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Abstract

We present a method to solve the binding problem by using a quantum algorithm for the

retrieval of associations from associative memory during visual scene analysis. The prob-

lem is solved by mapping the information representing different objects into superposition

by using entanglement and Grover’s amplification algorithm.

Introduction

Quantum machine learning by a quantum computer can take logarithmic time in the number

of vectors and their dimension [1–4]. This time is a significant exponential speed-up over clas-

sical algorithms; however, such a speed-up requires quantum input and quantum output [3].

In the absence of quantum input, the data must be read, which results in a linear time complex-

ity. We can use Grover’s algorithm to achieve a quadratic speed-up without requiring the out-

put states to be quantum states. However, most quantum machine learning algorithms and

quantum associative memories that are based on Grover’s algorithm suffer from the unsolved

reading destruction problem (RD problem) [3–5]:

• The reading problem: The amplitude distribution of a quantum state is initialized by reading

N data points. Although the existing quantum algorithm requires only Oð
ffiffiffiffi
N

p
Þ steps and is

faster than the classical algorithms, N data points must be read. Hence, the complexity of the

algorithm does not improve and is OðNÞ ¼ OðNÞ þ Oð
ffiffiffiffi
N

p
Þ.

• The destruction problem: A quantum associative memory [6–8] for N data points of dimen-

sionm requires onlym or fewer units (quantum bits). However, this memory can be queried

only once because of the collapse during measurement (destruction); hence, quantum asso-

ciative memory does not have any advantages over classical memory.

We identify a quantum algorithm with a Wilshaw’s associative memory model [9, 10] that

does not suffer from the RD problem. The visual (sub-symbolic) variable binding algorithm for

Wilshaw’s associative memory involves intensive computation because it corresponds to a

combinatorial problem [11, 12]. We suggest some mechanisms based on quantum computa-

tion to reduce this high complexity and present a hybrid architecture from the quantum

computation perspective. In the proposed architecture, different objects are mapped into
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superposition representing different combinations. Wilshaw’s associative memory performs

the familiarity discrimination task [13] that can be efficiently represented by a quantum oracle.

Grover’s algorithm considerably improves the time complexity. The main contributions of

this interdisciplinary paper are the relation of sub-symbolic variable binding, the usage of

Wilshaw’s associative memory for familiarity discrimination and its integration into a hybrid

quantum computation architecture.

This paper comprises a classical section that reviews previously published work [11, 12, 14]

related to the sub-symbolic variable binding approach and an integration section that describes

the new quantum computational approach.

Materials and Methods

Sub-symbolic Binding

The binding problem determines a method to connect all of the physically separated fragments

of a complex object to enable them to be processed as a whole by an agent. For example, a red

block is obviously a different object from a blue block. The binding problem can be divided

into two subproblems: the segregation problem and the combination problem. The segregation

problem involves the determination of a method to segregate the elements in an input such

that they represent objects that can also be features. The combination problem involves the

determination of the elements that represent an object or a category. In sub-symbolic binding,

the elements are represented by sub-symbols. The sub-symbolic representation often corre-

sponds to a pattern that mirrors the manner in which the biological sense organs describe the

world. Patterns are represented by vectors. Thus, the vectors correspond to sub-symbols. An

example of a sub-symbolic binding problem is the definition of a category of objects in a visual

scene [11, 12].

Sub-symbolic combination problem. Suppose 7 objects were recognized in the visual

scene. We represent the 7 objects at various positions in the scene by the symbols A, B, C, D,

E, F, G. The task is the identification of a category that is formed by the objects represented by

the set B, C, G [11, 12, 14]. We determine whether each of the symbols B, C, G is present in the

set that represents the scene. We also verify whether a set representing a category is a subset of

the set representing a scene. This task is described by proto logic sets [14]. Proto logic operates

on sets; it verifies whether a subset is present in a certain set. The proto logic task seems trivial

in the case of sets and symbols. However, if the category (set of sub-symbols) is stored in an

associative memory, the task is non-trivial and is an example of the combination problem.

The combination problem determines a method to combine individual objects or features

into a single category. In an associative memory, we do not have direct access to the stored

information.

An associative memory operates on vectors of fixed dimensions. Two of these vectors are

always associated; this process of association is called learning. The first vector is called the

address vector, and the second vector is called the retrieved vector. After the learning process,

the address vector is presented to the associative memory, and the retrieved vector is deter-

mined. This process is called association. A distinction exists between heteroassociation and

auto-association. An auto-association is present if the retrieved vector represents the recon-

struction of the faulty address vector. A heteroassociation is present if the retrieved vector is

different from the address vector. In our model, we store auto-associations, i.e., the address vec-

tor is the same as the retrieved vector. After a retrieved vector is determined, the similarity

between the determined retrieved vector and the address vector is calculated. A greater similar-

ity indicates a higher probability of the corresponding address vector being stored in the asso-

ciative memory.
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A set of objects (a category) is represented by a vector created by concatenating the sub-vec-

tors that represent the objects. ForM sub-vectors, the number of possible orderings of the cor-

responding sub-vectors isM!. To verify whether a set ofM sub-vectors representing a category

is a subset of the set of N sub-vectors representing a scene, there are

L ¼ PermðN;MÞ ¼ N!

ðN �MÞ! ð1Þ

L possible orderings [11, 12, 15]. For N = 7 andM = 3, we must pose L = 210 queries to the

associative memory, as shown in Fig 1.

The combination problem leads to an combinatorial explosion for large N andM values, for

example for N = 100 andM = 4 the value 9.41094 � 107. From the L permutations only the

familiar patterns represent visual categories that were learned.

Wilshaw’s Associative Memory

An example for an associative memory is the formal neural net model that integrates the

assembly concept [9, 10], also called Lernmatrix or Wilshaw’s associative memory. The biologi-

cal and mathematical aspects of the Wilshaw’s associative memory were studied by Wilshaw

and Palm [9, 10, 16]. It was shown that Donald Hebb’s hypothesis of cell assemblies as a biolog-

ical model of internal representation of events and situations in the cerebral cortex corresponds

to the formal Wilshaw’s associative memory model. The Lernmatrix [17, 18] is composed of a

cluster of units which represent a simple model of a real biological neuron. The unit is com-

posed of weights which correspond to the synapses and dendrites in the real neuron. They are

described by wij in Fig 2. T is the threshold of the unit. We call the Lernmatrix simply “associa-

tive memory” if no confusion with other models is possible. Two pairs of binary vectors are

associated, this process of association is called learning. The first of the two vectors is called the

address vector and the second, the retrieved vector. After learning, the address vector is pre-

sented to the Lernmatrix and the retrieved vector is determined.

Learning. In the initialization phase of the associative memory, no information is stored.

Because the information is represented in weights, they are all initially set to zero. In the learn-

ing phase, pairs of binary vector are associated. Let x be the address vector and y the retrieved

vector, the learning rule is:

wnew
ij ¼

1 if yi � xj ¼ 1

wold
ij otherwise

8

<

:
ð2Þ

Retrieval. In the one-step retrieval phase of the associative memory, a fault tolerant

answering mechanism recalls the appropriate answer vector for a address vector x. For the pre-

sented address vector x, the most similar learned xl address vector regarding the Hamming dis-

tance is determined and the appropriate retrieved vector y is identified. For the retrieval rule,

the knowledge about the correlation of the components is sufficient. The retrieval rule for the

determination of the retrieved vector y is:

yi ¼
1

Pn

j¼1
wijxj � T

0 otherwise:

(

ð3Þ

where T is the threshold of the unit. The threshold is set as proposed by [19] to the maximum
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of the sums
Pn

j¼1
wijxj:

T :¼ max
1�i�B

Xn

j¼1

wijxj

( )

: ð4Þ

Only the units which are maximal correlated with the address vector are set to one.

Familiarity Discrimination

For the computation of the reliability of the the answer for the heteroassociation a backward

projection of the associative memory is required [12]. The backward projection corresponds to

a bidirectional associative memory (BAM) [20]. This time the learned matrix is cued with the

retrieved vector and the best address vector is retrieved. Formally, y is the address vector, and

the retrieved vector which should be determined is xl. The categorization rule for the determi-

nation of the retrieved vector xl is:

xlj ¼
1

Pm

i¼1
wijyi � T�

0 otherwise:

(

ð5Þ

Fig 1. Retrieval phase. In the retrieval phase L permutations are formed. Each permutation represents a address vector xi, i 2 {1, . . ., L}.
Some of the address vectors represent a category, given that the determined retrieved vector is similar to the address vector.

doi:10.1371/journal.pone.0162312.g001
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This means that the synaptic matrix used is a transposition of the matrix which is used for

the forward projection. T� is the threshold of the unit. The threshold is set to the maximum

sum
Pm

j¼1
wijyj:

T� :¼ max
1�j�A

Xm

i¼1

wjiyi

( )

: ð6Þ

Let x be the question vector and y the retrieved vector that was determined by the associa-

tive memory for example by a part of the associative memory. First, the vector xl which belongs

to the vector y is determined. These two vectors form together a vector pair xl y which is stored

in the associative memory. It was either created by learning, xl and y were learned together, or

created through overlap with other already learned vector pairs. The vector xl is determined by

a backward projection of the vector y. In the second step, the similarity of the stored address

vector xl to the actually presented vector x is determined. The greater the similarity of the vec-

tor xl to the vector x, the more reliable the retrieved vector y. We can measure the similarity by

Fig 2. The associative memory. The associative memory is composed of a cluster of units.

doi:10.1371/journal.pone.0162312.g002
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the Hamming distance function

d
1
ðx; xlÞ ¼k x � xlk

1
¼ jx

1
� xl

1
j þ jx

2
� xl

2
j þ � � � þ jxm � xlmj ð7Þ

or by the scalar product

hxjxli ¼ coso� k x k � k xl k; ð8Þ

that measure of the projection of one vector onto another.

For auto-association the task there is no need for a backward projection. In the case of auto-

association n =m. We can measure the similarity by the scalar product with

y ¼ W � x ð9Þ

and

hxjyi ð10Þ

sinceW is symmetric with n =m. This is equivalent to the quadratic form

net ¼ x> �W � x ¼
Xn

i¼1

Xn

j¼1

wij � xi � xj: ð11Þ

The quadratic form can be as well be interpreted as the energy function [13]

H ¼ �
Xn

i¼1

Xn

j¼1

wij � xi � xj: ð12Þ

The threshold operation to determine similarity sim is applied to the scalar value net,

sim ¼
1 net � t

0 otherwise:

(

ð13Þ

with the threshold

t :¼ T2 ð14Þ

sim = 1 indicates that the question vector x was stored in the associative memory, sim = 0 that

is was not. This operation called the familiarity discrimination, in familiarity discrimination

there is no need per se to extract the whole answer pattern [13]. In the following we will only

preform auto-association.

Visual Scene Coding

The visual system recognizes objects in an image. It was suggested [21] that the brain includes

two mechanisms for visual categorization [22]: one for the representation of the object and the

other for the representation of the localization [23]. The first mechanism is called the what

pathway and is located in the temporal lobe. The second mechanism is called the where path-

way and is located in the parietal lobe. According to this division, the identity of a visual object

can be coded apart from its location. A visual scene can be either represented by an image or by

objects and their position in the visual field. Objects are represented by pictograms together

with their corresponding position in the image. This is a simple form of structured and com-

pressed representation of a mental image.

The definition of a visual category (see Fig 3) is motivated by the verbal category definition

that is a set of prototypical features [24], such as red, round and sweet [25, 26].

The Quantum Binding Problem in the Context of Associative Memory
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According to [11, 12, 14, 27] the identity of an object can be represented by a binary pattern

which is normalized for size and orientation. Its location in the x-axis is represented by a binary

vector of the size of the abscissa of the pictogram representing the object. The location in the y-

axis is likewise represented by a binary vector of the size of the coordinate of the pictogram rep-

resenting the object. A binary bar of the size and position of the object in the pictogram of the

state represents the location and size (see Fig 4) in each of those vectors. The three vectors that

compose the cognitive entity are called associative fields. Each associative field is represented

Fig 3. Category. Category “tower” in the blockworld. Blocks can be placed in different positions and picked
up and set down. There are two different classes of blocks: cubes and pyramids.

doi:10.1371/journal.pone.0162312.g003
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by a binary vector of a fixed dimension; each cognitive entity is formed by the concatenation of

the associative fields [11, 12, 14]. A cognitive entity is represented by a binary vector formed by

the concatenation of binary vectors which represent the three associative fields [11, 12, 14, 27].

Associations

A cognitive entity is represented by a binary vector formed by the concatenation of binary vec-

tors which represent the three associative fields. A visual category “tower” is represented in the

blockworld as shown in Fig 3. It corresponds to a set of prototypical visual objects at certain

position. The address and retrieved vectors are represented by a binary vector formed by the

concatenation of three binary sub-vectors which represent the cognitive entities. Both the ques-

tion and the answer vectors have dimension 900 because each cognitive entity is described by a

binary vector of dimension 300 (= p). The representation of the category “tower” is shown in

Fig 5. Associations representing different positions of the category “tower” are learned by the

associative memory and can be recognized later despite the presence of noise. Ten associations

representing ten different positions of the category “tower” are learned by the associative mem-

ory. After learning is complete, a weight matrix of dimension n = 900 emerges; the weight

matrix consists of three parts, each of size p = 300 and n = 3 � p = 3 � 300.

Retrieval

In the following example, we indicate the recognition of the category tower (Fig 3) from the

pictogram in Fig 6 that is represented by nine different objects. To determine the visual cate-

gory present, a familiar pattern is determined. During familiarity discrimination, there is no

need to extract the entire answer pattern. The corresponding vector values of

720 ¼ 10!

ð10� 3Þ!

combinations are determined, and the category tower is identified from the noisy input by

Fig 4. Representation of an object in a 2D world. (a) 2D world. (b). The identity of an object is represented in the first associative field by a
binary pattern which is normalized for size and orientation. Its location corresponding to the abscissa is represented by a binary vector in the
second associative field. The location corresponding to the ordinate is likewise represented by a binary vector in the third associative field of
the size of the ordinate of the pictogram representing the state. A binary bar of the size and position of the object in the pictogram of the state
represents the location.

doi:10.1371/journal.pone.0162312.g004
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using Eqs 11 and 13 with threshold t = 0.87. After determining the correct input vector from

the 720 possible combinations, the associative memory is queried, and the answer vector repre-

senting the category tower without noise is determined (see Fig 3).

Results and Discussion

Quantum Hybrid Algorithm for Sub-symbolic Binding

In our proposed hybrid approach, we will use Eqs 11 and 13 to build an oracle and Grover’s

algorithm to speed up the combination of Eq 1. By doing so, we can overcome the RD problem.

After determining the correct input vector from all possible combinations, the classical associa-

tive memory is queried, and the answer vector representing the category is obtained.

Fig 5. Representation by cognitive entities. The representation of the category “tower” by three cognitive entities.

doi:10.1371/journal.pone.0162312.g005
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To simplify the computational process, we can approximate L by permutations with repeti-

tion

P ¼ NM ð15Þ

where P> L. Based on this simplification, we develop a reversible circuit that generates all pos-

sibleM permutations with repetitions of the N objects. The register |xi should represent the
superposition of the N different objects that represent a visual scene; the read time would be

O(N). We start with the assumptionM = 1. In this case, P = N, and the superposition corre-

sponds to N objects. Each represented object is identified by a unique address with a value

ranging from 1 to N. The task involves loading the corresponding representation of the object

having a given address α into the register |xi by a reversible circuit. This task is equivalent to
the process of initializing the amplitude distribution of a quantum state, as described in [28,

29]. However, instead of describing the distribution by using a quantum circuit, we load the

required values from a given set by using a reversible circuit.

Fig 6. Visual representation by a pictogram. Visual representation of the world with nine different objects
and with the category “tower” including noise. The state of the world is described by a pictogram of 100 × 100
pixels; the pictogram is represented by N = 10 cognitive entities, and the category tower is described byM = 3
cognitive entities.

doi:10.1371/journal.pone.0162312.g006
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Reversible load. Each object is represented by a vector (of size p) describing the object, the

corresponding address and a flag that is set to 0,

scene ¼ ðz
1
; address

1
; flag

1
Þ; ðz

2
; address

2
; flag

2
Þ; � � � ; ðzN ; addressN ; flagNÞ

scene ¼ ðz
1
; 1; 0Þ; ðz

2
; 2; 0Þ; � � � ; ðzN ;N; 0Þ:

For a given address α, the corresponding address is determined, and the flag is set to one.

This task can be performed by a reversible circuit by subtracting the given address α from the

unique address, verifying whether the difference is zero and checking whether the result is

zero. After this operation, the flag is equal to one. The loading operation is performed by the

reversible circuit load(α, scene)

xaddress ¼ loadða; sceneÞ ¼: ðz
1
^ flag

1
Þ _ ðz

2
^ flag

2
Þ _ � � � _ ðzN ^ flagNÞ:

using N � (N−1) � p reversible gates. The reversible circuit corresponds to the reversible operator
Uload

jxaddressijaijscenei ¼ Uloadj0 � � � 0ijaijscenei ð16Þ

that loads the object representation from scene to a given address α and the resulting waste bits

into |xaddressi. Each binary ^ and _ generates one waste bit due to the reversible implementa-

tion by a Toffoli gate.

Superposition. The superposition of the address is generated by a Hadamard gate with

n ¼ 2
dlog2Ne � N ð17Þ

and

ja�i :¼ Hnj00 � � � 0i
|fflfflfflfflffl{zfflfflfflfflffl}

n bits

¼ 1
ffiffiffiffi

2
n

p
|{z}

amplitude

X2
n�1

x¼0

jxi
|{z}

n bits

: ð18Þ

In the case ν> N the scene is represented by ν−N additional waste objects.

Parallel load. We can perform a parallel loading of the corresponding representation of

the object with a certain address represented in the superposition of addresses |α�i along with
the resulting waste bits into the register |ψxi by using the reversible operator Uload.

Uloadj0 � � � 0ija�ijscenei ¼ Uloadj0 � � � 0i � Hnj0 � � � 0ijscenei ð19Þ

jcxija�ijscenei ¼ Uloadj0 � � � 0ija�ijscenei ð20Þ

The register |ψxi is in superposition because |α�i is in superposition. Further, it is entangled

with the register |α�i that acts as a pointer to the values represented in |scenei. Because |scenei
is equal in each superposition, it is not entangled with |ψxi and |α�i.

Tensor operation. ForM> 1 we simply tensor |ψxi|α�iM times

jcxija�i � jcxija�i � � � � � jcxija�i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M times

jscenei ð21Þ

For simplicity we define

jx�i :¼ jcxija�i � jcxija�i � � � � � jcxija�i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M times

ð22Þ
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it follows

jx�ijscenei ¼ jcxija�i � jcxija�i � � � � � jcxija�i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M times

jscenei: ð23Þ

The register |x�i represent P0 superpositions of all possible objectsM-permutations with

repetition of the N objects as well as the entangled addresses and waste bits with

P0 ¼ nM ¼ 2
dlog2NeM � NM: ð24Þ

The complexity of the operation is of size O(N �M).

Quantum Oracle for Familiarity Discrimination

The quadratic form can be simplified because the input vector x and the weight matrixW are

binary

net ¼
Xn

i¼1

Xn

j¼i

wij ^ xi ^ xj: ð25Þ

This operation requires 2 � n2 AND operations and n2 full adder gates. A full adder is usually

a component in a cascade of adders that adds together several bits, for example a four byte

adder. A full adder adds two bits together with a bit carried in form another full adder. Its out-

put is one bit together with the bit that is carried out to another full adder (overflow bit).

Reversibles circuit for familiarity discrimination. A reversible full adder can be build

out of Toffoli gates. It itself can be represented as the Peres full adder gate [30]. The Peres full

adder gate does not change the first input bit x1. The operation is described by the following

mapping on three input bits x1, x2, x3 with B = {0, 1}

P : B4 ! B4
: Pðx

1
; x

2
; x

3
; x

4
Þ ¼ ðy

1
; y

2
; y

3
; y

4
Þ

Pðx
1
; x

2
; x

3
; x

4
Þ ¼ ðx

1
; ðx

1
� x

2
Þ; ðx

1
� x

2
� x

3
Þ; ðx

1
� x

2
Þ ^ x

3
� x

1
^ x

2
� x

4
Þ

It computes the full adder operation with the ancilla (fixed) bit x4 set to 0

Pðx
1
; x

2
; x

3
; 0Þ ¼ ðx

1
; ðx

1
� x

2
Þ; ðx

1
� x

2
� x

3
Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

sum

; ððx
1
� x

2
Þ ^ x

3
� x

1
^ x

2
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

carry

Þ

bit number x1 and x2 are the operands and x3 is the bit carried in from the previous less signifi-

cant stage.

To determine if the question vector x was stored in the associative memory we subtract

from the threshold net from t

sim ¼
1 ðt � netÞ < 0

0 otherwise

(

ð26Þ

with the threshold

t :¼ T2: ð27Þ

A full subtractor can be designed using the same approach as that for an adder. Three bits

are involved in performing the subtraction for each bit of the difference: the minuend x1, the

subtrahend x2, and the borrow in from the previous (less significant) bit order position x3.

The full subtractor gate does not change the first input bit x1. It performs the full subtractor
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operation with the ancilla (fixed) bit x4 set to 0.

Sðx
1
; x

2
; x

3
; 0Þ ¼ ðx

1
; ðx

1
� x

2
Þ; ðx

1
� x

2
� x

3
Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

subtraction

; ð:x
1
^ ðx

2
_ x

3
Þ _ x

2
^ x

3
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

borrowed bit

Þ

where bit numbers x1 and x2 are the operands, and x3 is the borrowed bit. The value of sim can

be determined from the borrow bit in the result; if the borrow bit is equal to one, then sim = 1,

otherwise sim = 0. This operation requires n2 full subtractor gates. The reversible familiarity

discrimination is feasible because it requires 4 � n2 reversible gates (2 � n2 and gates, n2 full sub-
tractor gates and n2 full adder gates).

The reversible circuit corresponds to the reversible operator USim. Permutation is a revers-

ible operation; therefore, |x�i can be rearranged in such a way that the operator USim accesses

only the object representation. In addition to the object description, USim requires the weight

matrix representation as a binary vector w. The results or the sums, ^ operations, subtraction

operations and waste bits are mapped into the register |resulti.
jresultijx�ijsceneijwi ¼ USim � j0 � � � 0ijx�ijsceneijwi ð28Þ

A single bit, the borrow bit, determines the familiarity discrimination and whether the sub-

traction is negative; if the borrow bit is equal to one, then sim = 1, otherwise sim = 0. We use a

circuit UCNOT composed of a controlled not gates to copy the result represented in the borrow

bit into a single bit sim.

jsimijresultijx�ijsceneijwi ¼ UCNOT � j0ijresultijx�ijsceneijwi ð29Þ

In quantum computation it is not possible to reset value of the register |resulti. Instead we
un-compute the former operations of USim by applying the U�1

Sim operator.

jsimij0 � � � 0ijx�ijsceneijwi ¼ U�1

Sim � jsimijresultijx�ijsceneijwi ð30Þ

After these operations, the result of the familiarity operation is represented in the bit |simi,
which is in the basis state |1i or |0i. The registers |simi and |x�i are entangled. The remaining

registers |scenei, |Wi and |0� � �0i are not entangled because they are equal. We simplify the

notation by defining the global operator UF. The unitary operator UF represents our quantum

oracle that marks the solution by the bit sim; it is composed of the operators USim, UCNOT and

U�1
Sim. Its operation corresponds to

jsimij0 � � � 0ijx�ijsceneijwi ¼ UF � j0ij0 � � � 0ijx�ijsceneijwi: ð31Þ

Grover’s iteration

The number of solutions (in our case, categories) can be determined efficiently by Quantum

Fourier Transform [31], [32].

One category present. If one solution is present, Grover’s amplification [33], [34], [35],

[36], [33], [33] algorithm requires

O 2
dlog2Ne� �M

2

� �

	 O N
M
2

� �
¼ O

ffiffiffiffiffiffiffi

NM
p� �

ð32Þ

applications of the quantum oracle [32], [31] UF

jsimij0 � � � 0ijx�ijsceneijwi ¼ UF � j0ij0 � � � 0ijx�ijsceneijwi: ð33Þ

to determine the correct input vector representing a category that was stored in the associative
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memory with high probability. After determining the correct input vector, the classic Wil-

shaw’s associative memory is queried, and the vector representing the category without noise is

determined.

Several categories present. For r possible categories, only one category is determined with

the cost.

O
2
dlog2Ne

r

� 	M
2

 !

ð34Þ

To determine all of the categories, the algorithm can be repeated several times until r differ-

ent input vectors representing the categories are measured. An alternative approach would be

to unlearn the associative memory specified byW from the already recognized category [37].

Cost Analysis

The reversible load requires N � (N−1) � p reversible gates and the reversible familiarity discrim-

ination requires 4 � n2 reversible gates with

4 � n2 ¼ 4 � ðp �MÞ2:

Both operation are feasible and require the same number of gates as a classical application.

The time complexity of the quantum hybrid algorithm for sub-symbolic binding is significant

better then the classical (naïve) approach. For simplification of the computational process L is

approximated by P permutations with repetition for one present category. The costs of the

algorithm are

O
ffiffiffiffiffiffiffi

NM
p� �

¼ O
ffiffiffiffiffiffiffi

NM
p� �

þ OðN �MÞ ð35Þ

with

2
dlog2Ne� �M

2
<< L ¼ PermðN;MÞ < NM ¼ P: ð36Þ

Conclusion

Using Grover’s algorithm, we could achieve a quadratic speed-up without requiring the output

states to be quantum states. For example, let us consider a range query vector y from a collec-

tion of N vectors,

x
1
; x

2
; x

3
; � � � ; xN

all vectors xi that are �-similar according to the distance function d are searched

dðxi; yÞ < �: ð37Þ

Assuming that the collection of vectors is represented in a superposition, e.g., in |ψi, the
cost to determine one possible �-similar vector would be Oð

ffiffiffiffi
N

p
Þ using the quantum oracle

described by Eq 37. The assumption that the speed-up is quadratic is not realistic in practice

due to the RD problem; we are required to read N data points and can query only once because

of the collapse during measurement (destruction). If the collection of vectors is represented in

a superposition, e.g., in |ψi, oould we copy |ψi before the measurement? An operation that

would produce a copy of an arbitrary quantum state such as |ψi is not possible; we cannot copy
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non-basis states because of the linearity of quantum mechanics. Due to the collapse during

measurement (destruction), no advantage over a classical algorithm can be achieved.

Instead of being represented by units in superposition [6–8], the quantum associative mem-

ory is described by a quantum oracle for familiarity discrimination. The input represents per-

mutations of visual objects by superposition. This architecture reduces the computational

complexity and represents the relation between the associative memory and a quantum algo-

rithm by a familiarity discrimination task. The proposed approach is a hybrid algorithm

because after determining the correct input vector, the classic Wilshaw’s associative memory is

queried, and the vector representing the category without noise is determined.

Some classical improvements to the classical naive approach were suggested in [11, 12] and

involved a more complicated architecture that does not scale up. It is an open question whether

such a quantum hybrid approach has any relation with the human brain. It should be noted

that the associative memory performs a classical operation and that the quantum aspect

involves a familiarity oracle that performs a subconscious determination of the correct input.

In this paper, we present a method to map an algorithm with an associative memory to Gro-

ver’s amplification algorithm. This mapping may serve as an inspiration for other related algo-

rithms and problems.
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