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The Quanto Theory of Exchange Rates

Lukas Kremens Ian Martin∗

August, 2018

Abstract

We present a new identity that relates expected exchange rate appreciation

to a risk-neutral covariance term, and use it to motivate a currency forecasting

variable based on the prices of quanto index contracts. We show via panel re-

gressions that the quanto forecast variable is an economically and statistically

significant predictor of currency appreciation and of excess returns on currency

trades. Out of sample, the quanto variable outperforms predictions based on

uncovered interest parity, on purchasing power parity, and on a random walk as

a forecaster of differential (dollar-neutral) currency appreciation.
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It is notoriously hard to forecast movements in exchange rates. A large part of the

literature is organized around the principle of uncovered interest parity (UIP), which

predicts that expected exchange rate movements offset interest rate differentials and

therefore equalise expected returns across currencies. Unfortunately many authors,

starting from Hansen and Hodrick (1980) and Fama (1984), have shown that this

prediction fails: returns have historically been larger on high interest rate currencies

than on low interest rate currencies.1

Given its empirical failings, it is worth reflecting on why UIP represents such an

enduring benchmark in the FX literature. The UIP forecast has three appealing prop-

erties. First, it is determined by asset prices alone rather than by, say, infrequently

updated and imperfectly measured macroeconomic data. Second, it has no free pa-

rameters: with no coefficients to be estimated in-sample or “calibrated,” it is perfectly

suited to out-of-sample forecasting. Third, it has a straightforward interpretation as

the expected exchange rate movement perceived by a risk-neutral investor. Put differ-

ently, UIP holds if and only if the risk-neutral expected appreciation of a currency is

equal to its real-world expected appreciation, the latter being the quantity relevant for

forecasting exchange rate movements.

There is, however, no reason to expect that the real-world and risk-neutral expecta-

tions should be similar. On the contrary, the modern literature in financial economics

has documented that large and time-varying risk premia are pervasive across asset

classes, so that risk-neutral and real-world distributions are very different from one

another: in other words, the perspective of a risk-neutral investor is not useful from

the point of view of forecasting. Thus, while UIP has been a useful organizing principle

for the empirical literature on exchange rates, its predictive failure is no surprise.2

In this paper we propose a new predictor variable that also possesses the three

appealing properties mentioned above, but which does not require that one takes the

perspective of a risk-neutral investor. This alternative benchmark can be interpreted as

1Some studies (e.g. Sarno, Schneider and Wagner, 2012) find that currencies with high interest
rates appreciate on average, exacerbating the failure of UIP; this has become known as the forward
premium puzzle. Others, such as Hassan and Mano (2016), find that exchange rates move in the
direction predicted by UIP, though not by enough to offset interest rate differentials.

2Various authors have fleshed out this point in the context of equilibrium models: see for example
Verdelhan (2010), Hassan (2013), and Martin (2013b). On the empirical side, authors including
Menkhoff et al. (2012), Barroso and Santa-Clara (2015) and Della Corte, Ramadorai and Sarno (2016)
have argued that it is necessary to look beyond interest rate differentials to explain the variation in
currency returns.
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the expected exchange rate movement that must be perceived by a risk-averse investor

with log utility whose wealth is invested in the stock market. (To streamline the

discussion, this description is an oversimplification and strengthening of the condition

we actually need to hold for our approach to work, which is based on a general identity

presented in Result 1.) This approach has been shown by Martin (2017) and Martin

and Wagner (2018) to be successful in forecasting returns on the stock market and on

individual stocks, respectively.

It turns out that such an investor’s expectations about currency returns can be

inferred directly from the prices of so-called quanto contracts. For our purposes, the

important feature of such contracts is that their prices are sensitive to the correlation

between a given currency and some other asset price. Consider, for example, a quanto

contract whose payoff equals the level of the S&P 500 index at time T , denominated

in euros (that is, the exchange rate is fixed—in this example, at 1 euro per dollar—at

initiation of the trade). The value of this contract is sensitive to the correlation between

the S&P 500 index and the dollar/euro exchange rate. If the euro appreciates against

the dollar at times when the index is high, and depreciates when the index is low, then

this quanto contract is more valuable than a conventional, dollar-denominated, claim

on the index.3

We show that the relationship between currency-i quanto forward prices and con-

ventional forward prices on the S&P 500 index reveals the risk-neutral covariance be-

tween currency i and the index. Quantos therefore signal which currencies are risky—in

that they tend to depreciate in bad times, i.e., when the S&P 500 declines—and which

are hedges; it is possible, of course, that a currency is risky at one point in time and

a hedge at another. Intuitively, one expects that a currency that is (currently) risky

should, as compensation, have higher expected appreciation than predicted by UIP,

and that hedge currencies should have lower expected appreciation. Our framework

formalizes this intuition. It also allows us to distinguish between variation in risk

premia across currencies and variation over time.

It is worth emphasizing various assumptions that we do not make. We do not

require that markets are complete (though our approach remains valid if they are).

We do not assume the existence of a representative agent, nor do we assume that

3A different type of quanto contract—specifically, quanto CDS contracts—is used by Mano (2013)
and Augustin, Chernov and Song (2018) to study the relationship between currency depreciation and
sovereign default.
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all economic actors are rational: the forecast in which we are interested reflects the

beliefs of a rational investor, but this investor may coexist with investors with other,

potentially irrational, beliefs. And we do not assume lognormality, nor do we make

any other distributional assumptions: our approach allows for skewness and jumps in

exchange rates. This is an important strength of our framework, given that currencies

often experience crashes or jumps (as emphasized by Brunnermeier, Nagel and Pedersen

(2008), Jurek (2014), Della Corte et al. (2016), Chernov, Graveline and Zviadadze

(2018) and Farhi and Gabaix (2016), among others), and are prone to structural breaks

more generally. The approach could even be used, in principle, to compute expected

returns for currencies that are currently pegged but that have some probability of

jumping off the peg. To the extent that skewness and jumps are empirically relevant,

this fact will be embedded in the asset prices we use as forecasting variables.

Our approach is therefore well adapted to the view of the world put forward by

Burnside et al. (2011), who argue that the attractive properties of carry trade strategies

in currency markets may reflect the possibility of peso events in which the stochastic

discount factor takes extremely large values. Investor concerns about such events, if

present, should be reflected in the forward-looking asset prices that we exploit, and

thus our quanto predictor variable should forecast high appreciation for currencies

vulnerable to peso events even if no such events turn out to happen in sample.

We derive these and other theoretical results in Section 1, and test them in Sec-

tion 2 by running panel currency-forecasting regressions. The estimated coefficient

on the quanto predictor variable is economically large and statistically significant: in

our headline regression (20), we find t-statistics of 3.2 and 2.3 respectively with and

without currency fixed effects. (Here, as throughout the paper, we compute standard

errors—and more generally the entire covariance matrix of coefficient estimates—using

a nonparametric block bootstrap to account for heteroskedasticity, cross-sectional cor-

relation across currencies, and autocorrelation in errors induced by overlapping obser-

vations.) The quanto predictor outperforms forecasting variables such as the interest

rate differential, average forward discount, and the real exchange rate as a univariate

forecaster of currency excess returns. On the other hand, we find that some of these

variables—notably the real exchange rate and average forward discount—interact well

with our quanto predictor variable, in the sense that they substantially raise R2 above

what the quanto variable achieves on its own. We interpret this fact, through the
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lens of the identity (6) of Result 1, as showing that these variables help to measure

deviations from the log investor benchmark. We also show that the quanto predic-

tor variable—that is, forward-looking risk-neutral covariance—predicts future realized

covariance and substantially outperforms lagged realized covariance as a forecaster of

exchange rates.

An important challenge is that our dataset spans a relatively short time period.

If we assess the significance of joint hypothesis tests by using p-values based on the

asymptotic distributions of test statistics (with bootstrapped covariance matrices, as

always), we find, in our pooled regressions, that the estimated coefficients on the quanto

predictor variable and interest rate differential are consistent with the predictions of

the log investor benchmark, but we can reject the hypothesis that, in addition, the

intercept is zero. This rejection can be attributed to US dollar appreciation, during

our sample, that was not anticipated by our model. But using asymptotic distributions

of test statistics to assess p-values risks giving a false impression of precision, in view of

our short sample period. In Section 2.6, we bootstrap the small-sample distributions

of the relevant test statistics to account for this issue. When we use the associated,

more conservative, small-sample p-values, we do not reject even the most optimistic

hypothesis in any of the specifications, though the individual significance of the quanto

predictor becomes more marginal, with p-values ranging from 5.1% to 9.7%.

In Section 3 we show that the quanto variable performs well out of sample. We focus

on forecasting differential returns on currencies in order to isolate the cross-sectional

forecasting power of the quanto variable in a dollar-neutral way, in the spirit of Lustig,

Roussanov and Verdelhan (2011), and independent of what Hassan and Mano (2016)

refer to as the dollar trade anomaly. (As noted in the preceding paragraph, the dollar

strengthened against almost all other currencies over our relatively short sample, so

quantos are not successful in forecasting the average performance of the dollar itself.

Our findings are therefore complementary to Gourinchas and Rey (2007), who use a

measure of external imbalances to forecast the appreciation of the dollar against a

trade- or FDI-weighted basket of currencies.)

In a recent survey of the literature, Rossi (2013) emphasizes that the exchange-

rate forecasting literature has struggled to overturn the frustrating fact, originally

documented by Meese and Rogoff (1983), that it is hard even to outperform a random

walk forecast out of sample. Our out-of-sample forecasts exploit the fact that our theory
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makes an a priori prediction for the coefficient on the quanto predictor variable. When

the coefficient is fixed at the level implied by the theory, we end up with a forecast of

currency appreciation that has no free parameters, and which is therefore—like the UIP

and random walk forecasts—perfectly suited for out-of-sample forecasting. Following

Meese and Rogoff (1983) and Goyal and Welch (2008), we compute mean squared

error for the differential currency forecasts made by the quanto theory and by three

competitor models: UIP, which predicts currency appreciation through the interest

rate differential; PPP, which uses past inflation differentials (as a proxy for expected

inflation differentials) to forecast currency appreciation; and the random walk forecast.

The quanto theory outperforms all three competitors. We also show that it outperforms

on an alternative performance benchmark, the correct classification frontier, that has

been proposed by Jordà and Taylor (2012).

1 Theory

We start with the fundamental equation of asset pricing,

Et

(
Mt+1R̃t+1

)
= 1, (1)

since this will allow us to introduce some notation. Today is time t; we are interested in

assets with payoffs at time t+1. We write Et for the (real-world) expectation operator,

conditional on all information available at time t, and Mt+1 for a stochastic discount

factor (SDF) that prices assets denominated in dollars. (We do not assume complete

markets, so there may well be other SDFs that also price assets denominated in dollars.

But all such SDFs must agree with Mt+1 on the prices of the payoffs in which we are

interested, since they are all tradable.) In equation (1), R̃t+1 is the gross return on

some arbitrary dollar-denominated asset or trading strategy. If we write R$
f,t for the

gross one-period dollar interest rate, then the equation implies that EtMt+1 = 1/R$
f,t,

as can be seen by setting R̃t+1 = R$
f,t; thus (1) can be rearranged as

Et R̃t+1 −R$
f,t = −R$

f,t covt

(
Mt+1, R̃t+1

)
. (2)

Consider a simple currency trade: take a dollar, convert it to foreign currency i,

invest at the (gross) currency-i riskless rate, Ri
f,t, for one period, and then convert back
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to dollars. We write ei,t for the price in dollars at time t of a unit of currency i, so that

the gross return on the currency trade is Ri
f,tei,t+1/ei,t; setting R̃t+1 = Ri

f,tei,t+1/ei,t in

(2) and rearranging,4 we find that

Et
ei,t+1

ei,t
=

R$
f,t

Ri
f,t︸︷︷︸

UIP forecast

−R$
f,t covt

(
Mt+1,

ei,t+1

ei,t

)

︸ ︷︷ ︸
residual

. (3)

This (well known) identity can also be expressed using the risk-neutral expectation

E
∗

t , in terms of which the time t price of any payoff, Xt+1, received at time t+ 1 is

time t price of a claim to Xt+1 =
1

R$
f,t

E
∗

t Xt+1 = Et (Mt+1Xt+1) . (4)

The first equality is the defining property of the risk-neutral probability distribution.

The second equality (which can be thought of as a dictionary for translating between

risk-neutral and SDF notation) can be used to rewrite (3) as

E
∗

t

(
ei,t+1

ei,t

)
=
R$

f,t

Ri
f,t

. (5)

From an empirical point of view, the challenging aspect of the identity (3) is the

presence of the unobservable SDF Mt+1. If Mt+1 were constant conditional on time t

information then the covariance term would drop out and we would recover the UIP

prediction that Et ei,t+1/ei,t = R$
f,t/R

i
f,t, according to which high-interest-rate curren-

cies are expected to depreciate. Thus, if the UIP forecast is used to predict exchange

rate appreciation, the implicit assumption being made is that the covariance term can

indeed be neglected.

Unfortunately, as is well known, the UIP forecast performs poorly in practice: the

assumption that the covariance term is negligible in (3) (or, equivalently, that the risk-

neutral expectation in (5) is close to the corresponding real-world expectation) is not

valid. This is hardly surprising, given the existence of a vast literature in financial

economics that emphasizes the importance of risk premia, and hence shows that the

4Unlike most authors in this literature, we prefer to work with true returns, R̃t+1, rather than

with log returns, log R̃t+1, as the latter are only “an approximate measure of the rate of return to
speculation,” in the words of Hansen and Hodrick (1980).
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SDF Mt+1 is highly volatile (Hansen and Jagannathan, 1991). The risk adjustment

term in (3) therefore cannot be neglected: expected currency appreciation depends

not only on the interest rate differential, but also on the covariance between currency

movements and the SDF. Moreover, it is plausible that this covariance varies both over

time and across currencies. We therefore take a different approach that exploits the

following observation:

Result 1. Let Rt+1 be an arbitrary gross return. We have the identity

Et
ei,t+1

ei,t
=

R$
f,t

Ri
f,t︸︷︷︸

UIP forecast

+
1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)

︸ ︷︷ ︸
quanto-implied risk premium

− covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)

︸ ︷︷ ︸
residual

. (6)

The asterisk on the first covariance term in (6) indicates that it is computed using the

risk-neutral probability distribution.

Proof. Setting R̃t+1 = Ri
f,tei,t+1/ei,t in (1) and rearranging, we have

Et

(
Mt+1

ei,t+1

ei,t

)
=

1

Ri
f,t

. (7)

We can use (4) and (7) to expand the risk-neutral covariance term that appears in the

identity (6) and express it in terms of the SDF:

1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
(4)
= Et

(
Mt+1

ei,t+1

ei,t
Rt+1

)
−R$

f,t Et

(
Mt+1

ei,t+1

ei,t

)

(7)
= Et

(
Mt+1

ei,t+1

ei,t
Rt+1

)
−
R$

f,t

Ri
f,t

. (8)

Note also that

covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)
= Et

(
Mt+1Rt+1

ei,t+1

ei,t

)
− Et

(
ei,t+1

ei,t

)
. (9)

Subtracting (9) from (8) and rearranging, we have the result.

As (3) and (6) are identities, each must hold for all currencies i in any economy that

does not exhibit riskless arbitrage opportunities. Nor do they make any assumptions

about the exchange rate regime. If currency i is perfectly pegged then the covariance
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terms in (6) are zero, and we recover the familiar fact that countries with pegged cur-

rencies must either lose control of their monetary policy (that is, set Ri
f,t = R$

f,t) or

restrict capital flows to prevent arbitrageurs from trading on the interest rate differ-

ential. More generally, the covariance terms should be small if a currency has a low

probability of jumping off its peg.

The identity (6) generalizes (3), however, by allowing Rt+1 to be an arbitrary return.

To make the identity useful for empirical work, we want to choose a return Rt+1 with

two aims in mind. First, the residual term should be small. Second, the middle term

should be easy to compute.

These two goals are in tension. If we set Rt+1 = R$
f,t, for example, then (6) reduces

to (3), which achieves the second of the goals but not the first. Conversely, one might

imagine setting Rt+1 equal to the return on an elaborate portfolio exposed to multiple

risk factors and constructed in such a way as to minimise the volatility of Mt+1Rt+1:

this would achieve the first but not necessarily the second, as will become clear in the

next section.

To achieve both goals simultaneously, we want to pick a return that offsets a sub-

stantial fraction of the variation5 in Mt+1; but we must do so in such a way that the

risk-neutral covariance term can be measured empirically. For much of this paper, we

will take Rt+1 to be the return on the S&P 500 index. (We find similar—and internally

consistent—results if Rt+1 is set equal to the return on other stock indexes, such as

the Nikkei, Euro Stoxx 50, or SMI: see Sections 1.2 and 2.1.) It is highly plausible

that this return is negatively correlated with Mt+1, consistent with the first goal; in

fact we provide conditions below under which the residual is exactly zero. We will

now show that the second goal is also achieved with this choice of Rt+1 because we

can calculate the quanto-implied risk premium directly from asset prices without any

further assumptions—specifically, from quanto forward prices (hence the name).

1.1 Quantos

An investor who is bullish about the S&P 500 index might choose to go long a forward

contract at time t, for settlement at time t+1. If so, he commits to pay Ft at time t+1

5More precisely, all we need is to pick a return that offsets the component of the variation in Mt+1

that is correlated with currency movements. But as this component will in general vary according to
the currency in question, it is sensible simply to choose Rt+1 to offset variation in Mt+1 itself.
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in exchange for the level of the index, Pt+1. The dollar payoff on the investor’s long

forward contract is therefore Pt+1 − Ft at time t + 1. Market convention is to choose

Ft to make the market value of the contract equal to zero, so that no money needs to

change hands initially. This requirement implies that

Ft = E
∗

t Pt+1. (10)

A quanto forward contract is closely related. The key difference is that the quanto

forward commits the investor to payQi,t units of currency i at time t+1, in exchange for

Pt+1 units of currency i. (At each time t, there are N different quanto prices indexed

by i = 1, . . . , N , one for each of the N currencies in our data set. Other than in

Section 1.2, the underlying asset is always the S&P 500 index, whatever the currency.)

The payoff on a long position in a quanto forward contract is therefore Pt+1 − Qi,t

units of currency i at time t + 1; this is equivalent to a time t + 1 dollar payoff of

ei,t+1(Pt+1 − Qi,t). As with a conventional forward contract, the market convention is

to choose the quanto forward price, Qi,t, in such a way that the contract has zero value

at initiation. It must therefore satisfy

Qi,t =
E

∗

t ei,t+1Pt+1

E
∗

t ei,t+1

. (11)

(We converted to dollars because E
∗

t is the risk-neutral expectations operator that

prices dollar payoffs.) Combining equations (5) and (11), the quanto forward price can

be written

Qi,t =
Ri

f,t

R$
f,t

E
∗

t

ei,t+1Pt+1

ei,t
,

which implies, using (5) and (10), that the gap between the quanto and conventional

forward prices captures the conditional risk-neutral covariance between the exchange

rate and stock index,

Qi,t − Ft =
Ri

f,t

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Pt+1

)
. (12)

We will make the simplifying assumption that dividends earned on the index be-

tween time t and time t+1 are known at time t and paid at time t+1. It then follows
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from (12) that
Qi,t − Ft

Ri
f,tPt

=
1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
, (13)

so the quanto forward and conventional forward prices are equal if and only if currency i

is uncorrelated with the stock index under the risk-neutral measure. This allows us

to measure the risk-neutral covariance term that appears in (6) directly from the gap

between quanto and conventional index forward prices (which, as noted, we will refer

to as the quanto-implied risk premium).

We still have to deal with the final covariance term in the identity (6). The next

result exhibits a case in which this covariance term is exactly zero.

Result 2 (The log investor). If we take the perspective of an investor with log util-

ity whose wealth is fully invested in the stock index then Mt+1 = 1/Rt+1, so that

covt(Mt+1Rt+1, ei,t+1/ei,t) is identically zero. The expected appreciation of currency i

is then given by

Et
ei,t+1

ei,t
− 1 =

R$
f,t

Ri
f,t

− 1

︸ ︷︷ ︸
IRDi,t

+
Qi,t − Ft

Ri
f,tPt︸ ︷︷ ︸

QRPi,t

, (14)

and the expected excess return6 on currency i equals the quanto-implied risk premium:

Et
ei,t+1

ei,t
−
R$

f,t

Ri
f,t

=
Qi,t − Ft

Ri
f,tPt

.

Equation (14) splits expected currency appreciation into two terms. The first is the

UIP prediction which, as we have seen in equation (5), equals risk-neutral expected

currency appreciation. We will often refer to this term as the interest rate differential

(IRD); and as above we will generally convert to net rather than gross terms by sub-

tracting 1. (We choose to refer to a high-interest-rate currency as having a negative

interest rate differential because such a currency is forecast to depreciate by UIP.) The

second is a risk adjustment term: by taking the perspective of the log investor, we

have converted the general form of the residual that appears in (3) into a quantity that

can be directly observed using the gap between a quanto forward and a conventional

6Formally, ei,t+1/ei,t − R$
f,t/R

i
f,t is an excess return because it is a tradable payoff whose price is

zero, by (5).
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forward.7 Since it captures the risk premium perceived by the log investor, we refer to

this term as the quanto-implied risk premium (QRP). Lastly, we refer to the sum of

the two terms as expected currency appreciation (ECA = IRD +QRP).

Results 1 and 2 link expected currency returns to risk-neutral covariances, so deviate

from the standard CAPM intuition (that risk premia are related to true covariances)

in that they put more weight on comovement in bad states of the world. This dis-

tinction matters, given the observation of Lettau, Maggiori and Weber (2014) that the

carry trade is more correlated with the market when the market experiences negative

returns. Even more important, risk-neutral covariance is directly measurable, as we

have shown.8 In contrast, forward-looking true covariances are not directly observed so

must be proxied somehow, typically by historical realized covariance. In Section 2.3, we

show that risk-neutral covariance drives out historical realized covariance as a predictor

variable.

Lastly, we emphasize that while Result 2 represents a useful benchmark and is the

jumping-off point for our empirical work, in our analysis below we will also allow for

the presence of the final covariance term in the identity (6). Throughout the paper,

we do so in a simple way by reporting regression results with (and without) currency

fixed effects, to account for any currency-dependent but time-independent component

of the covariance term. In Section 2.5, we consider further proxies that depend both

on currency and time.

1.2 Alternative benchmarks

Our choice to think from the perspective of an investor who holds the US stock market

is a pragmatic one. From a purist point of view, it might seem more natural to adopt the

7More generally, we can allow for the case in which the log investor chooses a portfolio Rp,t+1 =
wRt+1 + (1− w)R$

f,t. (The case in the text corresponds to w = 1.) The identity (6) then reduces to

Et

ei,t+1

ei,t
=

R$
f,t

Ri
f,t

+
w

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
.

We thank Scott Robertson for pointing this out to us. See footnote 12 for more discussion.

8While it is well known from the work of Ross (1976) and Breeden and Litzenberger (1978) that
risk-neutral expectations of functions of a single asset price can typically be inferred from the price of
options on that asset, Martin (2018) shows that it is in general considerably harder to infer risk-neutral
expectations of functions of multiple asset prices. It is something of a coincidence that precisely the
assets whose prices reveal these risk-neutral covariances are traded.
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perspective of an investor whose wealth is invested in a globally diversified portfolio;9

unfortunately global-wealth quantos are not traded, whereas S&P 500 quantos are. Our

approach implicitly relies on an assumption that the US stock market is a tolerable

proxy for global wealth. We think this assumption makes sense; it is broadly consistent

with the ‘global financial cycle’ view of Miranda-Agrippino and Rey (2015).

Nonetheless, one might wonder whether the results are similar if one uses other

countries’ stock markets as proxies for global wealth.10 For, just as the forward price

of the US stock index quantoed into currency i reveals the expected appreciation of

currency i versus the dollar, as perceived by a log investor whose portfolio is fully

invested in the US stock market, so the forward price of the currency-i stock index

quantoed into dollars reveals the expected appreciation of the dollar versus currency i,

as perceived by a log investor whose portfolio is fully invested in the currency-i market.

Recall Result 2 for the expected appreciation of currency i versus the dollar,

Et
ei,t+1

ei,t
− 1 = IRDi,t +QRPi,t︸ ︷︷ ︸

ECAi,t

. (15)

(To reiterate, a positive value indicates that currency i is expected to strengthen against

the dollar.) The corresponding expression for the expected appreciation of the dollar

versus currency i, from the perspective of a log investor whose wealth is fully invested

in the currency-i stock market, is

E
i
t

1/ei,t+1

1/ei,t
− 1 = IRD1/i,t +QRP1/i,t︸ ︷︷ ︸

ECA1/i,t

, (16)

where we write IRD1/i,t = Ri
f,t/R

$
f,t − 1, and where QRP1/i,t is obtained from con-

ventional forwards and dollar -denominated quanto forwards on the currency-i stock

market. When the left-hand side of the above equation is positive, the dollar is ex-

pected to appreciate against currency i.

In Section 2.1 below, we show that the two perspectives captured by (15) and (16)

9This perspective is suggested by the analysis of Solnik (1974) and Adler and Dumas (1983), for
example.

10In practice, many investors do choose to hold home-biased portfolios (French and Poterba (1991),
Tesar and Werner (1995), and Warnock (2002); and see Lewis (1999) and Coeurdacier and Rey (2013)
for surveys).

13



are broadly consistent with one another (for those currencies for which we observe the

appropriate quanto forward prices). If, say, the forward price of the S&P 500 quantoed

into euros implies that the euro is expected to appreciate against the dollar by 2%

(using equation (15)), then the forward price of the Euro Stoxx 50 index quantoed into

dollars typically implies that the dollar is expected to depreciate against the euro by

about 2% (using equation (16)). To be more precise, we need to take into account

Siegel’s “paradox” (Siegel, 1972) that, by Jensen’s inequality,

Et
ei,t+1

ei,t
≥

(
Et

1/ei,t+1

1/ei,t

)
−1

. (17)

(The corresponding inequality with Et replaced by any other expectation operator also

holds.) If the US and currency-i investors have the same expectations about currency

appreciation then (15)–(17) imply that

log (1 + ECAi,t) ≥ − log
(
1 + ECA1/i,t

)
. (18)

In practice log(1 + ECA) ≈ ECA, so the above inequality is essentially equivalent to

ECAi,t ≥ −ECA1/i,t: thus (continuing the example) if the euro is expected to appreciate

by 2% against the dollar, then the dollar should be expected to depreciate against the

euro by at most 2%.

The difference between the two sides of (18) reflects a convexity correction whose

size is determined by the amount of conditional variation in ei,t+1:

log (1 + ECAi,t)−
(
− log

(
1 + ECA1/i,t

))
= logEt

ei,t+1

ei,t
− log

[(
Et

1/ei,t+1

1/ei,t

)
−1
]

= ct(1) + ct(−1)

= 2
∑

n even

κn,t
n!

,

where ct(·) and κn,t denote, respectively, the conditional cumulant-generating function

and the nth conditional cumulant of log exchange rate appreciation at time t. (For

more on cumulants, see Backus, Foresi and Telmer (2001) and Martin (2013a).) In

particular, κ2,t = σ2
t is the conditional variance and κ4,t/σ

4
t the excess kurtosis of

log ei,t+1.
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To get a sense of the size of the convexity correction, note that if the exchange rate

is lognormal then all higher cumulants are zero: κn,t = 0 for n > 2. Thus if exchange

rate volatility, σt, is on the order of 10%, the two perspectives should disagree by about

1% (so in the example above, expected euro appreciation of 2% would be consistent

with expected dollar depreciation of 1%). In Section 2.1, we show that the convexity

gap observed in our data is consistent with this calculation.

2 Empirics

We obtained forward prices and quanto forward prices on the S&P 500, together with

domestic and foreign interest rates, fromMarkit; the maturity in each case is 24 months.

The data is monthly and runs from December 2009 to October 2015 for the Australian

dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Danish krone (DKK), Euro

(EUR), British pound (GBP), Japanese yen (JPY), Korean won (KRW), Norwegian

krone (NOK), Polish zloty (PLN), and Swedish krona (SEK). As these quantos are

used to forecast exchange rates over a 24-month horizon, our forecasting sample runs

from December 2009 to October 2017. Markit reports consensus prices based on quotes

received from a wide range of financial intermediaries. These prices are used by major

OTC derivatives market makers as a means of independently verifying their book valu-

ations and to fulfil regulatory requirements; they do not necessarily reflect transaction

prices. Accounting for missing entries in our panel, we have 656 currency-month obser-

vations. (Where we do not observe a price, we treat the observation as missing. Larger

periods of consecutive missing observations occur only for DKK, KRW, and PLN and

are shown as gaps in Figure IA.6.)

Since the financial crisis of 2007-2009, a growing literature (including Du, Tepper

and Verdelhan (2016)) has discussed the failure of covered interest parity (CIP)—

the no-arbitrage relation between forward exchange rates, spot exchange rates and

interest rate differentials—and established that since the financial crisis, CIP frequently

does not hold if interest rates are obtained from money markets. For each maturity,

we observe currency-specific discount factors directly from our Markit data set. The

implied interest rates are consistent with the observed forward prices and the absence

of arbitrage. Our measure of the interest rate differentials therefore does not violate

the no-arbitrage condition we require for identity (6) to hold.
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The two building blocks of our empirical analysis are the currencies’ quanto-implied

risk premia (QRP, which measure the risk-neutral covariances between each currency

and the S&P 500 index, as shown in equation (13)), and their interest rate differentials

vis-à-vis the US dollar (IRD, which would equal expected exchange rate appreciation

if UIP held). Our measure of expected currency appreciation (the quanto forecast, or

ECA) is equal to the sum of IRD and QRP, as in equation (14).

Figure 1 plots each currency’s QRP over time; for clarity, the figure drops two

currencies for which we have highly incomplete time series (PLN and DKK). The QRP

is negative for JPY and positive for all other currencies (with the partial exception of

EUR, for which we observe a sign change in QRP near the end of our time period).

Figure IA.6 shows the evolution over time of ECA (solid) and of the UIP forecast

(dashed) for each of the currencies in our panel. The gap between the two lines for

a given currency is that currency’s QRP. Table 1 reports summary statistics of ECA.

The penultimate line of the table averages the summary statistics across currencies;

the last line reports summary statistics for the pooled data. Table 2 reports the same

statistics for IRD and QRP.

The volatility of QRP is similar to that of interest rate differentials, both currency-

by-currency and in the panel. There is considerably more variability in IRD and QRP

when we pool the data than there is in the time series of a typical currency: this reflects

substantial dispersion in IRD and QRP across currencies that is captured in the pooled

measure but not in the average time series.

Table 3 reports volatilities and correlations for the time series of individual curren-

cies’ ECA, IRD, and QRP. The table also shows three aggregated measures of volatil-

ities and correlations. The row labelled “Time series” reports time-series volatilities

and correlations for a typical currency, calculated by averaging time-series volatilities

and correlations across currencies. Conversely, the row labelled “Cross section” re-

ports cross-currency volatilities and correlations of time-averaged ECA, IRD, and QRP.

Lastly, the row labelled “Pooled” averages on both dimensions: it reports volatilities

and correlations for the pooled data.

All three variables (ECA, IRD, and QRP) are more volatile in the cross section

than in the time series. This is particularly true of interest rate differentials, which

exhibit far more dispersion across currencies than over time.

The correlation between IRD and QRP is negative when we pool our data (ρ =
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−0.696). Given the sign convention on IRD, this indicates that currencies with high in-

terest rates (relative to the dollar) tend to have high risk premia; thus the predictions

of the quanto theory are consistent with the carry trade literature and the findings

of Lustig, Roussanov and Verdelhan (2011). The average time-series (i.e., within-

currency) correlation between IRD and QRP is more modestly negative (ρ = −0.331):

a typical currency’s risk premium tends to be higher, or less negative, at times when

its interest rate is high relative to the dollar, but this tendency is fairly weak. The dis-

parity between these two facts is accounted for by the strongly negative cross-sectional

correlation between IRD and QRP (ρ = −0.798). If we interpret the data through the

lens of Result 2, these findings suggest that the returns to the carry trade are more the

result of persistent cross-sectional differences between currencies than of a time-series

relationship between interest rates and risk premia. This prediction is consistent with

the empirical results documented by Hassan and Mano (2016).

We see a corresponding pattern in the time-series, cross-sectional, and pooled cor-

relations of ECA and QRP. The time-series (within-currency) correlation of the two

is substantially positive (ρ = 0.393), while the cross-sectional correlation is negative

(ρ = −0.305). In the time series, therefore, a rise in a given currency’s QRP is asso-

ciated with a rise in its expected appreciation; whereas in the cross-section, currencies

with relatively high QRP on average have relatively low expected currency apprecia-

tion on average (reflecting relatively high interest rates on average). Putting the two

together, the pooled correlation is close to zero (ρ = −0.026). That is, Result 2 predicts

that there should be no clear relationship between currency risk premia and expected

currency appreciation; again, this is consistent with the findings of Hassan and Mano

(2016).

These properties are illustrated graphically in Figure 2. We plot confidence ellipses

centred on the means of QRP and IRD in panel (a), and of QRP and ECA in panel

(b), for each currency. The sizes of the ellipses reflect the volatilities of IRD and QRP

(or ECA): under joint normality, each ellipse would contain 50% of its currency’s ob-

servations in population. (Our interest is in the relative sizes of the ellipses: the choice

of 50% is arbitrary.) The orientation of each ellipse illustrates the within-currency

time series correlation, while the positions of the different ellipses reveal correlations

across currencies. The figures refine the discussion above. QRP and IRD are nega-

tively correlated within currency (with the exceptions of CAD, CHF, and KRW) and
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in the cross-section. QRP and ECA are positively correlated in the time series for

every currency, but exhibit negative correlation across currencies; overall, the pooled

correlation between the two is close to zero.

Our empirical analysis focuses on contracts with a maturity of 24 months because

these have the best data availability. But in one case—the S&P 500 index quantoed

into euros—we observe a range of maturities, so can explore the term structure of

QRP. Figure IA.7 plots the time series of annualized euro-dollar QRP for horizons

of 6, 12, 24, and 60 months. On average, the term structure of QRP is flat over the

sample period, but QRP is slightly more volatile at shorter horizons, so that the term

structure is downward-sloping when QRP spikes and upward-sloping when QRP is low.

2.1 A consistency check

Our data also includes quanto forward prices of certain other stock indexes, notably

the Nikkei, Euro Stoxx 50, and SMI. We can use this data to explore the predictions

of Section 1.2, which provides a consistency check on our empirical strategy.

Figure 3 implements (15) and (16) for the EUR-USD, JPY-USD, EUR-JPY, and

EUR-CHF currency pairs. In each of the top-left, bottom-left and bottom-right panels,

the solid line depicts the expected appreciation of the euro against the US dollar, yen,

and Swiss franc, respectively, while the dashed line shows the expected depreciation of

the three currencies against the euro (that is, we flip the sign on the “inverted” series

for readability). In the top-right panel, the solid and dashed lines show the expected

appreciation of the yen against the US dollar and expected depreciation of the US dollar

against the yen, respectively. In every case, the two measures are strongly correlated

over time and the solid line is above the dashed line, as they should be according to (18).

The gaps between the measures are therefore consistent with the Jensen’s inequality

correction one would expect to see if our currency forecasts measured expected currency

appreciation perfectly. Moreover, given that annual exchange rate volatilities are on the

order of 10%, the sizes of the gaps between the measures are quantitatively consistent

with the Jensen’s inequality correction derived at the end of Section 1.2.

The EUR-CHF pair in the bottom-right panel represents a particularly interesting

case study. The Swiss national bank instituted a floor on the EUR-CHF exchange

rate at CHF1.20/e in September 2011 and consequently also reduced the conditional

volatility of the exchange rate. Following this, the two lines converge and the gap stays
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very narrow at around 0.2% up until January 2015, when the sudden removal of the

floor prompted a spike in the volatility of the currency pair, visible in the figure as the

point at which the two lines diverge.

2.2 Return forecasting

We run two sets of panel regressions in which we attempt to forecast, respectively,

currency excess returns and currency appreciation. The literature on exchange rate

forecasting has found it substantially more difficult to forecast pure currency apprecia-

tion than currency excess returns, so the second set of regressions should be considered

more empirically challenging. In each case, we test the prediction of Result 2 via

pooled panel regressions. We also report the results of panel regressions with cur-

rency fixed effects; by doing so, we allow for the more general possibility that there

is a currency-dependent—but time-independent—component in the second covariance

term that appears in the identity (6).

To provide a sense of the data before turning to our regression results, Figures 4

and 5 represent our baseline univariate regressions graphically in the same manner as

in Figure 2. Figure 4 plots realized currency excess returns (RXR) against QRP and

against IRD.11 Excess returns are strongly positively correlated with QRP both within

currency and in the cross-section, suggesting strong predictability with a positive sign.

The correlation of RXR with IRD is negative in the cross-section but close to zero, on

average, within currency.

Figure 5 shows the corresponding results for realized currency appreciation (RCA).

Panel (a) suggests that the within-currency correlation with the quanto predictor ECA

is predominantly positive (with the exceptions of AUD and CHF), as is the cross-

sectional correlation. In contrast, panel (b) suggests that the correlation between

realized currency appreciation and interest rate differentials is close to zero both within

and across currencies, consistent with the view that interest rate differentials do not

help to forecast currency appreciation.

We first run a horse race between the quanto-implied risk premium and interest

11As noted in Section 1, we work with true returns as opposed to log returns. Engel (2016) points
out that it may not be appropriate to view log returns as approximating true returns, since the gap
between the two is a similar order of magnitude as the risk premium itself.
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rate differential as predictors of currency excess returns:

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α + βQRPi,t + γ IRDi,t + εi,t+1. (19)

Here (and from now on) the length of the period from t to t+1 over which we measure

our return realizations is 24 months, corresponding to the forecasting horizon dictated

by the maturity of the quanto contracts we observe in our data.

We also run two univariate regressions. The first of these,

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α + βQRPi,t + εi,t+1, (20)

is suggested by Result 2. The second uses interest rate differentials to forecast currency

excess returns, as a benchmark:

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α + γ IRDi,t + εi,t+1. (21)

We also run all three regressions with currency fixed effects αi in place of the shared

intercept α.

Table 4 reports the results. We report coefficient estimates and R2 for each regres-

sion, with and without currency fixed effects; standard errors are shown in parentheses.

These standard errors are computed via a nonparametric bootstrap to account for het-

eroskedasticity, cross-sectional and serial correlation in our data. (The serial correlation

arises due to overlapping observations: we make forecasts of 24-month excess returns at

monthly intervals.) For comparison, these nonparametric standard errors exceed those

obtained from a parametric residual bootstrap by up to a factor of 2, and Hansen–

Hodrick standard errors by a factor of around 1.3. We provide a detailed description of

our bootstrap procedure and address potential small-sample concerns in Section 2.6.

The estimated coefficient on the quanto-implied risk premium is positive and eco-

nomically large in every specification in which it occurs. Moreover, the R2 values are

substantially higher in the two regressions (19) and (20) that feature the quanto-implied

risk premium than in the regression (21) in which it does not occur. The estimate for β

in our headline regression (20) is 2.604 (standard error 1.127) in the pooled regression

and 4.995 (standard error 1.565) in the regression with fixed effects. The fact that these
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estimates are above 1 raises the possibility that beyond its direct importance in (6),

the quanto-implied risk premium may also proxy for the second covariance term.12 We

explore this issue in Section 2.5. Another noteworthy qualitative feature of our results

is the consistently negative intercept, which reflects an unexpectedly strong dollar over

our sample period; we discuss the statistical interpretation of this fact in Section 2.6.

Following Fama (1984), we can also test how the theory fares at predicting currency

appreciation (ei,t+1/ei,t − 1). To do so, we run the regression

ei,t+1

ei,t
− 1 = α + βQRPi,t + γ IRDi,t + εi,t+1. (22)

We do so not because we are interested in the coefficient estimates, which are mechan-

ically related to those of regression (19), but because we are interested in the R2.

To explore the relative importance of the quanto-implied risk premium and interest

rate differentials for forecasting currency appreciation, we run univariate regressions of

currency appreciation onto the quanto-implied risk premium,

ei,t+1

ei,t
− 1 = α + βQRPi,t + εi,t+1, (23)

and onto interest rate differentials,

ei,t+1

ei,t
− 1 = α + γ IRDi,t + εi,t+1. (24)

As previously, we also run the three regressions (22)–(24) with fixed effects.

The regression results are shown in Table 5, which is structured similarly to Table 4.

There is little evidence that the interest rate differential helps to forecast currency

appreciation on its own; this is consistent with the previous set of results and with the

large literature that documents the failure of UIP. In the pooled panel, the estimated

γ in regression (24) is close to 0, and the R2 is essentially zero. With fixed effects, the

estimate of γ is marginally negative, providing weak evidence that currencies tend to

12Another possibility is that it is more reasonable to think of a log investor as wishing to hold a
levered position in the market (so w > 1 in the notation of footnote 7). If so, we should find a coefficient
on QRP that is larger than one. We are cautious about suggesting this as an explanation, however,
because a log investor would never risk bankruptcy. To match the point estimate for specification
(20), we would need w = 2.604 or w = 4.995 (respectively without and with fixed effects). In the
latter case, the investor would go bankrupt if the market dropped by 20% over the two year horizon.
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appreciate against the dollar when their interest rate relative to the dollar is higher

than its time-series mean.

More strikingly, the quanto-implied risk premium makes a very large difference in

terms of R2, which increases by two orders of magnitude when moving from specifica-

tion (24) to (22) in both the pooled regressions (0.16% to 16.01%) and the fixed-effects

regressions (0.20% to 20.56%). It is also interesting that when QRP is included in the

regressions (with or without fixed effects) the coefficient estimate on IRD, γ, increases

toward the value of 1 predicted by Result 2.

For completeness, Table IA.5 reports the results of running regressions (20), (21),

(22), and (24) separately for each currency at the 24-month horizon, and at 6- and

12-month horizons for the euro. Consistent with the previous literature (for example

Fama (1984) and Hassan and Mano (2016)), the coefficient estimates are extremely

noisy. A further appealing feature of Result 2 is that it provides a justification for

constraining all the coefficient on the quanto-implied risk premium to be equal across

currencies, as we have done above.

2.3 Risk-neutral covariance vs. true covariance

We have emphasized the importance of risk-neutral covariances of currencies with stock

returns, as captured by quanto-implied risk premia, and below we will show that risk-

neutral covariance performs well empirically. But it is natural to wonder whether this

empirical success merely reflects the fact that currency returns line up with true co-

variances, as studied by Lustig and Verdelhan (2007), Campbell, Medeiros and Viceira

(2010), Burnside (2011) and Cenedese et al. (2016), among others. More formally, from

the perspective of the log investor we can conclude, from (3), that

Et
ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= R$
f,t covt

(
ei,t+1

ei,t
,−

1

Rt+1

)
. (25)

Note that it is the true, not the risk-neutral, covariance that appears in this equation.

The fundamental challenge for a test of this prediction is that forward-looking true

covariance is not directly observed. This is the major advantage of our approach: risk-

neutral covariance is directly observed via the quanto-implied risk premium. That

said, we attempt to test (25) by using lagged realized covariance, RPCL, as a proxy

for true forward-looking covariance.
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The results are shown in Table 6 of the Appendix. RPCL is positively related

to subsequently realized currency excess returns, as suggested by (25), but it is not

statistically significant in our sample, and is driven out as a predictor by risk-neutral

covariance (QRP), consistent with Result 2.

In principle, this might simply indicate that lagged realized covariance is an im-

perfect proxy for true forward-looking covariance: perhaps the success of QRP simply

reflects its superiority as a forecaster of realized covariance? Table 6 shows that risk-

neutral covariance is, individually, a statistically significant forecaster of future realized

covariance. But it is driven out when lagged realized covariance and the interest-rate

differential are included in the multivariate regression (31). Moreover, the optimal

covariance forecast generated by this multivariate regression is driven out by QRP in

the excess-return-forecasting regression (32).

The relationship between risk-neutral covariance and true covariance is interesting

in its own right. Figure 6 illustrates the empirical relationship between the covariance

forecast obtained from regression (31) (our proxy for forward-looking true covariance)

and forward-looking risk-neutral covariance (obtained from quanto contracts). The two

are positively correlated in the cross-section and in the time-series, but risk-neutral co-

variance is generally larger (smaller) than future realized covariance for currencies with

positive (negative) risk-neutral covariances. This is consistent with the observation of

Lettau, Maggiori and Weber (2014) that carry trade returns are more correlated with

the market at times of negative market returns. As we will now see, it is problematic

for lognormal models.

2.4 Lognormal models

Lognormal models impose a tight connection between the covariance risk premium and

the market and currency risk premium. Define the equity premium ERPt = logEt
Rt+1

R$
f,t

and currency risk premium CRPi,t = logEt
R̃i,t+1

R$
f,t

where R̃i,t+1 = Ri
f,tei,t+1/ei,t is the

return on the currency trade defined earlier.

Result 3 (The covariance risk premium in lognormal models). Suppose that the market

return, exchange rate, and SDF are conditionally jointly lognormal. Then we have

log
covt(Rt+1, ei,t+1/ei,t)

cov∗t (Rt+1, ei,t+1/ei,t)
= ERPt +CRPi,t (26)
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or equivalently

covt(rt+1,∆ei,t+1) = cov∗t (rt+1,∆ei,t+1), (27)

where rt+1 = logRt+1 and ∆ei,t+1 = log(ei,t+1/ei,t).

Proof. See Appendix B.

Empirically, it is plausible that the right-hand side of (26) is positive for most

currencies (the yen being a possible exception). But we find that the left-hand side is

typically negative in our data. No lognormal model can match these patterns.

It is nonetheless an interesting exercise to see how the quanto risk premium (and the

residual covariance term, which would be zero from the perspective of the log investor)

behaves inside an equilibrium model. As QRP has a simple characterization in terms of

risk-neutral covariance, this is an easy exercise to carry out in any equilibrium model;

we suggest that it makes an interesting diagnostic for future generations of international

finance models. In that spirit, we have calculated the currency risk premium, QRP,

IRD and the residual covariance term within the model of Colacito and Croce (2011).

The results are shown in Internet Appendix IA.B. We deviate from the symmetric

baseline calibration of Colacito and Croce in order to generate a non-trivial currency

risk premium. The comparative statics of their long-run risk model are such that

our calibrations which yield a positive asymmetric currency risk premium generate

positive risk-neutral covariance (QRP) and a positive residual. In this model, the

residual covariance term therefore adds to the prediction of the quanto forecast, as

opposed to offsetting it. This positive relationship between risk-neutral covariance and

the residual is consistent with our finding that the slope coefficients on QRP in the

predictive regressions in Section 2.2 are generally larger than 1.

2.5 Beyond the log investor

The identity (6) expresses expected currency appreciation as the sum of IRD, QRP, and

a covariance term, − covt(Mt+1Rt+1, ei,t+1/ei,t). Thus far, we have either assumed that

this term is constant across currencies and over time (so is captured by the constant

in our pooled regressions) or that it has a currency-dependent but time-independent

component (so is captured by fixed effects).

To get a sense of what these assumptions may leave out, we conduct a principal

components analysis on unexpected currency excess returns: that is, on the difference
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between realized currency excess returns and the corresponding ex ante expected re-

turns. We calculate these unexpected excess returns in two ways. Regression residuals

are defined as the estimated residuals εi,t+1 in the specification of regression (20) that

includes currency fixed effects. Theory residuals are defined similarly, except that we

impose α = 0, β = 1 in (20).

These residuals reflect both the ex ante residual from the identity (6) and the

ex post realizations of unexpected currency returns. The identity implies that the

predictable component of the realized residuals—if there is one—reveals the covariance

term, − covt(Mt+1Rt+1, ei,t+1/ei,t).

We decompose the theory and regression residuals into their respective principal

components (dropping DKK, KRW, and PLN from the panel to minimize the impact

of missing observations). Table IA.2 shows the principal component loadings. The first

principal component, which explains just under two thirds of the variation in residuals,

can be interpreted as a level, or ‘dollar,’ factor since it loads positively on all currencies

(with the exception of GBP, in the case of the regression residuals).

Motivated by this fact, we now include an additional predictor variable, IRDt,

which is calculated as the cross-sectional average of the interest rate differentials in

our balanced panel of eight currencies (i.e., excluding DKK, KRW, and PLN); Lustig,

Roussanov and Verdelhan (2014) interpret this average interest rate differential (which

they refer to as the ‘average forward discount’) as a dollar factor and show that it

helps to forecast currency returns. We also include the logarithm of the real exchange

rate, which Dahlquist and Penasse (2017) have shown to be a successful forecaster of

currency returns.

Table 7 reports the results of regressions of currency excess returns onto currency

fixed effects and subsets of four forecasting variables: the quanto-implied risk premium

(QRP), the interest rate differential (IRD), the real exchange rate (RER), and the

average interest rate differential (IRD). The table reports the univariate, bivariate,

3-variate, and 4-variate specifications with the highest R2. (Table IA.3 reports the R2

for all 24 − 1 = 15 subsets of the four explanatory variables, though not—for lack of

space—the estimated coefficients.) The quanto-implied risk premium features in all

R2-maximizing regressions. The estimates of β are larger than 1 in every specification,

suggesting that, over and above its relevance as a direct measure of risk-neutral covari-

ance, the quanto-implied risk premium helps to capture the physical covariance term
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in (6). As we increase from one to two to three explanatory variables, R2 increases

from 22.03% (using QRP alone) to 35.40% (adding the real exchange rate) to 43.56%

(adding the dollar factor IRD). The interest rate differential itself, IRD, contributes

almost no further explanatory power when it is then added as a fourth variable.

As the real exchange rate performs well, we report further results relating to it in

Table IA.4 of the Internet Appendix.

2.6 Joint hypothesis tests and finite-sample issues

We now consider the joint hypothesis tests that are suggested by Result 2. In our three

main specifications (19), (20), and (22), equation (14) predicts an intercept α = 0, and

a slope coefficient on QRP β = 1. For the excess return forecast in regression (19), it

predicts that the interest rate differential should have no predictive power, i.e. γ = 0;

whereas it predicts that γ = 1 in the currency-appreciation regression (22).

Here, as elsewhere, we use a nonparametric bootstrap procedure to compute the co-

variance matrix of coefficient estimates. A detailed exposition of the bootstrap method-

ology is provided in Politis and White (2004) and Patton, Politis and White (2009). In

the bootstrap procedure, we resample the data by drawing with replacement blocks of

24 time-series observations from the panel while ensuring that this time-series resam-

pling is synchronized in the cross-section. The length of the time-series blocks is chosen

to equal the forecasting horizon of 24 months. The resulting panel is then resampled

with replacement in the cross-sectional dimension by drawing blocks of uniformly dis-

tributed width (between 2 and 11, the latter being the width of the full cross-section).

Since currencies which are adjacent in the panel are more likely to be included to-

gether in any given one of these cross-sectional blocks, we permute the cross-section of

our panel randomly before each resampling. We then compute the point estimates of

the coefficients from the two-dimensionally resampled panel and repeat this procedure

100,000 times. The standard errors are then computed as the standard deviations of

the respective coefficients across the 100,000 bootstrap repetitions.

Table 8 reports p-values for tests of various hypotheses about our baseline re-

gressions. In addition to conventional p-values calculated using the asymptotic (chi-

squared) distribution of the Wald test statistic, the table also reports more conser-

vative small-sample p-values obtained from a bootstrapped test statistic distribution.

We compute these small-sample p-values by constructing a small-sample distribution
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of the Wald test-statistic for each regression: We simulate 5,000 sets of monthly data

for the LHS variable under the null hypothesis of no predictability, such that the simu-

lated data matches the monthly autocorrelation and covariance matrix of the realized,

observed LHS data. We then aggregate the simulated monthly data into 24-month

horizon data, like the LHS data used in our regressions (e.g. excess returns over 24

months). As we aim to measure the small-sample performance of our bootstrap rou-

tine, the simulated data sets each have the same number of data points as the observed

LHS data. For each specification, we then regress the 5,000 simulated LHS data on

the respective observed RHS variable(s). Where we run the regression with currency

fixed effects, we use the demeaned RHS variable(s). We obtain the point estimates

of the coefficients and their covariance matrix from the bootstrap routine outlined

above and use the test statistics from these 5,000 regressions to construct the empiri-

cal small-sample distribution of the respective Wald statistic under the respective null

hypothesis. This procedure also accounts for the potential small-sample Stambaugh

bias in the p-values.

Figure IA.8 illustrates by plotting the histograms of the bootstrapped distribution

of test statistics for various hypotheses on regression (22). Panels a and b show the

finite-sample bootstrapped distributions of the test statistic for the hypothesis that

Result 2 holds, respectively in the pooled and fixed-effects regressions. The value of

the test statistic in the data is indicated with an asterisk in each panel. The finite-

sample and asymptotic (shown with a solid line) distributions are strikingly different:

the asymptotic distribution suggests that we can reject the hypothesis that Result 2

holds, but this conclusion is overturned by the finite-sample distribution. (In the pooled

case, the discrepancy is largely due to the intercept, as becomes clear on comparing

the asymptotic p-values for tests of hypotheses H1
0 and H2

0 in Table 8: the asymptotic

distribution penalizes the fact that the US dollar was strong over our sample period,

whereas the finite-sample distribution does not.)

In contrast, the asymptotic and finite-sample distributions tell more or less the

same story in panels c and d, which show the corresponding results for tests (without

and with fixed effects) of the hypothesis H3
0 that β = 0, i.e. that QRP is not use-

ful in forecasting currency appreciation. While the small-sample distributions of the

test statistics exhibit fatter tails than the asymptotic χ2 distribution, the discrepancy

between the two is small by comparison with panels a and b, and even using the finite-
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sample distribution we can reject the hypothesis with some confidence (with p-values

of 0.082 and 0.051 in the pooled and fixed-effects cases, respectively).

We reach similar conclusions for regressions (19) and (20): we do not reject the

predictions of Result 2 in the joint Wald tests for any of the three baseline regressions

using the small-sample distribution of the test statistic; and QRP remains individually

significant as a predictor at the 10% level in all three specifications, with and without

currency fixed effects, even if we take the most conservative approach to computing

p-values that relies on the empirical small-sample test statistic distribution.

3 Out-of-sample prediction

We now test the quanto theory out of sample. Since the dollar strengthened strongly

over the relatively short time period spanned by our data (as reflected in the negative

intercept in our pooled panel regression (22)), we focus on forecasting differential cur-

rency appreciation: that is, we seek to predict, for example, the relative performance

of dollar-yen versus dollar-euro.

In the previous section, we estimated the loadings on the quanto-implied risk pre-

mium, QRP, and interest rate differential, IRD, via panel regressions. These deliver the

best in-sample coefficient estimates in a least-squares sense. But for an out-of-sample

test we must pick the loadings a priori. Here we can exploit the distinctive feature of

Result 2 that it makes specific quantitative predictions for the loadings: each should

equal 1, as in the formula (14). We therefore compute out-of-sample forecasts by fixing

the coefficients that appear in (22) at their theoretical values: α = 0, β = 1, γ = 1.

We compare these predictions to those of three competitor models: UIP (which

predicts that currency appreciation should offset the interest rate differential, on aver-

age), a random walk without drift (which makes the constant forecast of zero currency

appreciation, and which is described in the survey of Rossi (2013) as “the toughest

benchmark to beat”), and relative purchasing power parity (which predicts that cur-

rency appreciation should offset the inflation differential, on average). These models are

natural competitors because, like our approach, they make a priori predictions without

requiring estimation of parameters, and so avoid in-sample/out-of-sample issues.

To compare the forecast accuracy of the model to those of the benchmarks, we
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define a dollar-neutral R2-measure similar to that of Goyal and Welch (2008):

R2
OS = 1−

∑
i

∑
j

∑
t(ε

Q
i,t+1 − εQj,t+1)

2

∑
i

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)

2
,

where εQi,t+1 and εBi,t+1 denote forecast errors (for currency i against the dollar) of the

quanto theory and the benchmark, respectively, so our measure compares the accuracy

of differential forecasts of currencies i and j against the dollar. We hope to find that

the quanto theory has lower mean squared error than each of the competitor models,

that is, we hope to find positive R2
OS versus each of the benchmarks.

The results of this exercise are reported in Table 9. The quanto theory outperforms

each of the three competitors: when the competitor model is UIP, we find that R2
OS =

10.91%; and when it is relative PPP, we find R2
OS = 26.05%. In our sample, the

toughest benchmark is the random walk forecast, consistent with the findings of Rossi

(2013). Nonetheless, the quanto theory easily outperforms it, with R2
OS = 9.57%.

To get a sense for whether our positive results are driven by a small subset of the

currencies, Table 9 also reports the results of splitting the R2 measure currency-by-

currency: for each currency i, we define

R2
OS,i = 1−

∑
j

∑
t(ε

Q
i,t+1 − εQj,t+1)

2

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)

2
.

This quantity is positive for all i and all competitor benchmarks B, indicating that

the quanto theory outperforms all three benchmarks for all 11 currencies. We run

Diebold–Mariano tests (Diebold and Mariano, 1995) of the null hypothesis that the

quanto theory and competitor models perform equally well for all currencies, using a

small-sample adjustment proposed by Harvey, Leybourne and Newbold (1997), and

find that the outperformance is strongly significant.

Jordà and Taylor (2012) have argued that assessments of forecast performance based

solely on mean squared errors may not fully reflect the economic benefits of a forecasting

model. In Appendix IA.A, we use the approach they suggest, which essentially asks

whether a predictor variable is more or less successful at predicting whether a currency

will appreciate or depreciate than competitor predictors. (This is an oversimplification;

full details are in Appendix IA.A.) Our approach also outperforms on their metric, both

in forecasting currency excess returns and in forecasting currency appreciation.
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4 Conclusion

UIP forecasts that high interest rate currencies should depreciate on average: it re-

flects the expected currency appreciation that a genuinely risk-neutral investor would

perceive in equilibrium. Unsurprisingly—given that the financial economics literature

has repeatedly documented the importance of risk premia—the UIP forecast performs

extremely poorly in practice.

We have proposed an alternative forecast, the quanto-implied risk premium, that

can be interpreted as the expected excess return on a currency perceived by an investor

with log utility whose wealth is fully invested in the stock market. Like the UIP forecast,

the quanto forecast has no free parameters and can be computed directly from asset

prices. Unlike the UIP forecast, the quanto forecast performs well empirically both in

and out of sample. Its main deficiency is its failure to predict the strength of the dollar

itself on average against other currencies over our sample period: time will tell if this

is a small-sample issue or something more fundamental.

We find that currencies tend to have high quanto-implied risk premia if they have

high interest rates on average, relative to other currencies (a cross-sectional statement),

or if they currently have unusually high interest rates (a time-series statement); and

that there is more cross-sectional than time-series variation in quanto-implied risk

premia. These facts explain both the existence of the carry trade and the empirical

importance of persistent cross-currency asymmetries, as documented by Hassan and

Mano (2016).

The interpretation of the quanto-implied risk premium as revealing the log investor’s

expectation of currency excess returns is a special case of the identity (6), which de-

composes expected currency appreciation into the interest rate differential (the UIP

term), risk-neutral covariance (the quanto-implied risk premium), and a real-world co-

variance term that, we argue, is likely to be small—and in particular, smaller than the

corresponding covariance term in the well-known identity (3). In the log investor case,

this real-world covariance term is exactly zero, a fact we use to provide intuition and

to motivate our out-of-sample analysis. But we also allow for deviations from the log

investor benchmark—that is, for a nontrivial real-world covariance term—by running

regressions including currency fixed effects, realized covariance, interest rate differen-

tials, the average forward discount of Lustig, Roussanov and Verdelhan (2014), and

the real exchange rate, as in Dahlquist and Penasse (2017), in addition to the quanto-
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implied risk premium itself. The quanto-implied risk premium is the best performing

univariate predictor, and features in every R2-maximizing multivariate specification.

Although we have argued that quanto-implied risk premia should (in theory) and

do (in practice) predict currency excess returns, we have said nothing about why a

particular currency should have a high or low quanto-implied risk premium at a given

time. Analogously, the CAPM predicts that assets’ betas should forecast their returns

but has nothing to say about why a given asset has a high or low beta. Connecting

quanto-implied risk premia to macroeconomic fundamentals is an interesting topic for

future research.
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A Tables and Figures

Figure 1: The time series of QRP. The figure drops two currencies (PLN and DKK) for which we
have highly incomplete time series.
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Table 1: Summary statistics of ECA

This table reports annualized summary statistics (in %) of quanto-based expected currency
appreciation (ECA).

Mean Std Dev. Skew Kurtosis Min Max Autocorr.

Expected currency appreciation, ECA

AUD −1.231 0.723 −0.114 −0.577 −2.550 0.450 0.864

CAD 0.327 0.526 0.909 0.494 −0.526 1.835 0.845

CHF 1.064 0.472 1.147 0.210 0.422 2.176 0.934

DKK 0.331 0.487 −0.097 −0.606 −0.587 1.172 0.762

EUR 0.587 0.398 −0.725 0.799 −0.493 1.300 0.877

GBP 0.326 0.350 −0.103 −0.517 −0.444 1.077 0.894

JPY −0.337 0.412 0.484 −0.989 −0.978 0.555 0.953

KRW 0.706 0.724 1.455 2.922 −0.182 3.387 0.770

NOK −0.398 0.622 0.624 0.040 −1.474 0.991 0.877

PLN −1.340 0.892 0.759 −0.479 −2.554 0.436 0.881

SEK 0.574 0.656 −0.143 −0.340 −0.907 1.885 0.885

Average 0.056 0.569 0.382 0.087 −0.934 1.388 0.867

Pooled 0.056 0.908 −0.500 0.630 −2.554 3.387
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Table 2: Summary statistics of IRD and QRP

This table reports annualized summary statistics (in %) of UIP forecasts (IRD, top panel),
and quanto-implied risk premia (QRP, bottom).

Mean Std Dev. Skew Kurtosis Min Max Autocorr.

Interest rate differential, IRD

AUD −2.815 1.007 −0.104 −1.081 −4.533 −1.168 0.979

CAD −0.712 0.353 1.121 0.204 −1.133 0.195 0.890

CHF 0.560 0.441 1.501 1.137 0.013 1.690 0.953

DKK −0.821 0.470 0.298 −0.794 −1.596 0.005 0.915

EUR −0.056 0.622 −0.282 −0.509 −1.377 0.983 0.977

GBP −0.352 0.223 −0.098 −0.745 −0.865 0.082 0.925

JPY 0.410 0.206 0.476 −1.229 0.133 0.809 0.909

KRW −0.973 0.443 0.587 −1.017 −1.614 −0.116 0.877

NOK −1.596 0.690 0.587 −0.286 −2.798 −0.107 0.955

PLN −3.422 1.030 2.010 2.733 −4.215 −0.806 0.967

SEK −0.715 0.905 0.430 −0.421 −2.354 1.105 0.981

Average −0.954 0.581 0.593 −0.183 −1.849 0.243 0.939

Pooled −0.954 1.265 −0.952 0.657 −4.533 1.690

Quanto-implied risk premium, QRP

AUD 1.584 0.692 0.546 −0.454 0.666 3.306 0.941

CAD 1.039 0.441 0.509 −0.572 0.309 2.090 0.926

CHF 0.504 0.171 0.663 1.405 0.131 1.023 0.900

DKK 1.153 0.275 0.400 0.336 0.643 1.768 0.788

EUR 0.643 0.556 −0.104 −1.274 −0.315 1.708 0.978

GBP 0.678 0.389 0.270 −1.318 0.207 1.472 0.959

JPY −0.746 0.295 −0.033 −1.287 −1.287 −0.255 0.945

KRW 1.679 0.589 1.605 2.582 0.944 3.752 0.859

NOK 1.198 0.359 0.876 0.462 0.665 2.194 0.890

PLN 2.083 0.650 0.814 0.026 1.194 3.509 0.868

SEK 1.289 0.616 0.801 0.620 0.371 3.004 0.938

Average 1.009 0.457 0.577 0.048 0.321 2.143 0.908

Pooled 1.009 0.857 −0.107 0.658 −1.287 3.752
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Table 3: Volatilities and correlations of ECA, IRD, and QRP

This Table presents the standard deviations (in %) of, and correlations between, the interest rate dif-
ferential (IRD), the quanto-implied risk premium (QRP), and expected currency appreciation (ECA),
calculated from (14) for each currency i:

IRDi,t =
R$

f,t

Ri
f,t

− 1

QRPi,t =
Qi,t − Ft

Ri
f,tPt

ECAi,t = QRPi,t + IRDi,t.

The row labelled “Time series” reports means of the currencies’ time-series standard deviations and
correlations. The row labelled “Cross section” reports cross-sectional standard deviations and correlations
of time-averaged ECA, IRD, and QRP. The row labelled “Pooled” reports standard deviations and
correlations of the pooled data. All quantities are expressed in annualized terms.

σ(ECA) σ(IRD) σ(QRP ) ρ(ECA, IRD) ρ(ECA,QRP ) ρ(IRD,QRP )

AUD 0.723 1.007 0.692 0.727 −0.013 −0.696

CAD 0.526 0.353 0.441 0.558 0.748 −0.134

CHF 0.472 0.441 0.171 0.932 0.355 −0.007

DKK 0.487 0.470 0.275 0.835 0.342 −0.231

EUR 0.398 0.622 0.556 0.476 0.183 −0.777

GBP 0.350 0.223 0.389 0.137 0.822 −0.451

JPY 0.412 0.206 0.295 0.738 0.882 0.333

KRW 0.724 0.443 0.589 0.582 0.792 −0.036

NOK 0.622 0.690 0.359 0.855 0.090 −0.439

PLN 0.892 1.030 0.650 0.780 0.135 −0.514

SEK 0.656 0.905 0.616 0.733 −0.013 −0.690

Time-series 0.569 0.581 0.457 0.669 0.393 −0.331

Cross-section 0.786 1.242 0.751 0.817 −0.305 −0.798

Pooled 0.908 1.265 0.857 0.736 −0.026 −0.696
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(b) The relationship between QRP and ECA

Figure 2: For each currency, the figures plot mean QRP and IRD (or ECA) surrounded
by a confidence ellipse whose orientation reflects the time-series correlation between
QRP and IRD (or ECA), and whose size reflects their volatilities. The location and
orientation of the ellipses in panel (a) indicate that high interest rates are associated
with high quanto-implied risk premia in the cross section and in the time series.
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Figure 3: Expected currency appreciation over a 24-month horizon (annualized), as measured by
ECA from equation (14), for the EUR-USD, JPY-USD, EUR-JPY, and EUR-CHF currency pairs.
Each panel plots ECA for the respective currency pair from the two national perspectives, using
quanto contracts on the respective domestic index denominated in the respective foreign currency.
The solid blue line plots ECA as perceived by a log investor fully invested in the S&P (top two
panels), Nikkei (bottom left panel), and SMI (bottom right panel), respectively. The dashed red
line plots the negative of ECA for the same currency pair (inverting the exchange rate) from the
perspective of a log investor fully invested in the respective foreign equity index.
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(b) Realized currency excess return against IRD

Figure 4: Realized and expected currency excess return according to (a) the quanto theory and
(b) UIP. The centre of each confidence ellipse represents a currency’s mean expected and realized
currency excess return. In population, each ellipse would contain 20% of its currency’s data points
under normality. The orientation of each ellipse reflects the time-series correlation between realized
and forecast appreciation for the given currency, while the ellipse’s size reflects their volatilities.
Panel (a) shows a dotted 45◦ line for comparison.
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(a) Realized currency appreciation against ECA, computed from (14)

AUDAUD CADCAD

CHFCHF

EUREUR

GBPGBP

JPYJPY
NOKNOK

SEKSEK

DKKDKK
KRWKRW

PLNPLN

-4 -3 -2 -1 1
IRD

-10

-5

5

RCA

(b) Realized currency appreciation against IRD

Figure 5: Realized and expected currency appreciation according to (a) the quanto theory and
(b) UIP. The centre of each confidence ellipse represents a currency’s mean expected and realized
currency appreciation. In population, each ellipse would contain 20% of its currency’s data points
under normality. The orientation of each ellipse reflects the time-series correlation between realized
and forecast appreciation for the given currency, while the ellipse’s size reflects their volatilities.
Panel (a) shows a dotted 45◦ line for comparison.
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Table 4: Currency excess return forecasting regressions

This Table presents results from three currency excess return forecasting regressions:

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ βQRPi,t + γ IRDi,t + εi,t+1 (19)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ βQRPi,t + εi,t+1 (20)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ γ IRDi,t + εi,t+1 (21)

Return realizations correspond to the forecasting horizon of 24 months. The two panels report coefficient estimates
for each pooled and fixed effects regression, respectively, with standard errors (computed using a nonparametric
block bootstrap) in parentheses, as well as R2 (in %).

Panel A: Pooled panel regressions

Regression (19) (20) (21)

α (p.a.) −0.048 −0.047 −0.030

(0.020) (0.019) (0.014)

β 3.394 2.604

(1.734) (1.127)

γ 0.769 −0.832

(1.040) (0.651)

R2 19.13 17.43 3.88

Panel B: Panel regressions with currency fixed effects

β 5.456 4.995

(2.046) (1.565)

γ 0.717 −1.363

(1.411) (1.001)

R2 22.60 22.03 2.77
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Table 5: Currency forecasting regressions

This Table presents results from three currency forecasting regressions:

ei,t+1

ei,t
− 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1 (22)

ei,t+1

ei,t
− 1 = α+ βQRPi,t + εi,t+1 (23)

ei,t+1

ei,t
− 1 = α+ γ IRDi,t + εi,t+1 (24)

Return realizations correspond to the forecasting horizon of 24 months. The two panels report coefficient estimates
for each pooled and fixed effects regression, respectively, with standard errors (computed using a nonparametric
block bootstrap) in parentheses, as well as R2 (in %).

Panel A: Pooled panel regressions

Regression (22) (23) (24)

α (p.a.) −0.048 −0.045 −0.030

(0.020) (0.019) (0.014)

β 3.394 1.576

(1.726) (1.172)

γ 1.769 0.168

(1.045) (0.651)

R2 16.01 6.63 0.16

Panel B: Panel regressions with currency fixed effects

β 5.456 4.352

(2.047) (1.682)

γ 1.717 −0.363

(1.414) (1.007)

R2 20.56 17.16 0.20
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Figure 6: Risk-neutral and optimally predicted covariances of exchange rate movements and S&P
returns. The centre of each confidence ellipse represents a currency’s average risk-neutral and
realized covariance. In population, each ellipse would contain 20% of its currency’s data points
under normality. The orientation of each ellipse reflects the time-series correlation between realized
and risk-neutral covariance for the given currency, while the ellipse’s size reflects their volatilities.
We plot a dotted 45◦ line for comparison.
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Table 6: Realized covariance regressions

This Table presents results of regressions using the lagged realized covariance of exchange rate movements with the negative reciprocal
of the S&P 500 return (RPCL) as a proxy for the currency beta:

RPCLi,t = R$
f,t




t∑

t−h

[
ei,s

ei,s−1

(
−

1

Rs

)]
−

1

h

t∑

t−h

(
−

1

Rs

) t∑

t−h

ei,s

ei,s−1


 ,

where the summation is over daily returns on trading days s preceding t over a time-frame corresponding to our forecasting horizon, h,
so that RPCLi,t is observable at time t. We also define a realized covariance measure RPCi,t that is analogous to the above definition
except that the summation is over trading days following t over the appropriate time-frame (so that it is not observable until time t+h).
We test whether risk-neutral covariance forecasts realized covariance, in a univariate regression as well as in the presence of lagged

realized covariance and IRD as competing predictors. Lastly, we denote by R̂PCi,t the optimal forecast of RPCi,t from regression (31)
and test whether it forecasts excess returns.

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ γ RPCLi,t + εi,t+1 (28)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ βQRPi,t + γ RPCLi,t + εi,t+1 (29)

RPCi,t = α+ βQRPi,t + εi,t+1 (30)

RPCi,t = α+ βQRPi,t + γ RPCLi,t + δ IRDi,t + εi,t+1 (31)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ βQRPi,t + γ R̂PCi,t + εi,t+1 (32)

Return realizations correspond to the forecasting horizon of 24 months. We report coefficient estimates for each regression, with
standard errors (computed using a nonparametric block bootstrap) in brackets. See Section 2.6 for more details.

Panel A: Pooled panel regression

Regression (28) (29) (30) (31) (32)

α (p.a.) -0.034 -0.047 -0.000 0.000 -0.047

(0.017) (0.018) (0.001) (0.001) (0.018)

β 2.798 0.447 -0.026 3.096

(1.366) (0.158) (0.126) (1.639)

γ 1.307 -0.213 0.370 -1.103

(1.111) (1.193) (0.123) (3.206)

δ -0.131

(0.061)

R2 7.37 17.52 36.56 66.44 17.94

Panel B: Panel regression with currency fixed effects

β 4.643 0.330 -0.107 4.988

(2.006) (0.168) (0.017) (2.073)

γ 1.967 0.387 0.313 0.023

(1.474) (1.384) (0.125) (3.300)

δ -0.237

(0.138)

R2 9.14 22.27 9.43 45.69 22.03
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Table 7: Beyond the log investor

This table reports the R2-maximizing univariate, bivariate, 3-variate, and 4-variate specifications in regressions of
24-month realized currency excess returns onto combinations of QRP, IRD, the average forward discount IRD, and
the real exchange rate, q. The table reports standard errors (computed using a nonparametric block bootstrap) in
brackets. See Section 2.5 for more detail. The last line reports R2 in %.

Panel regressions with currency fixed effects

Regressor univariate bivariate 3-variate 4-variate

QRP, β 4.995 5.654 3.799 3.541

(1.565) (1.402) (1.657) (1.836)

IRD, γ -1.059

(1.573)

IRD, δ -5.060 -4.266

(1.605) (1.538)

RER, ζ -0.413 -0.780 -0.804

(0.136) (0.159) (0.188)

R2 22.03 35.40 43.56 44.09
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Table 8: Joint tests of statistical significance

This Table presents results from three currency forecasting regressions:

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ βQRPi,t + γ IRDi,t + εi,t+1 (19)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= α+ βQRPi,t + εi,t+1 (20)

ei,t+1

ei,t
− 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1 (22)

Realizations for excess returns and currency appreciation correspond to the forecasting horizon of 24 months. The
Table reports p-values of Wald tests of various hypotheses on the regression coefficients. H1

0 is the hypothesis
suggested by Result 2: α = γ = 0 and β = 1 in regression (19), α = 0 and β = 1 in regression (20), and α = 0 and
β = γ = 1 in regression (22). Hypothesis H2

0 drops the constraint that α = 0, and therefore tests our model’s
ability to predict differences in currency returns but not its ability to predict the absolute level of (dollar) returns.
Hypothesis H3

0 is that QRP is not useful for forecasting. For each Wald test, we report both the asymptotic
p-values obtained from the χ2 distribution and p-values from a bootstrapped small-sample distribution (in the
format asymptotic p-value / small-sample p-value).

Panel A: Pooled panel regression

Regression (19) (20) (22)

H1
0 : α = γ = 0, β = 1 0.029 / 0.357

H1
0 : α = 0, β = 1 0.039 / 0.342

H1
0 : α = 0, β = γ = 1 0.030 / 0.340

H2
0 : β = 1, γ = 0 0.342 / 0.546

H2
0 : β = 1 0.155 / 0.299

H2
0 : β = 1, γ = 1 0.339 / 0.493

H3
0 : β = 0 0.050 / 0.088 0.021 / 0.097 0.049 / 0.082

Panel B: Panel regression with currency fixed effects

H2
0 : β = 1, γ = 0 0.029 / 0.256

H2
0 : β = 1 0.011 / 0.163

H2
0 : β = 1, γ = 1 0.029 / 0.238

H3
0 : β = 0 0.008 / 0.051 0.001 / 0.089 0.008 / 0.051
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B Lognormal models

Suppose that the SDF, Xt+1 and Yt+1 are conditionally jointly lognormal, and write

lower-case variables for logs of the corresponding upper-case variables. Assume further

that Xt+1 and Yt+1 are tradable. Then we have the following three facts:

covt(Xt+1, Yt+1) = EtXt+1 Et Yt+1

(
ecovt(xt+1,yt+1) − 1

)

cov∗t (Xt+1, Yt+1) = covt(Xt+1, Yt+1)e
covt(mt+1,xt+1+yt+1)

cov∗t (Xt+1, Yt+1) = E
∗

t Xt+1 E
∗

t Yt+1

(
ecov

∗

t (xt+1,yt+1) − 1
)
.

These follow by direct calculation because logEt Zt+1 = Et logZt+1+
1
2
vart logZt+1 for

any conditionally lognormal random variable Zt+1 (and using the definition (4) of the

risk-neutral measure to derive the second and third facts).

The first fact implies that equation (2) can be rewritten (in the lognormal case) as

logEt
R̃t+1

R$
f,t

= − covt(mt+1, r̃t+1),

and in particular that ERPt = − covt(mt+1, rt+1) and CRPi,t = − covt(mt+1,∆ei,t+1),

where ERPt and CRPi,t are defined in the main text and we write rt+1 = logRt+1 and

∆ei,t+1 = log(ei,t+1/ei,t). Combined with the second fact, this gives (in the lognormal

case) equation (26) in the main text:

log
covt(Rt+1, ei,t+1/ei,t)

cov∗t (Rt+1, ei,t+1/ei,t)
= ERPt +CRPi,t .

To see that this is equivalent to (27), exponentiate both sides and use the definitions

of ERPt and CRPi,t, together with the first and third facts above, to conclude that

EtRt+1 Et ei,t+1/ei,t
{
ecovt(rt+1,∆ei,t+1) − 1

}

E
∗

t Rt+1 E
∗

t ei,t+1/ei,t
{
ecov

∗

t (rt+1,∆ei,t+1) − 1
} = Et

Rt+1

R$
f,t

Et

Ri
f,tei,t+1

R$
f,tei,t

.

By the definition (4) of the risk-neutral measure, we have E∗

t Rt+1 = R$
f,t; and similarly

we have E
∗

t ei,t+1/ei,t = R$
f,t/R

i
f,t by equation (5). Equation (27) follows.
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Table 9: Out-of-sample forecast performance

We define a dollar-neutral out-of-sample R2 similar to Goyal and Welch (2008):

R2
OS = 1−

∑
i

∑
j

∑
t(ε

Q
i,t+1 − εQj,t+1)

2

∑
i

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)

2
,

where εQi,t+1 and εBi,t+1 denote forecast errors (for currency i against the dollar) of the quanto theory and the bench-
mark, respectively. We use the quanto theory and three competitor benchmarks to forecast currency appreciation
as follows:

Theory: EQ
t

ei,t+1

ei,t
− 1 = QRPi,t + IRDi,t

UIP: EU
t

ei,t+1

ei,t
− 1 = IRDi,t

Constant: EC
t

ei,t+1

ei,t
− 1 = 0

PPP: EP
t

ei,t+1

ei,t
− 1 =

(
π$
t

πi
t

)2

− 1

We also report results for the following decomposition of R2
OS , which focusses on dollar-neutral forecast performance

for currency i:

R2
OS,i = 1−

∑
j

∑
t(ε

Q
i,t+1 − εQj,t+1)

2

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)

2
.

The second panel reports R2
OS measures by currency. (All R2

OS measures are reported in %.) The last line of the
table reports p-values for a small-sample Diebold–Mariano test of the null hypothesis that the quanto theory and
competitor model perform equally well for all currencies.

Benchmark IRD Constant PPP

R2
OS 10.91 9.57 26.05

R2
OS,AUD 9.71 0.93 11.42

R2
OS,CAD 6.24 6.55 21.31

R2
OS,CHF 1.40 16.37 11.43

R2
OS,DKK 10.22 7.71 23.36

R2
OS,EUR 7.65 5.36 24.56

R2
OS,GBP 2.98 9.74 32.35

R2
OS,JPY 19.21 9.59 33.74

R2
OS,KRW 21.98 17.09 34.71

R2
OS,NOK 3.43 12.86 18.97

R2
OS,PLN 13.25 8.32 19.62

R2
OS,SEK 7.68 5.88 28.22

DM p-value 0.039 0.000 0.000
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Internet Appendix for

The Quanto Theory of Exchange Rates

IA.A Binary forecast accuracy

In this section, we follow the approach of Jordà and Taylor (2012) by computing a

correct classification frontier (CCF) to assess the forecast performance of the quanto

theory.

Denote by fQ
i,j,t = QRPi,t − QRPj,t and fB

i,j,t the forecasts obtained, respectively,

from the quanto variable and a competitor benchmark for currency pair (i, j) at time t.

Similarly, ri,t = ei,t+1/ei,t − R$
t /R

i
t denotes the realized excess return of currency i

against the dollar, and ri,j,t = ri,t− rj,t represents the dollar-neutral return in currency

pair (i, j). We calculate the true positive (TP) and true negative (TN) rates for each

forecasting model as a function of a threshold, c. For the quanto forecast, for instance,

TP(c) =

∑
i,j : fm

i,j,t>c and ri,j,t>0 1∑
i,j : ri,j,t>0 1

and TN(c) =

∑
i,j : fQ

i,j,t<c and ri,j,t<0 1∑
i,j : ri,j,t<0 1

.

These represent, respectively, the fractions of ex post positive long and short returns

that were correctly identified ex ante as profitable by the forecasting model. For the

same 55 dollar-neutral currency pairs used above, we find that TP(0) = 0.50, TN(0) =

0.64, with a weighted average correct classification of 0.57 for the quanto forecast.

As binary accuracy does not reflect the magnitudes of returns from the signal, we

follow Jordà and Taylor (2012) and compute the corresponding return-weighted true

positive (TP∗) and true negative (TN∗) rates as

TP∗(c) =

∑
i,j : fQ

i,j,t>c and ri,j,t>0 ri,j,t∑
i,j : ri,j,t>0 ri,j,t

and TN∗(c) =

∑
i,j : fQ

i,j,t<c and ri,j,t<0 ri,j,t∑
i,j : ri,j,t<0 ri,j,t

.

We find TP∗(0) = 0.58, TN∗(0) = 0.67, with a weighted average of 0.63. Both rates

increase relative to the equally-weighted classifications, which implies that the direction

of excess return realizations is more likely to have been predicted by the quanto variable

when these realizations are large.

The CCF (and analogously CCF∗) is defined as the set of pairs {TP(c),TN(c)} for
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all possible values of c between −∞ and ∞. Varying the threshold level, c, trades

off true positives against true negatives by shifting the direction of the forecast. For

instance, for c = ∞, the true negative rate is maximized at TN = 1, at the cost of

TP = 0. Since TN(c) and TP(c) must lie between 0 and 1, we can plot the resulting

CCF in the unit square, and compute the area under the CCF (AUC). Intuitively, the

AUC can be interpreted as the probability that the forecast for a randomly chosen

positive return realization will be higher than that for a randomly chosen negative

return realization. Under the UIP forecast the excess return on any currency is 0, so

the CCF is the diagonal with slope −1 in the unit square and, accordingly, AUC = 0.5.

Figure IA.1: Correct classification frontier (CCF) and AUC statistics for the quanto excess return
forecast, and a competitor excess return forecast under which exchange rates follow a random walk.

We benchmark the quanto forecast against the driftless random walk model consid-

ered above (which forecasts the currency excess return as being equal to the interest

rate differential). Figure IA.1 shows the resulting CCFs. The quanto forecast outper-

forms the random walk model for equally-weighted and return-weighted classifications.

For the quanto forecast, AUCQ = 0.60 and AUCQ∗ = 0.70, while the random walk

model achieves AUCRW = 0.55 and AUCRW∗ = 0.60. Both forecasts correctly iden-

tify large returns more often than small returns, as the CCF∗ (red) lies above the CCF

(blue) in both cases.
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Figure IA.2: Reverse-conditioned correct classification frontier (CCF) and AUC statistics for the quanto
excess return forecast, and a competitor excess return forecast under which exchange rates follow a
random walk.

Figure IA.3: Correct classification frontier (CCF) and AUC statistics for forecasts of currency appreci-
ation.
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Figure IA.4: Reverse-conditioned correct classification frontier (CCF) and AUC statistics for forecasts
of currency appreciation.

We also reverse the conditioning in the true positive and true negative rates, to

calculate how likely a forecast is to signal the correct direction of trade, and denote

these by PT(c) and NT(c), respectively. In the case of the quanto theory,

PT(c) =

∑
i,j : fQ

i,j,t>0 and ri,j,t>c 1∑
i,j : fQ

i,j,t>0 1
and NT(c) =

∑
i,j : fQ

i,j,t<0 and ri,j,t<c 1∑
i,j : fQ

i,j,t<0 1
.

We find PT(0) = 0.60, NT(0) = 0.54, PT∗(0) = 0.65, and NT∗(0) = 0.63. Plotting the

resulting CCFs, Figure IA.2 shows that the quanto variable outperforms the random

walk forecast with AUC measures of AUCQ = 0.60 and AUCQ∗ = 0.71, as against the

random walk model with AUCRW = 0.55 and AUCRW∗ = 0.60.

Figures IA.3 and IA.4 repeat this exercise, but now the goal is to forecast currency

appreciation, as opposed to currency excess returns. In this case, the random walk

forecast is represented by the diagonal with slope −1 in the unit square, and AUC =

0.5. As the figures show, the quanto forecast outperforms the random walk model,

with AUCQ = 0.63 and AUCQ∗ = 0.75. The outperformance persists under reverse

conditioning, with AUCQ = 0.69 and AUCQ∗ = 0.71.

Internet Appendix – 4



IA.B Quantos in Colacito and Croce (2011)

This section studies the relationship between the currency risk premium, QRP, and the

residual covariance term in the two-country long-run risk model of Colacito and Croce

(2011). Log consumption growth, log dividend growth, the long-run risk variable, the

log SDF, the log market return, and the log risk-free rate follow these processes:

∆ct = µc + xt−1 + εc,t,

∆dt = µd + λxt−1 + εd,t,

xt = ρxt−1 + εx,t,

mt+1 = logδ − ψ−1xt + κc
1− γψ

ψ(1− ρκc)
εx,t+1 − γεc,t+1,

rd,t+1 = rd + ψ−1xt + κd
λ− 1/ψ

1− ρκd
εx,t+1 + εd,t+1,

rf = rf + ψ−1xt.

The representative agent has Epstein–Zin preferences with risk aversion γ and elas-

ticity of intertemporal substitution ψ. Shocks are i.i.d. Normal over time, with mean

zero and (diagonal) covariance matrix Σ, with diagonal [σ2, ϕ2
dσ

2, ϕ2
xσ

2]. Thus returns

and the SDF are jointly lognormal and subject to the issues described in Subsection

2.4. Between-country correlations of shocks are ρhfc , ρhfd , and ρhfx , respectively. The ex-

change rate satisfies et+1/et = M f
t+1/Mt+1, where M

f denotes the foreign SDF (which

is uniquely determined, as markets are complete).

The baseline calibration is symmetric, so both currencies are equally “risky.” To

generate a currency risk premium, we vary—one-by-one—the parameter values for (i)

the volatility of the foreign long-run risk shock, governed by ϕf
x, (ii) its persistence,

ρf , (iii) the cross-country correlation of long-run risk shocks, ρhfx , and (iv) the cross-

country correlation of consumption shocks, ρhfc . We plot the resulting comparative

statics in Figure IA.5 below. We use the baseline calibration of Colacito and Croce

(2011) for all other model parameters. With the exception of ρhfx , which is equal to 1

in the baseline calibration, we vary the parameters of interest in a symmetric window

around their baseline values.

Through the lens of this model, we now consider the identity (6), which decom-

poses the currency risk premium into risk-neutral covariance (QRP) and the residual
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covariance term:

Et
ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= QRPi,t − covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)

︸ ︷︷ ︸
residual covariance term

.

As shown in panel (a), a lower long-run risk volatility generates a positive risk

premium on the foreign currency, positive QRP, a positive residual, and a negative

interest rate differential. (The calibration is monthly, but we annualize by multiplying

all quantities by 12, so the y-axis is in annual terms in all four panels.) As the residual

scales with QRP, we would expect to find that the coefficient on QRP in a forecasting

regression is larger than 1. Qualitatively, the same holds for a lower persistence of the

foreign long-run risk process in panel (b). The risk premia in panels (c) and (d) are

symmetric, in the sense that they increase the expected appreciation of both currencies

in another manifestation of Siegel’s paradox (see Section 1.2). In the case of a less-than-

perfect cross-country correlation of long-run risk shocks, the resulting risk premium is

captured proportionately by QRP and the residual, and would lead to a β coefficient

larger than 1 in our forecasting regressions.

IA.C Evidence from other quanto contracts

Due to the limited availability of time-series data on quanto forwards, we look at USD-

denominated futures on the Nikkei 225 index, which have started trading on the CME

prior to the beginning of our OTC sample. We collect prices for USD-denominated

Nikkei 225 futures traded on CME, and JPY-denominated Nikkei 225 futures traded on

JPX (Osaka) for a sample period from 2004 through 2017. (JPY-denominated futures

are also traded on CME, but at much lower volumes than the JPX-traded contracts.)

Contracts expire each quarter, in March, June, September, and December, and we use

contracts with the latest available expiration, which have a maturity ranging from 9-12

months. To calculate the QRP and IRD measures, we use dollar- and yen-denominated

LIBOR rates matched to the maturity of the respective pair of futures.

Table IA.1 below reports the results for our baseline regressions.

We also calculate the out-of-sample R2 based on mean-squared forecast errors as

in Section 3. The quanto-based forecast outperforms the random walk and the UIP

forecast by 1.96% and 3.25%, respectively, over the given period.
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(a) Long-run risk volatility, ϕf
xσ

f (b) Long-run risk persistence, ρf

(c) Long-run risk cross-country correlation, ρhfx (d) Consumption risk cross-country correlation, ρhfc

Figure IA.5: Each panel plots the comparative statics of the risk premium, risk-neutral co-
variance (QRP), the residual covariance, and the interest rate differential (IRD) with respect
to a single model parameter (varied on the horizontal axis). In panel (d), QRP and IRD are
both zero so the risk premium coincides with the residual.
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Table IA.1: Forecasting regressions with exchange traded quanto-futures

This table reports the results of running regressions (20), (21), (22), and (24) for the USD-JPY currency pair at
the 12-month horizon, based on dollar-denominated quanto futures on the Nikkei 225 (traded on CME). Since this
setting essentially takes the perspective of a log investor who holds the Nikkei, the exchange rate is defined as
U1 = $e. We report the OLS estimates along with Hansen–Hodrick standard errors. R2 are reported in %.

Regression (20) (21) (22) (24)

α (p.a.) 0.018 0.026 0.022 0.026

(0.027) (0.036) (0.036) (0.036)

β 0.339 0.366 0.274 1.366

(0.720) (1.917) (0.587) (1.917)

γ 1.293 1.366

(1.912) (1.917)

R2 0.26 0.26 3.60 3.44

There are two important caveats. First, the available futures only provide informa-

tion about a single currency-pair, dollar-yen. One of the strengths of the quanto data

used in this paper lies in the cross-sectional dimension, which allows us to compute

dollar-neutral forecasts in isolation from any base-currency effects. Table IA.5 suggests

that the yen is not representative of the remaining panel. (USD-denominated futures

on the FTSE 100 are also traded on the CME, which would provide information about

dollar-sterling, but these contracts have only been traded since late 2015.) Second, the

theory calls for quanto forward prices rather than quanto futures prices. If interest-

rate movements are correlated with the underlying assets (as is plausibly true both of

exchange rates and of the Nikkei 225) the two will differ. It is not clear how the pricing

discrepancies between futures and forwards would affect the predictive power of our

theory when applied to futures contracts.

IA.D Supplementary Tables and Figures
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Table IA.2: Principal components analysis of residuals

This table reports the loadings on the principal components of realized residuals obtained from the
quanto theory (top panel) and the fixed-effects specification of regression (20) (bottom panel). In
order to limit the impact of missing observations, the residuals are only obtained for the balanced
panel of currencies (excluding DKK, KRW, and PLN).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Theory residuals

AUD 0.520 0.160 0.108 −0.443 −0.273 0.235 0.578 −0.183

CAD 0.311 −0.015 −0.107 −0.257 −0.090 0.458 −0.490 0.606

CHF 0.194 −0.124 0.644 0.344 −0.534 −0.270 −0.067 0.228

EUR 0.243 −0.265 −0.308 0.688 −0.119 0.490 0.127 −0.179

GBP 0.083 −0.471 0.579 −0.104 0.552 0.296 −0.046 −0.176

JPY 0.353 0.741 0.200 0.325 0.397 0.009 −0.145 −0.055

NOK 0.472 −0.194 −0.190 −0.147 −0.099 −0.334 −0.527 −0.532

SEK 0.427 −0.283 −0.238 0.093 0.382 −0.472 0.324 0.446

Explained 61.26% 26.49% 7.26% 2.80% 0.93% 0.53% 0.39% 0.34%

Regression residuals

AUD 0.532 0.138 0.019 −0.261 0.665 −0.025 −0.368 −0.227

CAD 0.276 −0.057 −0.175 −0.271 0.248 0.057 0.657 0.566

CHF 0.177 −0.243 0.662 0.273 0.070 −0.594 0.052 0.193

EUR 0.178 −0.291 −0.430 0.732 0.248 −0.004 0.205 −0.244

GBP −0.086 −0.440 0.489 0.024 0.195 0.714 0.073 −0.082

JPY 0.558 0.539 0.243 0.289 −0.372 0.303 0.154 −0.050

NOK 0.369 −0.451 −0.060 −0.399 −0.409 −0.148 0.229 −0.506

SEK 0.351 −0.384 −0.209 0.068 −0.295 0.144 −0.555 0.516

Explained 65.70% 16.33% 10.65% 3.10% 2.12% 1.20% 0.54% 0.34%
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Table IA.3: R2 of different variable combinations

This table reports the R2 (in %) from currency excess return forecasting regressions (with currency
fixed effects) using all possible univariate, bivariate, 3-variate and 4-variate combinations of the
quanto-implied risk premium (QRP), the interest rate differential (IRD), the average interest rate
differential (IRD), and the real exchange rate (RER).

univariate bivariate 3-variate 4-variate

QRP 22.03

RER 7.97

IRD 2.77

IRD 2.06

QRP, RER 35.40

IRD, RER 34.47

IRD, RER 28.22

QRP, IRD 22.77

QRP, IRD 22.60

IRD, IRD 2.79

QRP, IRD, RER 43.56

QRP, IRD, RER 39.89

IRD, IRD, RER 36.77

QRP, IRD, IRD 22.80

QRP, IRD, IRD, RER 44.09
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Table IA.4: Quantos and the real exchange rate

This Table presents results from currency excess return forecasting regressions that extend the baseline results in
Table 4 by adding the log real exchange rate to the regressors on the right-hand side. Following Dahlquist and

Penasse (2017), we compute the log real exchange rate as RERi,t = log
(
ei,t

Pi,t

P$,t

)
, where Pi,t and P$,t are consumer

price indices for country i and the US, respectively, obtained from the OECD.

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= αi + βQRPi,t + γ IRDi,t + ζ RERi,t + εi,t+1 (IA.D.1)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= αi + βQRPi,t + ζ RERi,t + εi,t+1 (IA.D.2)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= αi + γ IRDi,t + ζ RERi,t + εi,t+1 (IA.D.3)

ei,t+1

ei,t
−

R$
f,t

Ri
f,t

= αi + ζ RERi,t + εi,t+1 (IA.D.4)

The two panels report coefficient estimates for each pooled and fixed effects regression, respectively, with standard
errors (computed using a nonparametric block bootstrap) in parentheses, see Section 2.6 for more detail.

Panel regressions with currency fixed effects

Regression (IA.D.1) (IA.D.2) (IA.D.3) (IA.D.4)

QRP, β 4.292 5.654

(1.843) (1.402)

IRD, γ -2.624 -4.791

(1.547) (1.242)

RER, ζ -0.616 -0.413 -0.729 -0.314

(0.205) (0.136) (0.201) (0.162)

R2 39.89 35.40 28.22 7.97
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Table IA.5: Separate return forecasting regressions using QRP and IRD predictors

This table reports the results of running regressions (20), (21), (22), and (24) separately for each
currency at the 24-month horizon, and at 6- and 12-month horizons for the euro. We report the OLS
estimates along with Hansen–Hodrick standard errors. R2 are reported in %.

Currency AUD CAD CHF DKK EUR EUR EUR GBP JPY KRW NOK PLN SEK

Horizon 24m 24m 24m 24m 6m 12m 24m 24m 24m 24m 24m 24m 24m

Panel A: Regression (20): ei,t+1/ei,t −R$
f,t/R

i
f,t = α+ βQRPi,t + εi,t+1

α (p.a.) −0.062 −0.085 −0.003 −0.052 −0.040 −0.071 −0.060 −0.086 −0.012 −0.068 −0.180 −0.065 −0.106

(0.071) (0.042) (0.038) (0.022) (0.056) (0.052) (0.030) (0.031) (0.090) (0.034) (0.061) (0.026) (0.048)

β 3.258 4.754 −1.657 4.125 3.702 6.361 4.148 9.217 4.750 4.227 11.860 3.580 5.930

(3.991) (3.546) (6.903) (1.723) (6.263) (5.527) (3.367) (3.791) (10.959) (1.757) (4.698) (0.956) (3.316)

R2 12.15 25.39 0.60 17.42 3.17 17.98 25.93 57.48 4.06 46.59 49.96 33.01 38.00

Panel B: Regression (21): ei,t+1/ei,t −R$
f,t/R

i
f,t = α+ γ IRDi,t + εi,t+1

α (p.a.) −0.091 −0.006 0.001 0.014 −0.015 −0.019 −0.034 −0.043 −0.152 0.007 −0.091 0.005 −0.042

(0.084) (0.030) (0.027) (0.023) (0.083) (0.040) (0.025) (0.034) (0.046) (0.034) (0.065) (0.045) (0.035)

γ −2.859 4.135 −2.246 2.147 2.626 1.869 −1.439 −5.564 25.539 0.312 −3.310 −0.118 −1.765

(2.743) (3.543) (3.067) (2.036) (7.375) (6.349) (3.255) (6.779) (8.318) (3.011) (3.698) (1.211) (2.730)

R2 19.82 12.30 7.33 13.77 1.23 1.31 3.90 6.93 57.26 0.14 14.39 0.09 7.28

Panel C: Regression (22): ei,t+1/ei,t − 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1

α (p.a.) −0.093 −0.055 0.010 −0.041 −0.055 −0.092 −0.078 −0.082 −0.165 −0.063 −0.185 −0.041 −0.117

(0.087) (0.044) (0.035) (0.021) (0.053) (0.043) (0.027) (0.033) (0.079) (0.046) (0.070) (0.032) (0.043)

β 0.698 5.291 −1.698 5.252 10.008 12.916 7.321 9.760 −1.348 4.241 11.230 4.736 7.895

(3.130) (2.984) (6.621) (1.260) (7.198) (4.771) (2.895) (3.519) (7.485) (1.719) (3.491) (0.848) (2.552)

γ −1.525 6.019 −1.250 3.857 11.447 11.992 4.651 3.094 27.182 1.514 0.253 2.419 2.938

(2.429) (2.637) (3.050) (1.671) (8.450) (4.880) (2.175) (3.124) (8.344) (2.149) (2.402) (1.003) (1.683)

R2 9.79 46.74 3.04 48.62 14.42 45.19 33.51 57.29 59.41 48.22 46.61 45.28 39.00

Panel D: Regression (24): ei,t+1/ei,t − 1 = α+ γ IRDi,t + εi,t+1

α (p.a.) −0.091 −0.006 0.001 0.014 −0.007 −0.019 −0.034 −0.043 −0.152 0.007 −0.091 0.005 −0.042

(0.084) (0.030) (0.027) (0.023) (0.041) (0.040) (0.025) (0.034) (0.046) (0.034) (0.065) (0.045) (0.035)

γ −1.859 5.135 −1.246 3.147 3.626 2.869 −0.439 −4.564 26.539 1.312 −2.310 0.882 −0.765

(2.743) (3.543) (3.067) (2.036) (7.375) (6.349) (3.255) (6.779) (8.318) (3.011) (3.698) (1.211) (2.730)

R2 9.47 17.78 2.38 25.54 2.32 3.03 0.38 4.77 59.13 2.48 7.57 4.79 1.45
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Figure IA.6: Time series of annualized expected currency appreciation implied by the quanto
theory (ECA) and by UIP (IRD).
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Figure IA.7: Term structure of the euro-dollar risk premium, as measured by QRP, in the time
series for horizons of 6, 12, 24, and 60 months.
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(a) Pooled, H1
0 (b) Fixed effects, H2

0

(c) Pooled, H3
0 (d) Fixed effects, H3

0

Figure IA.8: Histogram of the small-sample distributions of the test statistics for various
hypotheses on regression (22). The asymptotic distribution is shown as a solid line. Asterisks
indicate the test statistics for the original sample.
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Disclaimer

Markit® is a trade name and the property of Markit Group Limited or its affiliate (“Markit”)

and is used by the London School of Economics and Political Science under license. Data

provided by Markit®. Nothing in this publication is sponsored, endorsed, sold or promoted

by Markit or its affiliates. Neither Markit nor its affiliates make any representations or

warranties, express or implied, to you or any other person regarding the advisability of

investing in the financial products described in this report or as to the results obtained from

the use of the Markit Data. Neither Markit nor any of its affiliates have any obligation or

liability in connection with the operation, marketing, trading or sale of any financial product

described in this report or use of the Markit Data. Markit and its affiliates shall not be liable

(whether in negligence or otherwise) to any person for any error in the Markit Data and shall

not be under any obligation to advise any person of any error therein.
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