesis and in black for the second.
See text for details

c
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Lagomarsino and Giovinazzi 2006). This second requirement is non-trivial, not only due to

the different modelling structure, but also to the use here of a stochastic event set instead of

aggregated hazard. Aggregated hazard is used for instance in standard seismic risk

assessment (e.g., Cornell 1968) and in its recent multi-risk extensions (Marzocchi et al.

2012; Selva 2013). Nonetheless, moving to an event-based sequential simulation approach

seems appropriate to model dynamic risk processes and extremes.

Testing of the proposed multi-risk framework has been made possible thanks to the

heuristic method and the definition of generic perils and processes, which is based on the

idea of ‘‘scientific imagination’’ (Kameda 2012; Paté-Cornell 2012). We have shown that

the hazard correlation matrix, by adding knowledge of potential interaction processes,

allows for the capture of low-probability–high-consequences events. In particular, we have

shown the role of risk migration and of risk amplification for their occurrence. The present

work should be seen as a proof-of-concept as we did not attend to fully resolve the difficult

problem of extremes. We only considered a selected number of possible interactions, but

while the chains of events that emerge in the system may seem obvious, adding more perils

and more interactions will yield more complex risk patterns. We thus recommend a brick-

by-brick approach to the modelling of multi-risk, to progressively reduce epistemic

uncertainties. A more realistic modelling of low-probability–high-consequences events

will also require the consideration of additional aspects, such as uncertainties (e.g., Barker

and Haimes 2009), domino effects in socioeconomic networks (e.g., Adachi and Elling-

wood 2008; Buldyrev et al. 2010) and long-term processes (Grossi and Kunreuther 2005;

Smolka 2006), such as climate change (Garcin et al. 2008), infrastructure ageing (Rao et al.

2010) and exposure changes (Bilham 2009). While the concepts developed in the present

study can suggest the theoretical benefits of multi-risk assessment, identifying their real-

world practicality will require the application of the proposed framework to real test sites.
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Fig. 12 Structure difference between standard risk modelling (following Grossi et al. 2005) and the newly

proposed multi-risk approach. MCM refers to the sequential MCM defined in Sect. 2
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