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In this paper, employing the stochastic differential equations associated with the normal ordering, the quantum properties of a
nondegenerate three-level cascade laser with a parametric amplifier and coupled to a two-mode thermal reservoir are thoroughly
analyzed. Particularly, the enhancement of squeezing and the amplification of photon entanglement of the two-mode cavity light
are investigated. It is found that the two cavity modes are strongly entangled and the degree of entanglement is directly related to
the two-mode squeezing. Despite the fact that the entanglement and squeezing decrease with the increment of the mean photon
number of the thermal reservoir, strong amount of these nonclassical properties can be generated for a considerable amount of
thermal noise with the help of the nonlinear crystal introduced into the laser cavity. Moreover, the squeezing and entanglement of

the cavity radiation enhance with the rate of atomic injection.

1. Introduction

Three-level cascade lasers have received considerable interest
in connection with its potential as a source of light with
interesting nonclassical features [1-6]. The quantum
properties of the light is attributed to atomic coherence that
can be induced either by preparing the atoms initially in a
coherent superposition of the top and bottom levels [7] or
coupling these levels by an external radiation [8] or using
these mechanisms together [9].

Moreover, some authors have studied quantum prop-
erties of light generated by the three-level laser whose cavity
contains a parametric amplifier [10-13]. A parametric
amplifier involves three different modes of the radiation
field, the signal, the idler, and the pump which are coupled
by a nonlinear medium. In these devices, a pump photon
interacts with a nonlinear crystal inside a cavity and is down
converted into two highly correlated photons of different
frequencies [12]. These works indicated the cavity radiation
is found to be in squeezed and entangled states under certain

conditions. In addition, the mean and variance of the photon
number for a degenerate [11-13] and nondegenerate [14-19]
three-level cascade laser whose cavity contains a parametric
amplifier have been determined for different cases.

Furthermore, Tesfa [20] studied a two-photon correlated
emission laser (CEL) in which the atomic coherence is
initially prepared and the cavity is coupled to a two-mode
thermal reservoir via a single-port mirror. He analyzed the
effects of decoherence on entanglement in the two modes
and evaluated the inseparability criterion for a continuous
Gaussian state proposed earlier by Duan et al. [21]. He found
that the generated light exhibits a two-mode squeezing and
entanglement when initially there are more atoms at the
lower level, even when the cavity is coupled to a thermal
reservoir. Moreover, he also found that though the thermal
noise entering the cavity degrades the squeezing and en-
tanglement, it significantly increases the mean number of
photon pairs of the superimposed radiation.

Moreover, Tesfa [22] studied the effect of the thermal
light initially seeded in the cavity on the statistical and
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quantum features of the cavity radiation, but in the absence of
the parametric amplifier. Thus, it has been shown that the
degree of two-mode squeezing is almost independent of which
mode is initially seeded, but the degree of entanglement de-
creases considerably when a light with the same strength is
seeded in mode b. Moreover, the thermal light significantly
damages two-mode squeezing and entanglement in the earlier
stages of the lasing process. Thus, it is worthwhile to investigate
the effect of thermal noise on these very sensitive nonclassical
properties. On the other hand, the squeezing, entanglement,
and statistical properties of the cavity radiation can be en-
hanced with the introduction of the parametric amplifier into
the laser cavity. With this motivation, we are devoted to in-
vestigate the nonclassical properties of the light generated by a
nondegenerate three-level laser whose cavity contains a non-
degenerate parametric amplifier and coupled thermal reservoir.

In this study, the squeezing, entanglement, and statistical
properties of the light produced by a nondegenerate three-level
laser with a nondegenerate parametric amplifier and coupled to
thermal reservoir are studied. We consider a nondegenerate
three-level laser in which the pump mode emerging from the
parametric amplifier does not couple the top and bottom levels
of the injected atoms [17]. We carry out our analysis applying
the pertinent master equation describing the dynamics of the
optical device. The solutions for c-number cavity mode vari-
ables and correlation property of noise forces associated with
normal ordering are determined. Using the resulting solutions
and steady-state consideration, we obtained quadrature
squeezing, the photon entanglement, the mean number of
photon pairs, Mandel’s Q-factor, and the second-order cor-
relation functions of the two-cavity mode variables.

The paper is organized as follows. In the second section,
the Hamiltonian and the model are presented, the master
equation describing the dynamics of the optical device is
derived, and the solutions of the cavity-mode variables are
determined. The squeezing and entanglement of the two-
mode cavity radiation are analyzed in the third and fourth
sections. In the fifth section, the statistical properties of the
cavity radiation such as mean photon number, Mandel’s
Q-factor, and photon number correlation are studied.

2. Hamiltonian and Master Equation

We represent the top, intermediate, and bottom levels of a
three-level atom in a cascade configuration by [3), |2), and
[1), respectively, as shown in Figure 1. In addition, we as-
sume the two modes a, and a, to be at resonance with the
two transitions [3) — [2) and |2) — |1) dipole allowed,
respectively, and direct transition between level |3) and level
[1) to be dipole forbidden. The interaction of a nonde-
generate three-level atom with the cavity modes can be
described by the Hamiltonian in the interaction picture with
the rotating and electric dipole approximation as

H; =ig[I3)(2la, - a][2) (3l +12)<1la, - a3 1) <2l], (1)

where g is a coupling constant, which is taken to be the same
for both transitions, and @, and a, are the annihilation
operators for the two cavity modes.
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Ficure 1: Schematic representation of a two-mode three-level
cascade laser coupled with a two-mode thermal reservoir.

In this paper, we take the initial state of a three-level
atom to be |y, (0)) = C;(0)|3) + C;(0)|1), and hence, the
initial density operator for a single atom has the form

p4(0) = p013>3] + pV13> 1] + p 11y 3] + p V1) <1],
(2)

where pég) =|C,* and p® = |C,|? are, respectively, the
probabilities for the atom to be initially in the upper and
lower levels, and p? = C,C 1 and PV =C 1C5. Actually, this
assumption corresponds to a situation in which the three-
level atom is initially prepared in a coherent superposition of
the top and bottom levels. Experimental demonstration of
coherent superpositions of the top and bottom levels of the
atom was studied by Calderin et al. [23].

In addition, we seek to consider when such atoms are
injected into a cavity at constant rate r, and removed after
sometime 7, which is long enough for the atoms to decay
spontaneously to levels other than the middle or the lower
level. The spontaneous decay rate y is taken to be the same
for the two upper levels. In the good cavity limit, y > «,
where « is the cavity damping constant, the cavity mode
variables change slowly compared with the atomic variables.
Hence, the atomic variables will reach steady state in rela-
tively short time. The time derivative of such variables can
then be set to zero, while keeping the remaining terms at
time t. This procedure is referred to as the adiabatic ap-
proximation scheme. Since the coupling constant is taken to
be small, we restrict ourselves to a linear analysis that
amounts to dropping the higher order terms in g.
Employing the linear and adiabatic approximation schemes
in the good cavity limit that the equation of evolution of the
density operator for the cavity modes has, in the absence of
damping through the coupled mirror, the form [16]
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where A = (2g%r,/y?) is the linear gain coefficient and for
convenience we have set p{” = p{¥*

In order to study the dynamics of the cavity radiation of
the combined system, it is necessary to obtain the corre-
sponding equations of evolution. To begin with, the con-
tribution of the initial thermal light in the cavity and the two-
mode vacuum reservoir to the master equation are sought.
To this end, one can start with the well-established fact that
the time evolution of the reduced density operator for the
cavity radiation coupled to a reservoir has, in the Born
approximation [16], the form

5,(6) = ~i[Hs (0.p(8)] - [ (B (0 P O)]
- [ [P [Fs ()50 @
t = -~ —~
- jo Tro [ (¢), [Hlse (£, 5 (¢))R] |dt,

where S and R refer to the system and reservoir variables and
p (0) represents the radiation initially in the cavity. Here, we
consider the reservoirs to be composed of large number of
submodes. Thus, the interaction of a two-mode cavity ra-
diation with a two-mode thermal reservoir can be described
in the interaction picture by a Hamiltonian of the form
Ag=iY A [a*au () 55 ()
i

(5)

+ agazjei(wo—w)) _ aza; —i(wo—wj)t

where w, = (w; + w,)/2, with w, and w, representing the
frequencies of the cavity radiations, (@, ;,d,;) are the anni-
hilation operators of the two-mode thermal reservoir, w is the
frequency, and A, is the coupling constant for the ™" mode of
the reservoir. With the aid of equation (5), one can write

(Hepdg = iZAj
j

a <a1j>Rei (0-er)e a <aL‘>Re_i(w°_ o)

+ <azj>Rei(w°7 o) - a <a§j>Reii(w°7 o) :
(6)
Using the density operator of the thermal reservoir,
B 7i
R=Y ——jn)(nl, (7)

n=0 (1 + nth)

3

one can easily obtain
@ =(@pr=@r =@ =0 (8)
(@};85)r = @,8,)r = 0, (9)
@8, = <a;ja1rj>1z =0, (10)
(@) 81)r = @82 p = T (11)

In addition, with the help of equation (11) along with the
commutation relation [g, ],aJ{ J] [azj,a; J] = 1, one obtains
(alja1]> (azjazj) ="y, + 1, where n,,, =1, =n,, is the
mean photon number of the thermal light. In view of these
results, equation (6) reduces to

(Hgpdp = 0. (12)

Therefore, the second commutation relation described in
equation (4) is found to be zero. This confirms that the
thermal light in the cavity does not directly contribute to the
master equation. As a result, solving the remaining terms by
following the standard approach yields

P (1) = ~i[ Hp ()]

K_ atam —

+ 5 [2‘11Pa1 - ‘11‘11P Palal]

+ “ny[2a}pa, - a,alp - payal]
o Mth 2Py — Ara,0 — PAya, (13)
K, ooont ot oot

+ 5 (A, + 1) [Zalpa1 T aa.p - palal]

K _ PSR atm o~ anfa
X (g + 1) 23,9, — 2l - pala).

In addition, in the nondegenerate three-level laser a
pump mode photon of frequency w = w, + w, directly
interacts with the nondegenerate parametric amplifier
(NDPA) to produce the signal-idler photon pairs having
the same frequencies as the two cavity modes [16, 17]. The
interaction of the driving light modes, treated classically,
with cavity modes, and the interaction of three-level
atoms with a nondegenerate parametric amplifier can be
described in the interaction picture by the quantum
Hamiltonian.

Hs = ig [Zi; —a + a; - 52] + ig [ala; - alaZ]’ (14)

where ¢, is proportional to the amplitude of the driving light
modes and ¢ is considered to be real and constant and is
proportional to the amplitude of the pump mode that drives
the NLC (nonlinear crystal). Taking into account equations
(3) and (13) along with (14), the master equation of the
system turns out to be
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Employing this master equation, the evolution of the
two-mode cavity radiation in terms of c-number variables
associated with the normal ordering «, (t) and «a, (¢) can be
expressed in the form

ay (1) = —y,0q () +v_a; () + & + f, (1),

a, (1) = =y, (1) + v, (t) + & + f5 (1),

where 1y, = (1/2)[x Ap 91, y, = (1/2)[K+Ap3 M, v, =
e+ (1/2)Ap\9, and £, (¢) and f7 (t) are the pertinent noise
forces, the properties of which remain to be determined.

Following the straightforward procedure outlined in
[22, 24], it is possible to obtain

a, (1) =T, (H)a, (0) + x, (t)oc; (0)+ G, (t) + (,, (17)
o, (1) =T_(H)ay (0) + x_ (H)ay (0) + G, () + {_, (18)
in which

G, (t) = JO[F+(t — ) f1 0+, = f ) |der,

G, (8) = J [F_(t CEFLEN 4y (-], (tl)]dt/,

A
F ¢ + —(1/2)/\t Az —(1/2))Lt
O 2/\ 2)t
27 29
—(1/2)/\ t F _—(1/2)A,t
t * b
X (D) =7 "¢
& A, +2v. — (/2T
(=t (1- Pk
Sl )
A+ 2v; —(U2A, 7 ]
1-e N
2201 i)
1
A, =3 (2x + An £ 1),
A, = A+ \A%? + 16€2,

(19)
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where the noise forces satisfy the following correlations:
(1)) ={f2(8)) =0,
Franfr@)y =f,EnNf, 1)) =0,

SFrOfan) =fnNf1 (1) =0,

20
FLOf 0 =(4p0 + kot -, 0

(fy@nfy (1)) = xmg,d(t —tr),

frnfr ) =5 (2e+Ap1 ot —tr).

It proves to be useful to introduce a new parameter
which relates the probabilities of the atom to be in the upper

and lower levels. We define the parameter 4 such that p{¥ =

(1 —#/2) with =1 <# < 1. For three-level atoms initially in a
coherent superposition of the top and bottom levels, one

obtains pég)— (1+#/2), and in View of the relation

P = pWplY, one easily finds p'¥ = (1/2)y/T1- 72

3. Quadrature Variance

Here, we seek to analyze the quadrature squeezing properties
of the two-mode light in the cavity. The squeezing properties
of the two-mode light in the cavity can be described by two
quadrature operators defined as

¢, =¢+¢ (21)
¢ =i -2), (22)

where ¢ = (1/+/2) (@, + @,) is the annihilation operator for
the two-mode cavity radiation. These quadrature opera-
tors satisfy the commutation relation [¢,,¢_] = 2i. On the
basis of these definitions, a two-mode light is said to be in
a two-mode squeezed state if either Ac? <1 or Ac’ <1
[19, 24]. The variances of the quadrature operators can be
expressed as

Aczi: <»C~21> _<E¢>2~ (23)

It is possible to express the variance of the quadrature
operators (21) and (22) in terms of the c-number variables
associated with the normal ordering taking the cavity modes
to be initially in a two-mode vacuum state, as

A, =1 +<a; (Day (1)) +{a; (Da, (1)) + 24, (Da, (1))

TL% [(Ca () +<a; (1)) % (g () +<aty (£)))]

£ [€o (1)) +4a2 (1)) + 2ax, (D)o (D))
(24)

In view of equations (17) and (18), the steady-state
quadrature variances are found to be
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(25)

We clearly see from equation (25) that the quadrature
variances are independent of the parameter ¢; which represents
the cavity driving coherent light. This shows that the cavity
driving coherent light does not have any effect on the degree of
squeezing of the two-mode light. This is due to the fact that the
external driving coherent light does not introduce additional
coherence to the system which is believed to be the source of
squeezing in three-level cascade lasers [25].

As it can readily be seen from Figure 2, the two-mode
cavity radiation produced by a nondegenerate three-level
laser with a nondegenerate parametric amplifier and coupled
to thermal reservoir exhibits squeezing for some values of
the injected atomic coherence. One can observe that the
degree of squeezing is significantly degraded by the thermal
noise. For this case, the maximum quadrature squeezing is
found to be nearly 70% when the cavity is coupled to a
thermal reservoir with 77, = 0 for A = 100, x = 0.8, and ¢ =
0.399 and occurs at 7 = 0.1. Moreover, from the same figure,
we observe that when the 7,, increases the degree of
squeezing decreases. This is because of the effect of the
thermal fluctuations arising from the heating due to vi-
bration of the atoms on the walls of the cavity.

In Figure 3, we plot the variances of the minus quadrature
Ac? versus 7, the parameter for A = 100, x = 0.8, 77, = 0.15,
and with different values of e. The figure clearly shows that the
effect of the parametric oscillator ¢ is to increase the degree of
squeezing for small values of # as previously determined [17].

We clearly see from Figure 4 that the degree of squeezing
increases with the linear gain coeflicient and a substantial degree
of squeezing is found for smaller values of 7. This indicates that
the more the atoms are injected into the cavity at a time the more
the degree of the squeezing of the cavity radiation would be. The
maximum squeezing occurs when the atoms are prepared with
initial coherence very close to the maximum possible value in
this case. In particular, a maximum of 72% squeezing occurs at
n = 0.1 for A = 1000, x = 0.8, € = 0.399, and 7, = 0.15.

We also plotted, in Figure 5, the variance of the minus
squeezed quadrature versus the parameters ¢ and # for
A =100, x = 0.8, and 71, = 0.15. It is possible to see from this
plot that the two-mode squeezing increases with the amplitude
of the parametric oscillator ¢ and for small values of #.
Moreover, the value of # at which the maximum squeezing
occurs decreases to zero as ¢ increases. Furthermore, Figure 5
clearly shows that the degree of squeezing increases due to the
presence of the parametric oscillator.
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F1GURE 2: Plots of the quadrature variance (equation (25)) versus 4
for A =100, x = 0.8, € = 0.399 and for different values of 7.
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Ficure 3: Plots of the minus quadrature variance (equation (25))
versus 7 for A = 100, ¥ = 0.8, 71, = 0.15 and for different values of e.
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FIGURE 4: Plots of the minus quadrature variance (equation (25))
versus 7 for k = 0.8, ¢ = 0.399, 7,;, = 0.15 and for different values of
the linear gain coefficient.

4. Detection of Entanglement

For continuous variables photon entanglement, several
sufficient inseparability criteria for a composite state have
been proposed [21, 26-36]. The most relevant method is the
logarithmic negativity which depicts the presence of
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FIGURE 5: A plot of the minus quadrature variance (equation (25))
versus € and # for A = 100, x = 0.8, and 7,;, = 0.15.

entanglement for two-mode continuous variables based on
the negativity of the partial transposition [22, 37, 38]. The
negative partial transpose must be parallel with respect to
entanglement monotone in order to obtain the degree of
entanglement. The logarithmic negativity is combined with
negative partial transpose in another case where Vg repre-
sents the smallest eigenvalue of the simplistic matrix [22]:

Io — /(02 — 4detT) (26)

2 >

Vsz

where the invariant and covariance matrices are, respec-
tively, denoted as

o=detX +detX, —2detX,, (27)
Z, 2

r =< . ) (28)
Zn 2

in which X, and X, are the covariance matrices describing
each mode separately while X, are the intermodal corre-
lations. The elements of the matrix in equation (28) are given

by
Ly = §<5<in + XX — (XX, (29)

in which 4, j = 1,2,3,4. The quadrature operators are de-
fined as X, =3a, +al, X,=i@!l -a,), X;=a,+al, and
X, =i(al —a,). With this introduction, the extended co-
variance matrix, which can be expressed in terms of
c-number variables associated with the normal ordering and
nothing that {a,a,) = {aja;), goes over into

A0 yx 0

0 A0 —y

r=X0AO, (30)

0 -y 0 A
where A =2{aja;) + 1, y = 2{a1a,), A =2{aja,) + 1 are

c-number variables associated with the normal ordering. The
logarithmic negativity for a two-mode state is defined as

Ey = max [0, —log,V]. (31)
The entanglement is achieved when Ey is positive within

the region of the lowest eigenvalue of covariance matrix
Vo<1
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Next on account of equation (29) along with the defi-
nitions of (31), one can readily show that

dets, = [2¢ala,) +1]%
dets, = [2(a}a,) +1]%, (32)
detx, = -4 a,)”.

It is also possible to establish that

2
detl = [\/detZldetZ2 - \/detEszdeth ] . (33)

As it can be noted from Figure 6, the degree of entan-
glement increases for smaller values of the initial preparation
of atoms but decreases for larger values. It can also be seen
that larger values of the linear gain coefficient produces a
robust entangled light. The maximum achievable degree of
entangled light in this case is 96%, and it occurs for A = 1000
and # = 0.02. This criterion also predicts the absence of
entanglement for # = 1 no matter how we manipulate the
rate of atomic injection in the absence of a parametric
amplifier.

It is not difficult to see from Figure 7 that the parametric
amplifier produces a considerable degree of entangled light
for very small value of the linear gain coeficient regardless of
how atoms are initially prepared. The maximum achievable
degree of entangled light in this case is 84.5%, and it occurs
for 71, = 0, A = 100, and # = 0.08. Moreover, it can be seen
in this figure that when the values of the mean photon
number of the thermal reservoir increases, the degree of
entanglement decreases.

On the other hand, Figure 8 shows that the effect of the
parametric amplifier for a large value of the linear gain
coefficient does not produce considerable changes to the
degree of entanglement. Hence, the maximum achievable
degree of entangled light in this case is 82%, and it occurs for
A =100 and # = 0.13. The behaviors of a nondegenerate
three-level laser with a nondegenerate parametric amplifier
and non-degenerate three-level laser without the parametric
amplifier appear to be the same for a very large value of the
linear gain coefficient (rate of atomic injection) with ex-
ception of the existence of the entanglement at the minimum
atomic coherence which represents absence of photons in
the cavity.

Furthermore, it is clearly shown in Figure 9 that for
large values of the linear gain coefficient A and the
parametric amplifier ¢, the enhancement of the maxi-
mum possible degree of entanglement is occurred.
However, for smaller values of the linear gain coeflicient
and the pumping mode, a robust entangled light is
produced.

5. Photon Statistics

In this section, we seek to study the statistical properties of
the cavity radiation of a three-level cascade laser, such as the
mean photon number, Mandel’s Q-factor, and the nor-
malized second-order correlation function for the system
under consideration.
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FIGURE 6: Plots of the smallest eigenvalue V¢ versus # for #,;, = 0.15,
£ =0.8, £¢=0.399 and for different values of the linear gain
coeflicient.

5.1. Mean Photon Number. In order to know about the
brightness of the generated light, it is necessary to study the
mean number of photon pairs describing the two-mode
cavity radiation that can be defined as

N =& ()e@)). (34)
It then follows that

N - % (<& (D, () +<a (Day (1] (35)

Since <{af () (t)) and {aj (t)a,(t)) represent the
mean photon numbers in mode a, and mode a,, respec-
tively, N can be interpreted as the mean number of photon
pairs. As it can be seen in equation (35), the term that
contains ¢ represents the contribution from the external
driving coherent light of the parametric amplifier to the total
mean photon number. Therefore, it is easy to verify that
equation (35) represents the mean number of photon pairs
of the system.

It is not difficult to see from Figure 10 that the mean
number of photon pairs increases with the linear gain co-
efficient for x = 0.8, € =0.399, 7n,, = 0.15 and for smaller
values of #, but it decreases for larger values. Moreover,
Figure 11 clearly indicates that the mean photon number of
the cavity modes increases with the amplitude of the co-
herent driving light e. In order to clearly see by what extent
the coherent fields enhance the mean photon number over
the laser system, we plotted in Figure 12 the mean number of
photon pairs versus ¢ and A for #=0.1, x=0.8, and
A, = 0.15. It is quite interesting to note from this figure that
the coherent fields enhance the mean photon number over
the laser system by several hundreds of mean photon
numbers. Therefore, the increase in the mean photon
number is observed in a region where the degree of two-
mode squeezing and entanglement is significant making the
system under consideration a viable source of intense
squeezed as well as entangled light. We hence note that
coupling the cavity to the thermal reservoir increases the
mean number of photon pairs, which we believe is an en-
couraging result.

——— 74y =0.00
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FIGURE 7: Plots of the smallest eigenvalue V versus # for A = 100,
x = 0.8, ¢ = 0.399 and for different values of 7,,.
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cavity radiation versus A and ¢ for x = 0.8, #,;, = 0.15, and 7 = 0.1.
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FiGure 10: Plots of the mean number of photon pairs (equation
(35)) versus # for k= 0.8, € = 0.399, %,;, = 0.15 and for different
values of linear gain coeflicients.
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FiGure 11: Plots of the mean number of photon pairs (equation
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FIGURE 12: A plot of the mean number of photon pairs (equation
(35)) versus ¢ and A for # = 0.1, ¥ = 0.8, and 7, = 0.15.
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FIGURE 13: Plots of the mean number of photon pairs (equation
(35)) versus 7 for A = 100, x = 0.8, € = 0.0 and for different values
of 71, = 0.15.

The result presented in Figure 13 indicates that the mean
number of photon pairs increases with the mean photon
number of the thermal reservoir at the minimum atomic
coherence #. The maximum possible value of the mean
number of photon pairs in this case occurs for 7, = 0.30 and
small # = 0. This is readily understandable since traversing
more thermal mean photon number 7,;, across the cavity
leads to the generation of more photons. We set ¢ = 0 so that
the dependence of the mean photon number on the pa-
rameter 7, is clearly evident from the figure.
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5.2. Mandel’s Q-Factor. It is a common experience that a
nonclassical photon number correlation can be studied
applying the measure of the departure of the photon sta-
tistics from the Poisson character. This measure of departure
can be represented by Mandel’s Q-factor defined as
~\2 ~
o - LMD~y (36)
O

where 7i = ¢'¢ is the photon number operator of a two-mode
cavity radiation. It is not difficult to verify that equation (36)
can be expressed by putting the operators in the normal
ordering as

202N a2
CPRGRPALGRE (37)

€'

where ¢ = (1/4/2) (@, + @,) is the annihilation operator that
describes the two-mode cavity radiation. With the help of
this, the normal ordering of the operators would not be
altered since @, and a, commute. Hence, it is possible to put
the resulting expression in terms of c-number variables
associated with the normal order as

GOy () + <y By (1))°

= X 38
< REGIO) (%
where y = (1/v2)(a; (t) + a, (t)). Hence, employing
equations (17) and (18), one obtains
Q- N+ (o (t)ﬁz (t)>2. (39)
N

It is well known that the negativity of Mandel’s pa-
rameter refers to a sub-Poissonian character of the photon
statistics that essentially refers to a nonclassical property.
Since the mean number of photon pairs and <« (t)a, (£))*
are positive, Mandel’s Q-factor in this case is definitely
greater than 0. This ensures that the generated radiation
demonstrates super-Poissonian photon statistics while
exhibiting nonclassical properties such as squeezing and
entanglement.

Figure 14 shows Mandel's Q-factor described by equa-
tion (39) versus € and 7 for A = 100, x = 0.8, and %,;, = 0.15.
This figure indicates that Mandel’s Q-factor for the given
system is definitely positive. This implies that the generated
laser light demonstrates super-Poissonian photon statistics.
From this plot, we see that Mandel’s Q-factor increased with
the parametric amplifier at the minimum atomic coherence
1, which is the maximum squeezing occurring point.

The result presented in Figure 15 indicates that Mandel’s
Q-factor increases with the decreasing value of the atomic
coherence # and with increasing the mean photon number
of the thermal light 7,,. However, Figure 16 shows a plot of
Mandel’s Q-factor of equation (39) versus ¢ and A for
n=0.1, k=0.8, and 7, = 0.15. The result in this figure
indicates that the linear gain coeflicient (rate of atomic
injection) increases the values of Mandel’s Q-factor with at
the maximum atomic coherence #. In these two figures, we
observe that the value of Mandel’s Q-factor is positive.

Moreover, as it can be described in Figure 17, the value of
Mandel’'s Q-factor enhanced with the amplitude of the
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FIGURE 14: A plot of Mandel’s Q-factor (equation (39)) versus ¢ and
n for A =100, x = 0.8, and 7, = 0.15.
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FI1GURE 15: Plots of Mandel’s Q-factor (equation (39)) versus # for
A =100, x = 0.8, ¢ = 0.399 and for different values of 7,,.

coherent light e. Therefore, in these two figures, we observe
that both the thermal reservoir and the driving coherent
light increase the value of Mandel’s Q-factor.

5.3. Photon Number Correlations. The normalized second-
order correlation function for the two-mode light can be
expressed as [39]

(ajala,a,)
(@aja,)<@ja,)
We realize that the operators in (39) are in the normal
order. Therefore, the second-order correlation function can

be expressed in terms of the c-number variables associated
with the normal ordering as

2)

( -
I (ara) (0 = (40)

(a (e, (1))
CHOLAORCHOLAGN

We plot, in Figure 18, the second-order correlation
tunction of the two-mode light versus # for A = 100, x = 0.8,
and € = 0.399 in the presence and absence of the thermal
light 7,,. We easily see from this figure that ggzﬂ)z (0) in-
creases with # in both cases.

On the other hand, the plots in Figure 19 indicate that
the parametric oscillator decreases the second-order cor-
relation function for the same value of #. As this function
deals with the correlation between the photon numbers, as
already seen in the plots, it would not be a direct measure of
the squeezing as well as entanglement of the given system.

9oy, @ =1+ (41)
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FIGURE 16: A plot of Mandel’s Q-factor (equation (39)) versus € and
A for n=0.1, k = 0.8, and 7, = 0.15.
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FIGURE 17: Plots of Mandel’s Q-factor (equation (39)) versus # for
A =10, ¥ = 0.8, i, = 0.15 and for different values of e.
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FiGURe 18: Plots of the normalized second-order correlation
function (equation (41)) versus # for A =100, x = 0.8, € = 0.399
and for different values of 7,;,.

Figure 20 shows the plots of the linear gain coefficient
described by equation (41) versus # and A = 100 for x = 0.8,
e =0.399, and 7,, = 0.15. It is not difficult to see from this
figure that the normalized second-order correlation function
increases significantly with the linear gain coefficient and the
atomic coherence #. From this, we conclude that the nor-
malized second-order correlation of two-mode generated
light increases as the degree of squeezing increases in
general. Moreover, the presence of the parametric oscillator
enhances the intermode correlation over the system.
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Ficure 19: Plots of the normalized second-order correlation
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FIGURE 20: A plot of the normalized second-order correlation
function (equation (41)) versus n and A =100 for x=0.8,
£ =10.399, and 7,;, = 0.15.

6. Conclusion

In this paper, we have studied the steady-state two-mode
squeezing and entanglement of the light produced by a
nondegenerate three-level cascade laser with a coherently
driven parametric amplifier and coupled to a two-mode
thermal reservoir in the linear and adiabatic approximation
schemes in the good cavity limit. Here. we have considered a
nondegenerate three-level laser in which the pump mode
emerging from the parametric amplifier does not couple the
top and bottom levels of the injected atoms [17]. This could
be realized by putting on the right-side of the nonlinear
crystal a screen which absorbs the pump mode. Moreover,
we carry out our analysis by applying the master equation
describing the dynamics of the optical system. Employing
the solutions for c-number cavity mode variables along with
the correlation property of noise forces associated with
normal ordering, we obtained quadrature squeezing, the
photon entanglement, the mean number of photon pairs,
Mandel’s Q-factor, and the second-order correlation func-
tions of the two-cavity light.

It is found that the two-mode cavity radiation exhibits
squeezing properties under certain conditions pertaining to
the injected atomic coherence, where the degree of squeezing
increases with the linear gain coefficient and the amplitude
of the driving coherent light ¢. However, the linear corre-
lation coeflicient increases with the degree of squeezing. But
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as the thermal light increases, the squeezing decreases.
Moreover, we have found that the parametric amplifier
produces a considerable degree of entangled light for a very
small value of the linear gain coeflicient regardless of how
atoms are initially prepared. Generally, we have found that
the degree of entanglement for the two-mode cavity light is
directly related to the two-mode squeezing. Whenever there
is squeezing in the two-mode light, there exists entangle-
ment in the system. Since the parametric amplifier intro-
duces additional squeezing to the system, the degree of
entanglement has been enhanced for the given system. We
have showed that the normalized second-order correlation
of two-mode generated light increases as the degree of
squeezing increases in general. Moreover, the presence of the
parametric oscillator enhances the correlation of the two
cavity light modes over the system. Finally, the quantum
discords as a quantum correlation property can be inves-
tigated in the future.
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