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Q uantum computers are hypothetical devices,
based on quantum physics, which would
enable us to perform certain computations
hundreds of orders ofmagnitude faster than
digital computers. This feature is coined

“quantum supremacy”, and one aspect or another of such
quantum computational supremacy might be seen by
experiments in the near future: by implementing quantum
error-correction or by systems of noninteracting bosons
or by exotic new phases of matter called anyons or
by quantum annealing, or in various other ways. We
concentrate in this paper on the model of a universal
quantum computer that allows the full computational
potential for quantum systems, and on the restricted
model, called “BosonSampling”, based on noninteracting
bosons.

A main reason for concern regarding the feasibility
of quantum computers is that quantum systems are
inherently noisy. We will describe an optimistic hypoth-
esis regarding quantum noise that will allow quantum
computing and a pessimistic hypothesis that won’t. The
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quantum computer puzzle is to decide between these
two hypotheses. We list some remarkable consequences
of the optimistic hypothesis, giving strong reasons for
the intensive efforts to build quantum computers, as
well as good reasons for suspecting that this might
not be possible. For systems of noninteracting bosons,
we explain how quantum supremacy achieved without
noise is replaced, in the presence of noise, by a very
low yet fascinating computational power.1 Finally, we
describe eight predictions about quantum physics and
computation from the pessimistic hypothesis.2

Are quantum computers feasible? Is quantum
supremacy possible? My expectation is that the pes-
simistic hypothesis will prevail, leading to a negative
answer. Rather than regarding this possibility as an un-
fortunate failure that impedes the progress of humanity,
I believe that the failure of quantum supremacy itself
leads to important consequences for quantum physics,
the theory of computing, andmathematics. Some of these
will be explored here.

A Brief Summary
Here is a brief summary of the author’s pessimistic
point of view as explained in the paper: understanding
quantum computers in the presence of noise requires
consideration of behavior at different scales. In the small
scale, standard models of noise from the mid-90s are
suitable, and quantum evolutions and states described
by them manifest a very low-level computational power.
This small-scale behavior has far-reaching consequences
for the behavior of noisy quantum systems at larger
scales. On the one hand, it does not allow reaching the
starting points for quantum fault tolerance and quantum
supremacy, making them both impossible at all scales.
On the other hand, it leads to novel implicit ways for
modeling noise at larger scales and to various predictions
on the behavior of noisy quantum systems.
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The Vision of Quantum Computers and Quantum
Supremacy
Circuits and Quantum Circuits
The basic memory component in classical computing is
a bit, which can be in two states, “0” or “1”. A computer
(or circuit) has 𝑛 bits, and it can perform certain logical
operations on them. The NOT gate, acting on a single bit,
and the AND gate, acting on two bits, suffice for universal
classical computing. Thismeans that a computation based
on another collection of logical gates, each acting on a
boundednumber of bits, canbe replacedby a computation
based only on NOT and AND. Classical circuits equipped
with random bits lead to randomized algorithms, which
are both practically useful and theoretically important.

Quantum computers (or circuits) allow the creation
of probability distributions that are well beyond the
reach of classical computers with access to random bits.
A qubit is a piece of quantum memory. The state of
a qubit can be described by a unit vector in a two-
dimensional complex Hilbert space 𝐻. For example, a
basis for 𝐻 can correspond to two energy levels of the
hydrogen atom or to horizontal and vertical polarizations
of a photon. Quantum mechanics allows the qubit to
be in a superposition of the basis vectors, described
by an arbitrary unit vector in 𝐻. The memory of a
quantum computer consists of 𝑛 qubits. Let 𝐻𝑘 be the
two-dimensional Hilbert space associated with the 𝑘th
qubit. The state of the entire memory of 𝑛 qubits is
described by a unit vector in the tensor product 𝐻1 ⊗𝐻2 ⊗ ⋯ ⊗ 𝐻𝑛. We can put one or two qubits through
gates representing unitary transformations acting on the
corresponding two- or four-dimensional Hilbert spaces,
and as for classical computers, there is a small list of gates
sufficient for universal quantum computing. Each step in
the computation process consists of applying a unitary
transformation on the large 2𝑛-dimensional Hilbert space,
namely, applying a gate on one or two qubits, tensored
with the identity transformation on all other qubits. At
the end of the computation process, the state of the
entire computer can be measured, giving a probability
distribution on 0–1 vectors of length 𝑛.

A few words on the connection between the mathe-
matical model of quantum circuits and quantum physics:
In quantum physics, states and their evolutions (the way
they change in time) are governed by the Schrödinger
equation. A solution of the Schrödinger equation can be
described as a unitary process on a Hilbert space, and
quantum computing processes as we just described form
a large class of such quantum evolutions.

A Very Brief Tour of Computational Complexity
Computational complexity is the theory of efficient compu-
tations, where “efficient” is an asymptotic notion referring
to situations where the number of computation steps
(“time”) is at most a polynomial in the number of input
bits. The complexity class P is the class of algorithms that
can be performed using a polynomial number of steps in
the size of the input. The complexity class NP refers to
nondeterministic polynomial time. Roughly speaking, it

Figure 1. The (conjectured) view of some main
computational complexity classes. The red ellipse
represents efficient quantum algorithms.

refers to questions where we can provably perform the
task in a polynomial number of operations in the input
size, provided we are given a certain polynomial-size
“hint” of the solution. An algorithmic task 𝐴 is NP-hard
if a subroutine for solving 𝐴 allows solving any problem
in NP in a polynomial number of steps. An NP-complete
problem is an NP-hard problem in NP. A useful analog is
to think about the gap between NP and P as similar to the
gap between finding a proof of a theorem and verifying
that a given proof of the theorem is correct. P and NP are
two of the lowest computational complexity classes in the
polynomial hierarchy PH, which is a countable sequence
of such classes, and there is a rich theory of complexity
classes beyond PH.

There are intermediate problems between P and NP.
Factoring an 𝑛-digit integer is not known to be in P, as
the best algorithms are exponential in the cube root of
the number of digits. Factoring is in NP, but it is unlikely
that factoring is NP-complete. Shor’s famous algorithm
shows that quantum computers can factor 𝑛-digit inte-
gers efficiently—in ∼ 𝑛2 steps! Quantum computers are
not known to be able to solve efficiently NP-complete
problems, and there are good reasons to think that they
cannot. Yet, quantum computers can efficiently perform
certain computational tasks beyond NP.

Two comments: First, our understanding of the com-
putational complexity world depends on a whole array
of conjectures: NP ≠ P is the most famous one, and a
stronger conjecture asserts that PH does not collapse,
namely, that there is a strict inclusion between the com-
putational complexity classes defining the polynomial
hierarchy. Second, computational complexity insights,
while asymptotic, strongly apply to finite and small algo-
rithmic tasks. Paul Erdős famously claimed that finding
the value of the Ramsey function 𝑅(𝑛,𝑛) for 𝑛 = 6 is well
beyond mankind’s ability. This statement is supported
by computational complexity insights that consider the
difficulty of computations as 𝑛 → ∞, while not directly
implied by them.
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Noise
Noise and Fault-Tolerant Computation
The main concern regarding the feasibility of quantum
computers has always been that quantum systems are
inherently noisy: we cannot accurately control them, and
we cannot accurately describe them. To overcome this
difficulty, a theory of quantum fault-tolerant computation
based on quantumerror-correction codeswas developed.3
Fault-tolerant computation refers to computation in the
presence of errors. The basic idea is to represent (or
“encode”) a single piece of information (a bit in the
classical case or a qubit in the quantum case) by a large
number of physical components so as to ensure that the
computation is robust even if some of these physical
components are faulty.

The main concern
regarding the
feasibility of
quantum

computers has
always been that
quantum systems
are inherently

noisy.

What is noise?
Solutions of the
Schrödinger equation
(quantum evolutions)
can be regarded as
unitary processes on
Hilbert spaces. Mathe-
matically speaking, the
study of noisy quan-
tum systems is the
study of pairs of
Hilbert spaces (𝐻,𝐻′),𝐻 ⊂ 𝐻′, and a uni-
tary process on the
larger Hilbert space𝐻′. Noise refers to
the general effect of
neglecting degrees of

freedom, namely, approximating the process on a large
Hilbert space by a process on a small Hilbert space. For
controlled quantum systems and, in particular, quantum
computers, 𝐻 represents the controlled part of the sys-
tem, and the large unitary process on 𝐻′ represents, in
addition to an “intended” controlled evolution on 𝐻, also
the uncontrolled effects of the environment. The study of
noise is relevant not only to controlled quantum systems
but also to many other aspects of quantum physics.

A second, mathematically equivalent way to view noisy
states and noisy evolutions is to stay with the original
Hilbert space 𝐻 but to consider a mathematically larger
class of states and operations. In this view, the state
of a noisy qubit is described as a classical probability
distribution on unit vectors of the associated Hilbert
spaces. Such states are referred to as mixed states. It is
convenient to think about the following form of noise,
called depolarizing noise: in every computer cycle a qubit
is not affected with probability 1−𝑝, and, with probability𝑝, it turns into the maximal entropy mixed state, i.e., the
average of all unit vectors in the associated Hilbert space.
In this example, 𝑝 is the error rate, and, more generally,
the error rate can be defined as the probability that a

3M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cambridge,
2000, Ch. 10.

qubit is corrupted at a computation step conditioned on
it surviving up to this step.

Two Alternatives for Noisy Quantum Systems
The quantum computer puzzle is, in a nutshell, de-
ciding between two hypotheses regarding properties of
noisy quantum circuits: the optimistic hypothesis and the
pessimistic hypothesis.

Optimistic Hypothesis: It is possible to realize universal
quantum circuits with a small bounded error level re-
gardless of the number of qubits. The effort required
to obtain a bounded error level for universal quantum
circuits increases moderately with the number of qubits.
Therefore, large-scale fault-tolerant quantum computers
are possible.

Pessimistic Hypothesis: The error rate in every realization
of a universal quantum circuit scales up (at least) linearly
with the number of qubits. The effort required to obtain a
bounded error level for any implementation of universal
quantum circuits increases (at least) exponentially with
the number of qubits. Thus, quantum computers are not
possible.

Some explanations: For the optimistic hypothesis, we
note that the main theorem of quantum fault tolerance
asserts that (under some natural conditions on the noise)
if we can realize universal quantum circuits with a
sufficiently small error rate (where the threshold is roughly
between 0.001 and 0.01), then quantum fault tolerance
and hence universal quantum computing are possible.
For the pessimistic hypothesis, when we say that the rate
of noise per qubit scales up linearly with the number
of qubits, we mean that when we double the number of
qubits in the circuit, the probability for a single qubit
to be corrupted in a small time interval doubles. The
pessimistic hypothesis does not require new modeling
for the noise for universal quantum circuits, and it is
just based on a different assumption on the rate of
noise. However, it leads to interesting predictions and
modeling and may lead to useful computational tools,
for more general noisy quantum systems. We emphasize
that both hypotheses are assertions about physics (or
physical reality), not about mathematics, and both of the
hypotheses represent scenarios that are compatible with
quantum mechanics.

The constants are important, and the pessimistic view
regarding quantum supremacy holds that every realiza-
tion of universal quantum circuits will fail for a handful
of qubits long before any quantum supremacy effect is
witnessed and long before quantum fault tolerance is
possible. The failure to reach universal quantum circuits
for a small number of qubits and to manifest quantum
supremacy for small quantum systems is crucial for
the pessimistic hypothesis, and Erdős’s statement about𝑅(6, 6) is a good analogy for this expected behavior.

Both on the technical and conceptual levels we see here
what we call a “wide-gap dichotomy”. On the technical
level, we have a gap between small constant error rate per
qubit for the optimistic view and linear increase of rate
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Figure 2. The optimistic hypothesis: Classical
fault-tolerance mechanisms can be extended, via
quantum error-correction, allowing robust quantum
information and computationally superior quantum
computation. Drawing by Neta Kalai.

per qubit (in terms of the number of qubits in the circuit)
on the pessimistic side. We also have a gap between
the ability to achieve large-scale quantum computers on
the optimistic side and the failure of universal quantum
circuits already for a handful of qubits on the pessimistic
side. On the conceptual level, the optimistic hypothesis
asserts that quantum mechanics allows superior compu-
tational powers, while the pessimistic hypothesis asserts
that quantum systems without specific mechanisms for
robust classical information that leads only to classical
computing are actually computationally inferior. We will
come back to both aspects of this wide-gap dichotomy.

Potential Experimental Support for Quantum
Supremacy
A definite demonstration of quantum supremacy of
controlled quantum systems—namely, building quantum
systems that outperform, even for specific computational
tasks, classical computers—or a definite demonstration
of quantum error correction will falsify the pessimistic
hypothesis and will give strong support for the optimistic
hypothesis. (The optimistic hypothesis will be completely
verified with full-fledged universal quantum computers.)
There are several ways people plan, in the next few years,
to demonstrate quantum supremacy or the feasibility of
quantum fault tolerance.

(1) Attempts to create small universal quantum
circuits with up to “a few tens of qubits.”

(2) Attempts to create stable logical qubits based on
surface codes.

(3) Attempts to have BosonSampling for 10–50
bosons.

(4) Attempts to create stable qubits based on anyonic
states.

(5) Attempts to demonstrate quantum speed up
based on quantum annealing.

Each of attempts (1)–(4) represents many different
experimental directions carried out mainly in academic
institutions, while (5) represents an attempt by a commer-
cial company, D-wave.4 There are many different avenues
for realizing qubits, of which ion-trapped qubits and
superconducting qubits are perhaps the leading ones.
Quantum supremacy via nonabelian anyons stands out as
a very different direction based on exotic new phases of
matter and very deep mathematical and physical issues.
BosonSampling (see the next section) stands out in the
quest to demonstrate quantum supremacy for narrow
physical systems without offering further practical fruits.

The pessimistic hypothesis predicts a decisive fail-
ure for all of these attempts to demonstrate quantum
supremacy or very stable logical qubits and that this
failure will be witnessed for small systems. A reader
may ask how the optimistic hypothesis can be falsified
beyond repeated failures to demonstrate universal quan-
tum computers or partial steps toward them as those
listed above. My view is that the optimistic hypothesis
can be largely falsified if we can understand the absence
of quantum supremacy and quantum error correction
as a physical principle with predictive power that goes
beyond these repeated failures, both in providing more
detailed predictions about these failures themselves (such
as scaling-up of errors, correlations between errors, etc.)
and in providing predictions for other natural quantum
systems. Mathematical modeling of noisy quantum sys-
tems based on the pessimistic hypothesis is valuable, not
only if it represents a general physical principle, but also
if it represents temporary technological difficulties or if
it applies to limited classes of quantum systems.

BosonSampling
Quantum computers allow the creation of probability
distributions that are beyond the reach of classical com-
puters with access to random bits. This is manifested
by BosonSampling, a class of probability distributions
representing a collection of noninteracting bosons that
quantum computers can efficiently create. It is a restricted
subset of distributions compared to the class of distri-
butions that a universal quantum computer can produce,
and it is not known if BosonSampling distributions can be
used for efficient integer factoring or for other “useful”
algorithms. BosonSampling was introduced by Troyan-
sky and Tishby in 1996 and was intensively studied by
Aaronson and Arkhipov,5 who offered it as a quick path
for experimentally showing that quantum supremacy is a
real phenomenon.

Given an 𝑛 by 𝑛 matrix 𝐴, let 𝑑𝑒𝑡(𝐴) denote the
determinant of 𝐴, and let 𝑝𝑒𝑟(𝐴) denote the perma-
nent of 𝐴. Thus 𝑑𝑒𝑡(𝐴) = ∑𝜋∈𝑆𝑛 𝑠𝑔𝑛(𝜋)∏𝑛𝑖=1 𝑎𝑖𝜋(𝑖), and𝑝𝑒𝑟(𝐴) = ∑𝜋∈𝑆𝑛 ∏𝑛𝑖=1 𝑎𝑖𝜋(𝑖). Let 𝑀 be a complex 𝑛 × 𝑚
4D-wave is attempting to demonstrate quantum speedup for
NP-hard optimization problems and even to compute Ramsey
numbers.
5S. Aaronson and A. Arkhipov, “The computational complex-
ity of linear optics”, Theory of Computing 4 (2013), 143–252;
arXiv:1011.3245.
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matrix, 𝑚 ≥ 𝑛. Consider all (𝑚𝑛) subsets 𝑆 of 𝑛 columns,
and for every subset consider the corresponding 𝑛 × 𝑛
submatrix 𝐴. The algorithmic task of sampling subsets𝑆 of columns according to |𝑑𝑒𝑡(𝑀′)|2 is called Fermion-
Sampling. Next consider all (𝑚+𝑛−1𝑛 ) submultisets 𝑆 of 𝑛
columns (namely, allow columns to repeat), and for every
submultiset𝑆 consider the corresponding𝑛×𝑛 submatrix𝐴 (with column 𝑖 repeating 𝑟𝑖 times). BosonSampling is the
algorithmic task of sampling those multisets 𝑆 according
to |𝑝𝑒𝑟(𝐴)|2/(𝑟1! 𝑟2!⋯𝑟𝑛! ). Note that the algorithmic task
for BosonSampling and FermionSampling is to sample
according to a specified probability distribution. They are
not decision problems, where the algorithmic task is to
provide a yes/no answer.

Let us demonstrate these notions by an example for𝑛 = 2 and 𝑚 = 3. The input is a 2 × 3 matrix:

( 1/√3 𝑖/√3 1/√30 1/√2 𝑖/√2 ) .
The output for FermionSampling is a probability dis-

tribution on subsets of two columns, with probabilities
given according to absolute values of the square of deter-
minants. Here we have probability 1/6 for columns {1, 2},
probability 1/6 for columns {1, 3}, and probability 4/6 for
columns {2, 3}. The output for BosonSampling is a prob-
ability distribution according to absolute values of the
square of permanents of submultisets of two columns.
Here, the probabilities are: {1, 1} → 0, {1, 2} → 1/6,{1, 3} → 1/6, {2, 2} → 2/6, {2, 3} → 0, {3, 3} → 2/6.

FermionSampling describes the state of 𝑛 noninteract-
ing fermions, where each individual fermion is described
as a superposition of 𝑚 “modes”. BosonSampling de-
scribes the state of 𝑛 noninteracting fermions, where
each individual fermion is described by 𝑚 modes. A
few words about the physics: Fermions and bosons are
the main building blocks of nature. Fermions, such as
electrons, quarks, protons, and neutrons, are particles
characterized by Fermi–Dirac statistics. Bosons, such
as photons, gluons, and the Higgs boson, are particles
characterized by Bose–Einstein statistics.

Moving to computational complexity, we note that
Gaussian elimination gives an efficient algorithm for
computing determinants, but computing permanents is
very hard: it represents a computational complexity class
called #P (in words, “number P” or “sharp P”) that extends
beyond the entire polynomial hierarchy. It is commonly
believed that even quantum computers cannot efficiently
compute permanents. However, a quantum computer can
efficiently create abosonic (anda fermionic) state basedon
a matrix 𝑀 and therefore perform efficiently both Boson-
Sampling and FermionSampling. A classical computer
with access to random bits can sample FermionSampling
efficiently, but, as proved by Aaronson and Arkhipov, a
classical computer with access to random bits cannot
perform BosonSampling unless the polynomial hierarchy
collapses!

Predictions from the Optimistic Hypothesis
Barriers Crossed. Quantum computers would dramati-
cally change our reality.

(1) A universal machine for creating quantum states
and evolutions will be built.

(2) Complicated evolutions and states with global
interactions, markedly different from anything
witnessed so far, will be created.

(3) It will be possible to experimentally time-reverse
every quantum evolution.

(4) The noise will not respect symmetries of the state.
(5) There will be fantastic computational complexity

consequences.
(6) Quantum computers will efficiently break most

current public-key cryptosystems.
Items (1)–(4) represent a vastly different experimental

reality than that of today, and items (5) and (6) represent
a vastly different computational reality.

Magnitude of Improvements. It is often claimed that quan-
tum computers can perform certain computations that
even a classical computer of the size of the entire uni-
verse cannot perform! Indeed it is useful to examine
not only things that were previously impossible and that
are now made possible by a new technology but also
the improvement in terms of orders of magnitude for
tasks that could have been achieved by the old technology.
Quantum computers represent enormous, unprecedented
order-of-magnitude improvement of controlled physical
phenomena as well as of algorithms. Nuclear weapons
represent an improvement of 6–7 orders of magnitude
over conventional ordnance: the first atomic bomb was
a million times stronger than the most powerful (single)
conventional bomb at the time. The telegraph could de-
liver a transatlanticmessage in a few seconds compared to
the previous three-month period. This represents an (im-
mense) improvement of 4–5 orders ofmagnitude. Memory
and speed of computers were improved by 10–12 orders
of magnitude over several decades. Breakthrough algo-
rithms at the time of their discovery also represented
practical improvements of no more than a few orders
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Aram Harrow and Gil Kalai shake hands at MIT after
their internet debate.
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of magnitude. Yet implementing BosonSampling with a
hundred bosons represents more than a hundred orders
of magnitude improvement compared to digital comput-
ers, and a similar story can be told about a large-scale
quantum computer applying Shor’s algorithm.

Computations in Quantum Field Theory. Quantum elec-
trodynamics (QED) computations allow one to describe
various physical quantities in terms of a power series∑𝑐𝑘𝛼𝑘,
where 𝑐𝑘 is the contribution of Feynman’s diagrams with 𝑘
loops and 𝛼 is the fine structure constant (around 1/137).
Quantum computers will (likely)6 allow one to compute
these terms and sums for large values of 𝑘 with hundreds
of digits of accuracy, similar to computations of the digits
of 𝑒 and 𝜋 on today’s computers, even in regimes where
they have no physical meaning!

My Interpretation. I regard the incredible consequences
from the optimistic hypothesis as solid indications that
quantum supremacy is “too good to be true” and that the
pessimistic hypothesis will prevail. Quantum computers
would change reality in unprecedented ways, both qualita-
tively and quantitatively, and it is easier to believe that we
will witness substantial theoretical changes in modeling
quantum noise than that we will witness such dramatic
changes in reality itself.

BosonSampling Meets Reality
How Does Noisy BosonSampling Behave?
BosonSampling and Noisy BosonSampling (i.e., BosonSam-
pling in the presence of noise) exhibit radically different
behavior. BosonSampling is based on 𝑛 noninteracting,
indistinguishable bosons with 𝑚 modes. For noisy Boson
Samplers these bosons will not be perfectly noninter-
acting (accounting for one form of noise) and will not
be perfectly indistinguishable (accounting for another
form of noise). The same is true if we replace bosons
by fermions everywhere. The state of 𝑛 bosons with 𝑚
modes is represented by an algebraic variety of decom-
posable symmetric tensors of real dimension 2𝑚𝑛 in a
huge relevant Hilbert space of dimension 2𝑚𝑛. For the
fermion case this manifold is simply the Grassmannian.

We have already discussed the rich theory of compu-
tational complexity classes beyond P, and there is also a
rich theory below P. One very low-level complexity class
consists of computational tasks that can be carried out
by bounded-depth polynomial-size circuits. In this model
the number of gates is, as before, at most polynomial
in the input side, but an additional severe restriction is
that the entire computation is carried out in a bounded
number of rounds. Bounded-depth polynomial-size cir-
cuits cannot even compute or approximate the parity of𝑛 bits, but they can approximate real functions described

6This plausible conjecture, which motivated quantum computers
to start with, is supported by the recent work of Jordan, Lee, and
Preskill and is often taken for granted. A mathematical proof is
still beyond reach.

Figure 3. The huge computational gap (left) between
BosonSampling (purple) and FermionSampling
(green) vanishes in the noisy versions (right).

by bounded-degree polynomials and can sample approx-
imately according to probability distributions described
by real polynomials of bounded degree.

Theorem 1 (Kalai and Kindler). When the noise level is
constant, BosonSampling distributions are well approx-
imated by their low-degree Fourier–Hermite expansion.
Consequently, noisy BosonSampling can be approximated
by bounded-depth polynomial-size circuits.

It is reasonable to assume that for all proposed im-
plementations of BosonSampling, the noise level is at
least a constant, and therefore an experimental re-
alization of BosonSampling represents, asymptotically,
bounded-depth computation. The next theorem shows
that implementation of BosonSampling will actually
require pushing down the noise level below 1/𝑛.
Theorem 2 (Kalai and Kindler). When the noise level is𝜔(1/𝑛) and 𝑚 ≫ 𝑛2, BosonSampling is very sensitive to
noise, with a vanishing correlation between the noisy dis-
tribution and the ideal distribution.7

Theorems 1 and 2 give evidence against expectations of
demonstrating “quantum supremacy” via BosonSampling:
experimental BosonSampling represents an extremely
low-level computation, and there is no precedence for
a “bounded-depth machine” or a “bounded-depth algo-
rithm” that gives a practical advantage, even for small
input size, over the full power of classical computers, not
to mention some superior powers.

Bounded-Degree Polynomials
The class of probability distributions that can be ap-
proximated by low-degree polynomials represents a
severe restrictionbelowbounded-depth computation. The
description of noisy BosonSampling with low bounded-
degree polynomials is likely to extend to small noisy
quantum circuits and other similar quantum systems,
and this would support the pessimistic hypothesis. This

7The condition 𝑚 ≫ 𝑛2 can probably be removed by a more
detailed analysis.
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description is relevant to important general computa-
tional aspects of quantum systems in nature, as we now
discuss.

Why Is Robust Classical Information Possible? The ability
to approximate low-degree polynomials still supports
robust classical information. The (“Majority”) Boolean
function8𝑓(𝑥1, 𝑥2,… , 𝑥𝑛) = 𝑠𝑔𝑛(𝑥1+𝑥2+⋯+𝑥𝑛)allows for
very robust bits based on a large number of noisy bits and
admits excellent low-degree approximations. Quantum
error correction is also based on encoding a single qubit
as a function 𝑓(𝑞1, 𝑞2 …,𝑞𝑛) of many qubits, and also
for quantum codes the quality of the encoded qubit
grows with the number of qubits used for the encoding.
But for quantum error-correction codes, implementation
with bounded-degree polynomial approximations is not
available, and I conjecture that no such implementation
exists. This would support the insight that quantum
mechanics is limiting the information one can extract
from a physical system in the absence of mechanisms
leading to robust classical information.

Why Can We Learn the Laws of Physics from Experiments?
Learning the parameters of a process from examples
can be computationally intractable, even if the process
belongs to a low-level computational task. (Learning even
a function described by a depth-two Boolean circuit of
polynomial size does not admit an efficient algorithm.)
However, the approximate value of a low-degree polyno-
mial can efficiently be learned from examples. This offers
an explanation for our ability to understand natural
processes and the parameters defining them.

Predictions from the Pessimistic Hypothesis
Under the pessimistic hypothesis, universal quantum
devices are unavailable, and we need to devise a specific
device in order to implement a specific quantumevolution.
A sufficiently detailed modeling of the device will lead to
a familiar detailed Hamiltonian modeling of the quantum
process that also takes into account the environment and
various forms of noise. Our goal is different: we want
to draw from the pessimistic hypothesis predictions on
noisy quantum circuits (and, at a later stage, on more
general noisy quantum processes) that are common to all
devices implementing the circuit (process).

The basic premises for studying noisy quantum evolu-
tions when the specific quantum devices are not specified
are as follows: First, modeling is implicit; namely, it is
given in terms of conditions that the noisy process must
satisfy. Second, there are systematic relations between
the noise and the entire quantum evolution and also
between the target state and the noise.

In this section we assume the pessimistic hypothesis,
but we note that the previous section proposes the
following picture in support of the pessimistic hypothesis:
evolutionsandstatesofquantumdevices in thesmall scale
are described by low-degree polynomials. This allows, for
a larger scale, the creation of robust classical information
and computation but does not provide the necessary

8A Boolean function is a function from {−1, 1}𝑛 to {−1, 1}.

Figure 4. The pessimistic hypothesis: Noisy quantum
evolutions, described by low-degree polynomials,
allow via the mechanisms of averaging/repetition
robust classical information and computation but do
not allow reaching the starting points for quantum
supremacy and quantum fault tolerance. Drawing by
Neta Kalai.

starting point for quantum fault tolerance or for any
manifestation of quantum supremacy.

NoQuantum Fault Tolerance: Its Simplest Manifestation
Entanglement and Cat States. Entanglement is a name for
quantum correlation, and it is an important feature of
quantum physics and a crucial ingredient of quantum
computation. A cat state of the form 1√2 |00⟩ + 1√2 |11⟩
represents the simplest form of entanglement between
two qubits. Let me elaborate: the Hilbert space 𝐻 repre-
senting the states of a single qubit is two-dimensional.
We denote by |0⟩ and |1⟩ the two vectors of a basis for 𝐻.
A pure state of a qubit is a superposition of basis vectors
of the form 𝑎 |0⟩ + 𝑏 |1⟩, where 𝑎,𝑏 are complex and|𝑎|2 + |𝑏|2 = 1. Two qubits are represented by a tensor
product 𝐻⊗𝐻, and we denote it by |00⟩ = |0⟩⊗|0⟩. Now,
a superposition of two vectors can be thought of as a
quantum analog of a coin toss in classical probability—a
superposition of |00⟩ and |11⟩ is a quantum analog of
correlated coin tosses: two heads with probability 1/2,
and two tails with probability 1/2. The name “cat state”
refers, of course, to Schrödinger’s cat.

Noisy Cats. The following prediction regarding noisy en-
tangled pairs of qubits (or “noisy cats”) is perhaps the
simplest prediction on noisy quantum circuits under the
pessimistic hypothesis.
Prediction 1: Two-qubits behavior. Any implementation
of quantum circuits is subject to noise, for which errors
for a pair of entangled qubitswill have substantial positive
correlation.

Prediction 1, which we will refer to as the “noisy cat
prediction”, gives a very basic difference between the op-
timistic and pessimistic hypotheses. Under the optimistic
hypothesis gated qubits will manifest correlated noise,
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but when quantum fault tolerance is in place, such corre-
lations will be diminished for most pairs of qubits. Under
the pessimistic hypothesis quantum fault-tolerance is not
possible, and without it there is no mechanism to remove
correlated noise for entangled qubits. Note that the condi-
tion on noise for a pair of entangled qubits is implicit, as
it depends on the unknown process and unknown device
leading to the entanglement.

Further Simple Manifestations of the Failure of Quantum
Fault Tolerance.
Prediction 2: Error synchronization. For complicated
(very entangled) target states, highly synchronized errors
will occur.

Error synchronization refers to a substantial proba-
bility that a large number of qubits, much beyond the
average rate of noise, are corrupted. Under the optimistic
hypothesis error synchronization is an extremely rare
event.
Prediction 3: Error rate. For complicated evolutions, and
for evolutions approximating complicated states, the
error rate, in terms of qubit-errors, scales up linearly with
the number of qubits.

The three predictions 1–3 are related. Under natural
assumptions, the noisy cat prediction implies error syn-
chronization for quantum states of the kind involved
in quantum error correction and quantum algorithms.
Roughly speaking, the noisy cat prediction implies posi-
tive correlation between errors for every pair of qubits,
and this implies a substantial probability for the event
that a large fraction of qubits (well above the average rate
of errors) will be corrupted at the same computer cycle.
Error synchronization also implies, again under some
natural assumptions, that error rate in terms of qubit
errors is at least linear in the number of qubits. Thus,
the pessimistic hypothesis itself can be justified from the
noisy cat prediction, together with natural assumptions
on the rate of noise. Moreover, this also explains the
wide-gap dichotomy in terms of qubit errors.

The optimistic hypothesis allows creating via quantum
error correction very stable “logical” qubits based on
stable raw physical qubits.
Prediction 4: No logical qubits. Logical qubits cannot be
substantially more stable than the raw qubits used to
construct them.

No Quantum Fault-Tolerance: Its Most General
Manifestation9

We can go to the other extreme and try to examine
consequences of the pessimistic hypothesis for the most
general quantum evolutions. We start with a prediction
related to the discussion in the section “BosonSampling
Meets Reality”.
Prediction 5: Bounded-depth and bounded-degree ap-
proximations. Quantum states achievable by any
implementation of quantum circuits are limited by
bounded-depth polynomial-size quantum computation.

9This section is more technical and assumes more background on
quantum information.

Even stronger: low-entropy quantum states in nature
admit approximations by bounded-degree polynomials.

The next items go beyond the quantum circuit model
and do not assume that the Hilbert space for our quantum
evolution has a tensor product structure.
Prediction 6: Time smoothing. Quantum evolutions are
subject to noise, with a substantial correlation with
time-smoothed evolutions.

Time-smoothed evolutions form an interesting re-
stricted class of noisy quantum evolutions aimed to
model evolutions under the pessimistic hypothesis when
fault tolerance is unavailable to suppress noise prop-
agation. The basic example for time-smoothing is the
following: Start with an ideal quantum evolution given by
a sequence of 𝑇 unitary operators, where 𝑈𝑡 denotes the
unitary operator for the 𝑡th step, 𝑡 = 1, 2,… ,𝑇. For 𝑠 < 𝑡
we denote 𝑈𝑠,𝑡 = ∏𝑡−1𝑖=𝑠 𝑈𝑖 and let 𝑈𝑠,𝑠 = 𝐼 and 𝑈𝑡,𝑠 = 𝑈−1𝑠,𝑡 .
The next step is to add noise in a completely standard
way: consider a noise operation 𝐸𝑡 for the 𝑡th step. We
can think about the case where the unitary evolution
is a quantum computing process and 𝐸𝑡 represents a
depolarizing noise with a fixed rate acting independently
on the qubits. And finally, replace 𝐸𝑡 with a new noise
operation 𝐸′𝑡 defined as the average

(1) 𝐸′𝑡 = 1𝑇 ⋅ 𝑇∑𝑠=1𝑈𝑠,𝑡𝐸𝑠𝑈−1𝑠,𝑡 .
Prediction 7: Rate. For a noisy quantum system a lower
bound for the rate of noise in a time interval is a measure
of noncommutativity for the projections in the algebra of
unitary operators in that interval.

Predictions 6 and 7 are implicit and describe systematic
relations between the noise and the evolution. We expect
that time-smoothing will suppress high terms for some
Fourier-like expansion, thus relating Predictions 5 and 6.
We also note that Prediction 7 resembles the picture about
the “unsharpness principle” from symplectic geometry
and quantization.10

Locality, Space and Time
The decision between the optimistic and pessimistic hy-
potheses is, to a large extent, a question about modeling
locality in quantum physics. Modeling natural quantum
evolutions by quantum computers represents the impor-
tant physical principle of “locality”: quantum interactions
are limited to a few particles. The quantum circuit model
enforces local rules on quantum evolutions and still
allows the creation of very nonlocal quantum states.
This remains true for noisy quantum circuits under the
optimistic hypothesis. The pessimistic hypothesis sug-
gests that quantum supremacy is an artifact of incorrect
modeling of locality. We expect modeling based on the
pessimistic hypothesis, which relates the laws of the
“noise” to the laws of the “signal”, to imply a strong form
of locality for both.

We can even propose that spacetime itself emerges
from the absence of quantum fault tolerance. It is a

10L. Polterovich, “Symplectic geometry of quantum noise”, Comm.
Math. Phys 327 (2014), 481–519; arXiv:1206.3707.
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familiar idea that since (noiseless) quantum systems
are time reversible, time emerges from quantum noise
(decoherence). However, also in the presence of noise,
with quantum fault tolerance, every quantum evolution
that can experimentally be created can be time-reversed,
and, in fact, we can time-permute the sequence of unitary
operators describing the evolution in an arbitrary way.
It is therefore both quantum noise and the absence of
quantum fault tolerance that enable an arrow of time.

Next, we note that with quantum computers one can
emulate a quantum evolution on an arbitrary geometry.
For example, a complicated quantum evolution represent-
ing the dynamics of a four-dimensional lattice model
could be emulated on a one-dimensional chain of qubits.
This would be vastly different from today’s experimental
quantum physics, and it is also in tension with insights
from physics, where witnessing different geometries sup-
porting the same physics is rare and important. Since a
universal quantum computer allows the breaking of the
connection between physics and geometry, it is noise and
the absence of quantum fault tolerance that distinguish
physical processes based on different geometries and
enable geometry to emerge from the physics.

Classical Simulations of Quantum Systems
Prediction 8: Classical simulations of quantum pro-
cesses. Computations in quantum physics can, in
principle, be simulated efficiently on a digital computer.

This bold prediction from the pessimistic hypothesis
could lead to specific models and computational tools.
There are some caveats: heavy computations may be
required for quantum processes that are not realistic to
start with, for a model in quantum physics representing a
physical process that depends on many more parameters
than those represented by the input size, for simulating
processes that require knowing internal parameters of
the process that are not available to us (but are available
to nature), and when we simply do not know the correct
model or relevant computational tool.
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Gil Kalai lecturing at Adam Mickiewicz University in
Poland.

Quid est Noster Computationis Mundus?11
Deciding between the optimistic and pessimistic hypothe-
ses reflects a far-reaching difference in the view of our
computational world. Is the wealth of computations we
witness in reality only the tip of the iceberg of a supreme
computational power used by nature and available to us,
or is it the case that the wealth of classical computa-
tions we witness represents the full computational power
that can be extracted from natural quantum physics
processes?

I expect that the pessimistic hypothesis will prevail,
yielding important outcomes for physics, the theory of
computing, andmathematics. Our journey through proba-
bility distributions described by low-degree polynomials,
implicit modeling for noise, and error synchronization
may provide some of the ingredients needed for solving
the quantum computer puzzle.

11What is our computational world?
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