Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Quantitative Modeling of Operational Risk: Between g-and-h and EVT

Paul Embrechts Matthias Degen Dominik Lambrigger

ETH Zurich (www.math.ethz.ch/~embrechts)

< 17 >

ETH Zurich

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References
Outline				
Basel	П			
LDA				
g-and-	h			
Aggre	gation			
Conclu	usion and Refe	erences		

ETH Zurich

P. Embrechts

What is Basel II?

• 1988 Basel I Accord on Banking Supervision

- mainly CR
- minimum risk capital (MRC) $\geq 8\%$ of risk weighted assets (Cooke Ratio)

• 1993 Birth of VaR

- "G-30 Report" addressing incorporation of off-balance sheet products (first time "VaR" appears)

(日) (同) (三) (

ETH Zurich

- need for proper RM of these products

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

• 1996 Amendment to Basel I

- standardized model for MR
- internal models allowed
- legal implementation in 2000

• 2001 Initiation of consultative process for Basel II

A (1) > A (1) > A

FTH Zurich

- refined CR-approaches, IRB-models
- consideration of new risk class: OR
- implementation 2007+

▶ note Solvency I & II

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Risk Components (Basel II)

- Credit Risk
- Market Risk
- Operational Risk
- Business Risk

・ロ・・雪・・雪・・雪・ うくぐ

ETH Zurich

P. Embrechts

Risk Components (Basel II)

- Credit Risk
- Market Risk
- Operational Risk
- Business Risk

Operational Risk: The risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. Including legal risk, but excluding strategic and reputational risk.

< A

FTH Zurich

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

・ロト ・回ト ・ヨト・

-

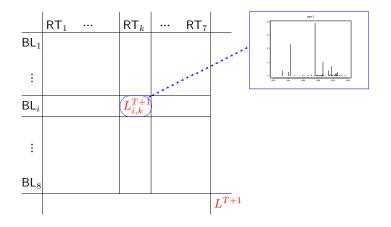
ETH Zurich

Some examples

- 1995: Nick Leeson/Barings Bank, £1.3b
- 2001: September 11
- 2001: Enron (largest US bankruptcy so far)
- "Fat finger" errors

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Loss Distribution Approach (LDA)



(ロ) (回) (E) (E)

ETH Zurich

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Basel II - Guidelines

• Risk measure: VaR

- Time horizon: 1 year
- Level: 99.9% (1 in 1000 year event!)

▶ Otherwise: Full methodological freedom (within LDA)

< ロ > < 同 > < 三 > < 三

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

The Main LDA-Steps towards a Total Capital Charge

• Estimation of marginal VaR:

$$\boxed{\widehat{\mathsf{VaR}}_{\alpha}^1,\ldots,\widehat{\mathsf{VaR}}_{\alpha}^d}$$

• Additional Aggregation:

$$\boxed{\widehat{\mathsf{VaR}}_{\alpha}^{+} = \sum_{k=1}^{d} \widehat{\mathsf{VaR}}_{\alpha}^{k}}$$

$$\mathsf{VaR}^{\mathsf{real}}_{\alpha} \stackrel{?}{<} \widehat{\mathsf{VaR}}^+_{\alpha}$$

ETH Zurich

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Reasonable Severity Distribution*

- Good statistical fit of the data
- Loss distribution with realistic capital estimates
- Well specified: Are the characteristics of the fitted data similar to the loss data and logically consistent?

FTH Zurich

- Flexible: How well is the method able to reasonably accomodate a wide variety of empirical loss data?
- Simple: Is the method easy to apply in practice?

*see Dutta and Perry (2006)

Basel II	LDA	g-and-h	Aggregation	Conclusion and References
Loss D	istribution			

EVT

- Moscadelli (2004):
 - reasonable capital estimates (LDCE 2002)
 - infinite mean models occur
- Well established theory: Peaks Over Threshold (POT)
- No specific underlying df

Dutta and Perry (2006):

g-and-h

- EVT fails, propose g-and-h (LDCE 2004)
- finite mean g-and-h models
- No standard framework (yet)
- Specific parametric model

< 17 >

∃ → ∢

FTH Zurich

► Careful look at the g-and-h approach

P Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

g-and-h: Basic Properties

Definition

Let $Z \sim \mathcal{N}(0, 1)$ be a standard normal rv. A rv X is said to have a g-and-h distribution with parameters $a, b, g, h \in \mathbb{R}$, if X satisfies

$$X = k(Z) = a + b \frac{e^{gZ} - 1}{g} e^{hZ^2/2}$$

FTH Zurich

► g governs skewness

- h governs heavy-tailedness
- Distributional properties of $F \sim \text{g-and-h}$?

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Theorem 1

Suppose $F \sim$ g-and-h, then:

- For g, h > 0, we have $\overline{F} \in RV_{-1/h}$, i.e. $\overline{F}(x) = x^{-1/h}L(x)$ with $L \in SV$.
- For h = 0 and g > 0, we have F ∈ S\RV, where S denotes the class of subexponential dfs.

▶ Well-known theory of (1st and 2nd order!) regular variation

(ロ) (回) (E) (E)

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Theorem 2

The slowly varying function L asymptotically behaves like

$$\frac{\exp\left(\sqrt{\log x}\right)}{\sqrt{\log x}}, \quad x \to \infty.$$

A B > A
 B > A
 B
 A

∃ → < ∃</p>

ETH Zurich

► Difficult type of slowly varying function

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Pickands-Balkema-de Haan Theorem

First order property:

$$\lim_{u\uparrow x_0} \underbrace{\sup_{x\in(0,x_0-u)} |F_u(x) - G_{\xi,\beta(u)}(x)|}_{=:d(u)} = 0$$

< ロ > < 同 > < 三 > < 三

•
$$F_u(x) = P(X - u \le x | X > u)$$
: excess df

- $G_{\xi,\beta(u)}$: generalized Pareto distribution (GPD)
- $x_0 \leq \infty$: upper endpoint

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Pickands-Balkema-de Haan Theorem (continued)

- Theory: Under weak conditions d(u) converges to 0. (Maximum Domain of Attraction)
- Practice: No information on goodness of approximation.

FTH Zurich

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Pickands-Balkema-de Haan Theorem (continued)

- Theory: Under weak conditions d(u) converges to 0. (Maximum Domain of Attraction)
- Practice: No information on goodness of approximation.

Second order property:

- How fast does d(u) converge to 0?
- ▶ Determined by $L \in SV$
- ► Highly relevant for practical applications

▲ □ ▶ ▲ □ ▶ ▲

FTH Zurich

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Rate of convergence to the GPD for different distributions, as a function of the threshold \boldsymbol{u}

Parameters	F	d(u)
$\lambda > 0$	$e^{-\lambda x}$	0
$\alpha > 0$	$x^{-\alpha}$	0
	e ^{-e^x}	$O(e^{-u})$
$\nu > 0$	$\overline{t}_{\nu}(x)$	$O(\frac{1}{\mu^2})$
	$\overline{\Phi}(x)$	$O(\frac{1}{\mu^2})$
$ au \in \mathbb{R}_+ \setminus \{1\}, c > 0$	$e^{-(cx)^{\tau}}$	$O(\frac{1}{u^{\tau}})$
$\mu \in \mathbb{R}, \sigma > 0$	$\overline{\Phi}(\frac{\log x - \mu}{\sigma})$	$O(\frac{1}{\log u})$
$\alpha > 0, \gamma \neq 1$	$\overline{\Gamma}_{\alpha,\gamma}(x)$	$O(\frac{1}{\log u})$
	$egin{array}{lll} \lambda > 0 \ lpha > 0 \ u > 0 \ atriangle & u > 0 \ atriangle & u > 0 \ \mu \in \mathbb{R}, \sigma > 0 \ \end{array}$	$ \begin{array}{l} \lambda > 0 & e^{-\lambda x} \\ \alpha > 0 & x^{-\alpha} \\ \nu > 0 & \overline{t}_{\nu}(x) \\ \tau \in \mathbb{R}_+ \setminus \{1\}, c > 0 & e^{-(cx)^{\tau}} \\ \mu \in \mathbb{R}, \sigma > 0 & \overline{\Phi}(\frac{\log x - \mu}{\sigma}) \end{array} $

<ロ> <同> <同> < 回> < 回>

ETH Zurich

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Rate of convergence to the GPD for different distributions, as a function of the threshold \boldsymbol{u}

Distribution	Parameters	F	d(u)
Exponential(λ)	$\lambda > 0$	$e^{-\lambda x}$	0
Pareto(lpha)	$\alpha > 0$	$x^{-\alpha}$	0
Double exp. parent		e ^{-e^x}	$O(e^{-u})$
Student t	$\nu > 0$	$\overline{t}_{\nu}(x)$	$O(\frac{1}{u^2})$
Normal(0, 1)		$\overline{\Phi}(x)$	$O(\frac{1}{u^2})$
Weibull(au, c)	$ au \in \mathbb{R}_+ackslash \{1\}, oldsymbol{c} > 0$	$e^{-(cx)^{\tau}}$	$O(\frac{1}{u^{\tau}})$
$Lognormal(\mu,\sigma)$	$\mu \in \mathbb{R}, \sigma > 0$	$\overline{\Phi}(\frac{\log x - \mu}{\sigma})$	$O(\frac{1}{\log u})$
$Loggamma(\gamma,\alpha)$	$\alpha > 0, \gamma \neq 1$	$\overline{\Gamma}_{\alpha,\gamma}(x)$	$O(\frac{1}{\log n})$
g-and-h	g, h > 0	$\overline{\Phi}(k^{-1}(x))$	$O(\frac{1}{\sqrt{\log u}})$

<ロ> <同> <同> < 回> < 回>

ETH Zurich

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Rate of convergence to the GPD for different distributions, as a function of the threshold \boldsymbol{u}

Distribution	Parameters	F	d(u)
Exponential(λ)	$\lambda > 0$	$e^{-\lambda x}$	0
Pareto(lpha)	$\alpha > 0$	$x^{-\alpha}$	0
Double exp. parent		e ^{-e^x}	$O(e^{-u})$
Student <i>t</i>	$\nu > 0$	$\overline{t}_{\nu}(x)$	$O(\frac{1}{u^2})$
Normal(0, 1)		$\overline{\Phi}(x)$	$O(\frac{1}{u^2})$
$Weibull(au, oldsymbol{c})$	$ au \in \mathbb{R}_+ ackslash \{1\}, c > 0$	$e^{-(cx)^{\tau}}$	$O(\frac{1}{u^{\tau}})$
$Lognormal(\mu,\sigma)$	$\mu \in \mathbb{R}, \sigma > 0$	$\overline{\Phi}(\frac{\log x - \mu}{\sigma})$	$O(\frac{1}{\log u})$
$Loggamma(\gamma,\alpha)$	$\alpha > 0, \gamma \neq 1$	$\overline{\Gamma}_{\alpha,\gamma}(x)$	$O(\frac{1}{\log u})$
g-and-h	g, h > 0	$\overline{\Phi}(k^{-1}(x))$	$O(\frac{1}{\sqrt{\log u}})$

If data are well modeled by a g-and-h, EVT-based estimation converges very slowly

・ロト ・回ト ・ヨト ・ヨト

FTH Zurich

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Tail Index Estimation

•
$$X_i \stackrel{iid}{\sim} \overline{F} \in RV_{-1/\xi}$$

•
$$H_{k,n} := \frac{1}{k} \sum_{j=1}^{k} \left(\log X_{n-j+1,n} - \log X_{n-k,n} \right)$$
 (Hill estimator)

(日) (四) (日) (日) (日)

ETH Zurich

- $H_{k,n}$ very sensitive to choice of threshold k
- "optimal" k often s.t. AMSE of $H_{k,n}$ minimal

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

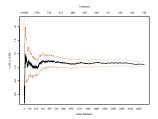
Tail Index Estimation - Simulation Study

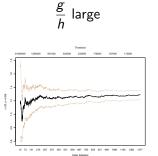
		heavy-tailedness					
	$g \setminus h$	0.1	0.2	0.5	0.7	1	2
-	0.1	142	82	33	23	18	11
	0.2	165	97	42	32	25	20
SS	0.5	224	132	49	38	27	19
/ne	0.7	307	170	63	44	29	20
skewness	1	369	218	86	58	36	26
S	2	696	(385)	151	108	74	31
	✓ 3	1097	613	243	163	115	54

Empirical SRMSE (in %) of the Hill estimator \hat{h}_{kopt}^{Hill} of h for g-and-h data for different parameter values of g and h

< ロ > < 同 > < 三 > < 三

Basel II	LDA	g-and-h	Aggregation	Conclusion and References
Hill Plots				





• Hill plot works fine (g = 0.1, h = 1)

Hill plot misleadingly indicates infinite mean model!

$$(g = 4, h = 0.2)$$

Basel II	LDA	g-and-h	Aggregation	Conclusion and References
Aggrog	ation			

Aggregation

Dutta-Perry:

"We have not mathematically verified the subadditivity property for g-and-h, but in all cases we have observed empirically that enterprise level capital is less than or equal to the sum of the capitals from business lines or event types."

< 17 ▶

∃ → ∢

Question:
$$C_{\alpha}^{\text{OpRisk}} < \widehat{\text{VaR}}_{\alpha}^{+} \stackrel{\text{def}}{=} \sum_{k=1}^{d} \widehat{\text{VaR}}_{\alpha}^{k}$$
?

ETH Zurich

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Subadditivity of VaR typically fails for:

- Skewness
- Heavy-Tailedness
- Dependence

Remark

In the space \mathcal{L}^p , $0 , there exist no convex open sets other than the empty set and <math>\mathcal{L}^p$ itself.

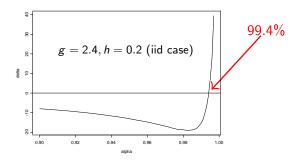
A (1) > A (1) > A

FTH Zurich

- ► No reasonable risk measures exist
- Diversification goes the wrong way

Proposition [Daníelsson et al.]

Suppose that the non-degenerate vector (X_1, X_2) is regularly varying with extreme value index $\xi < 1$. Then VaR_{α} is subadditive for α sufficiently large.



 $ext{diversification benefit:} \ ext{delta} = ext{VaR}_lpha(X_1) + ext{VaR}_lpha(X_2) - ext{VaR}_lpha(X_1 + X_2)$

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

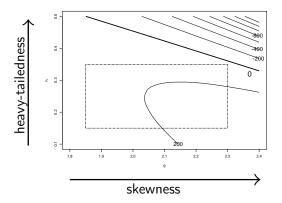
Remark

This proposition is only an asymptotic statement - It does not guarantee subadditivity for a broad range of high quantiles

of no use for practical assessment of subadditivity
 Basel II: 1-year 99.9% VaR - which choices of g and h yield subadditive models?

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Subadditivity of VaR at 99.9%



• Entire parameter rectangle within subadditivity range

ETH Zurich

• Small changes of parameters ⇒ superadditivity

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

What happens when we go deeper in the data?

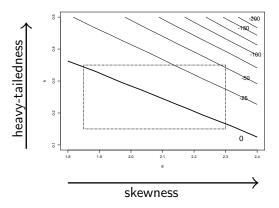
- VaR-estimation at 99.9% and higher: difficult!
- Estimate at lower level (90%, say) and scale: how?

< (17) > <

∃ >

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Subadditivity of VaR at 99%



Substantial fraction of parameter rectangle switched regime

< □ > < 同 >

ETH Zurich

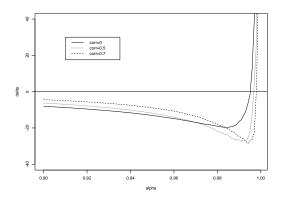
• Far from diversification!

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

Dependence matters

Gauss-Copula



Increasing correlation \Rightarrow superadditivity range extends

∃ → < ∃</p>

ETH Zurich

P. Embrechts

Basel II	LDA	g-and-h	Aggregation	Conclusion and References
Conclus	ion			
Conclus	ION			

- Very slow convergence of g-and-h excess df to the GPD when $g,\,h>0$
- Optimal threshold selection for an EVT based POT approach becomes very difficult (unreliable risk capital estimates)

< ロ > < 同 > < 回 > < 回

FTH Zurich

- Small changes of g and/or h may lead VaR to switch (sub-/superadditivity) regime
- g-and-h is subexponential \rightarrow one claim causes ruin

Basel II	LDA	g-and-h	Aggregation	Conclusion and References

References

- Degen, M., Embrechts, P. and Lambrigger, D. (2006) The quantitative modeling of operational risk: between g-and-h and EVT. ASTIN Bulletin 2007, to appear.
- Dutta, K. and Perry, J. (2006) A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital. Federal Reserve Bank of Boston, Working Paper No 06-13.
- Moscadelli, M. (2004) The modelling of operational risk: experiences with the analysis of the data collected by the Basel Committee. Bank of Italy, Working Paper No 517.

< 17 >