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The quantum content of the gluing equations

TUDOR DIMOFTE

STAVROS GAROUFALIDIS

The gluing equations of a cusped hyperbolic 3–manifold M are a system of poly-

nomial equations in the shapes of an ideal triangulation T of M that describe the

complete hyperbolic structure of M and its deformations. Given a Neumann–Zagier

datum (comprising the shapes together with the gluing equations in a particular

canonical form) we define a formal power series with coefficients in the invariant

trace field of M that should (a) agree with the asymptotic expansion of the Kashaev

invariant to all orders, and (b) contain the nonabelian Reidemeister–Ray–Singer

torsion of M as its first subleading “1–loop” term. As a case study, we prove

topological invariance of the 1–loop part of the constructed series and extend it into a

formal power series of rational functions on the PSL.2;C/ character variety of M .

We provide a computer implementation of the first three terms of the series using the

standard SnapPy toolbox and check numerically the agreement of our torsion with the

Reidemeister–Ray–Singer for all 59924 hyperbolic knots with at most 14 crossings.

Finally, we explain how the definition of our series follows from the quantization of

3–dimensional hyperbolic geometry, using principles of topological quantum field

theory. Our results have a straightforward extension to any 3–manifold M with

torus boundary components (not necessarily hyperbolic) that admits a regular ideal

triangulation with respect to some PSL.2;C/ representation.

57M25, 57N10

1 Introduction

1.1 The Kashaev invariant and perturbative Chern–Simons theory

The Kashaev invariant hKiN 2 C of a knot K in 3–space (for N D 2; 3; : : :) is a

powerful sequence of complex numbers determined by the Jones polynomial of the knot

(see [46]) and its cablings; see Turaev [70] and Witten [72]. The Volume Conjecture

of Kashaev and Murakami–Murakami [49; 50; 55] relates the Kashaev invariant of a

hyperbolic knot K with the hyperbolic volume Vol.M / of its complement M DS3nK
(see Thurston [66]):

(1-1) lim
N !1

1

N
log jhKiN j D

Vol.M /

2�
:
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1254 Tudor Dimofte and Stavros Garoufalidis

A generalization of the Volume Conjecture (see Gukov [39]) predicts a full asymptotic

expansion of the Kashaev invariant to all orders in 1=N :

(1-2) hKiN
N !1� ZM .2� i=N /

for a suitable formal power series

(1-3) ZM .„/D exp

�
1

„SM;0�
3

2
log „CSM;1C

X

n�2

„n�1SM;n

�
; „ D 2� i

N
:

The formal power series ZM .„/ in (1-3) is conjectured to coincide with the perturbative

partition function of Chern–Simons theory with complex gauge group SL.2;C/ along

the discrete faithful representation �0 of the hyperbolic manifold M . Combining

such an interpretation with further conjectures of the first author, Gukov, Lenells and

Zagier [17] and the second author and Lê [34; 36] one predicts the following.

� SM;0 D i.VolM C iCSM / 2C=.4�2Z/ is the complexified volume of M (cf

Thurston [67] and Neumann [56]).

� SM;1 is related (see Witten [73], Bar-Natan and Witten [3] and Gukov and

Murakami [40]) to the nonabelian Ray–Singer torsion (see De Loera, Rambau

and Santos [63]), which ought to equal (cf Müller [54]) the combinatorial

nonabelian Reidemeister torsion. More precisely, by Dubois and the second

author [19, Conjecture 1.8] we should have

(1-4) �R
M D 4�3 exp.�2SM;1/ 2E�

M ;

where �R
M

is the nonabelian Reidemeister–Ray–Singer torsion of M with respect

to the meridian (see Porti [62] and Dubois [18]), and EM is the invariant trace

field of M .

� For n � 2, the n–loop invariants SM;n are conjectured to lie in the invariant

trace field EM [17; 34].

The generalization (1-2) of the Volume Conjecture has been numerically verified

for a few knots using either state integral formulas for Chern–Simons theory when

available [17] or a numerical computation of the Kashaev invariant and its numerical

asymptotics, lifted to algebraic numbers; see the second author and Zagier [37; 31; 32].

Our goal is to provide an exact, combinatorial definition of the formal power se-

ries ZM .„/ via formal Gaussian integration using the shape parameters and the

Neumann–Zagier matrices of a regular ideal triangulation of M . Our definitions

� express the putative torsion exp.�2SM;1/ and the n–loop invariants SM;n man-

ifestly in terms of the shape parameters zi and the gluing matrices of a regular

ideal triangulation T of M ;
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� manifestly deduce that the putative torsion and the n–loop invariants for n� 2

are elements of the invariant trace field;

� explain the difference of ZM .„/ for pairs of geometrically similar knots studied

by Zagier and the second author;

� provide an effective way to compute the n–loop invariants using standard com-

mands of the SnapPy toolbox [13], as demonstrated for nD1; 2; 3 for hyperbolic

knots with at most 14 crossings;

� allow efficient tests of the asymptotics of the Volume Conjecture (1-2), the

“1–loop Conjecture” (1-4) and other conjectures in Quantum Topology.

We note that we only define exp.�2SM;1/ up to a sign, and SM;2 modulo Z=24. All

higher n–loop invariants are defined unambiguously.

Although we give a purely combinatorial definition of ZM .„/ without any knowledge

of state integrals or Chern–Simons theory with complex gauge group, in Section 5 we

explain how our definition follows from the state integral model of the first author [15]

and its perturbative expansion.

1.2 The Neumann–Zagier datum

All manifolds and all ideal triangulations in this paper will be oriented. The volume of a

hyperbolic manifold M , appearing in the Volume Conjecture and contributing to SM;0 ,

is already known to have a simple expression in terms of shape parameters of a regular

ideal triangulation, ie, one that recovers the complete hyperbolic structure of M . (For

extended discussion on regular triangulations, see Section 4.) If T D f�igNiD1
is a

regular ideal triangulation of M with shape parameters zi 2Cnf0; 1g for iD1; : : : ;N ,

then (cf Dupont and Sah [23] and Neumann and Zagier [58])

(1-5) Vol.M /D
NX

iD1

D.zi/;

where D.z/ WD Im.Li2.z// C arg.1 � z/ log jzj is the Bloch–Wigner dilogarithm

function. This formula can also be interpreted as calculating the image of the class

ŒM � WD
P

i Œzi � 2 B of M in the Bloch group B under the natural map DW B!R. An

analogous formula, using the class of M in the “extended” Bloch group yB , gives the

full complexified volume SM;0 ; see Neumann [56; 57], Goette and Zickert [38; 75].

It is natural to ask whether the class of M in B determines not only SM;0 but the

higher SM;n as well. This question was posed to the authors several years ago by D Za-

gier. Subsequent computations [37; 32] indicated that a positive answer was not possible.

Geometry & Topology, Volume 17 (2013)
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For example, there is a family of pairs of pretzel knots ..�2; 3; 3C2p/; .�2; 3; 3�2p//

for pD 2; 3; : : :, as well as the figure-eight knot and its sister, which all have the same

class in the Bloch group (and classes differing by 6–torsion in the extended Bloch

group), but different invariants SM;n for n� 1.

The extra information necessary to determine the SM;n can be described as follows.

Recall that if T is a regular ideal triangulation of M with N tetrahedra, its shapes

z D .z1; : : : ; zN / satisfy a system of polynomial equations, one equation for every

edge, and one imposing parabolic holonomy around the meridian of the cusp [66; 58].

Let us set

(1-6) z0
i D .1� zi/

�1; z00
i D 1� z�1

i :

The equations can then be written in the form

(1-7) zAz00B WD
NY

jD1

z
Aij

j .1� z�1
j /Bij D˙1; i D 1; : : : ;N;

where A and B are N �N square matrices with integer entries, which we call the

Neumann–Zagier matrices following [58].

Definition 1.1 If T is a regular ideal triangulation of M , its Neumann–Zagier datum

(resp. enhanced Neumann–Zagier datum) is given by the triple

ˇT D .z;A;B/; resp. y̌
T D .z;A;B ; f /;

where z is a solution to the gluing equations and f is a combinatorial flattening of T ,

a collection of integers that we define in Section 2.4.

As we will discuss in detail in Section 2, implicit in the above definition is the depen-

dence of ˇT and y̌T on the following choices:

(1) a pair of opposite edges for every oriented ideal tetrahedron (a so-called choice

of quad type).

(2) An edge of T .

(3) A meridian loop in the boundary of M in general position with respect to T .

(4) A combinatorial flattening.

Geometry & Topology, Volume 17 (2013)
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1.3 The 1–loop invariant

Definition 1.2 Given a one-cusped hyperbolic manifold M with regular ideal trian-

gulation T and enhanced Neumann–Zagier datum y̌T we define

(1-8) �T WD ˙
1

2
det.A�z00 CB��1

z /zf 00

z00�f 2EM=f˙1g;

where �z WD diag.z1; : : : ; zN / and �z00 WD diag.z00
1
; : : : ; z00

N
/ are diagonal matrices,

and zf 00

z00�f WD
Q

i zi
f 00

i z00
i

�fi .

Note that �T takes value in the invariant trace field of M and is only defined up to a

sign. In Section 3 we will show the following.

Theorem 1.3 �T is independent of the quad type of T , the chosen edge of T , the

choice of a meridian loop, and the choice of a combinatorial flattening.

We now consider the dependence of �T on the choice of a regular ideal triangulation

of M . It is well known that the set X of ideal triangulations of a cusped hyperbolic

manifold is nonempty (see Casler [10]) and connected by 2–3 moves; see for example

Matveev [52; 53] and Piergallini [59]. That is, a sequence of 2–3 moves can be

used to take any one ideal triangulation to any other. The subset X�0
of X of regular

triangulations is also nonempty; see Section 4. Topologically, these are the triangulations

without any univalent edges; see Champanerkar [11], Boyd, Dunfield and Rodriguez-

Villegas [7], Dunfield and the second author [22] and Tillmann [69]. We will prove the

following in Section 3.

Theorem 1.4 �T is constant on every component of X�0
connected by 2–3 moves.

1.4 Expectations

We may pose some questions and conjectures about the 1–loop invariant �T and

the structure of the set X�0
. Let us begin with two questions whose answers are

unfortunately unknown.

Question 1.5 Is X�0
connected by 2–3 moves?

Question 1.6 Is �T constant on the set X�0
?

Geometry & Topology, Volume 17 (2013)
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Clearly, a positive answer to the first question implies a positive answer to the second.

Despite the unknown answer to the above questions, with additional effort we can still

define a distinguished component of X�0
, and thus obtain a topological invariant of M .

Namely, let X EP
M
� X�0

denote the subset that consists of regular refinements of the

canonical (Epstein–Penner) ideal cell decomposition of M [25]. X EP
M

is canonically

associated to a cusped hyperbolic manifold M . A detailed description of X EP
M

is given

by the second author, Hodgson, Rubinstein and Segerman in [35, Section 6]. X EP
M

generically consists of a single element. In Section 4.2 we will show the following.

Proposition 1.7 X EP
M

lies in a connected component of X�0
. Consequently, the value

of �T on X EP
M

is a topological invariant �M of M .

Admittedly, it would be more natural to show that �T is constant on all of X�0
.

Proposition 1.7 appears to be an artificial way to construct a much needed topological

invariant of cusped hyperbolic 3–manifolds.

Our next conjecture compares our torsion �M with the nonabelian Reidemeister tor-

sion �R
M

of M with respect to the meridian defined in [62; 18].

Conjecture 1.8 For all hyperbolic knot complements we have �R
M
D˙�M .

Numerical evidence for the above conjecture is presented in Appendix D using Dun-

field’s computation of �R
M

via SnapPy [21]. Observe that both sides of the equation in

Conjecture 1.8 are algebraic numbers (defined up to a sign) that are elements of the

invariant trace field of M . Moreover, if M has a regular ideal triangulation with N

ideal tetrahedra and its fundamental group is generated with r elements, then �M
and �R

M
are essentially given by the determinant of square matrices of size N and

3r � 3, respectively. It is still unclear to us how to relate these two matrices or their

determinants.

By definition, �R
M
2 E�

M
. Thus, a mild but important corollary of Conjecture 1.8 is

that �M is nonzero. This is a crucial ingredient, necessary for the definition of the

higher loop invariants SM;n using perturbation theory.

1.5 The higher-loop invariants

In this section we define the higher loop invariants ST ;n for n� 2. They are analyzed in

detail in Section 5, using a state integral (5-2). The result, however, may be summarized

as follows. Let us introduce a formal power series

(1-9)  „.xI z/D exp

� X

n;k;2nCk�2>0

„nCk=2�1.�x/kBn

n!k!
Li2�n�k.z

�1/

�

2Q.z/ŒŒx; „1=2��;
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where Bn is the nth Bernoulli number (with B1 D C1=2), and Lm.z/ is the mth

polylogarithm. Note that Lim.z/ 2 .1 � z/�m�1ZŒz� is a rational function for all

nonpositive integers m. This formal series comes from the asymptotic expansion of

the quantum dilogarithm function after removal of its two leading asymptotic terms;

see Barnes [4], Faddeev and Kashaev [28; 27]. The quantum dilogarithm is the Chern–

Simons partition function of a single tetrahedron and its asymptotics are studied in

detail in Section 5.

We fix an enhanced Neumann–Zagier datum y̌
T D .z;A;B ; f / of an oriented 1–

cusped manifold M and a regular ideal triangulation T with N tetrahedra. Let

� DAf CBf 00 . We assume that

det.B/¤ 0; �M ¤ 0:

The condition det.B/¤ 0 is always satisfied with a suitable labeling of shapes; see

Lemma A.3. In that case, Lemma A.2 implies that

(1-10) HD�B
�1

AC�z0 ;

is a symmetric matrix, where �z0 D diag.z0
1
; : : : ; z0

N
/. We define

(1-11) fT ;„.xI z/D exp
�
� „

1=2

2
xT

B
�1�C „

8
f T

B
�1

Af
� NY

iD1

 „.xi ; zi/

2Q.z/ŒŒx; „1=2��;

where x D .x1; : : : ;xN /
T and z D .z1; : : : ; zN /. Assuming that H is invertible, a

formal power series f„.x/ 2Q.z/ŒŒx; „1=2�� has a formal Gaussian integration, given

by (cf Bessis, Itzykson and Zuber [6]),

(1-12) hf„.x/i D
R

dxe�1=2xT Hxf„.x/R
dxe�1=2xT Hx

:

This integration is defined by expanding f„.x/ as a series in x , and then formally

integrating each monomial, using the quadratic form H�1 to contract x–indices

pairwise.

Definition 1.9 With the above conventions, we define

(1-13) exp

� 1X

nD2

ST ;n.z/ „n�1

�
WD hfT ;„.xI z/i:

Remark 1.10 Notice that the result involves only integral powers of „ and each term

is a rational function in the complex numbers z . Moreover, ST ;n 2 ��3nC3
T

QŒz; z0; z00�
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for all n � 2. This follows from the fact that the connected Feynman diagrams that

contribute to ST ;n have at most 3n� 3 edges and each edge (contracted by H�1 )

contributes a factor of det.H/�1 . Thus, we can also write

(1-14) exp

� 1X

nD2

ST ;n„n�1

�
D 1C

1X

nD1

zST ;n

�3n
T

„n;

where zST ;n 2QŒz; z0; z00�. Experimentally, it appears that zST ;n have lower complexity

than ST ;n ; see Appendix D.

1.6 Feynman diagrams

A convenient way to organize the above definition is via Feynman diagrams, using

Wick’s Theorem to express each term ST ;n as a finite sum of connected diagrams

with at most n loops, where the number of loops of a connected graph is its first

Betti number. This is well known and explained in detail, eg by Hori, Katz, Klemm,

Pandharipande, Thomas, Vafa, Vakil and Zaslow in [45, Chapter 9], by Polyak in [60]

and in [6].

The Feynman rules for computing the ST ;n , described in Section 5, turn out to be the

following.1 One draws all connected graphs D with vertices of all valencies, such that

(1-15) L.D/ WD .#1–verticesC #2–verticesC #loops/� n:

In each diagram, the edges represent an N �N propagator

(1-16) propagator W …D „H�1;

while each k –vertex comes with an N –vector of factors �
.k/
i ,

(1-17) �
.k/
i D .�1/k

˛kCn�L.D/X

pD˛k

„p�1Bp

p!
Li2�p�k.z

�1
i /C

��1
2
.B�1�/i k D 1;

0 k � 2;

where ˛k D 1 (resp. 0) if k D 1; 2 (resp. k � 3). The diagram D is then evaluated

by contracting the vertex factors �
.k/
i with propagators, multiplying by a standard

symmetry factor, and taking the „n�1 part of the answer. In the end, SM;n is the sum

of evaluated diagrams, plus an additional vacuum contribution

(1-18) �.0/ D Bn

n!

NX

iD1

Li2�n.z
�1
i /C

�1
8
f �B�1

Af nD 2;

0 n� 3:

To illustrate the above algorithm, we give the explicit formulas for S2 and S3 below.

1To derive these from (1-12), one should first rescale x!„�1=2x .
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1.7 The 2–loop invariant

The six diagrams that contribute to SM;2 are shown in Figure 1, together with their

symmetry factors.

1
8

1
8

1
12

1
2

1
2

1
2

Figure 1: Diagrams contributing to SM;2 with symmetry factors. The top

row of diagrams have exactly two loops, while the bottom row have fewer

loops and additional 1–vertices and 2–vertices.

Their evaluation gives the following formula for ST ;2 :

(1-19) ST ;2 D coeff
h1

8
�

.4/
i .…ii/

2C 1

8
…ii�

.3/
i …ij�

.3/
j …jj

C 1

12
�

.3/
i .…ij /

3�
.3/
j C 1

2
�

.1/
i …ij�

.3/
j …jj

C 1

2
�

.2/
i …ii C

1

2
�

.1/
i …ij�

.1/
j ; „

i
C�.0/;

where all the indices i and j are implicitly summed from 1 to N and coeff Œf .„/; „�
denotes the coefficient of „ of a power series f .„/. Concretely, the 2–loop contribution

from the vacuum energy is �.0/D 1
8
f T

B
�1

Af � 1
12

P
i z0

i , and the four vertices that

appear only contribute at leading order,

�
.1/
i D z0

i � .B�1�/i

2
; �

.2/
i D ziz

02
i

2
;

�
.3/
i D�ziz

02
i

„ ; �
.4/
i D�zi.1C zi/z

03
i

„ :

(1-20)

We expect ST ;2 to be well-defined modulo Z=24, and this is exactly what happens in

hundreds of examples that we computed.

1.8 The 3–loop invariant

For the next invariant ST ;3 , all the diagrams of Figure 1 contribute, collecting the

coefficient of „2 of their evaluation. In addition, there are 34 new diagrams that satisfy
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the inequality (1-15); they are shown in Figures 2 and 3. Calculations indicate that the

3–loop invariant ST ;3 is well-defined, independent of the regular triangulation T . The

invariants ST ;0; �T ;ST ;2;ST ;3 have been programmed in Mathematica and take as

input a Neumann–Zagier datum available from SnapPy [13].

For the 4–loop invariant, there are 291 new diagrams. A python implementation will

be provided in the future. For large n, one expects about n!2C n diagrams to contribute

to Sn .

Remark 1.11 Note that the n–loop invariant for n� 3 is independent of the combi-

natorial flattening and in fact depends only on .B�1
A;B�1�; z/.

1
48

1
16

1
12

1
48

1
16

1
24

1
8 1

12 1
8

1
8

1
16

1
48

1
16

1
16

1
8

Figure 2: Diagrams with three loops contributing to S3

1
8

1
4

1
8 1

4
1
6

1
4

1
4

1
4

1
4

1
4

1
4

1
8

1
4

1
2

1
4

1
4

1
2

1
2

1
6

Figure 3: Diagrams with 1–vertices and 2–vertices contributing to S3

1.9 The Feynman diagrams are stable graphs

During a Master’s Class in Aarhus in February 2013, the second author observed that

the Feynman graphs of our paper can be identified with the stable graphs which appear
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in the Topological Recursion of Eynard–Orantin and the graphs that appear in the

intersection theory of the moduli space of curves; see [26] and Aganagic, Bouchard and

Klemm [1, Figure 1]. We thank Bertrand Eynard and Nicolas Orantin for delivering

the Master’s Class in Aarhus and Jorgen Andersen for organizing it.

Definition 1.12 A stable graph G is an abstract connected graph (with no cyclic order

of the edges around a vertex) with the property that every vertex v of G is attached a

genus gv and a degree (ie, valency) nv such that 2gv � 2C nv > 0. The total degree

of a stable graph is given by
P

v.2gv � 2C nv/D 2g� 2C n where n is the number

of external legs and g is defined to be the genus of G .

Let G.g; n/ denote the (finite) set of stable graphs of genus g with n external legs.

Then

Sg D
X

G2G.g;0/

1

jAut.G/j hGi:

To explain where the genus comes in our Feynman graphs, observe that �
.k/
i from

Equation (1-17) for each vertex v has k D nv , and 2gv D p that contributes to

„2gv�1B2gv
=.2gv/!Li2�2gv�nv

. In other words, 2gv extracts the monomial hp�1

from �.k/ . Notice that since Bodd D 0 (for odd greater than 1) then we must have

p D evenD 2gv .

1.10 Generalizations

There are several natural extensions of the results presented above. First, one could

attempt to prove the independence of the all-loop invariants ZT .„/, including the

entire series of ST ;n s, under 2–3 moves and different choices of Neumann–Zagier

datum. This was done nonrigorously in [15], but a full mathematical argument in the

spirit of Theorems 1.3 and 1.4 is still missing. We hope to address this in future work.

In a different direction, one can extend the formulas for �T and ST ;n to

– manifolds with multiple cusps,

– representations other than the discrete faithful,

– representations with nonparabolic meridian holonomy,

– nonhyperbolic manifolds.
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The only truly necessary condition is that a 3–manifold M have a topological ideal

triangulation T that — upon solving gluing equations and using a developing map —

reproduces some desired representation �W �1.M /! PSL.2;C/. We call such an

ideal triangulation �–regular, and in Section 4 we will briefly discuss most of the

above generalizations. In particular, we will demonstrate in Sections 4.6 and 5.5 how

to extend �T ;ST ;n to rational functions on the character variety of a (topologically)

cusped manifold. The generalization to multiple cusps is also quite straightforward,

but left out mainly for simplicity of exposition.
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2 Mechanics of triangulations

We begin by reviewing the gluing rules for ideal hyperbolic tetrahedra and the equations

that determine their shape parameters. We essentially follow the classic [66; 58], but

find it helpful to work with additive logarithmic (rather than multiplicative) forms of

the gluing equations. Recall that all manifolds and all ideal triangulations are oriented.

2.1 Ideal tetrahedra

Combinatorially, an oriented ideal tetrahedron � is a topological ideal tetrahedron

with three complex shape parameters .z; z0; z00/ assigned to pairs of opposite edges

(Figure 4). The shapes always appear in the same cyclic order (determined by the

orientation) around every vertex, and they satisfy

zz0z00 D�1;(2-1a)

z00C z�1� 1D 0:(2-1b)

In other words, z0D 1=.1�z/ and z00D 1�z�1 . We call the tetrahedron nondegenerate

if none of the shapes take values in f0; 1;1g, ie, z; z0; z00 2C�nf1g. It is sufficient to

impose this on a single one of the shapes.

Borrowing common terminology from the theory of normal surfaces, cf Burton [8],

Kang and Rubenstein [47; 48] and Tillman [68], we define the quadrilateral type (in

short, quad type) of � to be the distinguished pair of opposite edges labelled by z .
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.1/

.0/

.1/

.z/

z z00

z0

z0

z00 z

Figure 4: An ideal tetrahedron

Clearly, there is a threefold choice of quad type for any oriented ideal tetrahedron.

Different choices correspond to a cyclic permutation of the vector .z; z;0 ; z00/, which

leaves relations (2-1a) invariant.

Geometrically, the shape parameters determine a PSL.2;C/ structure on �. Equiva-

lently, they determine a hyperbolic structure, possibly of negative volume. We can then

describe the ideal hyperbolic tetrahedron � as the convex hull of four ideal points in

hyperbolic three-space H3 , whose cross ratio is z (or z0 , or z00 ). Each shape z fixes

the complexified dihedral angle on the edge it labels, via

(2-2) z D exp.torsionC i angle/;

and similarly for z0 , z00 .

2.2 The gluing matrices

We now discuss an important combinatorial invariant of ideal triangulations, namely the

gluing and Neumann–Zagier matrices, their symplectic properties, and the notion of a

combinatorial flattening. Although these notions are motivated by hyperbolic geometry

(namely the gluing of ideal tetrahedra around their faces and edges to describe a

complete hyperbolic structure on a cusped manifold), we stress that these notions make

sense for arbitrary 3–manifolds with torus boundary, and for triangulations whose

gluing equations may not have solutions in C n f0; 1g.
Let M be an oriented one-cusped manifold with an ideal triangulation T D f�igNiD1

and a choice of quad type.

The choice of quad, combined with the orientation of T and M allow us to attach

variables .Zi ;Z
0
i ;Z

00
i / to each tetrahedron �i . An Euler characteristic argument shows
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that the triangulation has N edges EI , I D 1; : : : ;N . For each edge EI we introduce

a gluing equation of the form

(2-3) EI W
NX

iD1

.GIiZi CG
0
IiZ

0
i CG

00
IiZ

00
i /D 2� i; I D 1; : : : ;N;

where GIi 2f0; 1; 2g (resp., G
0
Ii

, G
00
Ii

) is the number of times an edge of tetrahedron �i

with parameter Zi (resp., Z0
i , Z00

i ) is incident to the edge EI in the triangulation. In

addition, we impose the equations

(2-4) Zi CZ0
i CZ00

i D i�;

for i D 1; : : : ;N . Equations (2-3) are not all independent. For a one-cusped manifold,

every edge begins and ends at the cusp, which implies
PN

ID1GIi D
PN

ID1G
0
Ii
DPN

ID1G
00
Ii
D 2, and therefore that the sum of the left-hand sides of Equations (2-3)

equals 2� iN . This is the only linear dependence in case of one cusp. In general, there

is one relation per cusp of M , as follows from [56, Theorem 4.1].

An oriented peripheral simple closed curve � (such as a meridian) on the boundary

of M , in general position with the triangulation of the boundary torus that comes

from T , also gives rise to a gluing equation. We assume that the curve is simple

(has no self intersections), and set the signed sum of edge parameters on the dihedral

angles subtended by the curve to zero. A parameter is counted with a plus sign (resp.

minus sign) if an angle is subtended in a counterclockwise (resp. clockwise) direction

as viewed from the boundary. These rules are the same as described in [56], and

demonstrated in Section 2.6 below.

Let us choose such a peripheral curve �. We choose a meridian if M is a knot

complement. The gluing equation associated to � then takes the form

(2-5) � W
NX

iD1

.GN C1;iZi CG
0
N C1;iZ

0
i CG

00
N C1;iZ

00
i /D 0;

with GN C1;i ;G
0
N C1;i

;G 00
N C1;i

2 Z.

2.3 The Neumann–Zagier matrices

The matrices G , G
0 and G

00 have both symmetry and redundancy. We have already

observed that any one of the edge constraints (2-3) can be removed. Let us then ignore

the edge I D N . We can also use (2-4) to eliminate one of the three shapes for

each tetrahedron. We choose this canonically to be Z0
i , though which pair of edges is
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labelled Z0
i depends on the choice of quad type for the tetrahedron. Then the first N �1

edge equations and the meridian (�) equation are equivalent to

(2-6)

NX

jD1

.Aij Zj CBij Z00
j /D i��i ; i D 1; : : : ;N;

where

Aij D
(

Gij �G
0
ij I ¤N;

GN C1;j �G
0
N C1;j

i DN;

Bij D
(

G
00
ij �G

0
ij I ¤N;

G
00
N C1;j

�G
0
N C1;j

i DN;

(2-7)

�i WD
(

2�
PN

jD1 G
0
ij i ¤N;

�
PN

jD1 G
0
N C1;j

i DN:
(2-8)

We will generally assume Z , Z00 and � to be column vectors, and we will write

AZCBZ00 D i�� . The matrices .G ;G 0;G 00/ as well as .A;B ; �/ can easily be

obtained from SnapPy [13], as is illustrated in Appendix D.

The Neumann–Zagier matrices A and B have a remarkable property: they are the top

two blocks of a 2N � 2N symplectic matrix [58]. It follows that

(2-9) AB
T DBA

T ;

and that the N �2N block .AB/ has full rank. This symplectic property is crucial for

defining the state integral of [15], for defining our formal power series invariant ZM .„/,
and for the combinatorial proofs of topological invariance of the 1–loop invariant. A

detailed discussion of the symplectic properties of the Neumann–Zagier matrices A;B

is given in Appendix A.

2.4 Combinatorial flattenings

We now have all ingredients to define what is a combinatorial flattening.

Definition 2.1 Given an ideal triangulation T of M , a combinatorial flattening is a

collection of 3N integers .fi ; f
0

i ; f
00

i / 2 Z3 for i D 1; : : : ;N that satisfy

fi Cf 0
i Cf 00

i D 1; i D 1; : : : ;N;(2-10a)

NX

iD1

.GIifi CG
0
Iif

0
i CG

00
Iif

00
i /D

(
2 I D 1; : : : ;N;

0 I DN C 1:
(2-10b)
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Note that if we eliminate f 0 using Equation (2-10a), a flattening is a pair of vectors

.f; f 00/ 2 Z2N that satisfies

(2-11) Af CBf 00 D �:

Evidently, Equation (2-11) is a system of linear Diophantine equations. Neumann

proved in [56, Lemma 6.1] that every ideal triangulation T has a flattening.

Remark 2.2 Combinatorial flattenings should not be confused with the (geometric)

flattenings of [57, Definition 3.1]. The latter flattenings are coherent choices of loga-

rithms for the shape parameters z; z0; z00 of a complex solution to the gluing equations.

On the other hand, our combinatorial flattenings are independent of a solution to the

gluing equations. In the rest of the paper, the term flattening will mean a combinatorial

flattening in the sense of Definition 2.1.

2.5 The shape solutions to the gluing equations

If we exponentiate the equations (2-4), and set .zi ; z
0
i ; z

00
i /D .eZi ; eZ 0

i ; eZ 00

i /, we obtain

that .zi ; z
0
i ; z

00
i / satisfy Equation (2-1a). If we combine the exponentiated equations (2-6)

with the nonlinear relation (2-1b) for each tetrahedron, we obtain

(2-12) zAz00B D zA.1� z�1/B D .�1/� ;

where zA WD
Q

j z
Aij

j . These N equations in N variables are just the gluing equations

of Thurston [66] and Neumann and Zagier [58], and fully capture the constraints

imposed by the gluing. For hyperbolic M , a triangulation T is regular precisely when

one of the solutions to (2-12) corresponds to the complete hyperbolic structure.

2.6 Example: 41

As an example, we describe the enhanced Neumann–Zagier datum of the figure-eight

knot complement M . It has a well known regular ideal triangulation T consisting of

N D 2 tetrahedra, to which we assign logarithmic shape parameters .Z;Z0;Z00/ and

.W;W 0;W 00/.

A map of the boundary of the cusp neighborhood is shown in Figure 5. We have chosen

one of 32 possible cyclic labelings by Z s and W s (ie one of 32 possible quad types).

Each of the edges intersects the cusp twice, so it is easy to read off from Figure 5 that

the edge constraints (2-3) are

E1 W 2ZCZ00C 2W CW 00 D 2� i;

E2 W 2Z0CZ00C 2W 0CW 00 D 2� i:

Geometry & Topology, Volume 17 (2013)



The quantum content of the gluing equations 1269

z

z00

z0

w

w0

w00

z00

z0

z

w0

w00

w

z

z00

z0

w w00

w0

z00

z0

z

w0

w00

w

�
E2 E1

Figure 5: The boundary of the cusp neighborhood for the figure-eight knot

The sum of the left-hand sides is automatically 4� i , so we can choose to ignore the

second constraint. If we choose the meridian path � as in Figure 5, the meridian

constraint (2-5) is

� W �Z0CW D 0:

Putting together the first edge constraint and the meridian into matrices, we have

�
2 2

0 1

��
Z

W

�
C
�

0 0

�1 0

��
Z0

W 0

�
C
�

1 1

0 0

��
Z00

W 00

�
D i�

�
2

0

�
:

Using ZCZ0CZ00 DW CW 0CW 00 D i� to eliminate Z0 and W 0 , we get

�
2 2

1 1

��
Z

W

�
C
�

1 1

1 0

��
Z00

W 00

�
D i�

�
2

1

�
:

From this last expression, we can read off

(2-13) A D
�

2 2

1 1

�
; B D

�
1 1

1 0

�
; � D

�
2

1

�
:

The two gluing equations (2-12) are then

(2-14) z2w2z00w00 D 1; zwz00 D�1;

with z00 D 1 � z�1 and w00 D 1 � w�1 . The solution for the complete hyperbolic

structure is z D w D ei�=3 .

Finally, a flattening .fz; f
0

z ; f
00

z Ifw; f
0

w; f
00

w/ 2 Z6 , ie an integer solution to the equa-

tions Af CBf 00 D � and f Cf 0Cf 00 D 1, is given by

(2-15) .fz; f
0

z ; f
00

z Ifw; f
0

w; f
00

w/D .0; 1; 0I 1; 0; 0/:

It is easy to see that every flattening has the form .a; b; 1� a� bI b; a; 1� a� b/ for

integers a; b .
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3 Topological invariance of our torsion

Given a one-cusped hyperbolic manifold M with regular triangulation T D f�igNiD1

and Neumann–Zagier datum y̌T D .z;A;B ; f /, we have proposed the nonabelian

torsion is given by

(3-1) �T WD ˙
1

2
det.A�z00 CB��1

z /zf 00

z00�f 2EM=f˙1g;

where �z D diag.z1; : : : ; zN /, and similarly for �z00 . Since .z; z0; z00/2EM we must

have �T 2EM as well.

After a brief example of how the formula (3-1) works, we will proceed to prove

Theorems 1.3 and 1.4 on the topological invariance of �T . We saw in Section 2 that the

Neumann–Zagier datum depends not only on a triangulation T , but also on a choice of

(1) quad type for T ,

(2) one edge of T whose gluing equation is redundant,

(3) normal meridian path,

(4) flattening f .

We will begin by showing �T is independent of these four choices, and then show it is

invariant under 2–3 moves, so long as the 2–3 moves connect two regular triangulations.

The four choices here are independent, and can be studied in any order. However, in

order to prove independence of flattening, it is convenient to use a quad type for which

the matrix B is nondegenerate. Such a quad type can always be found (Lemma A.3),

but is not automatic. Therefore, we will first show invariance under change of quad

type, and then proceed to the other choices. It is interesting to note that of all the

arguments that follow (including the 2–3 move), independence of flattening is the only

one that requires the use of the full gluing equations zAz00B D .�1/� .

3.1 Example: 41 continued

To illustrate the Equation (1-8), consider the figure-eight knot complement again.

From Section 2.6, we already have one possible choice for the Neumann–Zagier
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matrices (2-13) and a generic flattening (2-15). We use them to obtain

(3-2)

˙�41
D 1

2
det

��
2 2

1 1

��
z00 0

0 w00

�
C
�

1 1

1 0

��
z�1 0

0 w�1

��
w00�1

D 1

2w00
det

�
2z00C z�1 2w00Cw�1

z00C z�1 w00

�

D 1

2w00
det

�
z00C 1 w00C 1

1 w00

�

D 1

2
.z00�w00�1/D 1

2

p
�3;

where at intermediate steps we used z00C z�1�1Dw00Cw�1�1D 0, and at the end

we substituted the discrete faithful solution z D z00 D w D w00 D ei�=3 .

The invariant �41
belongs to the invariant trace field E41

DQ.
p
�3/, and agrees with

the torsion of the figure-eight knot complement [21].

3.2 Independence of a choice of quad type

Now, let us fix a manifold M , a triangulation T with N tetrahedra, and an enhanced

Neumann–Zagier datum y̌T D .z;A;B ; f /.
To prove independence of quad type, it is sufficient to check that �T is invariant under

a cyclic permutation of the first triple of shape parameters .z1; z
0
1
; z00

1
/, while holding

fixed the choice of meridian loop and redundant edge. Let us write z D .z1; : : : ; zN /,

� D .�1; : : : ; �N /
T , f D .f1; : : : ; fN /

T and

(3-3) A D .a1; a2; : : : ; aN /; B D .b1; b2; : : : ; bN /;

in column notation. After the permutation, a new Neumann–Zagier datum is given by

.zz; zA; zB ; zf / where

zz D .z0
1; z2; : : : ; zN /; zz0 D .z00

1 ; z
0
2; : : : ; z

0
N /; zz00 D .z1; z

00
2 ; : : : ; z

00
N /;(3-4)

zA D .�b1; a2; : : : ; aN /; zB D .a1� b1; b2; : : : ; bN /;

z� D .n1� b1; n2; : : : ; nN /
T :

(3-5)

The new shapes satisfy zz zAzz00 zB D .�1/z� . We also naturally obtain a new flattening

. zf ; zf 0; zf 00/ by permuting

zf D .f 0
1; f2; : : : ;fN /

T ; zf 0 D .f 00
1 ; f

0
2; : : : ; f

0
N /

T ;

zf 00 D .f1; f
00

2 ; : : : ; f
00

N /
T I

(3-6)

this is an integer solution to zA zf C zB zf 00 D z� and zf C zf 0C zf 00 D 1.
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The torsion �T (1-8) consists of two parts, a determinant and a monomial correction.

By making use of the relations z1 C z0
1

�1 � 1 D 0 and z1z0
1
z00

1
D �1, we find the

determinant with the permuted Neumann–Zagier datum to be

(3-7) det. zA�zz00 C zB��1
zz /

D det.�b1z1C .a1� b1/z
0�1
1 ; a2z00

2 C b2z�1
2 ; : : : ; aN z00

N C bN z�1
N /

D det.a1z0�1
1 � b1; a2z00

2 C b2z�1
2 ; : : : ; aN z00

N C bN z�1
N /

D�z1 det.a1z00
1 C b1z�1

1 ; a2z00
2 C b2z�1

2 ; : : : ; aN z00
N C bN z�1

N /

D�z1 det.A�z00 CB��1
z /:

By simply using z1z0
1
z00

1
D�1 and f1Cf 0

1
Cf 00

1
D 1, we also see that the monomial

correction transforms as

(3-8) zz zf 00zz00� zf D zf 00

z00�f
z0

1
f1z1

�f 0

1

z1
f 00

1 z00
1

�f1

D zf 00

z00�f .�1/f1
.z1z00

1
/�f1z1

f1Cf 00

1
�1

z1
f 00

1 z00
1

�f1

D zf 00

z00�f .�1/f1z�1
1 :

The extra factors z˙1
1

in the two parts of the torsion precisely cancel each other, leading

in the end to

(3-9) det. zA�zz00 C zB��1
zz /zz zf 00zz00� zf D .�1/f1C1 det.A�z00 CB��1

z /zf 00

z00�f :

This is just as desired, showing that the torsion is invariant up to a sign.

3.3 Independence of a choice of edge

We fix M; T ; y̌T D .z;A;B ; f /. In order to choose matrices A;B , we must ignore

the redundant gluing equation corresponding to an edge of T . This was discussed in

Section 2.3. Suppose, then, that we choose a different edge to ignore. For example,

if we choose the .N � 1/st rather than the N th (and keep the same quad type and

meridian path), then we obtain new Neumann–Zagier matrices zA; zB , which are related

to the original ones as

(3-10) zA D P.N �1;N /A; zB D P.N �1;N /B ;
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where

(3-11) P.N �1;N / WD

0
BBBBBBB@

1 0 � � � 0 0 0

0 1 � � � 0 0 0
: : :

0 0 � � � 1 0 0

�1 �1 � � � �1 �1 �1

0 0 � � � 0 0 1

1
CCCCCCCA

:

Similarly, eliminating the I th rather than the N th edge constraint is implemented by

multiplying with a matrix P.I;N / whose I th row is filled with �1s. Any such matrix

satisfies det P.I;N / D�1.

In the formula for �T , only the determinant part is affected by a change of edge. Then

(3-12) det. zA�z00 C zB��1
z /D det.P.I;N /.A�z00 CB��1

z //

D� det.A�z00 CB��1
z /;

leading to invariance of �T , up to the usual sign.

3.4 Independence of a choice of meridian path

Recall that an ideal triangulation on M induces a triangulation of its boundary torus @M .

Consider two simple closed meridian loops in @M in general (normal) position with

respect to the triangulation of @M . Recall that these paths are drawn on the triangulated

2–dimensional torus @M where faces of tetrahedra correspond to edges in the 2–

dimensional triangulation, and edges of tetrahedra to vertices. In particular, for a

one-cusped manifold M , every edge of the triangulation intersects a pair of vertices

on the boundary @M .

We can deform one of our meridian paths into the other by using repeated applications

of the fundamental move shown in Figure 6, locally pushing a section of the path

across a vertex of @M . Thus, it suffices to assume that the two paths only differ by

one such move. Suppose that we cross the I th edge (by Section 3.3 we may assume

that I ¤N ), which has a combinatorial gluing constraint

(3-13) XI WD
NX

iD1

.GIiZi CG
0
IiZ

0
i CG

00
IiZ

00
i /D 2� i;

and that the two tetrahedra where the paths enter and exit the vicinity of the edge

have parameters .Z;Z0;Z00/ and .W;W 0;W 00/, as in the figure. We do not exclude

the possibility that .Z;Z0;Z00/ and .W;W 0;W 00/ both coincide with the same triple
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z0

z00

z

w

w0
w00

r1

rj

s1
s2

sj 0

z0

z00

z

w

w0
w00

r1

rj

s1
s2

sj 0

Figure 6: The fundamental move for changing a meridian path. Here, we

deform through an edge EI with gluing constraint XI D ZCW CR1C
� � �CRj CS1C � � �CSj 0 D 2� i .

.Zi ;Z
0
i ;Z

00
i /, in some cyclic permutation. Then the difference in the logarithmic

meridian equations (2-5) for the two paths will be

(3-14) ı� D˙.XI � .ZCZ0CZ00/� .W CW 0CW 00//:

Note that two logarithmic meridian constraints that differ by (3-14) are compatible and

equivalent, since upon using the additional equations XI D 2� i and ZCZ0CZ00 D
W CW 0CW 00 D i� , we find that ı� D 0. A discretized version of this observation

demonstrates that the same flattening satisfies both discretized meridian constraints.2

If we compute matrices A;B using one meridian path and zA; zB using the other —

keeping quad type, flattening, and edge the same — the change (3-14) implies

(3-15) zA D P
.�/
I

˙1
A; zB D P

.�/
I

˙1
B ;

where P
.�/
I

is the SL.N;Z/ matrix

(3-16) P
.�/
I
D I CENI ;

ie the identity plus an extra entry “1” in the N th (meridian) row and I th column. Since

det P
.�/
I
D1, this immediately shows that det. zA�z00C zB��1

z /Ddet.A�z00CB��1
z /,

and so the a change in the meridian path cannot affect �T .

2Note that this would not be the case if we allowed self-intersections of the meridian loops.
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3.5 Independence of a choice of flattening

Now suppose that we choose two flattenings .f; f 0; f 00/ and . zf ; zf 0; zf 00/, both satis-

fying

Af CBf 00 D �; f Cf 0Cf 00 D 1;(3-17)

A zf CB zf 00 D �; zf C zf 0C zf 00 D 1:(3-18)

We may assume that we have a quad type with B nondegenerate. Indeed, by the result

of Section 3.2, flattening invariance in one quad type implies flattening invariance in any

quad type. Moreover, by Lemma A.3 of Appendix A, a quad type with nondegenerate B

always exists. We also note that when B is invertible the matrix B
�1

A is symmetric

(Lemma A.2).

The determinant in �T is insensitive to the change of flattening. The monomial, on

the other hand, can be manipulated as follows. Let us choose logarithms .Z;Z0;Z00/

of the shape parameters such that AZ CBZ00 D i�� . Then, assuming that B is

nondegenerate, we compute

z
zf 00

z00� zf

zf 00
z00�f

D expŒZ � .f 00� zf 00/�Z00 � .f � zf /�

D expŒ�Z �B�1
A.f � zf /� .i�B

�1� �B
�1

AZ/ � .f � zf /�
D expŒ�i�B

�1� � .f � zf /�
D expŒ�i�f 00 � .f � zf /� i�B

�1
Af � .f � zf /�

D expŒ�i�f 00 � .f � zf /C i�f � .f 00� zf 00/�

D expŒi�.f 00 � zf �f � zf 00/�D˙1:

Therefore, the monomial can change at most by a sign, and �T is invariant as desired.

This completes the proof of Theorem 1.3.

3.6 Invariance under 2–3 moves

We finally come to the proof of Theorem 1.4, ie the invariance of �T under 2–3 moves.

We set up the problem as in Figure 7. Namely, we suppose that M has two different

regular triangulations T and eT , with N and N C1 tetrahedra, respectively, which are

related by a local 2–3 move. Let us denote the respective (triples of) shape parameters

as

(3-19) Z WD .X1;X2;Z3; : : : ;ZN /; zZ WD .W1;W2;W3;Z3; : : : ;ZN /:
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We fix a quad type, labeling the five tetrahedra involved in the 2–3 move as in the

figure. We will also assume that when calculating Neumann–Zagier matrices A and

B , we choose to ignore an edge that is not the central one of the 2–3 bipyramid.

x1

x1

x0
1

x0
1

x00
1

x00
1

x2

x2

x0
2

x0
2

x00
2

x00
2

w1

w1

w0
1

w0
1

w00
1

w00
1

w3

w3

w0
3

w0
3

w00
3

w00
3

w2

w2

w0
2w0

2

w00
2

w00
2

Figure 7: The geometry of the 2–3 move: a bipyramid split into two tetrahedra

for triangulation
SN

iD1�i , and three for triangulation
SN C1

iD1
z�i .

There are nine linear relations among the shapes of the tetrahedra involved in the move;

three come from adding dihedral angles on the equatorial edges of the bipyramid

(3-20) W 0
1 DX1CX2; W 0

2 DX 0
1CX 00

2 ; W 0
3 DX 00

1 CX 0
2;

and six from the longitudinal edges

(3-21)
X1 DW2CW 00

3 ; X 0
1 DW3CW 00

1 ; X 00
1 DW1CW 00

2 ;

X2 DW 00
2 CW3; X 0

2 DW 00
1 CW2; X 00

2 DW 00
3 CW1:

Moreover, due to the central edge of the bipyramid, there is an extra gluing constraint

in eT :

(3-22) W 0
1CW 0

2CW 0
3 D 2� i:

After exponentiating the relations (3-20)–(3-22), and also using ziz
0
iz

00
i D �1 and

z00
i C z�1

i � 1D 0 for every tetrahedron �i and z�i , we find a birational map between

the shape parameters in the two triangulations. Explicitly,

�
w0

1 D x1x2; w
0
2 D

1�x�1
2

1�x1

; w0
3 D

1�x�1
1

1�x2

�
or

�
x1 D

1�w0
2

�1

1�w0
3

; x2 D
1�w0

3
�1

1�w0
2

�
:

(3-23)

Geometry & Topology, Volume 17 (2013)



The quantum content of the gluing equations 1277

Note that the birational map is well-defined and one-to-one as long as no shape pa-

rameters .x1;x2; w1; w2; w3/ equal 0, 1, or 1. This condition is satisfied so long as

triangulations T and eT are both regular. (A necessary condition is that no univalent

edges are created on one side or the other of the 2–3 move; this is also sufficient when

considering the discrete faithful representation of M .)

We must also choose a flattening in the two triangulations. Let us suppose for
SN C1

iD1
z�i

we have a flattening with (triples of) integer parameters zf D .d1; d2; d3; f3; : : : ; fN /.

This automatically determines a flattening f D .e1; e2; f3; : : : ; fN / for the
SN

iD1�i

triangulation, by simply setting

(3-24)
e1 D d2C d 00

3 ; e0
1 D d3C d 00

1 ; e00
1 D d1C d 00

2 ;

e2 D d 00
2 C d3; e0

2 D d 00
1 C d2; e00

2 D d 00
3 C d1:

This is a discretized version of the six longitudinal relations (3-21). One can check that

expected relations such as e1C e0
1
C e00

1
D 1 are satisfied by virtue of the discretized

edge constraint d 0
1
C d 0

2
C d 0

3
D 2 (cf (3-22)).

We have all the data needed to calculate �T . Let us start with determinants. In the

triangulation
SN

iD1�i , we write the matrices A and B schematically in columns as

(3-25) A D .a1; a2; ai/; B D .b1; b2; bi/;

with ai meaning .a3; a4; : : : ; aN / and similarly for bi . This leads to a determinant

(3-26) det
�
A�z00 CB��1

z

�
D det.a1x00

1 C
b1

x1
; a2x00

2 C
b2

x2
; aiz

00
i C bi

zi
/:

Alternatively, in the triangulation
SN C1

iD1
z�i , the matrices zA and zB have one extra

row and one extra column. The extra gluing condition (3-22) causes the extra row in

both zA and zB to contain three �1s. Altogether, the matrices take the form

(3-27) zA D
�
�1 �1 �1 0

b1C b2 a1 a2 ai

�
; zB D

�
�1 �1 �1 0

0 a2C b1 a1C b2 bi

�
;

so that

zA�zz00 C zB��1
zz D

 
�w00

1
� 1

w1
�w00

2
� 1

w2
�w00

3
� 1

w3
0

.b1C b2/w
00
1

a1w
00
2
C a2Cb1

w2
a2w

00
3
C a1Cb2

w3
aiz

00
i C

bi

zi

!

D
 

�1 �1 �1 0

.b1C b2/w
00
1

a1w
00
2
C a2Cb1

w2
a2w

00
3
C a1Cb2

w3
aiz

00
i C

bi

zi

!
:
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It is then straightforward to check, using the map (3-23), that

(3-28) . zA�zz00 C zB��1
zz /

0
BB@

1 �1 �1 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA

0
BBBB@

1 0 0 0

0 1
w0

3
x00

2

x00

1

0

0
w0

2
x00

1

x00

2

1 0

0 0 0 1

1
CCCCA

D
�
�1 0

� A�z00 CB��1
z

�
:

The determinant of the last matrix on the left hand side is 1�w0
2
w0

3
D 1�w0

1
�1Dw1 .

Therefore,

(3-29) det. zA�zz00 C zB��1
zz /D�w�1

1 det.A�z00 CB��1
z /:

We should also consider the monomial correction. However, with flattenings related as

in (3-24), and with shapes related by the exponentiated version of (3-21), it is easy to

check that

(3-30) zz zf 00zz00� zf D w1.�1/d
00

2
�e00

1 zf 00

z00�f :

We have thus arrived at the desired result; by combining (3-29) and (3-30), we find

(3-31) det. zA�zz00 C zB��1
zz /zz zf 00zz00� zf D˙ det.A�z00 CB��1

z /zf 00

z00�f ;

so we have that �T is invariant under the 2–3 move. This completes the proof of

Theorem 1.4.

4 Torsion on the character variety

Having given a putative formula for the nonabelian torsion of a cusped hyperbolic

manifold M at the discrete faithful representation �0 , it is natural to ask whether the

formula generalizes to other settings. In this section, we extend the torsion formula

to general representations �W �1.M / �! (P)SL.2;C/ for manifolds M with torus

boundary, essentially by letting the shapes z be functions of � . We also find that some

special results hold when M is hyperbolic and the representations lie on the geometric

component X
geom

M
of the SL.2;C/ character variety.

We will begin with a short review of what it means for a combinatorial ideal triangulation

to be regular with respect to a general representation � . We will also finally prove

Proposition 1.7. Recall that Proposition 1.7 identified a canonical connected subset
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X EP
M

of the set of regular triangulations X�0
of a hyperbolic 3–manifold M . This

result allowed us to construct the topological invariant �M .

We then proceed to define an enhanced Neumann–Zagier datum y̌T D .z;A;B ; f /
suitable for a general representation � , and propose a generalization of the torsion

formula:

(4-1) �T .�/ WD ˙
1

2
det.A�z00 CB��1

z /zf 00

z00�f :

This formula looks identical to (1-8). However, the shape parameters here are promoted

to functions z! z.�/ of the representation � , which satisfy a well known deformed

version of the gluing equations. Moreover, the flattening f is slightly more restricted

than it was previously. We will prove the following in Section 4.5.

Theorem 4.1 The formula for �T .�/ is independent of the choice of enhanced

Neumann–Zagier datum, and is invariant under 2–3 moves connecting �–regular

triangulations.

When M is hyperbolic, it turns out that �0 –regular triangulations are �–regular for

all but finitely many representations � 2 X
geom

M
. Then we can create a topological

invariant �M that is a function on X
geom

M
just as in Proposition 1.7, by evaluating �T .�/

on any triangulation in the canonical subset X EP
M
� X�0

.

In general, there is a rational map from the character variety XM to the zero-locus YM

of the A–polynomial AM .`;m/D 0 (see Cooper, Culler, Gillet, Long and Shalen [12]),

for any M with torus boundary. Therefore, the shapes z and the torsion �T are algebraic

functions on components of the A–polynomial curve YM . When M is hyperbolic and

� 2X
geom

M
, somewhat more is true: the shapes are rational function on the geometric

component Y
geom

M
(Proposition B.1). Then

(4-2) �M 2 C.Y
geom

M
/DQ.m/Œ`�=.A

geom

M
.`;m//;

where A
geom

M
.`;m/ is the geometric factor of the A–polynomial. We will give a simple

example of the function �M for the figure-eight knot in Section 4.6.

4.1 A review of �–regular ideal triangulations

In this section we discuss the �–regular ideal triangulations that are needed to generalize

our torsion invariant. Let M denote a 3–manifold with nonempty boundary and let

�W �1.M / �! PSL.2;C/ be a PSL.2;C/ representation of its fundamental group.

Let X denote the set of combinatorial ideal triangulations T of M . Matveev and

Piergallini independently showed that every two elements of X with at least two ideal
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tetrahedra are connected by a sequence of 2–3 moves (and their inverses) [52; 59]. For

a detailed exposition, see [53] and Benedetti and Petronio [5].

Given an ideal triangulation T , let VT denote the affine variety of nondegenerate

solutions (ie, solutions in C n f0; 1g) of the gluing equations of T corresponding to its

edges. There is a developing map

(4-3) VT �!XM ;

where XM WD Hom.�1.M /;PSL.2;C//=PSL.2;C/ denotes the affine variety of all

PSL.2;C/ representations of �1.M /.

Definition 4.2 Fix a PSL.2;C/–representation of M . We say that T 2 X is �–

regular if � is in the image of the developing map (4-3).

Let X� � X denote the set of all �–regular ideal triangulations of M . When M is

hyperbolic, let �0 denote its discrete faithful representation �0 and let X
geom

M
�XM

denote the geometric component of its character variety [66; 58]. We then have the

following result.

Lemma 4.3 (a) T 2 X�0
if and only if T has no homotopically peripheral (ie,

univalent) edges.

(b) If T 2 X�0
, then T 2 X� for all but finitely many � 2X

geom

M
.

Proof Part (a) has been observed several times; see [11], [7, Section 10.3], [69,

Theorem 2.3] and also [22, Remark 3.4]. For part (b), fix T 2 X�0
. Observe that T

is �–regular if the image of every edge3 of T under � does not commute with the

image under � of the peripheral subgroup of M . This is an algebraic condition on � ,

and moreover, when � 2X
geom

M
is analytically nearby �0 , the condition is satisfied. It

follows that the set of points of X
geom

M
that satisfy the above condition is Zariski open.

On the other hand, X
geom

M
is an affine curve [66; 58]. It follows that T is �–regular

for all but finitely many � 2X
geom

M
.

4.2 The Epstein–Penner cell decomposition and its triangulations

Now we consider the canonical ideal cell decomposition of a hyperbolic manifold M

with cusps [25], and finally prove Proposition 1.7. It is easy to see that every convex

ideal polyhedron can be triangulated into ideal tetrahedra with nondegenerate shapes;

see for instance Hodgson, Rubinstein and Segerman [44]. One wishes to know that

3Note that every edge can be completed to a closed loop by adding a path on the boundary T 2 . The

choice of completion does not matter for studying commutation with the peripheral subgroup.
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every two such triangulations are related by a sequence of 2–3 moves. This is a

combinatorial problem of convex geometry which we summarize below. For a detailed

discussion, the reader may consult the book by De Loera, Rambau and Santos [14] and

references therein.

Fix a convex polytope P in Rd . One can consider the set of triangulations of P . When

d D 2, P is a polygon and it is known that every two triangulations are related by a

sequence of flips. For general d , flips are replaced by geometric bistellar moves. When

d � 5, it is known that the graph of triangulations (with edges given by geometric

bistellar flips) is not connected, and has isolated vertices. For d D 3, it is not known

whether the graph is connected.

The situation is much better when one considers regular triangulations of P . In that

case, the corresponding graph of regular triangulations is connected, an in fact it is the

edge set of the secondary polytope of P . When d D 3 and P is convex and in general

position, then the only geometric bistellar move is the 2–3 move where the added edge

that appears in the move is an edge that connects two vertices of P . When d D 3

and P is not in general position, the same conclusion holds as long as one allows for

tetrahedra that are flat, ie, lie on a 2–dimensional plane.

Returning to the Epstein–Penner ideal cell decomposition, let X EP
M

denote the set of

regular (in the sense of polytopes and in the sense of �0 ) ideal triangulations of the

ideal cell decomposition. The above discussion together with the fact that no edge

of the ideal cell decomposition is univalent, implies that X EP is a connected subset

of X�0
. This concludes the proof of Proposition 1.7.

A detailed discussion on the canonical set X EP
M

of ideal triangulations of a cusped

hyperbolic 3–manifold M is given in [35, Section 6].

4.3 Neumann–Zagier datum and the geometric component

Let M be a manifold with torus boundary and T a (combinatorial) ideal triangulation.

The Neumann–Zagier datum ˇT D .z;A;B/ may be generalized for representations

� 2XM besides the discrete faithful.

To begin, choose a representation �W �1.M / �! PSL.2;C/, and, if desired, a lift to

SL.2;C/. Let .�; �/ be meridian and longitude cycles4 on @M , and let .m˙1; `˙1/

be the eigenvalues of �.�/ and �.�/, respectively. For example, for the lift of the

4Recall again that these cycles are only canonically defined for knot complements. In general there

is some freedom in choosing them, but the torsion depends in a predictable way on the choice, cf

Yamaguchi [74].
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discrete faithful representation to SL.2;C/, we have .m; `/D .1;�1/; see Calegari [9].

These eigenvalues define a map

(4-4) XM �! .C�/2=Z2;

whose image is a curve YM , the zero-locus of the A–polynomial AM .`;m/D 0 [12].

We will denote the representation � as �m to emphasize its meridian eigenvalue.

Now, given a triangulation T , and with A , B , and � defined as in Section 2.3, the

gluing equations (2-12) can easily be deformed to account for m ¤ 1. Namely, we

find [58]

(4-5)

NY

jD1

zj
Aij z00

j
Bij D .�1/�i m2ıiN :

The developing map (4-3) maps every solution of these equations to a representation

�1.M / �! PSL.2;C/ with meridian eigenvalue ˙m. The triangulation T is �m –

regular if and only if �m is in the image of this map. We can similarly express the

longitude eigenvalue as a product of shape parameters

(4-6)

NY

jD1

zj
2Cj z00

j
2Dj D .�1/2��`2;

for some 2Cj ; 2Dj ; 2�� 2Z. Then, if T is a �m –regular triangulation, the irreducible

component of YM containing �m is explicitly obtained by eliminating all shapes zj

from (4-5)–(4-6).

In general, the shapes zj are algebraic functions on components of the variety YM .

However, if M is hyperbolic and T is regular for all but finitely many representations

on the geometric component Y
geom

M
, then the shapes zj become rational functions,

zj 2 C.Y
geom

M
/. We provide a proof of this fact in Appendix B. The field of functions

C.Y
geom

M
/ may be identified with Q.m/Œ`�=.Ageom.`;m//, and the functions zj .`;m/

can easily be obtained from equations (4-5)–(4-6).

4.4 Flattening compatible with a longitude

In this section we define a restricted combinatorial flattening that is compatible with a

longitude.

Recall what is a combinatorial flattening of an ideal triangulation T from Definition 2.1.

Given a simple peripheral curve � on the boundary of M that represents a longitude —

in particular, having intersection number one with the chosen meridian � — we can
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construct the sum of combinatorial edge parameters along �, just as in Section 2.2. It

takes the form

(4-7) � W
NX

iD1

.GN C2;iZi CG
0
N C2;iZ

0
i CG

00
N C2;iZ

00
i /;

for integer vectors GN C1 , G
0
N C2

, G
00
N C2

. Just as we obtained A , B , and � from the

edge and meridian equations (with or without deformation), we may also now define

Ci D
1

2
.GN C2;i�G

0
N C2;i/; Di D

1

2
.G 00

N C2;i �G
0
N C2;i/;

�� D�
1

2

NX

iD1

G
0
N C2;i :

(4-8)

Definition 4.4 A combinatorial flattening .f; f 0; f 00/ is compatible with a longitude

if in addition to Equations (2-10a)–(2-10b), it also satisfies

(4-9) GN C2;if CG
0
N C2;if

0CG
00
N C2;if

00 D 0:

Equivalently, a combinatorial flattening compatible with the longitude is a vector

.f; f 00/ 2 Z2N that satisfies

(4-10) Af CBf 00 D �; C �f CD �f 00 D ��:

A combinatorial flattening compatible with a longitude always exists [56, Lemma 6.1].

In the context of functions on the character variety, it is natural to deform the meridian

gluing equation, and simultaneously to introduce a longitude gluing equation, in the

form

� W
NX

iD1

.GN C1;iZi CG
0
N C1;iZ

0
i CG

00
N C1;iZ

00
i /D 2u;(4-11a)

� W
NX

iD1

.GN C2;iZi CG
0
N C2;iZ

0
i CG

00
N C2;iZ

00
i /D 2v;(4-11b)

for some complex parameters u and v . Upon exponentiation, these equations reduce

to the expected (4-5)–(4-6) if

(4-12) m2 D e2u; `2 D e2v:

(It is easy to show, following [58], that C and D as defined by (4-10) are the correct

exponents for the exponentiated longitude Equation (4-6).) If M is a knot complement
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and we want to lift from PSL.2;C/ to SL.2;C/ representations, we should take

mD eu and `D�ev and divide (4-11a) by two before exponentiating. This provides

the correct way to take a square root of the exponentiated gluing equation, cf [9].

The remarkable symplectic property of A and B may be extended to C and D , even

though in general C , D are vectors of half-integers rather than integers. Namely, there

exists a completion of .AB/ to a full symplectic matrix
�

A B
C D

�
such that the bottom

rows of C and D are the vectors C and D [58]. In particular, this means that

(4-13) AN �D�BN �C D 1;

where AN ;BN are the bottom (meridian) rows of A;B .

4.5 Invariance of the generalized torsion

We finally have all the required ingredients for the generalized torsion formula. Let M

be a three-manifold with torus boundary, and �mW �1.M / ! (P)SL.2;C/ a repre-

sentation with meridian eigenvalue m. Let T be a �m –regular triangulation of M ,

which exists by Lemma 4.3 at least for a dense set of representations on the geometric

component of the character variety. Choose an enhanced Neumann–Zagier datum

.z;A;B ; f /, with z D z.�m/ satisfying the deformed gluing equations (4-5) and f

satisfying (4-10). Then, as in (4-1), we define

�T .�m/ WD ˙
1

2
det.A�z00 CB��1

z /zf 00

z00�f :

We can now prove Theorem 4.1.

Repeating verbatim the arguments of Section 3, it is easy to see that �T is independent

of a choice of quad type, a choice of an edge of T and a choice of a meridian loop. The

crucial observation is that the equations AZCBZ00 D i�� (including the meridian

equation) are never used in the respective proofs. Therefore, deforming the meridian

equation by u¤ 0 does not affect anything. For the same reason, it is not hard to see

that the formula is invariant under �m –regular 2–3 moves, by repeating the argument

of Section 3.6.

The only nontrivial verification required is that �T is independent of the choice of

flattening. This does use the gluing equations in a crucial way. We check it now for

m¤ 1.

Choose logarithms .Z;Z0;Z00/ of the shape parameters and a logarithm u of m such

that ZCZ0CZ00 D i� and

(4-14) AZCBZ00 D 2uC i��;
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where u denote the N –dimensional vector .0; 0; : : : ; 0;u/T . By independence of quad

type and Lemma A.3, we may assume we are using a quad type with nondegenerate

B . Now, suppose that .f; f 0; f 00/ and . zf ; zf 0; zf 00/ are two different generalized

flattenings. Then

.Z �f 00�Z00 �f /� .Z � zf 00�Z00 � zf /
DZ � .f 00� zf 00/CB

�1.AZ � i�� � 2u/ � .f � zf /
DZ � .f 00� zf 00/CZ �B�1

A.f � zf /� i�B
�1� � .f � zf /�2B

�1
u � .f � zf /

D�i�B
�1� � .f � zf /� 2B

�1
u � .f � zf /

D i�.f 00 � zf �f � zf 00/� 2B
�1

u � .f � zf /;

by manipulations similar to those of Section 3.5. The new term 2B
�1

u � .f � zf / is

now dealt with by completing the Neumann–Zagier matrices .AB/ to a full symplectic

matrix
�

A B
C D

�
2 Sp.2N;Q/, whose bottom row agrees with .C;D/. The symplectic

condition implies that AD
T �BC

T D I , or B
�1 DB

�1
AD

T �C
T . Then

B
�1

u � .f � zf /DB
�1

AD
T

u � .f � zf /�C
T

u � .f � zf /
D u �DB

�1
A.f � zf /�u �C .f � zf /

D�u � .C .f � zf /CD.f 00� zf 00//

D�u.C � .f � zf /CD � .f 00� zf 00//:

In this last equation, only the bottom row of C and D appears, due to the contraction

with uD .0; 0; : : : ; 0;u/. But this bottom row is precisely what enters the generalized

flattening equations (4-10); since both flattenings satisfy these equations, we must have

B
�1

u � .f � zf /D 0. Therefore, upon exponentiating, we find

(4-15) zf 00

z00�f D .�1/f
00� zf �f � zf 00

z
zf 00

z00� zf D˙z
zf 00

z00� zf ;

which demonstrates that �T is independent of the choice of flattening. Theorem 4.1

follows.

4.6 Example: 41 continued

We briefly demonstrate the generalized torsion formula, using representations on the

geometric component of the character variety X41
for the figure-eight knot complement.

We may consider the same triangulation as in Section 2.6. The edge and meridian

equations (2-14) are deformed to

(4-16) z2w2z00w00 D 1; zwz00 D�m2;
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z

z00

z0

w

w0

w00

z00

z0

z

w0

w00

w

z

z00

z0

w w00

w0

z00

z0

z

w0

w00

w

�

�

Figure 8: Longitude path for the figure-eight knot complement

with z00 D 1� z�1 , w00 D 1�w�1 as usual. In addition, there is a longitude equation

that may be read off from the longitude path in Figure 8. In logarithmic (combinatorial)

form, we have �2ZC 2Z0 D 2v , or

(4-17) �4Z � 2Z00 D 2v� 2� i;

from which we identify

(4-18) C D .�2; 0/; D D .�1; 0/; �� D�1:

Dividing (4-17) by two and exponentiating, we find

(4-19) z�2z00�1 D `;

with ` D �ev . This is the appropriate square root of (4-6) for lifting the geometric

representations to SL.2;C/. We can easily check it: by eliminating shape parameters

from (4-16) and (4-19), we recover the geometric SL.2;C/ A–polynomial for the

figure-eight knot,

(4-20) A
geom

41
.`;m/Dm4� .1�m2� 2m4�m6Cm8/`Cm4`2:

We may also use equations (4-16)–(4-19) to express the shape parameters as functions

of ` and m. We find

(4-21) z D�m2�m�2

1Cm2`
; w D m2C `

m2�m�2
:

These are functions on the curve Y
geom

41
D fAgeom

41
.`;m/D 0g.

The flattening (2-15) does not satisfy the new longitude constraint C �f CD �f 00D �� ,

so we must find one that does. The choice

(4-22) .fz; f
0

z ; f
00

z Ifw; f
0

w; f
00

w/D .0; 0; 1I 0; 0; 1/
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will work. Repeating the calculation of Section 3.1 with the same A and B but the

new generalized flattening, we now obtain

(4-23)

�41
.�m/D˙

1

2
det

�
z00C 1 w00C 1

1 w00

�
zw

D˙1

2
.z00w00� 1/zw

D˙1�m2� 2m4�m6Cm8� 2m4`

2m4.m2�m�2/
:

This is in full agreement with the torsion found by [40; 17]. Note that for fixed m there

are two choices of representation �m on the geometric component of the character

variety; they correspond to the two solutions of A
geom

41
.`;m/D 0 in `.

Remark 4.5 It is interesting to observe that the numerator of Equation (4-23) is

exactly @A
geom

41
=@`. That the numerator of the geometric torsion typically carries a

factor of @A
geom

41
=@` might be gleaned from the structure of “ yA–polynomials” in [17]

and Gukov and Sułkowski [41], and will also be explored elsewhere.

5 The state integral and higher loops

Our explicit formulas for the torsion �T , as well as higher invariants ST ;n , have been

obtained from a state integral model for analytically continued SL.2;C/ Chern–Simons

theory. In this section, we will review the state integral, and analyze its asymptotics in

order to rederive the full asymptotic expansion

(5-1) ZT .„/D „�3=2 exp
h1

„ST ;0CST ;1C„ST ;2C„2ST ;3C � � �
i
;

and to unify the formulas of previous sections. We should point out that this section is

not analytically rigorous, but serves as a motivation for our definition of the all-loop

invariants, and provides a glimpse into the calculus of (complex, finite-dimensional)

state integrals.

The basic idea of a state integral is to cut a manifold M into canonical pieces (ideal

tetrahedra); to assign a simple partition function to each piece (a quantum dilogarithm);

and then to multiply these simple partition functions together and integrate out over

boundary conditions in order to obtain the partition function of the glued manifold M .

A state integral provides a finite-dimensional reduction of the full Feynman path integral

on M .
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Currently, there are two flavors of SL.2;C/ state integrals in the literature. The first,

introduced by Hikami in [42; 43], studied in [17], and made mathematically rigorous

by Andersen and Kashaev in [2], is based on a 3–dimensional lift of the 2–dimensional

quantum Teichmüller theory in Kashaev’s formalism [51]. It uses variables associated

to faces of tetrahedra. The second, developed in [15], explicitly uses shape parameters —

associated to edges of tetrahedra — and constitutes a 3d lift of Teichmüller theory in the

Fock–Chekhov formalism [30]. The two types of state integrals should be equivalent,

though this has only been demonstrated in isolated examples so far; see Spiridonov

and Vartanov [65].

It is the second state integral that we employ in this paper, due to its explicit dependence

on shape parameters. Indeed, suppose that M is an oriented one-cusped hyperbolic

manifold with a �0 –regular triangulation T and enhanced Neumann–Zagier datum
y̌
T D .z;A;B ; f /, with Af CBf 00 D � . We must also assume that B is nondegen-

erate, which (Lemma A.3) is always possible. Then we will5 show in Appendix C that

the state integral of [15] takes the form

(5-2) ZT .„/D

s
8�3

„3 det B

Z
dN Z

.2�„/N=2
ex

NY

iD1

 „.Zi/;

where xD 1
„
Œ1
2
.i�C „

2
/2f �B�1�� .i�C „

2
/Z �B�1�C 1

2
Z �B�1

AZ� and  „.Z/

is a noncompact quantum dilogarithm [4; 27], the Chern–Simons partition function of

a single tetrahedron. The integration variables Zi are, literally, the logarithmic shape

parameters of T .

The integration contour of (5-2) is unspecified. A complete, nonperturbative definition

of ZT .„/ requires a choice of contour, and the choice leading to invariance under 2–3

moves (etc.) may be quite subtle. However, a formal asymptotic expansion of the state

integral as in (5-1) does not require a choice of contour. It simply requires a choice

of critical point for the integrand. Then the asymptotic series may be developed via

formal Gaussian integration in an infinitesimal neighborhood of the critical point.

We will show in Section 5.1 that all the leading order critical points of (5-2) are

logarithmic solutions to the gluing equations

(5-3) critical points  ! zA.1� z�1/B D .�1/� ;

with z D exp.Z/. In particular, the critical points are isolated. Then, choosing the

discrete faithful solution to (5-3), we formally expand the state integral to find that

5Here we multiply (C-23) (at uD 0) by an extra, canonical normalization factor .2�=„/3=2 , in order

to precisely match the asymptotics of the Kashaev invariant at the discrete faithful representation.
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� ST ;0 , the evaluation of leading order part of the integrand at the critical point,

is the complex volume of M ;

� exp.�2ST ;1/ is expressed as the determinant of a Hessian matrix

HD�B
�1

AC��1
1�z;

with a suitable monomial correction, and reproduces the torsion (1-8);

� the higher ST ;n are obtained via a finite-dimensional Feynman calculus, and

explicitly appear as rational functions of shape parameters.

It follows from the formalism of [15], reviewed in Appendix C, that the state inte-

gral (5-2) is only well-defined up to multiplicative prefactors of the form

(5-4) exp
��2

6„ aC i�

4
bC „

24
c
�
; a; b; c 2 Z:

This means that we only obtain .ST ;0; �T D4�3e�2ST ;1 ;ST ;2/ modulo .�2

6
Z; i; 1

24
Z/,

respectively; however, all the higher invariants ST ;n�3 should be unambiguous. More-

over, in Section 3 we saw that the ambiguity in �T could be lifted6 to a sign ˙1.

Although the construction of the asymptotic series (5-1) appears to depend on T , we

certainly expect the following.

Conjecture 5.1 The invariants fST ;ng1nD0
are independent of the choice of regular

triangulation and Neumann–Zagier datum (including the choice of quad type with

det B ¤ 0, etc.), up to the ambiguity (5-4), and thus constitute topological invariants

of M .

We now proceed to analyze the critical points and asymptotics of (5-2) in greater detail.

In Section 5.5, we will also generalize the state integral to arbitrary representations,

with nonunit meridian eigenvalue m D eu ¤ 1, and give an example of ST ;2.m/,

ST ;3.m/ as functions on the character variety Y
geom

M
for the figure-eight knot.

5.1 Critical points

We begin by showing that the critical points of (5-2) are indeed solutions to the gluing

equations. For this purpose, we need to know the quantum dilogarithm  „.Z/. The

latter is given by [17, Equation 3.22]

(5-5)  „.Z/D
1Y

rD1

1� qr e�Z

1� .Lq/�rC1e�LZ
;

6It may also be possible to lift the ambiguities in ST ;0 and ST ;2 by using ordered triangulations, as

in [57; 75].
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for jqj< 1, where

(5-6) q WD exp „; Lq WD exp
�4�2

„ ; LZ WD 2� i

„ Z:

The quantum dilogarithm  „.Z/ coincides with the restriction to jqj< 1 of Faddeev’s

quantum dilogarithm [27], as follows from [17, Equation 3.23].  „.Z/ is the Chern–

Simons wavefunction of a single tetrahedron [15]. The quantum dilogarithm has an

asymptotic expansion as „! 0, given by (cf [17, Equation 3.26])

(5-7)  „.Z/
„!0� exp

1X

nD0

Bn„n�1

n!
�Li2�n.e

�Z /

D exp
h1

„
�Li2.e

�Z /C 1

2
�Li1.e

�Z /� „
12

z0C „
3

720
z.1C z/z03C � � �

i
;

where Bn is the nth Bernoulli number, with B1 D 1=2.

The coefficients of strictly positive powers of „ (ie n� 2) in the expansion are rational

functions of zDeZ , but the two leading asymptotics — the logarithm and dilogarithm —

are multivalued and have branch cuts. In contrast, the function  „.Z/ itself is a

meromorphic function on C for any fixed „ ¤ 0. Branch cuts in its asymptotics arise

when families of poles collide in the „! 0 limit. In the case of purely imaginary „
with Im „> 0 (a natural choice in the analytic continuation of SU.2/ Chern–Simons

theory), a careful analysis of this pole-collision process leads to branch cuts for �Li2
and �Li1 that are different from the standard ones (Figure 9). We indicate the modified

analytic structure of these two functions (really functions of Z rather than e�Z ) with

an extra tilde.

Now, the critical points of the integrand, at leading order7 in the „ expansion, are

solutions to

0D @

@Zi

�
� �

2

2
f �B�1� � i�Z �B�1�C 1

2
Z �B�1

AZC
X

i

�Li2.e
�Zi /

�

D�i�.B�1�/i C .B�1
AZ/i � �Li1.e

�Zi /;

in other words,

(5-8) AZCB.��Li1.e
�Z //D i��:

Since expŒ��Li1.e
�Zi /�D 1� z�1

i , we see that every solution to (5-8) is a particular

logarithmic lift of a solution to the actual gluing equations zA.1� z�1/B D .�1/� .

7We treat all subleading terms as perturbations. The exact location of the critical point will acquire

perturbative corrections, described in Section 5.4.
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Im.Z/

4� i

2� i

� i

0

�2� i

�4� i

Li1;2.e
�Z /

Re.Z/

Im.Z/
4� i

2� i

� i

0

�2� i

�4� i

�Li1;2.e
�Z /

Re.Z/

Figure 9: Rotating the standard branch cuts of Li2.e
�Z / and Li1.e

�Z / to

produce �Li2.e
�Z / and �Li1.e

�Z / , as functions of Z . The shaded region

indicates where the standard logarithms of shape parameters for the discrete

faithful representation lie.

It is a lift that precisely satisfies the logarithmic constraints (2-6) of Section 2, with

Z00
i D��Li1.e

�Zi /.

When 0� Im Zi � � , the branches of the standard logarithms and dilogarithms agree

with those of the modified ones. In particular, given the discrete faithful solution to

zA.1� z�1/B D .�1/n , taking standard logarithms immediately produces a solution

to (5-8). Therefore, the discrete faithful representation always corresponds to a critical

point of the state integral.

5.2 Volume

By substituting a solution to (5-8) back into the „�1 (leading order) part of the integrand,

we obtain the following formula for the complex volume of a representation:

(5-9) ST ;0 D�
�2

2
f �B�1� � i�Z �B�1�

C 1

2
Z �B�1

AZC
X

i

�Li2.e
�Zi /

�
mod

�2

6

�
:

Some manipulation involving the flattening can be used to recast this as

(5-10) ST ;0 D�
1

2
.Z � i�f / � .Z00C i�f 00/C

X

i

�Li2.e
�Zi /

�
mod

�2

6

�
;
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where Z00
i WD��Li1.e

�Zi /. It is straightforward to verify that this formula is independent

of the choice of quad type, choice of edge of T , choice of meridian loop, choice of

flattening, and 2–3 moves defines a topological invariant, which agrees with the complex

Chern–Simons invariant of M . Since the complex volume in this form has already

been studied at length in the literature, we suppress the details here.

At the discrete faithful representation, we can remove the “tildes” from the logarithm

and dilogarithm. If we consider the discrete faithful solution to zA.1�z�1/B D .�1/n ,

and take standard logarithms

Zi D log zi ; Z00
i D log.1� z�1

i / (with 0� Im Z; Im Z00 � � ),

we find

(5-11) ST ;0 D i.Vol.M /� iCS.M //

D�1

2
.Z � i�f / � .Z00C i�f 00/C

X

i

Li2.e
�Zi /

�
mod

�2

6

�
:

This is a version of the simple formula for the complex volume given in [56]. It is

known that the ambiguity in the volume can be lifted from �2=6 to 2�2 using more

refined methods; see [57; 38; 75] and Dupont and Zickert [24].

5.3 Torsion revisited

Next, we can derive our torsion formula (1-8). The torsion comes from the „0 part in

the asymptotic expansion of the state integral, which has several contributions.

From formal Gaussian integration around a critical point (5-8), we get a determinant

.2�„/N=2.detH/�1=2 , where

(5-12) Hij D�
@2

@Zi@Zj

�
� �

2

2
f �B�1� � i�Z �B�1�

C 1

2
Z �B�1

AZC
X

i

�Li2.e
�Zi /

�

D .�B
�1

AC�z0/ij

is the Hessian matrix of the exponent (at leading order „�1 ). Here we define that

�z0 WD diag.z0
1
; : : : ; z0

N
/, with z0

i D .1� zi/
�1 as usual. Multiplying the determinant

is the „0 piece of the integrand, evaluated at the critical point. From the „0 part of the
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quadratic exponential, we get

(5-13) exp
�

i�

2
f �B�1� � 1

2
Z �B�1�

�

D exp
�

1

2
f � .B�1

AZCZ00/� 1

2
Z � .B�1

Af Cf 00/
�

D exp
�
� 1

2
Z �f 00C 1

2
Z00 �f

�

D .zf 00

z00�f /�1=2;

whereas from the quantum dilogarithm at order „0 we find

(5-14) exp
�1

2

X

i

�Li1.e
�Zi /

�
D˙

Y

i

1q
1� z�1

i

D˙ det�
�1=2
z00 :

Combining the determinant .2�„/N=2.detH/�1=2 , the corrections (5-13)–(5-14), and

the overall prefactor
p

8�3=det B.2�„/�N=2 in the integral (5-2) itself, we finally

obtain

(5-15) eS1 D
s

8�3

det B det.�B�1AC�z0/ det�z00zf 00
z00�f

D
s

�8�3

det.A�z00 CB��1
z /zf 00

z00�f
;

up to multiplication by a power of i ; or

(5-16) �M WD 4�3e�2S1 D˙1
2

det.A�z00 CB��1
z /zf 00

z00�f ;

just as in (1-8). Despite the fact that the original state integral only made sense for

nondegenerate B , the final formula for the torsion is well-defined for any B .

5.4 Feynman diagrams and higher loops

The remainder of the invariants ST ;n can be obtained by continuing the saddle-point

(stationary phase) expansion of the state integral to higher order. The calculation can be

systematically organized into a set of Feynman rules (cf [45, Chapter 9], [6] and [60]).

The resulting formulas — summarized in Section 1 — are explicit algebraic functions

of the exponentiated shape parameters zi , and belong to the invariant trace field EM .

To proceed, we should first recenter the integration around a critical point. Thus, we

replace Z!ZC � and integrate over � , assuming Z to be a solution to (5-8). Using
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[17, Equation 3.26], we expand as follows:

(5-17) ZT .„/D

s
8�3

„3 det B

Z
dN �

.2�„/N=2

NY

iD1

 „.Zi C �i/

� e
1

„
Œ1

2
.i�C„

2
/2f �B�1��.i�C„

2
/.ZC�/�B�1�C1

2
.ZC�/�B�1A.ZC�/�

�

s
8�3

„3 det B
e�.0/.Z/

�
Z

dN �

.2�„/N=2
exp

h
� 1

2„� �H.Z/ � �C
1X

kD1

NX

iD1

�
.k/
i .Z/

k!
�k

i

i
:

In this form, the first coefficient �.0/.Z/ can be identified with an overall vacuum

energy, while the rest of the �
.k/
i .Z/ are vertex factors.

Every �.k/.Z/ here is a series in „, in general starting with a 1=„ term. However, �
.1/
i

must vanish at leading order „�1 precisely because Z is a solution to the leading

order critical point equations; and we have also already extracted the leading „�1 piece

of �
.2/
i as the Gaussian integration measure �.1=2„/�H� . Typically, 1–vertices and

2–vertices are absent from a Feynman calculus. Here, however, they appear because

our critical point equation and the Hessian (respectively) are only accurate at leading

order, and incur „–corrections. (Note that the 1–vertices and 2–vertices are counted

separately in (5-19) below.)

The vacuum energy �.0/ contributes to every ST ;n , n � 0. Its leading order „�1

term is just the complex volume (5-10), while the „0 piece contains the corrections

(5-13)–(5-14) to the torsion. At higher order in „, we have

(5-18) �.0/.Z/D 1

„S0C„0. � � � /C „
8
f �B�1

Af

C
1X

nD2

„n�1Bn

n!

NX

iD1

Li2�n.z
�1
i /

�
mod

„
24

�
:

Each Sn , n � 2, is calculated by taking the „n�1 part of �.0/ , and adding to it

an appropriate sum of Feynman diagrams. The rules for the diagrams are derived

from (5-17) as follows. There are vertices of all valencies k D 1; 2; : : :, with a vertex

factor given by �
.k/
i . One draws all connected diagrams (graphs) with

(5-19) # loopsC # 1–verticesC # 2–vertices � n:
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Each k –vertex is assigned a factor �
.k/
i , and each edge is assigned a propagator

(5-20) propagator W …ij WD „H�1
ij D „.�B

�1
AC�z0/�1

ij :

The diagrams are then evaluated by contracting the vertex factors with propagators,

and multiplying by a standard symmetry factor. In each diagram, one should restrict to

the „n�1 term in its evaluation.

Explicitly, using the asymptotic expansion (5-7) of the quantum dilogarithm, we find

that the vertices are

1–vertex: �
.1/
i D�1

2
.B�1�/i �

1X

nD1

„n�1Bn

n!
Li1�n.z

�1
i /(5-21a)

D�1

2
.B�1�/i C

z0
i

2
C � � � ;

2–vertex: �
.2/
i D

1X

nD1

„n�1Bn

n!
Li�n.z

�1
i /(5-21b)

D ziz
02
i

2
� „

12
zi.1C zi/z

03
i C � � � ;

k–vertex: �
.k/
i D .�1/k

1X

nD0

„n�1Bn

n!
Li2�n�k.z

�1
i / .k � 3/:(5-21c)

Note that in �
.1/
i we could also write B

�1� D B
�1

Af C f 00 . When the inequal-

ity (5-19) is saturated, only the leading order („�1 or „0 ) terms of the vertex factors

(5-21) need be considered. Otherwise, subleading „–corrections may be necessary.

Examples of 2–loop and 3–loop Feynman diagrams were given in Figures 1–3 of

Section 1, along with the entire evaluated expression for ST ;2 .

5.5 n–loop invariants on the character variety

Just as we extended the torsion formula to general representations � 2XM in Section 4,

we may now generalize the entire state integral. The basic result for the higher invari-

ants ST ;n is that their formulas remain completely unchanged. The shapes zi simply

become functions of the representation � , and satisfy the deformed gluing equations

(4-5)–(4-6). One must also make sure to use a generalized flattening whenever it occurs,

just as in Section 4.

We note that, for a hyperbolic knot complement M D S3nK , the generalized Chern–

Simons state integral ZM .uI „/ is expected to match the asymptotic expansion of the
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colored Jones polynomials JN .KI q/. Specifically, one should consider the limit

(5-22) N !1; „! 0; qN D eN „ D e2u fixed;

where m D eu is the meridian eigenvalue for a geometric representation �m in the

neighborhood of the discrete faithful. This is the full Generalized Volume Conjecture

of [39].

To see how formulas for the generalized invariants ST ;n , n� 0, come about, consider

the state integral at general meridian eigenvalue mD eu . From (C-23) of Appendix C,

we find

(5-23) ZT .uI „/D
r

8�

„3 det B

Z
dN Z

.2�„/N=2

NY

iD1

 „.Zi/e
� 1

2„
Z �B�1AZ ex;

where

xD1
„
Œ2u�DB

�1
uC.2� iC„/f �B�1

uC1
2
.i�C„

2
/2f �B�1��Z�B�1.2uC.i�C„

2
/�/�;

u WD .0; : : : ; 0;u/ and D is the block appearing in any completion of the Neumann–

Zagier matrices .AB/ to
�

A B
C D

�
2 Sp.2N;Q/, such that the bottom row D of D

appears in the longitude gluing equation C �ZCD �Z00 D vC 2� i�� (Section 4.4).

Indeed, since we are contracting with u, only this bottom row of D really matters

in (5-23).

The critical points of the state integral are now given by

(5-24) AZCBZ00 D 2uC i��;

with Z00 WD��Li1.e
�Z /. As expected, this is the logarithmic form of the deformed glu-

ing equation (4-5). Thus, all critical points correspond to representations �D�m 2XM .

The multivalued nature of this equation must be carefully studied to make sure desired

solutions actually exist. However, for example, representations on the geometric

component X
geom

M
always exist in a neighborhood of the discrete faithful representation,

if we choose uD log m to be close to zero (and use a regular triangulation).

We then start expanding the state integral around a critical point, setting

(5-25) ZT .uI „/�„� 3

2 exp
h1

„ST ;0.u/CST ;1.u/C„ST ;2.m/C„2ST ;3.m/C� � �
i
:

The leading contribution ST ;0.�/ is given, following some standard manipulations

using the generalized flattening, by

(5-26) ST ;0.u/D uv.u/� 1

2
.Z� i�f / �.Z00C i�f 00/C

NX

iD1

�Li2.e
�Z /

�
mod

�2

6

�
:
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Here we write ST ;0 as a function of the logarithmic meridian eigenvalue u, though a

fixed choice of representation � will implicitly fix the choice of longitude eigenvalue

v D log.�`/ as well. Expression (5-26) is a holomorphic version of the complex

volume of a cusped manifold with deformed cusp. Explicitly,

(5-27) ST ;0.u/D i.VolM .u/C iCSM .u//� 2v<.u/:

This is the correct form of the complex volume to use in the Generalized Volume

Conjecture; cf [40].

At first subleading order, we rederive the generalized torsion formula. The calculation

is identical to that of Section 5.3, with the exception of the correction (5-13) coming

from the „0 part of the exponential. This correction now becomes

(5-28) exp
h
f �B�1

uC i�

2
f �B�1� � 1

2
Z �B�1�

i
:

To simplify this correction, we must use Af CBf 00 D � and a deformed gluing

equation AZ CBZ00 D 2uC i�� . The u–dependent part of the gluing equation

cancels the new u–dependent term in (5-28), ultimately leading to the same result

exp
h
f �B�1

uC i�

2
f �B�1� � 1

2
Z �B�1�

i
D .zf 00

z00�f /�1=2;

and therefore the same torsion8

(5-29) �T D 4�e�2ST ;1 D 1

2
det.A�z00 CB��1

z /zf 00

z00�f :

Finally, we can produce a generalized version of the Feynman rules of Section 5.4. We

note, however, that the u–dependent terms in (5-23) do not contribute to either the

vacuum energy �.0/ (at order „1 or higher), the propagator, or the vertex factors �
.k/
i .

Therefore, the Feynman rules must look exactly the same. The only difference is that

the critical point Equation (5-24) requires us to use shape parameters that satisfy the

generalized gluing equations.

5.6 Example: 41 completed

We may demonstrate the power of the Feynman diagram approach by computing the

first two subleading corrections ST ;2 and ST ;3 for the figure-eight knot complement.

8The normalization of the torsion here differs from the torsion at the discrete faithful by a factor of �2 .

In fact, we intentionally changed the normalization of the entire state integral (5-23) by �2 . This is

because we wanted the state integral to match the asymptotics of the colored Jones polynomials exactly,

and the asymptotics happen to jump by �2 when u¤ 0 , cf [40].
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We can use the same Neumann–Zagier datum described in Section 2.6, along with the

generalized flattening of Section 4.6. Let us specialize to representations �m on the

geometric component of the character variety. Then the two shapes z; w are expressed

as functions on the A–polynomial curve,

(5-30) z D�m2�m�2

1Cm2`
; w D m2C `

m2�m�2
;

as in (4-21).

The 2–loop invariant is explicitly given in (1-19) of Section 1. Evaluating this expres-

sion in Mathematica, we find

S41;2 D�
w3.zC1/Cw2..11�8z/z�4/Cw.z�1/.z.zC12/�5/C.z�2/.z�1/2

12.wCz�1/3
:

Upon using (5-30) to substitute rational functions for z and w , the answer may be

most simply expressed as

(5-31) zS41;2D
S41;2C 1=8

�3
41

D� 1

192
.m�6�m�4�2m�2C15�2m2�m4Cm6/;

where we have divided by a power of the torsion as suggested in (1-14) of Section 1.

We have also absorbed a constant 1=8, recalling that our formula is only well-defined

modulo Z=24.

In a similar way, we may calculate the 3–loop invariant, finding unambiguously

(5-32) zS41;3 D
S41;3

�6
41

D 1

128
.m�6�m�4� 2m�2C 5� 2m2�m4Cm6/:

These answers agree perfectly with the findings of [17], and the comparison there to the

asymptotics of the colored Jones polynomials at general u. Moreover, at the discrete

faithful representation we obtain

(5-33) S41;2 D
11i

72
p

3
D� 11

192�3
41

; S41;3 D�
1

54
D 1

128�6
41

;

in agreement with known asymptotics of the Kashaev invariant.

Appendix A: Symplectic properties of A and B

The N �N Neumann–Zagier matrices A and B form the top half of a symplectic

matrix
�

A B
C D

�
2Sp.2N;Q/ [58]. In this section we discuss some elementary properties

of symplectic matrices.

Geometry & Topology, Volume 17 (2013)



The quantum content of the gluing equations 1299

Lemma A.1 The N � 2N matrix .AB/ is the upper half of a symplectic matrix if

and only if AB
T is symmetric and .AB/ has maximal rank N .

Proof It is easy to see that the rows of .AB/ have zero symplectic product (with

respect to the standard symplectic form on Q2N if and only if AB
T is symmetric. In

addition they span a vector space of rank N if and only if .AB/ has maximal rank

N . The result follows.

Lemma A.2 If .AB/ is the upper half of a symplectic matrix and B is nondegenerate,

then B
�1

A is symmetric.

Proof Lemma A.1 implies that AB
T is symmetric, and so is .B/�1

AB
T ..B/�1/T .

It is not true in general that B is invertible. However, after a possible change of quad

type, we can assume that B is invertible. This is the content of the next lemma.

Lemma A.3 (a) Suppose .AB/ is the upper half of a symplectic 2N �2N matrix.

If A has rank r , then any r linearly independent columns of A and their

complementary N � r columns in B form a basis for the column space of

.AB/.

(b) There always exists a choice of quad type for which B is nondegenerate (for any

fixed choice of redundant edge and meridian path).

Proof For (a) let rank.A/D r �N . Without loss of generality, we may suppose that

the first r columns of A are linearly independent. We want to show that, together with

the last N � r columns of B , they form a matrix of rank N .

If we simultaneously multiply both A and B on the left by any nonsingular matrix

U 2 GL.N;R/, both the symplectic condition and the columns are preserved. This

follows from the fact that
�

U 0
0 U �1;T

�
2 Sp.2N;R/. By allowing such a transformation,

we may assume that A takes the block form

(A-1) A D
�

Ir�r A2

0 0

�

for some A2 . Similarly, we split B into blocks of size r and N � r ,

(A-2) B D
�

B1 B2

B3 B4

�
:

Since .AB/ has full (row) rank, we see that the bottom N � r rows of B must be

linearly independent, ie rank.B3B4/ D N � r . From the symplectic condition of
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Lemma A.1, we also find that B3CB4AT
2
D 0, so that rank.B3B4/� rank.B4/. This

then implies that B4 itself must have maximal rank N � r . Therefore, the last N � r

columns of B are linearly independent, and also independent of the first N columns

of A ; ie the matrix
�

Ir �r B2

0 B4

�
has maximal rank as desired. This concludes the proof

of part (a).

For part (b) let us denote the columns of A and B as ai and bi . A change of quad type

corresponding to a cyclic permutation Zi 7!Z0
i 7!Z00

i 7!Zi on the i th tetrahedron

permutes the i th columns of A and B as .ai ; bi/ 7! .bi�ai ;�ai/. Therefore, given N

complementary columns of .AB/ that have full rank, we can use such permutations to

move all the columns (up to a sign) into B .

Appendix B: The shape parameters are rational functions on

the character variety

In this Appendix, we prove that the shape parameters of a regular ideal triangulation are

rational functions on Y
geom

M
, the geometric component of the SL2.C/ A–polynomial

curve.

Proposition B.1 Fix a regular ideal triangulation T of a one-cusped hyperbolic mani-

fold M . Then every shape parameter of T is a rational function on Y
geom

M
.

Proof The proof is a little technical, and follows from work of Dunfield [20, Corol-

lary 3.2], partially presented in [7, Appendix]. For completeness, we give the details of

the proof here. We thank N Dunfield for a careful explanation of his proof to us.

Consider the affine variety R.M;SL.2;C// D Hom.�1;SL.2;C// and its algebro-

geometric quotient XM;PSL.2;C/ by the conjugation action of PSL.2;C/. Follow-

ing Dunfield from the Appendix to [7], let xR.M;SL.2;C// denote the subvariety

of R.M;SL.2;C// � P1.C/ consisting of pairs .�; z/ where z is a fixed point of

�.�1.@M //. Let xXM;SL.2;C/ denote the algebrogeometric quotient of xR.M;SL.2;C//

under the diagonal action of SL.2;C/ by conjugation and Möbius transformations

respectively. We will call elements .�; z/ 2 xR.M;SL.2;C// augmented represen-

tations. Their images in the augmented character variety xX .M;SL.2;C// will be

called augmented characters and will be denoted by square brackets Œ.�; z/�. Likewise,

replacing SL.2;C/ by PSL.2;C/, we can define the character variety XM;PSL.2;C /

and its augmented version xXM;PSL.2;C/ .

The advantage of the augmented character variety xXM;SL.2;C/ is that given  2�1.@M /

there is a regular function e that sends Œ.�; z/� to the eigenvalue of �. / corresponding
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to z , using Lemma B.3 below. In contrast, in XM;SL.2;C/ only the trace e C e�1


of �. / is well-defined. Likewise, in xXM;PSL.2;C / (resp. XM;SL.2;C/ ) only e2
 (resp.

e2
 C e�2

 ) is well-defined.

From now on, we will restrict to the geometric component of the character variety

XM;PSL.2;C/ and we will fix a regular ideal triangulation T . In [20, Theorem 3.1]

Dunfield proves that the natural restriction map

XM;PSL.2;C/ �!X@M;PSL.2;C/

of affine curves is of degree 1. The variety X@M;PSL.2;C/ is an affine curve in .C�/2=Z2

and let VM;PSL.2;C/ � .C�/2 denote the preimage of X@M;PSL.2;C/ of the 2 W 1 map

.C�/2 �! .C�/2=Z2 . The commutative diagram

(B-1)

xXM;PSL.2;C/
//

��

VM;PSL.2;C/

��

XM;PSL.2;C/
// X@M;PSL.2;C/

has both vertical maps of degree 2, and the bottom horizontal map of degree 1. Thus,

it follows that the top horizontal map is of degree 1. In [7, Section 10.3] Dunfield

constructs a degree 1 developing map

VT �! xXM;PSL.2;C/;

which combined with the previous discussion gives a chain of birational curve isomor-

phisms

(B-2) VT �! xXM;PSL.2;C/ �! VM;PSL.2;C/:

Since the shape parameters are rational (in fact coordinate) functions on VT , it

follows that they are rational functions on VM;PSL.2;C/ . Using the regular map

VM;SL.2;C/�!VM;PSL.2;C/ , we obtain that the shape parameters are rational functions

on VM;SL.2;C/ .

Proposition B.1 has the following concrete corollary.

Corollary B.2 Given a regular ideal triangulation T with N tetrahedra, there is a

solution of the shape parameters in Q.m; `/=.A.m; `//.

Lemma B.3 Suppose

AD
�

a b

c d

�
2 SL.2;C/

Geometry & Topology, Volume 17 (2013)



1302 Tudor Dimofte and Stavros Garoufalidis

and c ¤ 0. Then, � is an eigenvalue of A if and only if z D .�� 2d/=.2c/ is a fixed

point of the corresponding Möbius transformation in P1.C/.

Appendix C: Deriving the state integral

In this Appendix, we explain the connection between the quantization formalism of [15]

and the special state integrals (5-2) and (5-23) that led to all the formulas in the present

paper. We will first review classical “symplectic gluing” of tetrahedra, then extend

gluing to the quantum setting and construct the state integral. There are multiple points

in the construction that have yet to be made mathematically rigorous, which we will

try to indicate.

C.1: Symplectic gluing

The main idea of [15] is that gluing of tetrahedra should be viewed, both classically

and quantum mechanically, as a process of symplectic reduction.

Suppose we have a one-cusped manifold M with a triangulation T D f�igNiD1
. Clas-

sically, each tetrahedron �i comes with a phase space

(C-1) P@�i
D fflat SL.2;C/ connections on @�ig
� f.Zi ;Z

0
i ;Z

00
i / 2Cn.2� iZ/ jZi CZ0

i CZ00
i D i�g;

with (holomorphic) symplectic structure

(C-2) !@�i
D dZ ^ dZ00;

and a Lagrangian submanifold9

(C-3) L�i
D fflat SL.2;C/ connections that extend to �ig
D feZ 00 C e�Z � 1D 0g � P@�i

:

When gluing the tetrahedra together, we first form a product

(C-4) L� D L�1
� � � � �L�N

� P� D P@�1
� � � � �P@�N

:

The edge constraints XI WD
PN

iD1.GIiZi CG
0
Ii

Z0
i CG

00
Ii

Z00
i /� 2� i from (2-3) are

functions on the product phase space P� , and can be used as (holomorphic) moment

maps to generate N � 1 independent translation actions tI . Recall [58] that the

9Explicitly, P@�i
is a space of flat connections on a 4–punctures sphere with parabolic holonomy at

the four punctures; while L�i
is the subspace with trivial holonomy, hence connections that extend into

the bulk of the tetrahedron. See, eg, the first author, Gaiotto and Gukov [16, Section 2].
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logarithmic meridian and longitude holonomies .u; v/ are also functions on P� , which

Poisson-commute with all the edges XI , and so are fixed under these translations.

Then the phase space of M is a symplectic quotient,

(C-5) P@M D fflat SL.2;C/ connections on @M ' T 2g � f.u; v/ 2Cg
D P�==.tI /;

and the A–polynomial of M (more properly, components of the A–polynomial for

which the triangulation is regular) is the result of pulling the Lagrangian L� through

the quotient,

(C-6) LM D “L�==.tI /”� fAM .ev; eu/D 0g � P@M :

This is quite easy to check using equations (4-5) and (4-6).

C.2: Quantization

Quantum mechanically, we have that each tetrahedron has a Hilbert space H�i
, a

wavefunction Z�i
.Zi/ and a quantum operator yL@�i

that annihilates the wavefunction.

The symplectic-gluing procedure extends to the quantum setting, with appropriate

quantum generalizations of all the above operations. Roughly, one forms a product

wavefunction

(C-7) Z�.Z1; : : : ;ZN /D Z�1
˝ � � �˝Z�N

2H� DH@�1
˝ � � �˝H@�N

;

and restricts the product Hilbert space using N � 1 new polarizations coming from the

edge constraints. The resulting restricted wavefunction is ZM .u/, and it is annihilated

by a quantized version of the A–polynomial; see the second author [39; 33].

To make this more precise, let M again be an oriented one-cusped manifold, and

choose a triangulation T D f�igNiD1
(regular with respect to some desired family

of representations), a quad type, a redundant edge, and a meridian path, just as in

Section 2.

To each tetrahedron �i we associate a boundary Hilbert space H@�i
. It is some

extension10 of L2.R/ that includes the wavefunction

(C-8) Z�i
.Zi I „/ WD  „.Zi/;

where  „.Zi/ is Faddeev’s quantum dilogarithm (5-5) [27]. We also associate to �i

an algebra of operators

(C-9) yA@�i
DCh yZi ; yZ0

i ;
yZ00

i i=. yZi C yZ0
i C yZ00

i D i� C „
2
/;

10This space has not been mathematically defined yet; constructions of (eg) [2] might prove useful for

achieving this.
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with commutation relations

(C-10) Œ yZi ; yZ0
i �D Œ yZ0

i ;
yZ00

i �D Œ yZ00
i ;
yZi �D „:

Then the quantization of the Lagrangian (C-3) annihilates the wavefunction,

(C-11) yL�i
WD e

yZ 00

i C e� yZi � 1; yL�i
Z�i
D 0;

where the operators act in the representation

(C-12)

yZi DZi ; yZ00
i D „@Zi

I or

e
yZiZ.Zi/D eZiZ.Zi/; e

yZ 00

i Z.Zi/D Z.Zi C„/:

In order to glue the tetrahedra together, we start by forming the product wavefunction

Z�.Z1; : : : ;ZN /D Z�1
.Z1/ � � �Z�N

.ZN /. This is an element of a product Hilbert

space (C-7). Acting on this product Hilbert space is the product yA� of algebras (C-9),

which is simply generated by all the yZi ; yZ0
i ;
yZ00

i , with canonical commutation rela-

tions (C-10) (and operators from distinct tetrahedra always commuting).

Now, following the notation of Sections 2.2 and 4.4, we can define N operators
yXI 2 yA� , one for each independent edge, and one for the meridian:

(C-13) yXI WD
(PN

iD1.GIi
yZi CG

0
Ii
yZ0

i CG
00
Ii
yZ00

i /� 2� i �„ I D 1; : : : ;N � 1;

GN C1;i
yZi CG

0
N C1;i

yZ0
i CG

00
N C1;i

yZ00
i I DN:

Similarly, we may define an operator

(C-14) yPN WD 1
2
.GN C2;i

yZi CG
0
N C2;i

yZ0
i CG

00
N C2;i

yZ00
i /

corresponding to the longitude. Due to the symplectic structure found in [58], we

know that we may complete the set f yX1; : : : ; yXN ; yPN g to a full canonical basis of the

algebra yA� . We do this by adding N � 1 additional operators yPI , which are linear

combinations of the yZ s, such that

(C-15) Œ yPI ; yXj �D ıIj„; Œ yPI ; yPj �D Œ yXI ; yXj �D 0; 1� I; j �N:

The operators yXI ; yPI have a simple interpretation in terms of a generalized Neumann–

Zagier datum. Namely, if we complete .AB/ and the rows C;D (of Section 4.4) to a

full symplectic matrix
�

A B
C D

�
, then

(C-16)

 
yX
yP

!
D
�

A B

C D

� yZ
yZ00

!
� .i� C „

2
/

�
�

�P

�
:
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Here � is precisely the vector of N integers which was introduced in (2-8), while

�P D .�; : : : ;�; ��/, with �� from (4-8). The first N � 1 entries of �P depend on the

precise completion of the canonical basis (or the symplectic matrix), and ultimately

drop out of the gluing construction.

C.3: Quantum reduction

Classically, in order to glue we would want to set the N � 1 edge constraints XI ! 0,

and the meridian XN ! 2u. In Section C.1, these functions were actually used as

moment maps to perform a symplectic reduction. Now we should do the same thing

quantum mechanically. In order to reduce the product wavefunction Z�.Z1; : : : ;ZN /

of (C-7) to the final wavefunction ZM .u/ of the glued manifold M , we must transform

the wavefunction to a representation (or “polarization”) in which the operators yXI

act diagonally (by multiplication). In this representation, the wavefunction depends

explicitly on the XI . The “reduction” then simply requires fixing XI ! .0; : : : ; 0; 2u/.

Schematically,

(C-17) Z�.Z1; : : : ;ZN /
transform�����! zZ�.X1; : : : ;XN /

fix7!ZM .u/D zZ�.0; : : : ; 0; 2u/:

The transformation from Z� to zZ� is accomplished — formally — with the Weil

representation R of the affine symplectic group; see Shale [64] and Weil [71]. In

particular, we need R.˛/ for the affine symplectic transformation ˛ in (C-16). In [15,

Section 6], it was discussed in detail how to find R.˛/ by factoring the matrix of

(C-16) into generators. Then, for example, an “S –type” element of the symplectic

group acts via Fourier transform

(C-18) R

��
0 �I

I 0

��
W f .Z/ 7! zf .W /D

Z
dN Z

.2� i„/N=2
e

1

„
Z �W f .Z/;

whereas a “T –type” element acts as multiplication by a quadratic exponential

(C-19) R

��
I 0

T I

��
W f .Z/ 7! zf .W /D e

1

2„
W T T W f .W /:

Affine shifts act either by translation or multiplication by a linear exponential.

In the present case, there is a convenient trick that allows us to find R.˛/ without

decomposing ˛ into generators. We assume that the block B of the symplectic matrix

is nondegenerate, since we know we can always choose a quad type with this property.

For the moment, let us also suppose that the affine shifts vanish, � D �P D 0. Then

the Weil action is

(C-20) R.˛/W Z�.Z/ 7! zZ�.X /D
1p

det B

Z
dN Z

.2� i„/N=2
exZ�.Z/;
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where x D 1
2„
.X �DB

�1X � 2Z �B�1X CZ �B�1
AZ/. In particular, it can easily

be verified that this correctly intertwines an action of operators . yZi DZi ; yZ00
i D„@Zi

/

on Z�.Z/ with an action of operators . yXI DXI ; yPI D„@XI
/ on zZ�.X /. For example,

Z
dN Zex.A yZCB yZ00/Z�.Z/D

Z
dN Zex.AZC„B@Z /Z�.Z/

D
Z

dN ZŒ.AZ �„B@Z /e
x �Z�.Z/

D
Z

dN ZXexZ�.Z/

D yX zZ�.X /:

Nonzero affine shifts � and �P further modify the result to

zZ�.X /D
1p

det B

Z
dN Z

.2� i„/N=2
exp

�
�1

„X �
�
i� C „

2

�
�P

C 1

2„
��

X C
�
i� C „

2

�
�
�
�DB

�1
�
X C

�
i� C „

2

�
�
�

� 2Z �B�1
�
X C

�
i� C „

2

�
�
�
CZ �B�1

AZ

��
Z�.Z/;

and then, after setting X ! 2uD .0; : : : ; 0; 2u/ as in (C-17), we find

(C-21) ZM .u/D 1p
det B

Z
dN Z

.2� i„/N=2
exp

h
� 1

„.2� i C„/��u

C 1

2„
��

2uC
�
i� C „

2

�
�
�
�DB

�1
�
2uC

�
i� C „

2

�
�
�

� 2Z �B�1
�
2uC

�
i� C „

2

�
�
�
CZ �B�1

AZ
�i NY

iD1

 „.Zi/:

This is the partition function of the one-cusped manifold M , modulo a multiplicative

ambiguity of the form expŒ�
2

6
aC i�

4
bC 1

24
c� for a; b; c 2 Z, which we will say more

about in Section C.5. By construction, this partition function is annihilated by the

quantum yA–polynomial of M .

C.4: Introducing a flattening

In order to obtain the state integral (5-23) appearing in the paper, we can introduce

a generalized flattening (as in Section 4.4) and use it to simplify (C-21). Note that

the discrete-faithful state integral (5-2) follows immediately from (5-23) upon setting

uD .0; : : : ; 0;u/! 0.
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Suppose, then, that we have integers .f; f 00/ that satisfy

(C-22)

�
A B

C D

��
f

f 00

�
D
�
�

�P

�
;

for some �P whose last entry is �� . We will assume that a completed symplectic

matrix
�

A B
C D

�
can be chosen in Sp.2N;Z/ rather than in Sp.2N;Q/. In that case,

since f and f 00 are vectors with integer entries, it follows that �P 2 ZN . Then,

���uC� �DB
�1

uD�.Cf CDf 00/ �uC.DT
Af CD

T
Bf 00/ �B�1

uD f �B�1
u;

where we used the symplectic identities D
T

B DB
T

D and D
T

A D I CB
T

C ; and

� �DB
�1� D � �D.f 00CB

�1
Af /

D � � .Df 00CCf CB
�1;T f /

D f �B�1�C � � �P

D f �B�1� .mod Z/;

in a similar way. These relations allow us to write the state integral (C-21) as

(C-23) ZM .u/D 1p
det B

Z
dN Z

.2�„/N=2
ex

NY

iD1

 „.Zi/;

where xD 1
„
Œ2u �DB

�1
uC.2� iC„/f �B�1

uC 1
2
.i�C „

2
/2f �B�1��ZB

�1.2uC
.i� C „

2
/�/�, just as in (5-23). (We drop a factor of

p
i from the measure, since it can

be absorbed in the overall normalization ambiguity.)

C.5: Normalization and invariance

The normalization of Chern–Simons state integrals has always been a subtle issue.

For the integral of [15], ambiguities in the normalization come from two sources: the

projectivity of the Weil representation, and the incomplete invariance of the integral

(even formally) under a change of “quad type” and a 2–3 move.

Let us consider the Weil representation first. We will assume that all symplectic matrices

are in Sp.2N;Z/, and that all shifts involve integers (like � and �P ) times i� C „
2

.

This assumption (which, again, is only an observed property) allows us to improve on

the estimates of [15, Equation (6.6)]. The Weil representation becomes a projective

unitary representation of ISp.2N;Z/'Sp.2N;Z/ËŒ.i�C „
2
/Z�2N on L2.RN /, for „

pure imaginary. Our Hilbert space H˝2N
�

is very close to L2.RN /, so we may hope

that the Weil representation is also unitary projective there. The most severe projective
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ambiguity arises from a violation of expected commutation relations between shifts and

T –type transformations such as (C-19). This leads to projective factors of the form

(C-24) exp
h 1

2„
�
i� C „

2

�2
a
i
D exp

h�
� �

2

2„ C
i�

2
C „

2

8

�
a
i
; a 2 Z:

With the exception of factors like this, unitarity with respect to the norm

kf k2 D
Z

dN Z

.˙2� i„/N=2
jf .Z/j2

may be used to normalize Weil transformations. For example, the factor in (C-20),

Œ.2� i„/N det B ��1=2 , follows easily from formal manipulations on the integral trans-

formation to demonstrate unitarity.

The lack of complete invariance under a change of quad type (cyclic permutation

invariance) and a 2–3 move can also ruin the normalization of the state integral. The

change of quad type was analyzed, formally, in [15, Section 6.2.1]. A cyclic permutation

of a tetrahedron is accomplished by an affine version of the element ST 2 Sp.2N IZ/,
under the Weil representation. The single-tetrahedron wavefunction transforms as

(C-25)  „.Z/ 7!
Z

dZp
2� i„

e
1

2„
.Z2C2ZZ 0�.2� iC„/Z/ „.Z/

D e
�2

6„
˙ i�

4
� „

24 „.Z
0/:

The last equality follows from the Fourier transform of the quantum dilogarithm; see

Faddeev, Kashaev and Volkov [29] and Ponsot and Teschner [61]. This shows that the

tetrahedron wavefunction is invariant under permutations, up to a factor

(C-26) exp
h��2

6„ ˙
i�

4
� „

24

�
a
i
; a 2 Z:

The analysis of the 2–3 move is slightly more involved. It was done in terms of operator

algebra in [15], and then explained in terms of wavefunctions in [16, Section 6.2].

The main idea is that a 2–3 move can be done locally during the gluing procedure, by

performing a formal, “local” transformation on the state integral. The crucial property

involved is the Ramanujan-like identity for the quantum dilogarithm [29; 61], which

expresses three quantum dilogarithms as an integral of two; for example,

(C-27)  „.W
0

1/ „.W
0

2/ „.W
0

3/jW 0

1
CW 0

2
CW 0

3
D2�iC„

�
Z

dZp
2�i„

e
1

2„
.Z2C2W 0

2
Z�.2�iC„/.W 0

1
CW 0

2
CZ// „.�Z/ „.Z �W 0

1/

which holds up to a factor that is again of the type (C-26).
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Putting together all three effects, we find that we might be able to control the overall

normalization of the state integral up to a factor of the form

(C-28) exp
h�2

6„ aC i�

4
bC „

24
c
i
; a; b; c 2 Z:

Appendix D: Computer implementation and computations

An enhanced Neumann–Zagier datum is a tuple .z;A;B ; f / attached to a regular

ideal triangulation of a cusped hyperbolic manifold M . The program SnapPy [13]

in its python and sage implementation computes the gluing matrices G ;G 0;G 00 of

Sections 2.4 and 4.4; and therefore it can easily compute an enhanced Neumann–Zagier

datum y̌T D .z;A;B ; f /. The shape parameters z are algebraic numbers computed

numerically to arbitrary precision (eg, 10000 digits) or exactly as algebraic numbers.

A Mathematica module of the authors computes (numerically or exactly) the n–

loop invariants ST ;n for n D 0; 2; 3 as well as our torsion �T given as input the

Neumann–Zagier datum. As an example, consider the hyperbolic knot 912 with

volume 8:836642343 : : : and the SnapPy ideal triangulation with 10 tetrahedra. Its

invariant trace field E912
is Q.x/ where x D�0:06265158 : : :C i1:24990458 : : : is

a root of

x17� 8x16C 32x15� 89x14C 195x13� 353x12C 542x11� 719x10C 834x9

� 851x8C 764x7� 605x6C 421x5� 253x4C 130x3� 55x2C 18x� 3D 0:

E912
is of type Œ1; 8� with discriminant 3 �298171 �5210119 �156953399. Our torsion is

�912
D 1

2
.15� 7x� 15x2C 55x3� 67x4C 81x5� 43x6� 112x7C 303x8� 488x9

C606x10� 595x11C 464x12� 289x13C 143x14� 49x15C 8x16/

D�3:133657804174628986 : : :C 14:061239582208047255 : : : i:

The two and three-loop invariants simplify considerably when multiplied by �3
912

and �6
912

respectively and are given by

S912;2�
3
912
D 1

26 � 3.36263� 194718xC 503316x2� 971739x3C 1582041x4

� 2152164x5C 2372779x6� 2109742x7C 1426659x8

� 484152x9� 374803x10C 836963x11� 859483x12

C 621288x13� 326550x14C 109607x15� 16840x16/

D 398:62270435384630954 : : :C 948:91209325049603870 : : : i;
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S912;3�
6
912

D 1
27
.2320213� 19092785x1C 72589953x2� 186402605x3C 382362100x4

� 661985976x5C 982969902x6� 1258919324x7C 1402544816x8

� 1359436057x9C 1134208276x10� 803313515x11C 473961630x12

� 225394732x13C 80872920x14� 19104127x15C 2161102x16/

D 71793:64335382669630 : : :C 204530:00105728258992 : : : i:

The norm .N1;N2;N3/D .N.�912
/;N.S912;2�

3
912
/;N.S912;3�

6
912
// of the above al-

gebraic numbers is given by

N1 D 3�298171�5210119�156953399

217
;

N2 D 173137�2497646101 : : : : : : 5575954409 .70 digits/

2102 �317
;

N3 D 1601979456 : : : : : : 5984185143 .100 digits/

2119
:

Recall that although S2;912
is defined modulo an integer multiple of 1=24, S3;912

is

defined without ambiguity and the numerator N3 is a prime number of 103 digits.

For a computation of the Reidemeister torsion �R
M

of the discrete faithful representation

of a cusped hyperbolic manifold M , we use a theorem of Yamaguchi [74] to identify

it with

�R
M D

1

cM

d�R
M
.t/

dt

ˇ̌
ˇ
tD1

where cM is the cusp shape of M and �R
M
.t/ 2 EM Œt˙1� is the torsion polynomial

of M using the adjoint representation of SL.2;C/. Using the hypertorsion package

of N Dunfield (see [21]), we can compute �R
M

as follows:

cd Genus-Comp

sage:import snappy, hypertorsion

def torsion(manifold, precision=100):

M = snappy.Manifold(manifold)

p = hypertorsion.hyperbolic_adjoint_torsion(M, precision)

q = p.derivative()

rho = hypertorsion.polished_holonomy(M, precision)

z = rho.cusp_shape()

torsion = q(1)/z.conjugate()

return [M.name(), torsion]
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For the above example, we have

sage: torsion("9_12",500)

[’L105002’, -3.133657804174628986\ldots

+ 14.061239582208047255\ldots*I]

numerically confirming Conjecture 1.8. Further computations gives a numerical confir-

mation of Conjecture 1.8 to 1000 digits for all 59924 hyperbolic knots with at most 14

crossings.
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