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The generation of mathematical models of biological processes, the simulation of these processes
under different conditions, and the comparison and integration of multiple data sets are explicit
goals of systems biology that require the knowledge of the absolute quantity of the system’s
components. To date, systematic estimates of cellular protein concentrations have been
exceptionally scarce. Here, we provide a quantitative description of the proteome of a commonly
used human cell line in two functional states, interphase and mitosis. We show that these human
cultured cells express at least B10 000 proteins and that the quantified proteins span a
concentration range of seven orders of magnitude up to 20 000 000 copies per cell. We discuss
how protein abundance is linked to function and evolution.
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Introduction

The identification and determination of the concentrations of
the molecules that constitute a cell is important and
technically challenging. It is important, because progress in
systems, cell, and structural biology depends on knowledge of
cellular protein quantities. For example, the generation of
mathematical models that describe and simulate the behavior
of a cell’s energy consumption, signaling networks and other
systems depend on the knowledge of protein copy numbers
per cell. Similarly, atomic models of large cellular structures
such as kinetochores, centrosomes, nuclear pores, and others
depend on the knowledge of their respective subunit stoichio-
metries. Furthermore, experimental biology increasingly
depends on the comparison and integration of quantitative
data sets, a task that depends on comparable, i.e., absolute
values.

Until now, absolute protein concentration estimates for
large fractions of the expressed proteome have been extremely
scarce and existent for very view species. Among these,
Saccharomyces cerevisiae is the species with the most
extensively studied proteome. In a pioneering study, the
cellular concentration of 3868 proteins was derived from
genetically altered cells via epitope tagging and quantification
of the detected tag (Ghaemmaghami et al, 2003). However, the
technique used is costly in terms of time and resources, not

generally portable from yeast to other species and bears the
risk of perturbing the proteome by the presence of the tagged
proteins. Mass spectrometry (MS)-based methods can over-
come these difficulties and were recently used to determine
protein copy numbers per cell for a significant fraction of the
proteome of two bacterial species, namely Mycoplasma
pneumonia and Leptospira interrogans (Malmstrom et al,
2009; Maier et al, 2011) and yeast (de Godoy et al, 2008).
However, due to technical limitations, the measurement of
large-scale absolute protein abundances in higher eukaryotes
remained challenging. Protein copy numbers of about 6000
mouse proteins (Schwanhausser et al, 2011) and about 1000
human proteins have previously been reported (Vogel et al,
2010).

We have previously described a quantitative tandem MS
strategy to estimate the cellular concentration of a substantial
fraction of the proteome of microbial species. We applied it to
the human pathogen Leptospira interrogans to estimate the
concentration of the majority of expressed proteins in 25
different cellular states (Malmstrom et al, 2009; Schmidt et al,
2011). This method was established for the low to medium
complexity proteomes such as single cellular species. It is not
directly scalable to the more complex proteomes of multi-
cellular species, particularly those of mammals. In this study,
we have determined the cellular concentration of the majority
of the proteins expressed by the commonly used human tissue
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culture cell line U2OS. To cope with the enormous complexity
of these samples on the peptide level, we made use of (i)
extensive peptide fractionation to reduce sample complexity
per fraction, (ii) integration of quantification data per peptide
and protein across multiple peptide fractions, and (iii)
directing MS data acquisition for in-depth proteome coverage.
We demonstrate that U2OS cells express at least B10 000
proteins. For B7300 of these proteins, we also estimated their
cellular concentrations to generate the most extensive
quantitative data set on a human cell to date. It was previously
shown that cellular core functions are conducted by relatively
stable proteins (Schwanhausser et al, 2011). We demonstrate
that cellular core functions are often carried out by relatively
few proteins, which are present at very high abundance. In
contrast, regulatory functions are often orchestrated by large
protein families existing in variable but predominantly low
abundance in the cell. The fraction of the proteome devoted to
such functions is expanded in higher organisms. This finding is
underlined by the observation that protein domain duplication
is negatively correlated with protein abundance.

Results

At first, we generated an extensive proteome map of the U2OS
(human osteosarcoma) cell line. We trypsinized lysates from
cells grown in log phase and analyzed them by bottom-up
proteomics. LC-MS/MS systems are, at the presently achiev-
able dynamic range and scan speed, incapable of covering a
whole, unfractionated proteome digest. We, therefore, used
peptide isoelectric focusing (Malmstrom et al, 2006) via off-gel
electrophoresis (OGE) to generate peptide fractions of reduced
complexity (Horth et al, 2006), shotgun MS together with
charge state fractionation to establish an initial map. We then
used directed MS (Jaffe et al, 2008; Schmidt et al, 2008)
together with charge state and gas phase fractionation (Yi et al,
2002; Scherl et al, 2008) to complement and refine the
proteome map (see Supplementary information for detail).
To exclude the possibility of an inflated protein false discovery
rate (FDR) due to error propagation from peptide to protein
level inference, we used the Mayu software tool that
determines the protein FDR in large data sets as a function of
the peptide FDR (Reiter et al, 2009). Overall, 174 066 peptide-
spectrum matches (PSMs) were identified at a FDR of 1%
(Figure 1). From the identified peptides, we inferred 10 006
proteins (Supplementary Table S1, raw data available at
https://proteomecommons.org), which is to our knowledge
the by far most comprehensive proteome map of a mammalian
cell line, with earlier studies reaching, e.g. 5399 proteins in
U2OS (Lundberg et al, 2010) and 2859 proteins in HeLa cells
(Wisniewski et al, 2009). Previous studies of U2OS cells that
used other proteomic approaches discovered even fewer
proteins (n¼237) (Niforou et al, 2008). To assess the
comprehensiveness of our approach, we asked whether
mRNAs that are highly expressed in U2OS cells remain
undetected on the protein level. Based on RPKM values (reads
per kilobase of exon model per million mapped reads)
provided by the aforementioned study of U2OS cells (Lund-
berg et al, 2010), we detected proteins corresponding to B84%
of the most abundant quartile of mRNAs. Although it remains

unknown whether all mRNAs are translated into proteins,
gene ontology (GO) analysis revealed that B33% of the
mRNAs unidentified on the protein level encode transmem-
brane proteins, suggesting that these proteins are less
accessible for our proteomic approach (discussed below).
To determine whether additional fragment ion spectra from
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Figure 1 Protein and PSM FDRs for the ‘U2OS data set’ and independent
validation of protein copy numbers. (A) Number of expected true positive protein
identifications (TP PIDs) for varying protein FDRs. Number of PIDs stagnates at
2% protein FDR (B0.2% PSM FDR). Stringent PSM filter preserves true PIDs.
(B) FDR estimates for different entities as a function of the number of total, i.e.,
true and false PIDs (target PID). PSM FDR (blue), Mayu protein FDR (green) and
the (frequently used and yet) too pessimistic naive protein FDR (Reiter et al,
2009; see Supplementary information for detail) estimate (brown). (C) Proteome
coverage prediction (dashed) for repetition of experiments that gave rise to the
‘U2OS data set’ (solid). Number of acquired confident PSMs is plotted against the
number of true positive protein discoveries (TP PIDs). Effective saturation
coverage reached at level of TP PIDs for given experimental set-up.
(D) Confocal section of U2OS cell with punctuate pattern of NPCs stained
with monoclonal antibody mAb414 (scale bar 5 mm). (E) Distribution of number of
NPCs in U2OS cells as determined by quantification of images from 46 cells as
shown in (D). The mean value of 3000 NPCs per cell and the standard deviation
of 1000 is displayed and put into relation to the number of NPCs per cell
measured by MS and the corresponding precision of the MS method (mean fold
error o2; Supplementary Figure S1).
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additional LS-MS/MS runs would have further increased
proteome coverage, we used proteome coverage prediction
software tools we previously developed (Claassen et al, 2009).
Our analysis revealed that under the experimental conditions
chosen saturation of proteome coverage was already reached
from the available data (Figure 1).

To quantify the MS detectable proteins of the U2OS
proteome, we selected 144 high-intensity proteotypic peptides
(PTPs) (Kuster et al, 2005) covering 84 human proteins from
the proteome map described above (Supplementary Table S1).
These peptides were synthesized as heavy isotope labeled,
absolutely quantified reference peptides and defined amounts
were spiked into trypsin-digested extracts from 1exp7 U2OS
cells growing in log phase. The peptide samples were
processed and analyzed as described above except that data-
dependent precursor ion selection was used exclusively
(see Supplementary information for detail). Within the
combined data from the 16 OGE fractions set, we confidently
detected and quantified 70 reference and endogenous peptides
pairs corresponding to 53 proteins in a concentration range
from 4.5exp3 to 2.5exp6 copy numbers per cell. We used the
same data to calculate three different protein abundance
scores as previously described (Ishihama et al, 2005; Silva
et al, 2006; Malmstrom et al, 2009) and validated their
precision by statistical analysis (Supplementary Figure S1; see
Supplementary information for detail). Based on this analysis,
we decided to use the share of spectrum identification index
(SSID) normalized by protein molecular weight to estimate
the abundance of 47300 human proteins (Supplementary
Table S1). Since we cannot assess the precision of the
quantitative estimates outside of the dynamic range covered
by heavy labeled reference peptides, we masked proteins
o500 copies per cell and 420 000 000 copies per cell,
respectively, assuming a correlation similar to the validated
concentration range within the respective range of protein
copies. To validate our abundance scale with an independent
method, we used high-resolution confocal fluorescence
microscopy to count the number of nuclear pore complexes
(NPCs) in U2OS cells (Figure 1D). In contrast to MS that
measures average signals from the combined lysates of many
cells, this method can provide a distribution of the number of
NPC’s across many individual cells. The number of NPCs
determined by light microscopy was in very good agreement
with the copy numbers of the relevant proteins determined by
MS (Figure 1E). Although this validation method relies only
onto a single measurable value, namely NPC copies per cell, it
demonstrates that we neither systematically overestimate
nor underestimate protein abundance in the MS-derived
quantitative scale (see Supplementary information for detail).
Further, the variance measured across individual cells was in a
similar range as the estimated precision of the MS method.
Thus, we conclude that we successfully determined the copy
numbers per cell for 73% of U2OS proteins that are detectable
with the MS method used, with an estimated mean error of
about two-fold.

To investigate whether changes in protein copy numbers
across different biological states can be observed, we repeated
the experiment-described above with cells arrested in M phase
using nocodazole (Supplementary Figure S2) and quantified
6800 proteins. Proteins detected with copy number variations

as compared with a sample from non-synchronized cells were
significantly enriched for biological processes carrying out
mitotic functions (Supplementary Figure S3; Supplementary
Table S2). To investigate whether the proteins with higher copy
number during M phase are essential for cell division, we
compared our data set with mitotic gene silencing phenotypes
identified by a recent genome-wide study (Neumann et al,
2010). The frequency of mitotic phenotypes discovered by
RNAi screening that were associated with proteins displaying a
higher copy number during mitosis was considerably higher
than in a control set (Supplementary Figure S3; Supplementary
Table S2). Nevertheless, a considerable fraction of proteins
with increased copy number in mitosis did not show a strong
phenotype despite being known to have a role in mitosis (e.g.,
kinetochore components or mitotic kinases). This finding
indicates that mammalian cells can often cope with the effects
of gene silencing without displaying an obvious phenotype.
This may be because related proteins, e.g. isoforms, can
compensate for the function of the targeted gene or because
compensatory effects at the network level can attenuate
phenotypes (Bodenmiller et al, 2010).

High- and low-abundant proteins have specific
cellular functions

We next analyzed the relationship between protein abundance
and function. At first, we used GOs (Ashburner et al, 2000;
Huang da et al, 2009) to compare the number of genes and
expressed gene products devoted to specific functions on the
level of the genome, qualitative proteome (i.e., number of
different proteins associated with a function) and absolutely
quantified proteome, respectively (Figure 2A). Such analyses
reveal the fraction of total protein mass that the cell devotes to
specific biological functions. Processes such as transcription,
translation, protein, and nucleic acid metabolism and trans-
port make up considerable fractions of the total proteome.
Others, such as cell adhesion, communication, and signaling
are underrepresented on the quantitative as compared with the
qualitative proteome and genome level, indicating that the
corresponding gene products are expressed at relatively low
copy numbers. The opposite is true for translation and
cytoskeleton, for example.

To test whether the proteins functioning in specific cellular
components, functional pathways or protein complexes have
distinct cellular abundance patterns, we grouped all absolutely
quantified proteins into four abundance groups: high
(4100 000 copies), moderate (5000–100 000 copies), low
(500–5000 copies), and very low-abundant proteins (o500
copies) and tested if specific ontology or pathway terms were
significantly enriched within these groups (Supplementary
Table S3). We discovered first that no significant enrichment of
functional categories was detectable for the low-abundant
protein class (500–5000 copies per cell). Metabolic processes
require proteins expressed over the entire range of protein
abundance: glycolysis and purine metabolism depend mostly
on high-abundant proteins. However, proteins functioning in
lipid, fatty acid, steroid, and phospholipid metabolism were
frequently of very low abundance. Second, we found that
cellular processes associated with protein synthesis and
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turn over, namely translation, protein folding, splicing, and
degradation as well as RNA processing, are mostly conducted
by high-abundant proteins. However, proteins involved in
protein sorting and localization, e.g. nuclear transport, are
moderately abundant, while proteins involved in catalyzing
post-translational modifications such as glycosylation, phos-
phorylation, and ubiquitination are mostly conducted by very
low-abundant proteins. Third, we found that proteins involved
in functions such as signaling, cell communication, and
regulation of cellular processes are often of very low
abundance. Functional groups falling into this category are,
e.g., cell adhesion, transcription factors, kinases, or calcium
signaling.

The abundance distribution of the components of several
protein complexes and functional groups is shown in Figure 2B
(see also Supplementary Table S3). The ribosome and
proteasome are the most abundant protein complexes and

display a narrow component distribution, indicating that they
are stably associated. Proteins functioning together in biolo-
gical processes but in multiple protein complexes display a
broader distribution but can still be associated with specific
abundance ranges. These include the functions ‘protein
folding’ and ‘glycolysis’ as well as kinases and phosphatases.
Interestingly, functional protein abundance classes seem to
split up into two major categories (Figure 2C): cellular core
functions with a smaller number of genes that are expressed at
high copy numbers and regulatory cell functions that are
orchestrated by families composed of a large number of genes
each expressed at low copy numbers (discussed below).
Inspired by this finding, we further investigated the link
between protein abundance and gene frequency using the
superfamiliy classification of protein domains (Gough et al,
2001). This classification is based on a database of 1106 Hidden
Markov Models that assign 475% of the quantified human
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proteome to at least one superfamily, and provides a more
comprehensive and complementary view to the functional
annotation used in Figure 2A. We observed a negative
correlation between the frequency of protein domains and
their median copy number per cell (Figure 2D; Supplementary
Figure S4A; Supplementary Table S5), which implicates that
abundant proteins are generally composed of domains that
occur at lower frequency in the human genome and,
consequently, likely to be under purifying selection. Vice
versa, domains that underwent expansion during evolution
are more likely to be present in low-abundant proteins. The
same trend can also be observed when gene duplication events
are considered instead of domain expansion. In this case,
proteins that have a higher number of paralogs tend to be
expressed at lower copy number (Supplementary Figure S4B).

Discussion

In this study, we determined the so far most extensively
measured human cell proteome. We identified 410 000
proteins expressed in the commonly used human tissue
culture cell line U2OS and demonstrate that protein discovery
has reached saturation under the experimental conditions
used, i.e., that further measurements of the same type would
not be expected to identify additional proteins. We further-
more describe a large-scale estimate of protein abundances in
a human cell. We and others have previously shown that the
dynamic range of protein concentrations spans more than
three orders of magnitude in the bacterium L. interrogans
(Malmstrom et al, 2009) and five orders of magnitude in yeast
(Ghaemmaghami et al, 2003; de Godoy et al, 2008; Picotti et al,
2009). In the present study, we demonstrate that the protein
copy numbers of a human cell span at least seven orders of
magnitude. This range is similar to that determined in mouse
cells (Schwanhausser et al, 2011). This finding is furthermore
in good agreement with the volume of the relevant cell types,
namely B0.2 mm3 in L. interrogans (Beck et al, 2009), and
about B30mm3 in S. cerevisiae and B4000 mm3 in U2OS,
(assuming spherical shape and 4 and 20mm diameter for yeast
and U2OS, respectively).

Interestingly, the bacterium L. interrogans expresses a
relatively small number of in very high copy proteins, e.g.
proteins of the translation and protein folding system,
metabolic enzymes as well as components of the cell wall.
Those proteins make up the majority of the total protein mass
(Malmstrom et al, 2009) and a considerable fraction of the
cytoplasmic volume (Beck et al, 2009), while proteins
functioning in signaling, protein transport, or regulatory
pathways, e.g. transcription factors, comprise a minority of
the quantitative proteome. To investigate whether the same
holds true for eukaryotes, we systematically compared the four
available data sets mentioned above (Figure 3). We arbitrarily
grouped all functional categories into three major classes:
(i) cellular core functions containing carbohydrate, nucleo-
base, nucleoside, nucleotide, nucleic acid metabolic processes,
lipid and other metabolic processes as well as transcription,
translation, DNA replication, transport, and other core
functions; (ii) regulatory functions, namely cytoskeleton
organization, cell adhesion, cell division, phosphorylation,

protein metabolic processes, signaling, developmental
process, cell communication, and other regulatory functions;
and (iii) others. The bacterium L. interrogans devotes most of
its protein mass (B75%) to core and o25% to regulatory
functions. In contrast, less than half of the analyzed protein
mass of U2OS fulfills core functions, and 51% carries out
regulatory functions. In particular, the total fraction of protein
devoted to cytoskeleton organization, protein metabolic
processes and signaling is largely expanded in U2OS cells,
while other processes with the exception of central metabolic
processes are largely reduced. A very similar picture emerged
for mouse cells. Yeast, at a first glance, does not seem to follow
this trend. However, it devotes only one third of the total
protein mass to metabolism, while the corresponding number
is 450% in L. interrogans. As a single cell eukaryote, yeast
expands a significant fraction of its protein mass (B30%) on
translation and protein sorting. Taken together, this analysis
indicates that the fraction of total protein mass devoted to
regulatory functions is largely expanded in higher eukaryotes.

In multicellular species, domain families fulfilling regula-
tory functions have been more frequently subject to gene
expansion than domains fulfilling core functions (Vogel and
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Figure 3 Comparative analysis of protein abundance. Pie charts representing
the annotated quantitative proteome of human U2OS cells, mouse NIH3T3 cells,
S. cerevisiae and L. interrogans taking protein copy numbers per functional
category into account. Functional categories are classified into three major
groups: cellular core, regulatory functions and others. Protein abundance data
sets were taken from this study and references (Ghaemmaghami et al, 2003;
Malmstrom et al, 2009; Schwanhausser et al, 2011).
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Chothia, 2006; Ori et al, 2011). We therefore investigated, using
the quantitative data generated in this study, how this effect is
linked to protein abundance. We and others showed that
protein abundance is linked to function, namely that high-
abundant proteins are often responsible for core functions,
such as energy metabolism and translation, while regulatory
functions such as protein phosphorylation and transcriptional
regulation are often carried out by low-abundant proteins
(Figure 2B and C; Supplementary Table S3; Schwanhausser
et al, 2011). There are several lines of evidence suggesting that
protein abundance is also linked to evolvability. It has been
previously shown that highly expressed proteins evolve more
slowly than proteins expressed at lower levels, i.e., they
display a reduced protein divergence on the sequence level
(Pal et al, 2001; Subramanian and Kumar, 2004), while low-
abundant proteins display decreased sequence conservation
across organisms (Schrimpf et al, 2009). It was further shown
that protein families displaying lower abundance variability
across species less often underwent gene duplication and that
abundance variability scales inversely with protein expression
(Weiss et al, 2010). These findings indirectly suggest a link
between protein abundance and gene duplicability. Our data
support this hypothesis. We show a negative correlation
between the frequency of domain families in the human
genome and their median copy number per cell (Figure 2D;
Supplementary Figure S4A; Supplementary Table S5). We also
show that proteins, which have a higher number of paralogs,
tend to be expressed at lower copy number (Supplementary
Figure S4B). These findings underline the view that duplica-
tions of genes encoding for proteins expressed at high level are
maintained under purifying selection, likely because of energy
constraints (Lane and Martin, 2010) or higher risk of protein
aggregation and toxicity (Drummond et al, 2005). Interest-
ingly, a recent study that compares the relative expression
level of gene products of three human cell lines on proteome
and transcriptome level showed that proteins involved in
regulatory functions more often vary in their expression levels
as compared with core functions (Lundberg et al, 2010). One
might thus speculate that the large fraction of the human
proteome expressed at low copy number and involved in
regulatory function was the main source of biological
innovation during evolution. This hypothesis is supported by
the following lines of evidence: (i) domain families occurring
in low-abundant proteins are significantly more correlated
with increase in organism complexity than the ones present in
highly expressed proteins (P¼7.8e�9, one-sided Wilcoxon
rank sum test; Supplementary Figure S4C; Supplementary
Table S5). (ii) The abundance of proteins involved in core
functions is more strongly conserved across species than for
proteins involved in regulatory functions (Schrimpf et al,
2009). (iii) The fraction of the proteome devoted to regulatory
functions significantly expanded during the course of evolu-
tion (Figure 3).

Regulatory, often low-abundant proteins are key players in
mediating the integration of external stimuli with the cell’s
internal state and they control fundamental biological
processes such as cell proliferation, migration, and cell
differentiation. It was recently shown for mouse cells
that low-abundant proteins and mRNAs are less stable than
high-abundant ones (Schwanhausser et al, 2011). Therefore,

expression at low copy numbers might provide an efficient
way of dynamic regulation by translation and rapid turnover.
Vice versa, cellular core functions might be more efficiently
regulated by other means than degradation.

Current limitations of protein abundance indices deter-
mined from MS data are the availability of PTPs accounting for
the multitude of isoforms within protein families and a bias
toward proteins that produce fewer well-ionizing peptides. In
particular, GO analysis reveals an underrepresentation of
transmembrane proteins in the identified proteome (Supple-
mentary Table S4). Such an effect has been observed before
(Schrimpf et al, 2009) and is likely a result of the reduced
accessibility of membrane proteins for MS analysis, although
we had used an MS compatible detergent during sample
preparation. This finding is further underlined by fact that a
significant fraction of high-abundant mRNAs not discovered
on the protein level encodes for membrane proteins. Other-
wise, the distribution of functional categories on the genome
and proteome level is quite similar, suggesting high proteome
coverage and that the assumption of an even extractability of
proteins holds true for the majority of proteins but not for
membrane proteins. We demonstrate the feasibility of estab-
lishing protein abundance scales in very complex proteomes
with precision that is likely sufficient to allow the analysis
of biological systems by means of computational modeling.
The method used in this study is principally applicable to
the majority of all cell types and might be useful to study
a multitude of cellular states and organisms in the future.

Materials and methods
A detailed description of all Materials and methods is provided in
Supplementary information.

Cell culture

U2OS cells were grown in DMEM medium supplemented with 10%
bovine serum, harvested by trypsinization, washed twice in phos-
phate-buffered saline (PBS), resuspended in 0.5 ml PBS, and lysed by
adding 0.5 ml of 10 mM Tris pH 7.5, 10 M urea, 0.1% Rapigest.
Synchronization was carried out by adding nocodazole to a final
concentration of 330 nM for 18 h.

Mass spectrometry

Proteins were reduced with 10 mM TCEP for 20 min at 371C and
alkylated with 10 mM iodoacetamide and digested with trypsin (1/100,
w/w). AQUA peptides were spiked into the sample at this stage, if
applicable. The peptides were cleaned up by C18 reversed-phase spin
columns according to the manufacturer’s instructions (Harvard
Apparatus). The peptides were separated on pH 3–10 IPG strips
(GE Healthcare) with a 3100 OFFGEL fractionator (Agilent) according
to the manufacturer’s instructions. The set-up of the mRPLC-MS system
was as described previously (Schmidt et al, 2008). Depending on the
sample complexity, each fraction was analyzed 3–4 times in shotgun
and 2–5 times in directed (inclusion list) mode. Directed LC-MS
measurements of features and reference peptides were performed
according to Schmidt et al (2008) using a rolling inclusion list if the
number of masses exceeded 500. Thereby, large feature lists were
automatically split into smaller lists covering a certain mass range and
charge to enable more specific directed MS analysis (Scherl et al,
2008). Samples for absolute protein quantification were analyzed
using an Easy-nLC/Orbitrap-Velos (both from ThermoScientific, Bre-
men, Germany) LC-MS system with the following modified para-
meters: peptides were separated using a linear gradient from 92%
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solvent A (98% water, 2% acetonitrile, 0.15% formic acid) and 8%
solvent B (98% acetonitrile, 2% water, 0.15% formic acid) to 40%
solvent B over 120 min. Each survey scan acquired in the Orbitrap at
60 000 FWHM was followed by MS/MS scans of the 20 most intense
precursor ions in the linear ion trap. MS/MS spectra were searched
using the SEQUEST algorithm (Yates et al, 1995) against a decoy
database (consisting of forward and reverse protein sequences). The
database search results were further processed using the PeptidePro-
phet (Keller et al, 2002) and ProteinProphet (Keller et al, 2005)
program. PSM FDRs have been estimated by means of the target-decoy
strategy (Elias and Gygi, 2007). Protein FDRs have been estimated by
the generalized target-decoy strategy Mayu (Reiter et al, 2009).
Proteome coverage prediction has been performed as described in
Claassen et al (2011).

Data deposition

The three MS raw data sets corresponding to the proteome mapping
and both quantification experiments (of synchronized and non-
synchronized cells) were deposited at Proteome Commons (https://
proteomecommons.org) with the following hash codes:

3Wj0424JA2DCVkBnfqm45vþUfMZOHgf3p2PTwUe83RwjqQvtr4
mQnloYvUSrMHCYBzþkrDIXmz50spF2TNYGw3/8jZIAAAAAAAAB
9w¼¼;

x8hmYUs40bOspaYþEMuyUtDkyiwþ xgyjSynVK/ggQXhlþbb
DV5QbiAMakzsSKonz/XszxEEUThtmn6cIS/STS1Y0n2QAAAAAAAA
B3g¼¼;

Gm5TsXK3crQV70MqiIIHþ /uaKyioNCFWiþRi7fpLqþW1ga5OQ
A0dTe2u0LMvNþ ty7uuRsA1o3WTWb79Bc/XqYK7v9D0AAAAAAA
ACBA¼¼.

Absolute abundance estimation

AQUA peptides were grouped into three abundance classes based on
spectral counts and spiked into human peptide mixtures directly after
digestion, at a final concentration of 0.5, 5, or 50 pmol/ml, respectively.
Heavy and light ratios between spiked AQUA and endogenous peptides
were calculated using XPRESS as implemented into the trans-
proteomic pipeline (Keller et al, 2005). The exponentially modified
protein abundance index (emPAI) was calculated as previously
described (Ishihama et al, 2005) and based on the peptide statistics
calculated by PeptideProphet (Keller et al, 2002). To the SSID the
‘percent share of spectrum ID’ output of ProteinProphet (Keller et al,
2005) was normalized by dividing through the proteins molecular
weight. The median of the extracted precursor ions (XICs) of the three
best flying peptides per protein (Top3) index (Silva et al, 2006) was
calculated as described previously (Malmstrom et al, 2009). The
arbitrary protein abundance indices were calibrated to absolute
protein copy numbers per cell their precision validated by boot-
strapping analysis as described earlier (Malmstrom et al, 2009).
To estimate the average number of NPCs per cell, we performed
immunofluorescence labeling, high-resolution confocal microscopy
and computational image analysis. In brief, U2OS cells fixed and
permeabilized and NPCs were then stained with mab414 (Covance)
and secondary goat anti-mouse IgG coupled to Alexa Fluor 488
(Invitrogen). Confocal z-stacks (xyz pixel size 44/44/380 nm) through
the entire nucleus of 46 randomly chosen cells were acquired using a
Zeiss LSM 710 confocal microscope. In each cell, the NPC density was
quantified with an in-house developed intensity peak identification
macro in Image J.

Functional analysis

The functional annotation of the U2OS proteome was performed using
a custom designed GO slim annotation. The comparative analysis of
quantitative proteomes across species was performed using published
data set for L. interrogans (Malmstrom et al, 2009), S. cerevisiae
(Ghaemmaghami et al, 2003), and mouse (Schwanhausser et al, 2011),
and the data set presented in this study for human. Domain
distribution across quantified proteins was investigated using the
Superfamily v1.75 annotation (Uniprot 2011_07 assignment; Gough

et al, 2001). RNA abundance data, specifically reads per kilobase of
exon model per million mapped reads (RPKM) values of U2OS cells
were taken from a previously published data set (Lundberg et al, 2010).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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