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Abstract. Sampling is an important primitive in probabilistic and quantum algorithms. In
the spirit of communication complexity, given a function f : X × Y → {0, 1} and a probability
distribution D over X × Y , we define the sampling complexity of (f,D) as the minimum number of
bits that Alice and Bob must communicate for Alice to pick x ∈ X and Bob to pick y ∈ Y as well as
a value z such that the resulting distribution of (x, y, z) is close to the distribution (D, f(D)).

In this paper we initiate the study of sampling complexity, in both the classical and quantum
models. We give several variants of a definition. We completely characterize some of these variants
and give upper and lower bounds on others. In particular, this allows us to establish an exponential
gap between quantum and classical sampling complexity for the set-disjointness function.
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1. Introduction. A central question in quantum information theory is the
amount of information that can be encoded into n qubits. There are different ways
to formulate this question and, surprisingly, they yield completely different answers.
The most natural variant of this question is the maximal amount of mutual informa-
tion that can exist between a classical random variable X and a classical probability
distribution Y that is obtained from a short quantum encoding of X. More than two
decades ago Holevo [10] proved that the mutual information can be at most the num-
ber of qubits communicated. That is, although 2n−1 complex numbers are necessary
to specify the state of n quantum bits, only n bits of information can be retrieved
from a superposition on n quantum bits, and communicating qubits is not more useful
than just communicating classical bits.

However, there is something in quantum bits that is more powerful than classical
ones. The first demonstration of that was by Bennett and Wiesner [5] who showed that
if the two parties share predefined entangled qubits (that are absolutely independent
of the message), then Alice can communicate 2n classical bits to Bob using only n
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communication qubits.
Another example was supplied by Ambainis et al. [3] and by Nayak [14], where

Alice’s task was to encode m classical bits into n qubits (m > n) such that Bob
could choose to read any one of the m encoded bits of his choice (thereby possibly
destroying the information about the remaining m−1 bits). On the positive side they
showed a scheme beating Holevo’s bound, but on the negative side they showed that
n can be no smaller than Ω(m).

A rich hunting ground for relevant examples is the communication complexity
model [21, 20]. Buhrman, Cleve, and Wigderson [6] considered the disjointness func-
tion, where Alice and Bob get two subsets x, y of [1, . . . , n], and DISJ(x, y) = 1 iff x
and y are disjoint. It is well known that any classical probabilistic protocol must ex-
change a linear number of communication bits. On the other hand, they showed that
the task can be carried out with only O(

√
n log(n)) quantum bits. The result is based

on Grover’s quantum search algorithm [9]. This provided the first asymptotic sepa-
ration in power between classical and quantum communication. Recently, Razborov
[17] showed an Ω(

√
n) lower bound on the quantum communication complexity of the

problem, and Aaronson and Ambainis [1] showed that Razborov’s bound is tight up
to constant factors.

Buhrman, Cleve, and Wigderson [6] also gave another communication task based
on the Deutsch–Jozsa problem [8], where the number of classical bits required to
compute a function with zero error is exponentially larger than the corresponding
number of quantum bits. However, there is a probabilistic protocol with a small error
probability where the number of bits exchanged is as small as the number exchanged
by the quantum protocol. Raz [19] showed such an exponential gap for a partial
function even in the presence of errors. However, the result applies only for partial
functions when the two players are given a promise that their inputs come from a
small (in fact, tiny) set of possible inputs.

In this paper we give the first example of a communication task for a total func-
tion which can be carried out by transferring exponentially fewer quantum bits than
classical bits even when error is allowed. We consider the problem DISJk that is the
disjointness problem on cardinality k subsets x, y ⊆ [n]. However, we do not con-
sider the number of communication bits required to compute the function, but rather
the number of communication bits required to sample the function. The task is the
following: Alice has a cardinality k subset S ⊆ {1, . . . , n}, and Bob must pick a uni-
formly random cardinality k subset T ⊆ {1, . . . , n} disjoint from S. We consider the
case k = Θ(

√
n), and give a quantum protocol in which Alice sends O(log n · log 1/ε)

quantum bits to Bob, enabling him to sample from a distribution which is ε close (in
total variation distance) to the desired uniform distribution on subsets disjoint from
S. We also show that any purely classical protocol for this task must involve the
exchange of Ω(

√
n) bits between Alice and Bob.

We observe that applying Holevo’s bound to the quantum protocol yields the
following corollary: Alice and Bob can sample (with a small error) two disjoint subsets
of cardinality

√
n such that the number of bits of information that Bob has about

Alice’s subset (or that Alice has about Bob’s subset) is bounded by the number of
qubits transmitted, which is O(log(n) · log(1/ε)). It is an open question whether this
secrecy can be amplified so that Alice and Bob have arbitrarily small amounts of
information about each other’s subsets.

More generally, given a function f : X × Y → {0, 1}, we consider three commu-
nication complexity measures, which we now informally discuss (and formally define
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in section 2):
• The usual communication complexity of f , where Alice gets input x, Bob gets

input y, and we measure the number of communication bits/qubits needed
to compute f(x, y). We denote the classical probabilistic communication
complexity by Rε(f), where ε is the error probability, and this probability
is over the random coins of Alice and Bob. The communication complexity
when no error is allowed is denoted by D(f). The quantum communication
complexity is denoted by Qε(f).

• The communication complexity of generating the superposition of the func-
tion. Here, there is no input to the two parties, and we measure the number of
qubits needed to generate the superposition

∑
x,y(−1)f(x,y)|x, y〉, where Alice

holds the X register and Bob the Y register. We call this the complexity of

generating the function, and denote it by
•
Qε (f).

• The communication complexity of sampling values of f . Here, Alice and Bob
are again given no input, and they want to sample (x, y, z = f(x, y)), where
Alice holds x and Bob holds y. We call this the complexity of sampling the

function, and denote it by
◦
Rε (f) in the classical case and

◦
Qε (f) in the

quantum case.
For formal definitions, see section 2. As expected, sampling is easier than generat-

ing, which in turn is easier than solving the problem on a given instance,
◦
Qε (f) ≤

•
Qε (f) ≤ Qε(f). For the precise statements we prove, see Lemmas 5.1 and 5.2.

We show a tight characterization of
•
Qε (f), the complexity of generating a func-

tion. Given f , we define the matrix Mf , Mf [x, y] = (−1)f(x,y). We show that
•
Qε (f)

relates to the best low-rank approximation of Mf , namely,

•
Qε (f) ≈ min

A:||A−Mf ||22≤ε
log(rank(A)).

We believe that this characterization is important by itself. From that we deduce that

•
Qε (DISJk) = O(log n · log 1/ε).

We also show, using a combinatorial lemma of Babai, Frankl, and Simon [4], that
for some constant ε > 0

◦
Rε (DISJk) = Ω(

√
n),

establishing an exponential gap between classical and quantum sampling. Also, as
we can efficiently quantum sample (generate) the DISJk function, we can also effi-
ciently quantum sample (generate) the DISJ function. Razborov’s lower bound [17]
then shows an exponential gap between quantum sampling (generating) and normal
quantum communication complexity.

We conclude with a remark concerning the log-rank conjecture in communication
complexity. The conjecture asks whether always D(f) ≤ Poly(log(rank(Mf ))). Raz
and Spieker [18] were the first to show a superlinear gap, and the biggest gap known
today, due to Nisan and Wigderson [15], exhibits an f with D(f) ≥ log(rank(Mf ))1.6...

(see [16, section 2.5]). It is quite possible, for example, that D(f) ≤ log(rank(Mf ))2.

The above characterization shows that when ε = 0,
•
Q0 (f) = Θ(log(rank(Mf ))). In
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fact, we show that this holds not only for quantum generating f , but also for quantum

sampling f , and
◦
Q0 (f) = Θ(log(rank(Mf ))). For the precise statement, see Theorem

8.1. This is the first example of a communication task for which the famous log-rank
conjecture holds.

Furthermore, we show that zero error classical computing is almost as easy as

sampling, or more precisely that
√

D(f) ≤ ◦
R0 (f) ≤ D(f). We thus see that the

log-rank conjecture is equivalent to the conjecture that
◦
R0 (f) ≤ Poly(

◦
Q0 (f)), and

can be cast as asking about the relative power of quantum and classical sampling in
the no error case.

2. Sampling. The two-party communication complexity model, as introduced
by Yao [21], consists of two players that have private inputs and wish to compute a
known function that depends on both inputs. The players follow a predefined protocol
and exchange communication bits until they are ready to make a decision.

In the quantum communication complexity model [20], Alice and Bob hold qubits.
When the game starts, Alice holds x and Bob holds y, and so the initial superposition
is simply |x, y〉. The players take turns. Suppose it is Alice’s turn to play. Alice
can make an arbitrary unitary transformation on her qubits and then send one or
more qubits to Bob. Sending qubits does not change the overall superposition but
rather changes the ownership of the qubits, allowing Bob to apply his next unitary
transformation on the newly received qubits. Each player can also (partially) measure
his/her qubits. By the end of the protocol, the two players have to decide on a value.
If during the protocol the two players are in the system φ, then φAlice denotes the
state of the subsystem of Alice’s qubits, and φBob is the state of the subsystem of
Bob’s qubits. φAlice and φBob are usually mixed states.

The complexity of a classical (quantum) protocol is the number of bits (qubits)
exchanged between the two players. We say a (quantum) protocol computes f :
X × Y �→ {0, 1} with ε ≥ 0 error if for any input x, y the probability that the two
players compute f(x, y) is at least 1−ε. We denote by Rε(f) (Qε(f)) the complexity of
the best (quantum) protocol that computes f with at most ε error. The deterministic
complexity D(f) is simply R0(f).

2.1. Sampling complexity. In the previous definitions the two players had to
compute the right answer for a given input (x, y). A sampling protocol, however, starts
with no input to the two players. Instead, by the end of the protocol, Alice holds
some x ∈ X, Bob holds some y ∈ Y , and they also hold some “answer” z ∈ {0, 1}.
We say that the protocol induces a distribution P on (x, y, z), where P(x, y, z) is the
probability that x and y are sampled along with the answer z.

Definition 2.1. A classical distribution over X is a function D : X �→ [0, 1] such
that (s.t.)

∑
x∈X D(x) = 1. Given two distributions D1,D2 over X, the variational

distance between them is |D1 −D2|1 def
=
∑

x |D1(x) −D2(x)|.
Definition 2.2 (sampling). Let f : X×Y �→ {0, 1}, and let D be any distribution

on X × Y . We say that the protocol samples f according to D with ε error if the
distribution the protocol induces on {(x, y, z)} is ε close, in the total variation distance,
to the distribution (D, f(D)) obtained by first picking (x, y) according to D and then

evaluating f(x, y). We denote by
◦
Rε (f,D) (

◦
Qε (f,D)) the number of communication

bits (qubits) needed for a randomized (quantum) protocol P to sample f according to
D with ε error. When D is the uniform distribution, we sometimes omit it.
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2.2. q–generating. In the quantum model it makes sense not only to sample the
right classical distribution, but also to approximate the right quantum superposition.
For example, we can ask how many communication qubits are needed for two players
to generate (or approximate) the superposition ψ =

∑
x,y(−1)

∑
i xiyi |x, y〉. We need

to specify what is a good approximation of a superposition, and a natural choice is
the so called “fidelity” measure: φ approximates ψ to within ε if |〈φ|ψ〉| ≥ 1 − ε. We
also allow the players to use ancillary bits.

Definition 2.3 (q–generating). We say that a quantum protocol q–generates a
superposition ψ =

∑
x∈X,y∈Y ax,y|x, y〉 to within ε error if it starts with no inputs to

the two players and by the end of the protocol the two players compute a superposition
φ, where φAlice has support in X ⊗ AncilaX , φBob has support in Y ⊗ AncilaY , and
|〈φ|ψ〉| ≥ 1 − ε.

Definition 2.4. Let f : X × Y �→ {0, 1} be any Boolean function and µ :
X × Y �→ C an l2 distribution (i.e.,

∑
x,y |µx,y|2 = 1). We say that a quantum

protocol q–generates f according to the distribution µ with ε error if it q–generates
the superposition

∑
x,y µx,y(−1)f(x,y)|x, y〉 to within ε error. We denote the number

of communication qubits needed for this by
•
Qε (f, µ).

3. Preliminaries. Two superpositions that are close to each other in the fidelity
norm (i.e., |〈φ1|φ2〉| ≥ 1 − ε) cannot be effectively distinguished. More precisely, for
a superposition φ and a complete measurement O over it, let us denote by φO the
classical distribution (over all possible results) obtained by applying the measurement
O over φ. By, e.g., Aharonov, Kitaev, and Nisan [2, Lemma 11], we have the following.

Fact 3.1 (see [2]). For any two superpositions φ1, φ2 and any complete measure-
ment O,

|φO
1 − φO

2 |1 ≤ 2
√

1 − |〈φ1|φ2〉|2.
3.1. Some matrix algebra. Any normal matrix N can be diagonalized by

an appropriate unitary basis change; that is, there is some unitary transformation U
s.t. UNU† is diagonal with the eigenvalues λ1, . . . , λN on the diagonal. Singular values
and the singular value decomposition theorem generalize this to arbitrary matrices.
Given any (possibly nonsquare) matrix M , MM† is a nonnegative matrix and hence
has a complete set of nonnegative eigenvalues λ1 ≥ · · · ≥ λN ≥ 0. The ith singular
value, σi(M), is

√
λi. The SVD theorem says the following.

Theorem 3.1 (see [11, Lemma 7.3.1]). For any matrix M there are unitary trans-
formations U1, U2 s.t. U1MU2 is diagonal with the singular values σ1(M), . . . , σN (M)
on the diagonal.

Given a matrix A = (ai,j), we define its norm ||A||2 def
= (

∑
i,j |a2

i,j |)1/2, i.e.,

||A||22 = Trace(AA†). The Hoffman–Wielandt theorem states the next result.
Theorem 3.2 (see [11, Corollary 7.3.8]). Let A and B be two matrices of the

same dimensions. Then,

N∑
i=1

[σi(A) − σi(B)]2 ≤ ||B −A||22.

Let B be an arbitrary norm one matrix, ||B||22 = 1. It follows that
∑

i σ
2
i (B) =

Tr(BB†) = 1. Let Kε(B) denote the number of singular values we need to take to

collect 1 − ε weight; i.e., it is the first integer k such that
∑k

i=1 σ2
i (B) ≥ 1 − ε.

Claim 3.1. Kε(B) = minA:||A−B||22≤ε rank(A).
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Proof. Let us define K ′
ε(B) = minA:||A−B||22≤ε rank(A).

On the one hand, say Kε(B) = k and B = U1DU2, where D is a diagonal matrix
with the singular values on the diagonal. Let D̄ be the matrix containing only the
first k singular values, and A = U1D̄U2. Then A has low rank and approximates B
to within ε. It follows that K ′

ε(B) ≤ k = Kε(B).
On the other hand, say K ′

ε(B) = k and A has rank k and ||A−B||22 ≤ ε. It then

follows by the Hoffman–Wielandt theorem that
∑N

i=1[σi(A)−σi(B)]2 ≤ ||B−A||22 ≤ ε.
As A has rank k, for at least N − k values i, σi(A) = 0. It then must follow that the
squares of the N − k smallest singular values of B must sum up to no more than ε,
i.e., Kε(B) ≤ K ′

ε(B).

4. A tight bound on q–generating. We completely characterize the complex-
ity of q–generating. With each superposition ψ =

∑
x∈X,y∈Y ax,y|x, y〉 we associate a

|X| × |Y | matrix Mψ = (ax,y). We characterize the complexity of q–generating ψ in
terms of the spectrum of Mψ. We prove the following result.

Theorem 4.1. For any pure state ψ and 0 ≤ ε ≤ 1
2

�log K2ε� ≤
•
Qε (ψ)≤ �log Kε�,

where Kε = minA:||Mψ−A||22≤εrank(A). Equivalently, Kε is the first integer K s.t.∑K
i=1 σ2

i (Mψ) ≥ 1 − ε.

4.1. The upper bound. Suppose that Alice and Bob are in a superposition
φ =

∑
x,y Mx,y|x, y〉 represented by the matrix M = Mφ (i.e., M [x, y] = Mx,y).

Let us check how the matrix representation changes as Alice applies a local unitary
transformation T on her qubits. The resulting superposition is

(T ⊗ I)φ =
∑
x,y

Mx,y|Tx, y〉

=
∑
x,y

Mx,y

∑
z

Tz,x|z, y〉

=
∑
z,y

(∑
x

Tz,xMx,y

)
|z, y〉

=
∑
z,y

(TM)z,y|z, y〉,

and so the resulting superposition is represented by TM . Similarly if Bob applies a
local transformation T on M , the resulting superposition is represented by MT t.

Suppose that the parties want to generate a superposition ψ represented by M =
Mψ. By the singular decomposition theorem (Theorem 3.1) there are unitary trans-
formations U1, U2 s.t. U−1

1 MU−1
2 is the diagonal matrix D with σ1(M), . . . , σN (M)

on the diagonal. Let Λ = {wi|i = 1, . . . ,K} be the set of the first K = Kε (“heavy”)
eigenvectors. Let Π be the projection operator onto Λ, i.e., Π[x, y] is 1 if x = y and
1 ≤ x ≤ K, and zero otherwise. The protocol is the following:

• Alice prepares the superposition DΠ (which is simply the superposition c ·∑K
i=1 σi(M)|i, i〉, where c = 1/

√∑K
i=1 σ2

i (M), and notice that 1 ≤ c ≤
1/
√

1 − ε) and sends the Y qubits to Bob.
• Alice applies the transformation U1 on her qubits, and Bob applies the trans-

formation U t
2 on his qubits.
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Say that the resulting superposition is φ and its matrix is Mφ. We know that
Mφ = cU1DΠU2. We have

||Mφ −Mψ||22 = ||cU1DΠU2 − U1DU2||22
= ||U1(cDΠ −D)U2||22
= ||cDΠ −D||22

=
∑
i>K

σ2
i (M) + (c− 1)2

K∑
i=1

σ2
i (M)

≤ ε +
(c− 1)2

c2
≤ ε + ε2 ≤ 2ε.

The third equality is due to the fact that for every matrix X and unitary matrix
U , ||UX||22 = 〈UX|UX〉 = 〈X|X〉 = ||X||22. To see the last inequality, remember that

c ≤ 1√
1−ε

, and therefore c−1
c ≤ 1/

√
1−ε−1

1/
√

1−ε
= 1 −√

1 − ε ≤ ε.

To finish the proof of the upper bound of Theorem 4.1, we claim the following.
Claim 4.1. |〈φ|ψ〉| ≥ 1 − ε.
Proof. We treat the matrices Mφ,Mψ as vectors of length |X| · |Y | and notice

that 〈Mφ|Mψ〉 = 〈φ|ψ〉 by the way the matrices Mφ,Mψ were defined.
Also, since (U−1

1 ⊗ U−1
2 )ψ =

∑
i σi|i, i〉 and (U−1

1 ⊗ U−1
2 )φ = c

∑
i∈Λ σi|i, i〉, it

follows that 〈φ|ψ〉 is real. We then see that

||Mφ −Mψ||22 = 〈Mφ −Mψ|Mφ −Mψ〉
= 〈Mφ|Mφ〉 + 〈Mψ|Mψ〉 − 2〈Mφ|Mψ〉.

However, ||Mφ||2 = ||Mψ||2 = 1, and so

||Mφ −Mψ||22 = 2(1 − 〈φ|ψ〉).
Plugging ||Mφ −Mψ||22 ≤ 2ε into this, we get 〈φ|ψ〉 ≥ 1 − ε as desired.

4.2. The lower bound. The lower bound idea is an extension of an idea from
Kremer’s thesis [12], where it is attributed to Yao. We first show that the outcome
of any quantum protocol that uses only l communication qubits can be described as
a linear combination of up to 2l product superpositions (we give a precise statement
soon). We use this to show that a quantum sampling protocol is actually a low rank
approximation of Mψ. We then use the Hoffman–Wielandt inequality to derive a
lower bound on l.

Claim 4.2 (see [12]). Suppose that P is a quantum protocol that uses l communi-
cation qubits, starts with no input, and computes the superposition φ. Further assume
that the last qubit communicated is wl. Then φ =

∑
w∈{0,1}l |A(w), wl, B(w)〉, where

A and B depend only on w.
Proof. The proof is by induction on l. The case l = 0 is immediate. Suppose it

is true for l; let us prove it for l + 1. Assume after l steps that the two parties are
in the superposition

∑
w∈{0,1}l |A(w), wl, B(w)〉 and w.l.o.g. it is now Alice’s turn

to play. Alice first does some unitary transformation on her qubits, which results in∑
w∈{0,1}l |A′(w1, . . . , wl), B(w1, . . . , wl)〉. Then she sends the qubit z to Bob. For

every w1, . . . , wl we can represent |A′(w1, . . . , wl)〉 as a superposition of the possible
values of z, which completes the induction.

Now suppose that P q–generates ψ (represented by Mψ) with ε error and l com-
munication qubits. Let us denote by φ =

∑
x,y ax,y|x, y〉 the final superposition that
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the two parties compute (which is, again, represented by Mφ). By Claim 4.2 we know
that we can represent φ as φ =

∑
w∈{0,1}l |A(w), B(w)〉. Because φAlice has support

in X, and φBob in Y , this is actually φ =
∑

w∈{0,1}l
∑

x,y ax(w) · by(w)|x, y〉, where

ax(w) and by(w) are complex numbers. Thus

Mφ[x, y] =
∑

w∈{0,1}l
ax(w)by(w).

Let us define an |X|×2l matrix A by A[x,w] = ax(w), and a 2l×|Y | matrix B[w, y] =
by(w). We see that Mφ = A · B, where the · operation is matrix multiplication. In
particular,

rank(Mφ) ≤ rank(A) ≤ 2l.

Since φ ε-approximates ψ, we know that ||Mφ−Mψ||22 = 〈Mφ−Mψ|Mφ−Mψ〉 =
2(1 − 〈φ|ψ〉) ≤ 2ε. It follows that K2ε = minM :||M−Mψ||22≤2ε rank(M) ≤ rank(Mφ) ≤
2l, as desired.

5. Relationships between sampling and computing. We say that a func-
tion g : X×Y �→ M is a “product” function if g(x, y) = g1(x)g2(y) for some functions
g1 and g2. For product distributions µ we show that sampling is not harder than
q–generating, which in turn is not harder than worst-case solving the problem.

5.1. Sampling vs. q–generating.
Lemma 5.1. Suppose that f : X×Y �→ {0, 1}, and µ is an l2 product distribution.

Let D : X×Y �→ [0, 1] be the classical distribution associated with µ, D(x, y) = |µx,y|2.
Then

◦
Q4

√
ε (f,D) ≤

•
Qε (f, µ) + O(1).

Proof. Suppose that the approximation protocol computes φ s.t. |〈φ|ψ〉| ≥ 1 − ε,
where ψ is the ideal superposition ψ =

∑
x,y µx,y(−1)f(x,y)|x, y〉. We give a sampling

protocol:
1. Alice computes the superposition |00〉 + |11〉 in qubits z1, z2. She sends the

second qubit z2 to Bob.
2. If they both have a |0〉 (i.e., z1 = z2 = 0), they compute in the qubits X,Y the

superposition
∑

x,y µx,y|x, y〉 (this can be done at no cost, as µ is a product
distribution), and if they have a 1, they compute φ (using �log(Kε)� qubits).

3. Now Bob returns the qubit z2 to Alice. Alice does a unitary transformation
over z1, z2 that sends |00〉 to 1√

2
(|00〉 + |01〉) and |11〉 to 1√

2
(|00〉 − |01〉).

4. Finally, both players measure all their qubits.
Now, suppose for the moment that the protocol was run with φ = ψ. In that case

after step 2 the two players are in the superposition∑
x,y

µx,y[|00, x, y〉 + (−1)f(x,y)|11, x, y〉].

It can then be easily verified that after step 3 the resulting superposition is∑
x,y

µx,y|0, f(x, y), x, y〉,

and thus when Alice and Bob measure their qubits, they actually sample f according
to D with no error.
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Now, in the actual protocol the two players compute φ, which is not quite ψ but
close to it, namely, |〈φ|ψ〉| ≥ 1−ε. By Fact 3.1 we know that the resulting distribution
is 2
√

1 − |〈φ|ψ〉|2 ≤ 2
√

1 − (1 − ε)2 ≤ 2
√

2ε close (in the l1 norm) to the right one,
and the lemma follows.

5.2. q–generating vs. computing. Suppose that we can compute f , and that
we want to q–generate it according to a product distribution µ. Since µ is product,
we can enter the superposition

∑
x,y µx,y|x, y〉. Then we can compute f . However,

this does not give a q–generating protocol because we might use some auxiliary qubits
for the computation and thus have garbage entangled with the result. The following
proof follows ideas from Cleve et al. [7], who showed how to remove such garbage.
The proof is given here for completeness.

Lemma 5.2. For any function f and any l2 product distribution µ,
•
Q2ε(f, µ) ≤

2Qε(f).
Proof. Let T be a small error protocol for computing f . We use the safe

storage principle, and each time the protocol wants to measure a qubit we sim-
ply copy it to a new qubit that is left untouched. Now, say that T |x, 0, y, 0〉 =
|x, y〉 ⊗ [α0

x,y|f(x, y), g0
x,y〉 + α1

x,y|1 − f(x, y), g1
x,y〉], where g0

x,y (and g1
x,y) is the cor-

related garbage that is produced during the computation and is divided between the
two players; i.e., the right answer f(x, y) is computed with amplitude α0

x,y and is
accompanied by g0

x,y in the garbage qubits.
The two players get into the superposition

∑
x,y µx,y|x, y〉. Since µ is a product

distribution, this is done at no cost. We run the following three-step protocol:
Compute f . This results in

φ1 =
∑
x,y

µx,y |x, y〉 ⊗ [α0
x,y|f(x, y), g0

x,y〉 + α1
x,y|1 − f(x, y), g1

x,y〉].

As T has only ε error on average, we know that
∑

x,y |µx,y|2 |α0
x,y|2 ≥ 1 − ε.

Lift the result. Next, we lift the result f(x, y) to the amplitude; i.e., the player
with the result qubit R changes the amplitude by (−1)R. The resulting superposition
is

φ2 =
∑
x,y

µx,y(−1)f(x,y)|x, y〉 ⊗ [α0
x,y|f(x, y), g0

x,y〉 − α1
x,y|1 − f(x, y), g1

x,y〉].

Notice the sign change in the garbage belonging to the wrong answer. We do not
like this sign change, and we notice that this sign change is immaterial. Namely, if
we define

ψ2 =
∑
x,y

µx,y(−1)f(x,y)|x, y〉 ⊗ [α0
x,y|f(x, y), g0

x,y〉 + α1
x,y|1 − f(x, y), g1

x,y〉],

then |〈φ2|ψ2〉| ≥
∑

x,y |µx,y|2(|α0
x,y|2 − |α1

x,y|2), which is at least 1 − 2ε.
Reverse the computation. Finally, we would like to get rid of the garbage, and so

we reverse T ; this at most doubles the number of communication qubits transferred.
Because of the sign change in φ2, the resulting superposition is ugly and depends
on the actual computation. However, had the reversing step been applied to ψ2,
we would have received the ideal superposition ψ =

∑
x,y µx,y(−1)f(x,y)|x, y〉. Now

|〈φ2|ψ2〉| ≥ 1−2ε, and reversing T is just a unitary transformation. We conclude that
|〈φ3|ψ〉| ≥ 1 − 2ε.



THE QUANTUM COMMUNICATION COMPLEXITY OF SAMPLING 1579

6. The DISJk function. The DISJk(x, y) function gets as input two subsets
S, T ⊆ {1, . . . , n}, each of cardinality k, and outputs 1 iff S ∩ T = ∅. We bound
the quantum sampling complexity of the function under the l2 uniform distribution
µx,y = 1/N . We then prove the following result.

Theorem 6.1. For k = Θ(
√
n),

◦
Qε (DISJk) = O(log(n) log(1

ε )). The result is
true even when Alice has an input S and Bob wants to sample a subset T disjoint
from S.

By Theorem 4.1 we need to analyze the spectrum of M = MDISJk,µ. Indeed,
notice that M [x, y] depends only on the intersection size of x and y. It is not too
difficult to see that all matrices that are indexed by k-subsets and depend only on the
intersection size commute. In particular, they share the same eigenspaces. Lovasz [13]
analyzed the spectrum of these matrices, and we give a slightly different description
of the eigenspaces of M than he obtains.

Lemma 6.2 (a different presentation of [13]). M has k+1 eigenspaces E0, . . . , Ek.
E0 is of dimension 1 and contains the all 1’s vector. Ei has dimension

(
n
i

)− ( n
i−1

)
.

The typical eigenvector in Ei is indexed by x1, x2, . . . , x2i−1, x2i ∈ {1, . . . , n}. The
corresponding eigenvector e (unnormalized) is given by eS = 0 if there is an index
j : |S ∩ {x2j−1, x2j}| �= 1, and otherwise by eS = Πj(−1)|S∩{x2j}|. The corresponding
eigenvalues are

λ0 =
2
(
n−k
k

)− (nk)(
n
k

) and λi =
2
(
n−k−i
k−i

)
(
n
k

)
for i > 0.

The eigenvalues in the spectrum of M decay rapidly. Let qi =
∑

wi∈Ei
|λi|2 so

that
∑k

i=0 qi = 1. Then the following holds.
Claim 6.1. For k = Θ(

√
n), qi+1

qi
= O( 1

i+1 ).

Proof. To calculate qi+1/qi, we first bound λi+1/λi. We get that −λi+1

λi
= k−i

n−k−i ≤
2k
n . The number of eigenvalues is

(
n
i

)− ( n
i−1

)
for Ei and

(
n

i+1

)− (ni) for Ei+1, and

(
n

i+1

)− (ni)(
n
i

)− ( n
i−1

) ≤ 2n

i + 1
.

Hence

qi+1

qi
=

(
(

n
i+1

)− (ni))λ2
i+1

(
(
n
i

)− ( n
i−1

)
)λ2

i

≤ 2n

i + 1
· 4k2

n2
= Ω

(
1

i + 1

)
.

Therefore qt ≤ ct

t! . Now we are set to prove the following.

Lemma 6.3. log Kε ≤ O(log(n) log 1/ε
log log 1/ε ).

Proof. We set t = O( log 1/ε
log log 1/ε ) and take Λ = E0 ∪ E1 ∪ · · · ∪Et. We have

∑
i∈Λ

|λi|2 = 1 −
∑
i �∈Λ

|λi|2 = 1 −
k∑

i=t+1

qi

≥ 1 −
k∑

i=t+1

ci

i!
≥ 1 −O

(
ct

t!

)
≥ 1 − ε.
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Hence Kε ≤ |E0 ∪ · · · ∪ Et| ≤ t · (nt) ≤ nt+1, and log Kε ≤ (t + 1) log(n), as
required.

By Theorem 4.1,
•
Qε(ψ) ≤ �log Kε� ≤ O(t log(n)) = O(log(n) log 1/ε), and a

similar upper bound on
◦
Qε (DISJk) follows from Lemma 5.1. This gives the first

part of Theorem 6.1. This, in particular, shows that it is easy for Alice and Bob to
sample a uniform pair of subsets x and y, along with the knowledge as to whether x
and y intersect.

In the next two subsections we prove the second part of the theorem. We want
to show two things. One is that the result holds even when Alice and Bob want to
sample only disjoint subsets, and second that the result holds even when Alice is given
an input x and Bob is asked to sample a subset y disjoint with x.

6.1. Generating disjoint subsets. Alice and Bob want to ε-approximate a
sample of disjoint k-subsets x and y. This amounts to sampling the disjointness
function according to the distribution D that is uniform over all pairs of disjoint
subsets. (Notice that D is not a product distribution.) Clearly, it is enough for Alice
and Bob to approximate the normalized superposition ψ =

∑
x,y:x∩y=∅

1√
∆0N

|x, y〉,
for once they do that they can measure x and y and get the desired sample. The
normalizing factor ∆0 is the number of values y in a row x s.t. x∩ y = ∅ and does not
depend on x.

Denote by Mf0 the normalized matrix

Mf0 [x, y] =
1√

∆0N

{
1, x ∩ y = ∅,
0, otherwise.

Mf0
is symmetric and has full spectrum ζ1, . . . , ζN , |ζ1|2 ≥ · · · |ζN |2. We say K0

ε is the
first K s.t.

∑
i≤K |ζi|2 ≥ 1− ε. By Theorem 4.1 (which applies to any superposition),

Alice and Bob can ε-approximate ψ using only O(log(K0
ε )) communication qubits.

Since k = Θ(
√
N), ∆0 ≥ N

c for some constant c. It is left to show that
O(log(K0

ε )) = O(log(n) log(1/ε)). One way to show this is to compute the eigen-
values of Mf0 . However, there is an easier way. We show that K0

ε ≤ Kε/c + 1 and
then Lemma 6.3 implies the bound. We are left with the following.

Claim 6.2. K0
ε ≤ Kε/c + 1.

Proof. Denote Mf [x, y] = 1
N (−1f(x,y))). Mf and Mf0 share the same eigenspaces

(as they commute). We now express Mf and Mf0 in terms of each other. Let us
define B =

√
N∆0Mf0

, so that B is a 0, 1 matrix. It can easily be verified that

NMf = B − (J −B) = 2B − J,

where J is the all 1’s matrix. Hence, Mf0 = N/2
√
N∆0Mf + dJ for some value d. In

particular, for any eigenvector wi �= (1, . . . , 1), Jwi = 0 and ζi = 1
2

√
N/∆0λi. Thus,

|ζi| =
1

2

√
N

∆0
|λi| ≤

√
c|λi|, i > 1.

Therefore, suppose
∑

i∈S |λi|2 ≥ 1 − ε/c. Denote S′ = S ∪ {(1, . . . , 1)}. Clearly,∑
i �∈S′ |ζi|2 ≤∑i �∈S′ c|λi|2 ≤ ε. Hence K0

ε ≤ Kε/c + 1.

6.2. Sampling for a given input x. Alice is given an input z ∈ X, and the
goal is that Bob samples y ∈ Y s.t. z ∩ y = ∅. We follow a protocol similar to that
in the upper bound of Theorem 4.1. Given an input z ∈ X and an ε > 0, define
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M = Mf0
as in the previous subsection. Let W be the eigenvector basis of M (which

is symmetric). Let Λ = Λε be the union of the first eigenspaces Ei (defined in Lemma
6.2) that contain the first Kε heavy eigenvectors of M . Let Π be the projection
operator over Λ.

We now describe the protocol. Alice gets into the normalized superposition vz =
1√
∆0

∑
y:y∩z=∅ |y〉. In the eigenvector basis W , vz =

∑
i γi|wi〉. Alice then projects vz

onto Λ to get vz =
∑

i∈Λ γi|wi〉 and sends vz to Bob. Bob returns vz to the original
basis and measures to get some y. To prove correctness we show the following.

Lemma 6.4. |〈vz|vz〉| ≥ 1 − ε.
Proof. 〈vz|vz〉 =

∑
i∈Λ |γi|2, i.e., it is the length of the projection of vz onto Λ.

We show that this quantity is the same for all z. If we know that, we can define
ψ = 1√

N

∑
z |z, vz〉 and ψ = 1√

N

∑
z |z, vz〉 (so ψ and ψ are normalized). Then, from

the proof of Theorem 4.1 we know that

|〈ψ|ψ〉| ≥ 1 − ε.

However,

〈ψ|ψ〉 =
1

N

∑
z

〈vz|vz〉 = 〈vz|vz〉,

which together implies that 〈vz|vz〉 = 〈ψ|ψ〉 ≥ 1−ε, as required. Indeed, the following
claim holds.

Claim 6.3. For any eigenspace Ej, |〈vz|Ej〉|2, which is the length of the projec-
tion of vz on Ej, does not depend on z.

Proof. Let z1, z2 ∈ X be two k-subsets; i.e., z1, z2 ⊂ [1, . . . , n] and |z1| = |z2| = k.
There is a permutation π ∈ Sn s.t. π(z1) = z2, where for a set A, π(A) = {π(a)|a ∈ A}.

The operation of the permutation π can be thought of as a unitary transforma-
tion permuting the basis vectors |x〉 for x ∈ X. In other words, given a superposition
φ =

∑
i∈X ai|i〉, π(φ) is defined to be

∑
i∈X ai|π(i)〉. In particular, for any two su-

perpositions φ1, φ2, 〈π(φ1)|π(φ2〉) = 〈φ1|φ2〉. As a result, 〈vz1 |Ej〉 = 〈π(vz1)|π(Ej)〉,
where π(Ej) = Span{π(w)|w ∈ Ej}. However, we observe that

π(vz1) =
∑

y:y∩z1=∅
|π(y)〉

=
∑

w:π−1(w)∩z1=∅
|w〉

=
∑

w:w∩π(z1)=∅
|w〉 = vz2 .

Finally, because of the symmetries of the eigenspaces Ej , π(Ej) = Ej . The lemma
follows.

7. A lower bound on classical sampling. In contrast we prove that classically
sampling DISJk is hard. We begin with the observation that classical sampling
protocols can always be made to have just one message at no cost. We then prove
the following result.

Lemma 7.1. Given any sampling protocol P with k communication bits and
ε error, there is an optimal one message sampling protocol that samples from the
desired distribution with the same complexity.

Proof. The protocol goes as follows:
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• Alice simulates the protocol P, playing the role of both players. She then
announces the resulting sequence of messages M to Bob.1

• Alice and Bob pick inputs S and T according to the respective conditional
distributions for the protocol P given the messages M .

The crucial observation is that, conditioned on the sequence of messages ex-
changed, the distribution from which Alice and Bob sample is a product distribu-
tion.

We are now ready to prove the next result.

Theorem 7.2. Let k =
√
n. There is a constant ε > 0 s.t.

◦
Rε (DISJk) =

Ω(
√
n).
Proof. Let P be the distribution on X × Y that Alice and Bob sample from (X

and Y is the set of all k-sets). By Lemma 7.1, P is a convex combination of L product
distributions DM , P =

∑
piDi, where L is the size of the message space from which

Alice chooses her message to Bob (i.e., log L is the number of bits transmitted during
the protocol). We say that a distribution D on rectangle R is smooth if for any pair

of elements u, v ∈ R, D(u)
D(v) ≤ 4. We soon show that any product distribution can

be very closely approximated by a convex combination of a small number of smooth
distributions on rectangles; namely, we have the following.

Claim 7.1. Let D be a product distribution on X × Y . Then there are rectan-
gles R1, . . . , R9n2 , and smooth distributions Di on Ri, such that D is within (total
variation distance) 2−2n+1 of a convex combination of Di.

In particular, P is 2−n+1 close to a convex combination
∑9n2L

i=1 piPi, where Pi is
some smooth distribution over some rectangle Ri. Intuitively, the proof shows that
large rectangles Ri introduce large error, while small rectangles provide very slow
progress. For that we use the following combinatorial lemma of Babai, Frankl, and
Simon.

Lemma 7.3 (see [4]). There exist a constant ε0 > 0 and δ = 2−Ω(
√
n) such that,

for any rectangle R = U×V with |R|
|X||Y | ≥ δ, at least ε0 fraction of the pairs of subsets

in R intersect (are not disjoint).

Let us call a rectangle Ri large if |Ri|
|X||Y | ≥ δ. By the lemma, any large rectangle

must contain at least ε0 fraction of intersecting pairs. Thus, any smooth distribution
Pi on a large rectangle Ri must have at least ε0

4 weight on intersecting pairs. Let
h denote the total weight of heavy rectangles in the convex combination (i.e., h =∑

i:Ri is heavy pi). We see that intersecting pairs get at least weight hε0
4 . We conclude

that hε0
4 ≤ ε and h ≤ 4ε

ε0
= O(ε).

We now concentrate on the nonheavy rectangles Pi. We say we touch a pair (x, y)
if some nonheavy rectangle Ri contains it. Let I be the set of all disjoint pairs. We
see that we must touch at least (1 − (ε + h))|I| pairs in I, or else there are (ε + h)|I|
elements that get weight ε+h in the uniform distribution over disjoint pairs and only
weight h in P . As every nonheavy rectangle Ri can touch at most |Ri| ≤ δ|X| · |Y |
elements, we must have that 9n2Lδ|X| · |Y | ≥ (1 − ε− h)|I| ≥ (1 −O(ε))|I|.

For k =
√
n the number of disjoint pairs is some c0|X| · |Y | for some constant c0.

Thus, L ≥ (1 −O(ε))c0/9n2 · 2Ω(
√
n). It follows that for some small enough constant

ε > 0 we must have L ≥ 2Ω(
√
n), as desired.

We are left with the proof of Claim 7.1, which we give now.

1We assume that all messages belonging to the same round have the same length. If this is not
the case, Alice has to send a special sign at the end of each message, which may, at most, increase
the number of communication bits by a constant factor.
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Proof of Claim 7.1. We partition X to sets X0, . . . , X3n−1 and XBad, where
Xi = {x| 1

2i+1 ≤ D(x) ≤ 1
2i } and XBad is all other strings. We similarly partition Y .

We define the distribution Di,j to be the distribution that D induces on the rectangle
Xi×Yj (0 ≤ i, j ≤ 3n−1). It is clear that Di,j is almost uniform. Let us denote by D
the appropriate linear combination of the distributions Di,j , D =

∑
i,j pi,jDi,j (where

pi,j is the weight of the rectangle Xi × Yj under D). It is clear that D(a, b) = D(a, b)
for any (a, b) that belongs to some rectangle Xi ×Xj . Thus, |D−D|1 is bounded by
the total weight (under D) of entries in XBad×Y and X×YBad, and so it is bounded
by 2 · 2n · 2−3n = 2−2n+1. The lemma follows.

8. Zero error sampling and the log-rank conjecture. Theorem 4.1 char-

acterizes the q–generating complexity
•
Q. However, it is still possible that sampling

is much easier (even in the quantum world) than q–generating. For the special case
of zero error sampling, we supply a lower bound even for the easier task of sampling,
using a method similar to that used in Theorem 4.1.

Theorem 8.1. For every function f and any distribution D,
◦
Q0(f,D) ≥

log(rank(Mf,D))
2 − 1.

Proof. Given a protocol P for sampling f , we define the |X| × |Y | matrix M0
P

by letting M0
P [x, y] be the probability that P samples (x, y) with the answer 0. We

similarly define M1
P . We let MP = M0

P − M1
P . Note that MP does not necessarily

correspond to the probability that the protocol will answer with a yes or no to an
instance (x, y).

Lemma 8.2 (see [12]). Suppose that P uses only l communication qubits. Then
rank(M0

P ), rank(M1
P ) ≤ 22l.

Proof. Let P be a quantum protocol for sampling f using l qubits. Suppose by the
end of the protocol that the superposition is φ, and wl, the last qubit communicated,
contains the answer (0 or 1). By Claim 4.2,

φ =
∑

w∈{0,1}l

∑
x∈X,y∈Y

|x, Ux(w), wl, y, Vy(w)〉.

Define Y0 = {w ∈ {0, 1}l|wl = 0} and φ0
x,y =

∑
w∈Y0

|x, Ux(w), wl, y, Vy(w)〉. Then

M0
P [x, y] = 〈φ0

x,y|φ0
x,y〉

=
∑

w,z∈Y0

〈Ux(w)|Ux(z)〉〈Vy(w)|Vy(z)〉.

If we define a matrix A of dimension |X| × |Y0|2 by A[x, (w, z)] = 〈Ux(w)|Ux(z)〉,
and a matrix B of dimension |Y0|2 × |Y | by B[(w, z), y] = 〈Vy(w)|Vy(z)〉, then we
see that M0

P [x, y] = (AB)[x, y]. That is, M0
P = AB. In particular, rank(M0

P ) =
rank(AB) ≤ rank(A) ≤ |Y0|2 ≤ 22l. A similar argument shows that rank(M1

P ) ≤
22l.

We remind the reader that for f : X×Y �→ {0, 1} the matrix Mf,D has dimensions
|X| × |Y | and is defined by Mf,D[x, y] = (−1)f(x,y)Dx,y. (Mf,D is not normalized,
i.e., ||Mf,D||2 is not necessarily 1.) We notice that if P samples f with zero error
using l qubits, then MP = Mf,D. Moreover, rank(Mf,D) = rank(MP ) ≤ rank(M0

P ) +
rank(M1

P ) ≤ 22l + 22l = 22l+1. In particular, 2l + 1 ≥ log(rank(Mf,D)). Hence
◦
Q0 (f,D) ≥ log(rank(Mf,D))/2 − 1, and Theorem 8.1 follows.

We see in particular that for the uniform distribution (D(x, y) = 1/N2 and
µ(x, y) = 1/N), Mf,D and Mf,µ differ only by a constant factor and so have the same
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rank. By Theorem 4.1,
◦
Q0 (f) ≤ �log rank(MfM

†
f )�+O(1) = �log rank(Mf )�+O(1).

Theorem 8.1 gives a matching lower bound. Together we get the following tight
characterization for zero error sampling.

Corollary 8.3. For any f : X × Y �→ {0, 1},
◦
Q0(f) = Θ(log rank(Mf )).

8.1. Zero error classical computing is almost as easy as sampling.

Theorem 8.4.
√

D(f) ≤ ◦
R0 (f) ≤ D(f).

Proof. Given the matrix Mf , a monochromatic cover is a set of monochromatic
rectangles in Mf that together cover the whole matrix. Define C(f) as the small-
est number of monochromatic rectangles needed to cover Mf . Define CD(f) as the
smallest number of disjoint monochromatic rectangles needed to cover Mf . It is well
known (see [16, Chapter 2]) that√

D(f) ≤ N(f) = log2 C(f) ≤ log2 CD(f) ≤ D(f),

where N(f) is the nondeterministic communication complexity. We show that

log2 C(f) ≤ ◦
R0 (f) ≤ log2 CD(f),

and in particular we get that
√

D(f) ≤ N(f) ≤ ◦
R0 (f) ≤ D(f), as required.

We first show that log2 C(f) ≤ ◦
R0 (f). Indeed, by Lemma 7.1 there is a one

message zero error sampling protocol whose complexity is k =
◦
R0 (f). In the one

message protocol a message M is chosen (out of the 2k possible messages) according
to some probability distribution, and, given the message M , Alice (Bob) chooses a
message x ∈ X (y ∈ Y ) according to some probability distribution that depends on
M . Let us say that XM (YM ) is the set of elements in X that have nonzero probability
of being selected by Alice (Bob), given the message M . As the protocol has zero error,
the rectangle XM × YM must be monochromatic. As Alice and Bob sample inputs
according to the uniform distribution, every (x, y) ∈ X × Y must be covered. Hence
the protocol gives rise to a monochromatic cover of Mf with only 2k rectangles, and
hence C(f) ≤ 2k.

Next we show that
◦
R0(f) ≤ log2 CD(f). Suppose that a disjoint monochromatic

cover of Mf with 2k rectangles exists. Say that the cover contains the rectangles
R1, . . . , R2k and Ri = Xi × Yi. We build a sampling protocol. A message i ∈
{1, . . . , 2k} is picked with probability proportional to the area of Ri. Given the
message i, Alice picks a random element x ∈ Xi, and Bob picks a random element
y ∈ Yi. It is easy to verify that, as the cover is disjoint, this results in the uniform

distribution over X × Y along with the value of f(x, y). Hence
◦
R0 (f) ≤ k.
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