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In band insulators, where the Fermi surface is absent, adiabatic transport is allowed only due to
the geometry of the Hilbert space. When the system is driven at a small but finite frequency ω,
transport is still expected to depend sensitively on the quantum geometry. Here we show that this
expectation is correct and can be made precise by expressing the Kubo formula for conductivity as
the variation of the time-dependent polarization with respect to the applied field. In particular, a
little appreciated effect is that at linear order in frequency, the longitudinal conductivity results from
an intrinsic capacitance, determined by the ratio of the quantum metric and the spectral gap. We
demonstrate that this intrinsic capacitance has a measurable effect in a wide range of insulators with
non-negligible metric, including the electron gas in a quantizing magnetic field, the gapped bands
of hBN-aligned twisted bilayer graphene, and obstructed atomic insulators such as diamond whose
large refractive index has a topological origin. We also discuss the influence of quantum geometry on
the dielectric constant.

Introduction. — Historically, the primary focus when
examining material properties has been the electronic
band structure. However, following the transformative im-
pact of the modern theory of polarization [1], the Hilbert
space geometry has emerged in recent years as a critical
instrument for characterizing quantum materials. This
perspective shift has been fueled mainly by the rapid
progress in the understanding of the quantum geometric
tensor (QGT) [2], whose imaginary part, the Berry curva-
ture, has become indispensable in addressing topological
band structure properties [3–5]. On the other hand, the
real part, known as the quantum metric has only recently
attracted attention. This quantity was shown to appear
in various transport functions [6–10], and may contribute
to the superfluid stiffness in flatband superconductors [11–
14].

Here, we add to this growing list a seemingly overlooked
property of the QGT, which is how it enters canonically
in the quasistatic conductivity in insulators. This per-
spective is motivated by the modern theory of polariza-
tion: The polarization Pµ can be defined by carefully
evaluating the position operator in momentum space [15–
17]. This implies that Pµ is determined entirely by the
eigenfunctions of a given Bloch-periodic Hamiltonian and
independent of the eigenvalues (dispersion). Since the
current can be defined as a derivative of the polarization
jµ = dPµ/dt, it is tempting to seek similar conclusions for
jµ. this expectation is indeed true for a band insulator,
where the dc-current is purely transverse, dissipationless
and proportional to the Chern number of the ground state.

Here, we investigate how the linear response in an insu-
lator changes away from the zero-frequency limit, estab-
lishing that the quasistatic expansion for low frequencies
contains valuable additional information about the quan-
tum geometry of the Hilbert space. This insight allows us
to connect the longitudinal conductivity with the quan-
tum metric in insulators where the typical bandwidth is
small compared to the band gap.
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Figure 1. Emergence of the intrinsic capacitance in insula-
tors with nonzero quantum metric g. Upon applying an ac
electric field, due to virtual excitations a transient polariza-
tion is induced, which entails a longitudinal, purely imaginary
impedance.

The starting point for our considerations is the static
susceptibility χ in insulators expressed in terms of the
polarization as χµν = ∂P ν/∂Eµ [1]. Using the definition
of the current, one can similarly evaluate the conductivity
as σµν → ∂jν/∂Eµ. However, since the current arises
in a quasisteady state, it is not obvious to which extent
the properties of a static polarization carry over to the
conductivity [16, 18, 19]. We show by explicit construction
using the Kubo formula that linear conductivity σ in both
insulators and metals can be expressed in terms of the
polarization as

σµν =
δ

δEµ(t)

(
dP ν(t)

dt

)∣∣∣∣
Eµ=0

, (1)

where the time dependence enters through the monochro-
matic electric field Eµ(t) = Eµe

iωt. Eq. (1) makes use of
a functional derivative with respect to the time-dependent
field, which allows writing the conductivity in a decep-
tively simple manner, σµν = δjν/δEµ(t). Based on this
insight, we are motivated to explore the geometric content
of the quasistatic response. Focusing on two-dimensional
insulators with rotational symmetry, the low-frequency
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expansion yields

σµν(ω) = −e
2

h
Cεµν + iωc δµν + . . . , (2)

with the capacitance c being related to the static suscep-
tibility via the vacuum permittivity ε0 as c = ε0χ, and C
denoting the Chern number. That is, the capacitance c
constitutes the leading low-frequency longitudinal contri-
bution, indicative of the deviation from the static response.
This raises two important questions: Does this quantity
depend on the quantum geometry? And is c a substantial
contribution in quantum materials? This letter answers
both questions with yes. In particular, we present several
examples of non-interacting band insulators where the
intrinsic capacitance c contains the matrix elements of the
quantum metric, normalized by the respective band gaps.
The appearance of the quantum metric in the quasistatic
conductivity can be understood intuitively by recalling
that the quantum metric quantifies the extent of a wave-
function in real space [19, 20]. Therefore, it measures
how much the electrons can polarize. In short, systems
with a finite quantum metric exhibit an intrinsic capaci-
tance. This capacitance is a purely quantum phenomenon
that arises from coherent, virtual interband transitions
between the full valence band and the empty conduction
band [21], simply because within a full band quasiparticles
cannot be displaced at all (cf. Fig. 1).

We emphasize that the intrinsic capacitance c originates
solely from the multi-banded nature of insulators, mak-
ing it the only electronic contribution to the geometric
capacitance of clean insulators at frequencies smaller than
the band gap. In dirty or doped insulators, due to in-gap
bound states [22] the measured capacitance is augmented
by the quantum capacitance, which is proportional to the
density of states at the Fermi level inside the mobility
gap. As the trace of the quantum metric is bounded by
the Chern number [11, 23, 24], we expect the capacitive
response to be enhanced in systems where the orbitals can-
not be exponentially localized. In the following, we clarify
under which circumstances the intrinsic capacitance can
be used as a diagnostics of the quantum geometry of the
system.

Geometric expansion of the Kubo formula. — It is well
established that in the adiabatic transport regime, the re-
sponse of an insulator to external fields is dictated by the
geometry of the Hilbert space. Eq. (1) indicates that be-
yond the adiabatic regime, we may view the conductivity
solely as a geometric quantity in the Hilbert space slowly
evolving in time. This statement is now made precise. To
this end, let us consider a periodic system with Bloch wave-
functions |mk⟩ and energy eigenvalues ℏωm(k), where m
is the band index, and in the following we will suppress
the momentum index. Using the Kubo formula, we find
that any response at finite frequency depends explicitly
on the band dispersion of filled and empty bands. This
dependence is introduced by the interband elements of
the current operator Jµ

nm with spatial index µ, which are
explicitly given by Jµ

nm = ie(ωm − ωn)r
µ
mn ≡ ieωnmr

µ
mn,

with rµmn = ⟨m|r̂µ|n⟩ representing the matrix elements of
the position operator. In the insulating state, the conduc-
tivity exclusively depends on interband terms which are
given by

σµν(ω) = − ie
2

ℏ
∑
n ̸=m

∫
BZ

fnmωnm
rµnmr

ν
mn

ωnm + ω
, (3)

where we introduced the difference of occupation func-
tions fnm = fn − fm. The integral is over the Brillouin
zone, and all band structure quantities implicitly depend
on the momentum unless specified otherwise. As we fur-
ther detail in the supplementary information [25], this
expression can be exactly rewritten as

σµν(ω) = −e
2

ℏ

∫
BZ

(
Ωµν− ω

∫
C

dt e−iω+t T̂Qµν(t)

)
(4)

where we introduced a time-dependent QGT

Qµν(t) =
∑
n ̸=m

fn(1− fm)rµnm(t)rνmn(0) . (5)

Note that the integral in (4) is evaluated over the Keldysh

contour C [25], and T̂ denotes path ordering. Q(t) can
be written succinctly in operator form as Qµν(t) ≡
Tr[P̂ r̂µ(t)(1 − P̂ )r̂ν(0)] [26], where P̂ is the projector
into the filled bands. In this form, the time-dependent
QGT can be clearly identified as a generalization of the
time-independent QGT.
The intrinsic capacitance arises in the Kubo formula

upon expansion to linear order in the driving frequency.
We assume that the frequency is well below the band
gap, and therefore transport is non-dissipative. Let us
concentrate on the longitudinal conductivity that in the
absence of dissipation is purely imaginary. Expanding in
powers of frequency σµµ ≃ iωcµµ +O(ω3), we extract the
capacitance

cµµ =
2e2

ℏ

∫
BZ

∑
m ̸=n

fn(1− fm)
gµµmn

ωmn
, (6)

where the numerator contains the matrix elements of the
quantum metric gµµmn = {rµnm, rµmn}/2, from which the
full ground state quantum metric can be obtained by the
summation gµµ =

∑
nm fn(1 − fm)gµµmn. For isotropic

systems, we drop the spatial indices, such that c ≡ cµµ.
The identification of an intrinsic capacitance due to the
quantum metric, Eq. (6), is the main result of this work.

Landau Levels. — We first consider the intrinsic capac-
itance in the well-known case of an electron gas under an
applied out of plane magnetic field B. The spectrum of
this problem consists of flat Landau levels with a uniform
gap given by the cyclotron frequency ωnm = ωc = eB/me.
Since the dipole transitions are only allowed between
neighboring Landau levels, i.e. rµnm ∝ δn,m+1, Eq. (6)
simplifies dramatically. The quantum metric for the
case of Landau levels is given by gxx = l2BC [24] with
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Figure 2. Relation between the quantum metric and intrinsic
capacitance c in a Haldane-like model compared against the
linear Dirac cone result (9). a) The top panel displays c as a
function of the mass parameterM . The solid curve corresponds
to the value of the Haldane mass MH = 1, while the black
dashed curve represents MH = 0. The colored dashed curve
represents the capacitance c0 of a linear Dirac cone. The
insets on the left and right show the relative contributions to
c across the Brillouin zone in the Haldane MH = 1 model with
M = −1 and M = 1, respectively. The involvement of the
high-momentum modes for M = 1 confirms the topological
nature of transport in this parameter region. b) Integrated,
normalized, traced over the spatial indices quantum metric
⟨ḡ⟩ =

∫
BZ

(gxx + gyy) in the Haldane model with MH = 1
(solid line), and for MH = 0 (dashed line). Both c and ⟨ḡ⟩ for
MH = 0 are divided by a factor of two for better comparison,
since in this case at M = 0 the gap closes in both valleys.

lB =
√
ℏ/eB, such that the capacitance takes the quan-

tized value of [25]

c =
e2

hωc
C . (7)

Most importantly, this implies that at sufficiently small
frequency, each filled Landau level carries a quantum of
capacitance c0 = e2/hωc. The reason for that can be
gleaned from Eq. (6): in a system with flatband disper-
sion, the energy difference ωmn can be taken out of the
momentum integral, such that only the integral over gmn

remains. For a magnetic field of 1T, we find c0 ≃ 0.22 fF,
which is well within the range of Microwave Impedance
Microscopy (MIM) devices [27, 28].
Gapped Dirac Hamiltonians. — We consider a two-

dimensional gapped Dirac dispersion, given by the con-
tinuum Hamiltonian Ĥ = kµσ̂µ +Mσ̂z. The longitudinal
ac conductivity (3) simplifies to

σ(ω) = ie2ω

∫
BZ

∆ḡ

∆2 − (ℏω)2
, (8)

with the gap given by ∆ = 2
√
M2 + k2 [25], and ḡ =

gxx + gyy. For low frequencies, far smaller than the gap,
the linear coefficient of iω corresponds to the capacitance
of a massive Dirac fermion

c0 =
e2

12π|M | . (9)

This quantity approximates well the contribution to the
capacitance per Dirac cone in topologically trivial materi-
als. To consider the influence of topology on this value,
we consider a Dirac Hamiltonian with a quadratic cor-
rection Ĥ ′ = kµσ̂µ + (M − αk2)σ̂z, which yields for the
capacitance

c′0 =

{
e2

12π
1

|M ||1−4Mα| , αM < 0 ,
e2

12π|M | +
|α|
6π , αM > 0 .

(10)

If M and α have the same sign, Ĥ ′ describes a Chern in-
sulator, with the capacitance acquiring a minimum value
cmin = |α|/6π in the limit M → ∞. This behavior is
reminiscent of the well-known bound on the quantum
metric 2π

∫
BZ

Tr g ≥ |C| [11, 23, 24]. In the trivial re-
gion αM < 0, c′0 decays faster than c0. To summarize,
the intrinsic capacitance diverges at a gap-closing, and
acquires a characteristic asymmetry between trivial and
topological phase, but only at a finite distance to the
transition, while very close to the transition, c′0 ≃ c0 is
symmetric.

To illustrate how these insights carry over to the tight-
binding models of topological materials, we calculate the
capacitance in a Haldane-like model parameterized by the
sublattice staggered potential M , both with and without
the Haldane mass term MH [25]. As shown in Fig. 2, for
finiteMH, the system experiences a transition between the
trivial phase (M < 0) and the topological phase (M > 0).
As the gap closes at M = 0, c diverges on both sides of
the phase transition. Close to the transition, c is well
approximated by the Dirac cone result Nc0, where N
is the number of gapless valleys at M = 0: N = 2 for
MH = 0, and N = 1 for MH = 1. Similar to what we
have demonstrated for c′0, the intrinsic capacitance is not
symmetric across both phases: it saturates at a finite
value on the topological side of the Haldane model but
quickly decays to zero on the trivial side. In contrast, for
zero Haldane mass (MH = 0), c remains symmetric deep
into the gapped phase. These features of the intrinsic
capacitance are due to its interband origin, which makes
it sensitive both to geometric and topological properties
of the band structure.
Magic angle twisted bilayer graphene — Let us now

consider the magic-angle twisted bilayer graphene aligned
on top of hBN [29, 30]. Due to the alignment, the in-
plane inversion symmetry is broken, and the bands close
to charge neutrality acquire a gap ∆ of the order 10 meV
[31]: this configuration makes the capacitance at half
filling well-defined.
We calculate the capacitance c numerically in the

Bistritzer-MacDonald model [32] with a Fermi level at
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Figure 3. Intrinsic capacitance c for hBN-aligned twisted
bilayer graphene, depicted in relation to the twist angle θ for
two values of the gap between the flat bands. In the inset,
we sketch the behavior of the interband matrix elements of
the quantum metric, integrated over the momentum in one
valley for the case ∆ = 4 meV. The band indices are measured
from charge neutrality, with −1 and 1 corresponding to the
flat bands.

charge neutrality for realistic interlayer AA- and AB-
sublattice tunneling parameters u = 0.077 eV and u′ =
0.11 eV [33]. The presence of the substrate is mimicked
by a sublattice-polarized local term of strength ∆/2. We
are interested in the value of c in a range of twist angles
θ in the vicinity of the “magic” θM ≃ 1.063◦.

We present the resulting behavior of c(θ) in Fig. 3
for two values of ∆. Since the dispersion in the flat
bands is minimized at θM, based on Eq. (6) one would
expect a local maximum of the capacitance to appear
at the magic angle. Contrary to this expectation, this
quantity develops instead a sharp local minimum since an
abrupt decrease in the quantum metric of the flat bands
around θM dominates upon band flattening. The quench
of the quantum metric due to the saturation of the trace
condition is known to occur in the chiral limit of Bistritzer-
MacDonald model [34] and expected to hold by continuity
away from the u→ 0 limit. Interestingly, the value of the
capacitance at the minimum can be roughly estimated
as (9) multiplied by the number of Dirac quasiparticles,
which for ∆ = 4meV gives 8c0 ≃ 17 aF.

We see that the behavior of the intrinsic capacitance c
correctly captures the distinctive and sudden decrease of
the wavefunction spread that takes place when the bands
are flattened, and therefore, the response c emerges as
an efficient probe of the quantum metric. We expect the
suppression of the dielectric constant with ensuing anti-
screening effects to play a role in stabilizing the interacting
phases observed at the magic angle [35, 36]. We leave
the investigation into the relevance of our findings to
correlated phenomena for future work.

Electronic contribution to the dielectric constant — Hav-
ing established the intrinsic capacitance as a valuable
observable to diagnose the quantum geometry of systems

with nearly flat bands, we address the question of what
information c contains in the case of generic insulators
with dispersive spectrum. The (dimensionless) electronic
component of the dielectric constant in linear response
theory is given by ϵµν = δµν + χµν , where the electric
susceptiblity is [37]

χµν =
2e2

ℏε0

∑
m ̸=n

∫
BZ

fn(1− fm)
gµνmn

ωmn
. (11)

Since χ and c are proportional, one may ask whether the
localization properties of the electronic ground state can
be extracted from the known values of the optical dielectric
constant. With ϵ being a second rank tensor and using
Eq. (11), one may in principle estimate any component
of the quantum metric tensor g. For the sake of clarity,
we will restrict the analysis to the in-plane component
in materials with C3 or C4 rotational symmetry, where
ϵxx = ϵyy = ϵ holds, with ϵ = 1 + χ.
To this end, we introduce the out-of-plane average of

the in-plane quantum metric,

⟨ḡ⟩z =

∫
azdkz
2π

∫
d2k

(2π)2
(gxx + gyy) , (12)

which is dimensionless, and 2π⟨ḡ⟩z can be directly com-
pared with the Chern number. From the combination of
Eq. (11) and Eq. (12), one can infer an approximate rela-
tion between ⟨ḡ⟩z, the gap and the electric susceptibility

⟨ḡ⟩z ∼ ε0az
e2

χ∆. (13)

By construction, in the limit where the band gap is large
and the bands below and above the gap are nearly dis-
persionless, where (13) becomes a precise measure of the
quantum metric.
In Fig. 4 we explore how well the relation (13) holds

up for experimental values of χ and ∆ (filled symbols)
for a few topological and trivial materials with band gaps
ranging from a few hundred meV to several eV. Quite
intriguingly, we find values of 2π⟨ḡ⟩z across all materials,
larger than 1, even in trivial ionic large gap insulators.
However, we do observe important trends. Materials with
large gaps, on the right of Fig. 4, are the atomic insulators
with ionic bonding, whose electrons are well-bound to their
original atoms, they show the lowest values of ⟨ḡ⟩z. In the
middle of Fig.4, we find covalent semiconductors, whose
electrons live predominantly on the bonds. These include
obstructed atomic limits (OALs) [43], where symmetry
fixes the center of the electronic cloud in a high symmetry
point such as the bond center. In these cases we find ⟨ḡ⟩z
to be consistently higher than in ionic insulators. Intrigu-
ingly, a large number of transition metal dichalcogenides
(TMDs), which are OALs [44], possess a quite similar
2π⟨ḡ⟩z ≈ 2.8 − 3.0. These values agree reasonably well
with theoretical estimates of the quantum metric using
tight-binding models [39] (empty symbols). On the left
side of Fig. 4, at small energy gaps, we find strong topolog-
ical insulators such as Bi2Se3 and crystalline topological
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Figure 4. Estimate of the quantum metric ⟨ḡ⟩z given in (13) as a function of the gap ∆, according to Eqs. (12, 13). The
⟨ḡ⟩z values computed from the experimental data are represented by full markers, and the theoretical calculations from the
fitted tight-binding models are shown with open symbols. One can identify three main groups, distinguished by color: On
the right (black), with a gap above 4 eV and small metric, are the atomic insulators with ionic bonding, where the electrons
predominantly surround an atomic site. In the middle (green), with a gap in the range ∼ 1 − 2 eV are covalent insulators
where electrons predominantly live on the bonds. Examples include transition metal dichalcogenide monolayers, sp3 bonded
semiconductors, and also the monoatomic obstructed atomic limits Si and Ge, where the electrons cannot move from the bond
due to symmetry constraints. On the left (blue) are topological insulators with narrow gaps (∼ 0.2 eV). Although we expect the
geometric contribution to be the largest in topological materials, we observe a sizeable discrepancy between the theoretical and
experimental values of the susceptibility, which we associate with the existence of metallic surface states. Experimental values
are according to [38–42, 64–66] and tabulated in the supplementary information.

insulators such as PbSe. These show an unexpectedly
small ⟨ḡ⟩z when we estimate it from experimental val-
ues of χ, and show large deviations from the estimated
value obtained by a bulk tight-binding calculation, shown
with open symbols. We attribute this discrepancy to the
existence of metallic edge modes shown to dramatically
alter the dielectric response of topological materials [45].
Let us also point out an interesting outlier, diamond (C),
which has a large gap, but nonetheless an atomic ob-
struction prevents electrons from localizing in the atomic
sites but rather forces to be pinned by symmetry at the
bonds, which leads to an abnormally high ⟨ḡ⟩z for the
given value of the gap. This can be contrasted with GaN,
whose Wannier centers are situated close to the more
electronegative element. The topological obstruction in
diamond makes it a unique material with exceptionally
large gap and high refractive index, which leads to its
unique brilliance emanating from trapped refracted light.

Discussion. — We have explored the intimate connec-
tion between the quantum geometry and the low-frequency
behavior encoded by Eq. (4) indicates that in insulators,
not only the polarization but also the conductivity is com-
pletely determined by the properties of the Hilbert space,

as long as the time evolution of the quantum geometric
tensor is taken into account.

Based on this finding, we have shown for several exam-
ples how an estimate of the ground state quantum metric
can be obtained by measuring the intrinsic capacitance.
Specifically for TBG aligned with hBN, as a function of
the twist angle we predict a sharp drop of the capacitance
exactly at the magic angle, which is related to the cor-
responding decrease in the quantum metric. Compared
to other measurement schemes for the quantum metric
using the excitation rate of on-shell electronic transitions
via sum rules [46–49], the approach presented here does
not require access to a wide frequency range.

Historically, the precise relation between the dielec-
tric constant and the gap size in insulators has remained
unclear, despite intense efforts [50–53]. In light of this,
the significance of Fig. 4 for the characterization of the
dielectric properties of insulators is hard to overstate. As
explained in detail, guided by our results for the qua-
sistatic conductivity, we suggest the rescaling by the out-
of-plane lattice constant before attempting a comparison
of ϵ across materials, and conjecture that the remaining
differences between materials with the same band gap
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but different χ are mostly due to the averaged quantum
metric. While the relation presented in Eq. (13) clearly
needs to be studied for more example cases, these assump-
tions seem to work well for bulk and layered 3D materials.
Furthermore, we expect this approach to be useful in the
search for new topological insulators, or for high refractive
index materials.
A similar reformulation as the one demonstrated here

might be possible for higher-order response functions,
which can serve to illuminate the physical origin of the
recently demonstrated corrections to the quantum anoma-
lous Hall effect [54].
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Supplementary information for
“The quantum geometric origin of capacitance in insulators”

Ilia Komissarov, Tobias Holder, Raquel Queiroz

In this supplementary information, we present a detailed derivation of the relation between interband and intraband
conductivity (Sec. A), quantum geometry (Sec. B), and the dynamical polarization (Sec. C). We apply the obtained
relations to various example systems: namely, we present in detail how the time-dependent polarization enters in
Landau levels (Sec. D), derive the quantum geometric tensor for Landau levels (Sec. E), and develop some intuition
behind these findings by comparing them with a semiclassical point of view (Sec. F). This is followed by a derivation
of the capacitance in a gapped Dirac cone model (Sec. G). Lastly, we present the complete data which was used to
generate Figure 4 of the main text (Sec. H).

Appendix A: Interband and intraband conductivity

In this section, we demonstrate how the Kubo formula for conductivity [55] can be split into intraband and interband
terms. The former describes the conventional dissipative Fermi-surface transport, whereas the latter arises due to
transitions between different bands. The starting point is the standard expression for the conductivity tensor (cf.
e. g. [56]):

σµν(ω) =
in̄e2

mω+
δµν +

1

ℏω+A

∫ ∞

0

dt eiω+t ⟨[Ĵµ(t), Ĵν(0)]⟩ , (A1)

where n̄ is the total charge carrier density, m and e are the mass and the charge of the carriers, and A is the area of
the conducting sample. The brackets ⟨. . .⟩ denote the vacuum expectation value. The convergence of the integral is
ensured by an infinitesimal relaxation rate, i. e. ω+ = ω + iε, ε > 0. Henceforth, we mostly omit the subscript +,
restoring it only where necessary to prevent singular behavior.

By inserting the complete basis of energy eigenstates |mk⟩, we write the commutator in Eq. (A1) as

⟨[Ĵµ(t), Ĵν(0)]⟩ =
∑
nm

∫
BZ

Ad2k

(2π)2
fnm(k) ⟨nk|Ĵµ|mk⟩ ⟨mk|Ĵν |nk⟩ eiωnm(k)t , (A2)

where the indices m and n enumerate the bands, ωnm ≡ ωn − ωm, and fnm ≡ fn − fm, where fn(k) = θ(EF − ℏωn(k))
is the zero temperature Fermi-Dirac distribution function with respect to the Fermi energy EF . The matrix elements
of the current operators are evaluated in the basis of Bloch states |nk⟩ = un(k) |k⟩, where un(k) are the eigenstates of

the Hamiltonian in the momentum space: Ĥ(k)un(k) = ℏωn(k)un(k). In the following, we omit the momentum index
and likewise use the shorthand notation ∫

BZ

≡
∫
BZ

d2k

(2π)2
. (A3)

Plugging (A2) into (A1) and evaluating the time-integral, we obtain

σµν(ω) = − i

ℏ
∑
nm

∫
BZ

fnm
ωnm

Jµ
nmJ

ν
mn

ωnm + ω
, (A4)

where the first (diamagnetic) term in (A1) was used to subtract the singular in ω → 0 limit piece in the commutator
term. The remaining sum in Eq. (A4) can be split into two contributions: The intraband part with m = n and the
interband part where m ̸= n. The intraband conductivity is obtained from (A4) by substituting

fnm → f (EF − En(k+ q))− f (EF − En(k)) ,

ωnm → ωn(k+ q)− ωn(k) ,
(A5)

and taking a limit q → 0

σµν
intraband(ω) =

i

ω

∑
n

∫
BZ

f ′nJ
µ
nnJ

ν
nn . (A6)
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At zero temperature, the derivative of the Fermi function is simply a delta function δ(EF − ℏωn) that selects all the
points in the BZ where the bands cross the Fermi surface. Hence, this contribution vanishes in insulators in the
absence of disorder.

The interband (m ̸= n) contribution to the sum (A4) is convenient to express in terms of the position operators to
make an explicit connection with quantum geometric quantities such as Berry curvature and quantum metric. In order
to do so, we utilize

Jµ
nm =

e

ℏ
⟨n|∂µĤ|m⟩ = e

ℏ
⟨n| ∂µ

(
Ĥ |m⟩

)
− e

ℏ
⟨n| Ĥ |∂µm⟩

=
e

ℏ
(Em − En) ⟨n|∂µm⟩ = −ieωnmr

µ
nm .

(A7)

Upon using Jµ
nm = −ieωnmr

µ
nm, the interband contribution becomes

σµν
interband(ω) = − ie

2

ℏ
∑
n ̸=m

∫
BZ

fnmωnm
rµnmr

ν
mn

ωnm + ω
. (A8)

The above term does not vanish in insulators even at zero frequency. For example, in the limit ω → 0 the expression
above takes the form of the celebrated TKNN formula [57]

σµν
interband(0) = − ie

2

ℏ
∑
n ̸=m

∫
BZ

(fn − fm)rµnmr
ν
mn = − ie

2

ℏ
∑
n,m

∫
BZ

fn(r
µ
nmr

ν
mn − rνnmr

µ
mn)

= − ie
2

ℏ
∑
n

∫
BZ

fn(⟨n|r̂µr̂ν |n⟩ − ⟨n|r̂ν r̂µ|n⟩) = − ie
2

ℏ
∑
n

∫
BZ

fn(⟨∂µn|∂νn⟩ − ⟨∂νn|∂µn⟩) ,
(A9)

i.e. the conductivity is, up to a constant, the sum of the Chern numbers of the occupied bands. At non-zero frequency,
on the other hand, it is not obvious that the interband contribution (A8) is geometric in its origin: something one
would expect to be the case in an insulator, at least in the small ω regime. To investigate this, one may further write:

σµν
interband(ω) = − ie

2

ℏ
∑
n ̸=m

∫
BZ

[fn(1− fm)− fm(1− fn)] ωnm
rµnmr

ν
mn

ωnm + ω

= − ie
2

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)ωnm

(
rµnmr

ν
mn

ωnm + ω
− rνnmr

µ
mn

ωnm − ω

)
,

(A10)

where we relabeled the summation indices in the second line. One may proceed by introducing the interband matrix
elements of the Berry curvature and the quantum metric

Ωµν
nm = i(rµnmr

ν
mn − rνnmr

µ
mn) , gµνnm =

1

2
(rµnmr

ν
mn + rνnmr

µ
mn) . (A11)

With the definitions above, interband conductivity reads

σµν
interband(ω) =

2ie2

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)
ωωmn

ω2
mn − ω2

gµνnm − e2

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)
ω2
mn

ω2
mn − ω2

Ωµν
nm . (A12)

Note that the second term never contributes to the longitudinal conductivity, since Ωµν
nm is antisymmetric tensor. The

metric gµνnm, on the other hand, may have off-diagonal components and contributes to σxy(ω). As we can see, the
dispersion-dependent factors in the expression above prevent us from re-summing all the interband transitions into the
integrals of the ground state quantities: Berry curvature and quantum metric

Ωµν = i
∑
n ̸=m

fn(1− fm)(rµnmr
ν
mn − rνnmr

µ
mn) , gµν =

1

2

∑
n ̸=m

fn(1− fm) (rµnmr
ν
mn + rνnmr

µ
mn) . (A13)

This is a consequence of the non-adiabaticity introduced by the presence of ω. Nevertheless, it does not mean that
the interband contribution (A8) is not purely quantum-geometric. As we will show explicitly in the next section, by
considering the geometry of wavefunctions in space-time (k, t), one is able to express (A8) solely in terms of the
Hilbert space quantities.
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Appendix B: Time-dependent quantum geometric tensor

In clean insulators, with a finite excitation gap, quasiparticle transport is impossible, and one would not expect
the dispersion to enter the response functions. It implies that the factors of ωnm in (A8) can be absorbed into the
wavefunctions. Below we show that it is indeed the case and can be done by taking the time dependence of states (or
operators) into account. We start with the expression (A10)

σµν
interband(ω) = − ie

2

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)ωnm

(
rµnmr

ν
mn

ωnm + ω
− rνnmr

µ
mn

ωnm − ω

)
. (B1)

We further decompose

ωnm

ωnm + ω
= 1− ω

ωnm + ω
,

ωnm

ωnm − ω
= 1 +

ω

ωnm − ω
, (B2)

which yields

σµν
interband(ω) = −e

2

ℏ

∫
BZ

Ωµν +
ie2ω

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)

(
rµmnr

ν
nm

ωnm + ω
− rνmnr

µ
nm

ωmn + ω

)
. (B3)

Reinstating the infinitesimal imaginary part of the frequency ω → ω+ to enforce convergence, and using the Schwinger
representation

i

ωnm + ω+
=

∫ 0

−∞
dt e−i(ωnm+ω+)t , (B4)

one can show that the terms with propagators in (B3) can be conveniently wrapped up as

e2ω

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)

(∫ 0

−∞
dt e−i(ωnm+ω+)trµmnr

ν
nm −

∫ 0

−∞
dt e−i(ωmn+ω+)trνmnr

µ
nm

)
(B5)

=
e2ω

ℏ
∑
n ̸=m

∫
BZ

fn(1− fm)

(∫ 0

−∞
dt e−iω+trµmn(t)r

ν
nm +

∫ −∞

0

dt e−iω+trνmnr
µ
nm(t)

)
(B6)

=
e2ω

ℏ

∫
C

dt

∫
BZ

e−iω+t T̂Qµν(t) , (B7)

where the integral is taken over the Keldysh contour C sketched in Figure 1, T̂ denotes the (advanced) ordering of
operators along C, and we introduced the time-dependent “quantum geometric tensor”

Qµν(t) ≡ Tr
[
P̂ r̂µ(t)(1− P̂ )r̂ν(0)

]
, (B8)

where the operators appearing without the time label are taken at the initial time t = 0, and the trace runs over band
indices. The interband contribution to the Kubo formula for conductivity therefore assumes the form

σµν
interband(ω) = −e

2

ℏ

∫
BZ

(
Ωµν − ω

∫
C

dt e−iω+t T̂Qµν(t)

)
. (B9)

Supplementary Figure 1. Keldysh contour in complex time. The point at the axes crossing corresponds to t = 0.
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Since by definition Ωµν = −2 ImQµν(t = 0), the time-dependent quantity Qµν(t) solely determines the interband
part of the conductivity, as a function of the time-dependent quantum geometry. For example, in the case of Landau
levels, we have r̂µ(t) = r̂µe−iωct, and Qµν(t) = Qµνe−iωct, and the momentum integral is taken over the reciprocal
magnetic unit cell of the measure 2π/l2B. Plugging these expressions into Eq. (B9), one obtains the ac conductivity
tensor for Landau levels, Eq. (E8). Hence, as proposed, the conductivity in insulators is entirely determined by the
geometry of the Hilbert space.
Surprisingly, it turns out that not only the interband term allows for the geometric interpretation. In the next

section, we take this reasoning one step further and show that the entire Kubo formula, including the intraband part,
follows from the expectation value of the time-dependent position operator.

Appendix C: Kubo formula for conductivity as a derivative of the polarization

In this section, we demonstrate that the schematic expression inspired by the modern theory of polarization [58]

σµν =
δ

δEµ(t)
jν(t) =

δ

δEµ(t)

d

dt
⟨P ν(t)⟩ , (C1)

is not merely a convenient symbolic way of introducing electrical conductivity. On the other hand, quite literally, (C1)
is the Kubo formula for conductivity. In order to show it, we write

σµν =
δ

δEµ(t)

d

dt

〈−er̂ν(t)
A

〉
= − iω

A

δ

δEµ(t)
⟨er̂ν(t)⟩ , (C2)

where the expectation value of the time-dependent position operator in the Heisenberg picture is obtained via the
Schwinger-Keldysh formalism with the interaction Hamiltonian (note the second term required by hermiticity)

Hint = JµAµ =
i

ω
JµEµe

iωt − i

ω
JµEµe

−iωt . (C3)

The vacuum expectation value of the position operator at time t is then

1

A

∑
n

∫
BZ

fn ⟨n|er̂ν(t)|n⟩ =
∑
n

∫
BZ

fn ⟨n|
(
1 +

1

ℏω

∫ t

−∞
dt′ eiωt′ Ĵµ

I (t
′)Eµ

)
(er̂νI (t))×

×
(
1 +

1

ℏω

∫ t

−∞
dt′ eiωt′ Ĵµ

I (t
′)Eµ

)
|n⟩+ c.c.+O(E2) ,

(C4)

where the subscript I stands for the interaction picture with operators enjoying the “unperturbed” time-dependence
Âmn,I(t) = e−iωmntÂI(0): in the following, to shorten the notation, we drop the subscript I. The expression c.c.
stands for “complex conjugate” and contains the group of terms that oscillate with the frequency e−iωt, which will be
eliminated by the functional derivative δ/δE(t).

The O(E0) term in the expression (C4) is related to the net Berry phase of the occupied bands

ieℏ
∑
n

∫
BZ

fn ⟨n|∂µn⟩ . (C5)

It corresponds to the ferroelectric polarization that material possesses in the absence of an external electric field. The
remaining terms represent the dielectric response: the fluctuation of the electric dipole moment under the influence
of the external field. We further omit the O(E2) terms that contain the information about the non-linear response:
whether they reproduce the known non-linear contributions to conductivity is an interesting question that we leave for
future work.

Keeping only the terms linear in Eν , inserting another sum over energy eigenstates
∑

n |m⟩ ⟨m|, and evaluating the
time integrals, we write

1

A

(
δ

δEµ(t)
⟨er̂ν(t)⟩

)
=

ie

ℏω
∑
mn

∫
BZ

fn

(
Jµ
nmr

ν
mn

ωnm + ω
− rνnmJ

µ
mn

ωnm − ω

)
. (C6)

We then interchange the summation indices in the second bracket:

− iω
A

(
δ

δEµ
⟨er̂ν(t)⟩

)
=
e

ℏ
∑
mn

∫
BZ

(fn − fm)
Jµ
nmr

ν
mn

ωnm + ω
. (C7)
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As soon as m and n are different, we are formally allowed to plug in Jν
nm → −ieωnmr

ν
nm, so we arrive at the interband

piece of the Kubo formula (A8) :

σµν
interband(ω) = − ie

2

ℏ
∑
n ̸=m

∫
BZ

fnmωnm
rµnmr

ν
mn

ωnm + ω
. (C8)

In the case m and n are equal, we use the standard trick of splitting the initial and final states’ momenta |n⟩ → |nk′⟩,
|m⟩ → |nk⟩ and use the identity that follows from the distributional properties of the delta function

⟨nk′|r̂µ|nk⟩ = −iℏδ(k− k′)
(
u†n(k)∂

µun(k)
)
+ iℏ∂µδ(k− k′) . (C9)

As we plug this expression into (C7), the contribution from the first term containing a delta function vanishes after
the momentum integration as fm → fn. The the second term can be evaluated using integration by parts, which shifts
the momentum derivative from the delta function to the Fermi distribution bringing about another factor of velocity.
The resulting expression is nothing but the Drude intraband term (A6)

σµν
intraband(ω) =

i

ω

∑
n

∫
BZ

f ′nJ
µ
nnJ

ν
nn . (C10)

Hence, Eq. (C1) is indeed the Kubo formula for conductivity.

Appendix D: Relation between time-dependent polarization and conductivity in Landau levels

In this section, we illustrate how electrical conductivity can be obtained directly from the time-dependent electric
dipole moment via the relation

σµν = − iω
A

δ

δEµ(t)
⟨er̂ν(t)⟩ . (D1)

We perform this check for the Landau problem in oscillating in-plane electric field Ex(t) = Eeiωt, where the matrix
element ⟨r̂ν(t)⟩ can be explicitly obtained.
It is convenient to choose the y-translationally-invariant gauge

Ax =
i

ω
Eeiωt , Ay = Bx , (D2)

such that py is conserved. The time-dependent Schrödinger equation then assumes the form[
(p̂x + ie

ωEe
iωt + c.c.)2

2me
+

(p̂y + eBx)2

2me

]
ψ(x, y, t) = iℏ ∂tψ(x, y, t) . (D3)

One of the solutions is given by the gaussian ansatz

ψpy
(x, y, t) = N (t)eipyy/ℏe−iφ(t) exp

[
− (x− xc(t))

2

2l2B

]
, (D4)

where φ(t) is an energy phase inessential for the discussion, and

xc(t) =− py
meωc

+ x1(t) + ix2(t) , x1(t) = −2eE

me

cos(ωt)

ω2
c − ω2

,

x2(t) =
2eE

me

ωc

ω

sin(ωt)

ω2
c − ω2

, N (t) =
1√√
πlB

e−x2
2(t)/2l

2
B .

(D5)

The wave function Eq. (D4) should be understood as a time-dependent analog of the lowest Landau level. We then
proceed to explicitly compute the matrix element of the position operator x̂:

⟨ψpy
|x̂|ψpy

⟩ = 1√
πlB

∫
dxx exp

[
− (x− x1(t) + py/meωc)

2

l2B

]
=

= x1(t)− py/meωc = − eE
me

1

ω2
c − ω2

(eiωt + e−iωt)− py/meωc .

(D6)
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Taking the functional derivative (D1), for the fully occupied Landau level (A/N = Φ0/B = h/eB) we obtain

σxx = i
e2

h

ωωc

ω2
c − ω2

, (D7)

in agreement with the result obtained from the Kubo formula in Appendix E. Remarkably, all we needed to extract
this result is the expectation value of the position operator at the time t.

Unfortunately, our choice of gauge does not allow for the calculation of ⟨ŷ(t)⟩, since the wavefunction Eq. (D4) does
not decay in the y-direction. For completeness, however, we proceed by evaluating the current jy, which is always
well-defined:

jy = − e

me

∫ ∞

−∞

dpy
2πℏ

ψ∗
py
(x, t)(py + eBx)ψpy

(x, t)

= − e

me

∫ ∞

−∞

dpy
2πℏ

ψ∗
py
(x, t)(meωcx1(t))ψpy

(x, t) = 2
e2

h

ω2
c

ω2
c − ω2

E cos(ωt) ,

(D8)

from which we obtain

σµν =
δjµ

δEν(t)
−→ σxy(ω) = −e

2

h

ω2
c

ω2
c − ω2

. (D9)

In the stationary limit, this expression reduces to the well-known value for a fully occupied Landau level σxy = −e2/h.

Appendix E: Quantum geometry and conductivity in Landau levels

Consider the Hamiltonian for a two-dimensional electron gas in a uniform magnetic field

ĤLL =
π̂µπ̂µ
2me

, π̂µ = p̂µ + eÂµ , B = ∂xÂy − ∂yÂx = const , (E1)

where p̂µ are the canonical momenta. The kinematical momenta π̂µ, up to a normalization constant, commute
canonically

[π̂µ, π̂ν ] = −iℏeBεµν , εµν =

(
0 1
−1 0

)
, (E2)

which allows to define the interlevel ladder operators a, a† with a = (πx − iπy)/
√
2ℏeB. In order to compute quantum

geometric quantities, it is convenient to have matrix elements of r̂µ to be well-defined. Hence, we adopt the radial
gauge Aµ = −εµνxνB/2. It is then useful to define another set of momenta

ˆ̃πµ = p̂µ − eÂµ , [ˆ̃πµ, ˆ̃πν ] = iℏeBεµν , (E3)

that commute with any πµ, and hence can be used to define ladder operators responsible for the degeneracy of the
Landau levels. Using the definitions of πµ and π̃µ, we express the coordinate operators in terms of the momenta

r̂µ =
l2B
ℏ
εµν(π̂ν − ˆ̃πν) . (E4)

The quantity we are interested in is the quantum geometric tensor (QGT) defined as

Q̂µν = Tr
[
P̂ r̂µ

(
1− P̂

)
r̂ν
]
= ⟨n− 1|r̂µ|n⟩ ⟨n|r̂ν |n− 1⟩ , (E5)

where we accounted for the fact that only matrix elements taken between neighboring Landau levels are non-zero.
Real and imaginary parts of the QGT are the quantum metric and Berry curvature

Qµν = gµν − i

2
Ωµν . (E6)
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Since the matrix element of ˆ̃πν vanishes between states with the same momentum, we plug π̂x =
√
ℏeB(â+ â†)/

√
2,

π̂y = i
√
ℏeB(â− â†)/

√
2 into Eq. (E5), and evaluate

Qµµ = gµµ =
l2B
2
C ,

Qxy = − i

2
Ωxy = −i l

2
B

2
C ,

(E7)

where we identified the number of occupied Landau levels n−1 with a Chern number C. To determine conductivity, we
use the expression for the conductivity tensor, Eq. (A12) via the metric and Berry curvature, and utilize ωnm = δn−1,mωc,
from which we immediately obtain the conductivity matrix

σµν =
e2

h
C

ω2
c

ω2
c − ω2

(
iω/ωc −1

1 iω/ωc

)
, (E8)

where ωc = eB/me is the cyclotron frequency. Inverting the above tensor, we find the resistivity matrix

ρµν =
h

e2C

(
iω/ωc 1
−1 iω/ωc

)
. (E9)

Appendix F: Classical derivation of capacitance in Landau levels

It is well-known that many classical and quantum results obtained for the harmonic oscillator (and so, Landau levels)
take the same form, and, as we will see, the result for the capacitance is no exception. In the following we briefly
discuss this classical derivation of the longitudinal conductivity of the 2DEG in order to highlight the physical origin
of this effect.
We consider classical free-electron gas in two dimensions subject to a perpendicular magnetic field as well as a

harmonically oscillating electric force directed along the x-axis. The equation of motion of the individual electrons is

ẍ(t) + ω2
cx(t) = − e

me
Eeiωt . (F1)

The above equation is solved by the time-dependence

x(t) = − eEeiωt

me(ω2
c − ω2)

. (F2)

The x-polarization of the system is obtained as a net dipole moment per unit area

P (t) =
N

A
(−ex(t)) = N

A

e2

me(ω2
c − ω2)

Eeiωt . (F3)

The longitudinal conductivity is defined as

σxx =
δ

δE(t)

d

dt
P (t) = iω

N

A

e2

me(ω2
c − ω2)

. (F4)

To make a connection with the quantum result [Eq. (E8)], we assume that the number of electrons N is just enough to
occupy C Landau levels, i.e. NΦ0/(AB) = C, where Φ0 = h/e—flux quantum. Plugging N into (F4), we obtain

σxx = i
e2

h

ωωc

ω2
c − ω2

, (F5)

in full consistency with σxx found in Eq. (E8).

Appendix G: 2D Gapped Dirac cone and Haldane model

In this section, we discuss the capacitive conductivity of a two-dimensional gapped Dirac cone dispersion and its
relation to the topology. We begin by considering the following Hamiltonian:

ĤD = kxσ̂x + kyσ̂y +Mσ̂z . (G1)
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The spectrum and the normalized eigenfunctions in this model are

ω± = ±
√
k2 +M2 , ψ±(k) =

√
ω+ ∓M

2ω+

(
M ± ω+

kx + iky
, 1

)T

, k =
√
k2x + k2y . (G2)

The diagonal components of the quantum metric can be found from gµµ = | ⟨ψ+|∂µψ−⟩ |2, which gives

gxx =
k2y +M2

4(k2 +M2)2
, gyy =

k2x +M2

4(k2 +M2)2
, Tr g = gxx + gyy =

k2 + 2M2

4(k2 +M2)2
. (G3)

Using the isotropy of the model (G1), it is convenient to express the longitudinal conductivity as

σxx =
σxx + σyy

2
=
ie2

ℏ

∫
d2k

(2π)2
2ω

√
k2 +M2

4(k2 +M2)− ω2

k2 + 2M2

4(k2 +M2)2
, (G4)

where we utilized the formula (A12). Before considering the insulating regime, ω < 2M , it is instructive to analyze the
M → 0 case first. The integrand is necessarily singular in this limit, and one needs to re-introduce the scattering rate
to stabilize the conductivity ω → ω + iε. The value of the integral is then well-defined, and σxx turns out to be purely
real. Multiplying by four, which accounts for spin-valley degeneracy in graphene, we acquire the well-known result for
the ac conductivity [59, 60]

σxx =
πe2

2h
. (G5)

Remarkably, this contribution is both ω- and ε-independent.
In the opposite, insulating regime of vanishing frequency ω → 0 and a finite gap M , the system is characterized by a

capacitive response σxx = iωc0 with

c0 =
e2

12π|M | . (G6)

This simple expression has wide applicability: it describes the universal value of capacitance arising from a single Dirac
cone with the mass M . For topologically trivial materials like hexagonal boron nitride, c0 multiplied by the number of
Dirac cones provides a good estimate for the capacitance (cf. Fig. 2 in the main text).

On the other hand, unlike the Hall conductivity σxy, c0 is insensitive to the sign of M , and so, is unable to track the
band inversions and subsequent changes in topology: it also fails to capture the capacitance deep in the topological
phase. In order to understand how the intrinsic capacitance is influenced by topology, one can introduce a parabolic
correction to the Dirac cone Hamiltonian (G1): Ĥ ′

D = ĤD − αk2σ̂z. This model is characterized by a unit Chern
number in the parameter region αM > 0. The quantum metric traced over the spatial indices in this model takes the
form:

Tr g =
k2 + 2M2 + 2α2k4

4(k2 +M2 − 2k2Mα+ k4α2)2
. (G7)

The integral for conductivity can be performed analytically with the result for the capacitance

c′0 =

{
e2

12π
1

|M ||1−4Mα| , αM < 0 ,
e2

12π|M | +
|α|
6π , αM > 0 .

(G8)

Comparing this result with Eq. (G6), we find good agreement in the trivial region where αM < 0. However, in the
topological region (αM < 0) with Chern number ±1, the extended Dirac cone result Eq. (G8) does not decay to zero
as |M | → ∞, instead saturating at |α|/6π, in strong contrast to Eq. (G6). This reinforces that the behavior of the
intrinsic capacitance can serve as an indicator of the topology of the system.
Similar considerations apply for tight-binding models in a compact Brillouin zone. In order to illustrate this, we

investigate a slight modification of the Haldane model

ĤHaldane = −2

3
(f(kx, ky)σ̂+ + f∗(kx, ky)σ̂−) +Mσ̂z +MHf̃(kx, ky)σ̂z −

3
√
3

2
MHσ̂z , (G9)
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where

f(kx, ky) =
∑
i

e−iai·k , a1 = (0,−a), a2,3 = (±
√
3a, a)/2 ,

f̃(kx, ky) =
∑
i

sin (bi · k) , b1 = (
√
3a, 0) , b2,3 = (−

√
3a,±3a)/2 ,

(G10)

and we set for convenience a = 1. The last term in Eq. (G9) is introduced only for ease of notation: It shifts the

topological region in parameter space, such that forMH > 0, the parameter rangesM < 0 andM > 3
√
3MH correspond

to trivial phases. In the range 0 < M < 3
√
3MH, the system acquires a finite Chern number C = −1. The resulting

phase diagram, intrinsic capacitance and quantum metric are depicted in Fig. 2 of the main text.

Appendix H: Dielectric constants of various materials

The dielectric constant in crystalline materials receives contributions both from ionic and electronic degrees of
freedom [61]. Here, We are focusing on the latter, eliminating the contribution due to lattice dynamics by assuming a
high enough value of the driving frequency ω, while keeping it well below the gap ∆. In this regime, the “slow” lattice
degrees of freedom remain inactive, whereas the electronic response remains entirely off-resonant, giving way to the
quasi-static approximation assumed in Eq. 6 of the main text.

In the following, we describe how the dielectric constant can be connected with the intrinsic capacitance c. To this
end, note that Eq. 6 in the main text, applied to the case of 3D materials, is closely related to the static dielectric
susceptibility χ by a simple unit conversion factor of ε0 ≃ 8.85 · 10−12 F/m. To see this, one expresses the longitudinal
conductivity as

σxx =
jx

Ex
=
Ix

A

d

Vx
=
d

A
(iωC) = iω

dC

A
= iωε0χ , (H1)

where we assumed a rectangular slab-shaped insulator with thickness d and cross-section A, such that C = ϵε0χA/d.
On the other hand, σxx = iωc, as defined in (2), which implies χ = c/ε0. The value of the dielectric constant ϵ = 1+χ
is therefore given by the following linear response expression (see also [37]):

ϵ = 1 +
2e2

ℏε0

∑
m ̸=n

∫
BZ

fn(1− fm)
gxxmn

ωmn
. (H2)

Note that by considering only the horizontal component of the metric gxx, we restrict ourselves to the in-plane
permittivity usually termed ϵ∥.
The experimental and theoretical values for the materials presented in Fig. 4 of the main text are tabulated in

Supplementary Table I. We point out that the electronic component of the dielectric constant in the literature is
commonly referred to as the optical dielectric constant or the high-frequency dielectric constant, and denoted as ϵ∞.
For the sake of comparison with Fig. 4 of the main text, instead of using the rescaled susceptibility, we also plot the
original product of the dielectric constant and gap (ϵ∞∆) as a function of the gap in Supplementary Fig. 2. The
difference is striking: While ⟨ḡ⟩z shown in the main text exhibits a small variation from small to large gaps, ϵ∞ is
clearly not universally proportional to ∆−1. Furthermore, while we can understand the remaining variation in ⟨ḡ⟩z
readily from the wavefunction spread, it is much harder to explain the trends in ϵ∞∆ between different material groups
and gap sizes since the dielectric constant depends on the unit cell volume and symmetry, in addition to the influence
of the quantum geometry which we explored in the main text.
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Dielectric constants

Material Structure Space
group

Topology ϵ∞, exp. ϵ, theory direct gap,
eV

az, Å ⟨ḡ⟩z, exp.

Bi2Se3
[40, 41] rhombohedral R3̄m TI 16.5 34.7 0.3 9.84 1.59

Bi2Te3
[40, 41] rhombohedral R3̄m TI 50 101.7 0.13 10.5 2.32

Sb2Te3
[40] rhombohedral R3̄m TI 32.5 — 0.28 10.4 3.19

PbSe[40] rocksalt Fm3̄m TI 22.9 — 0.28 6.12 1.31

MoS2
[38, 39] van der Waals P63/mmc OAL[44] 16.4 18.0 1.82 3.13† 3.05

WS2
[38, 39] van der Waals P63/mmc OAL[44] 14.0 15.4 1.94 3.14† 2.75

MoSe2
[38, 39] van der Waals P63/mmc OAL[44] 17.6 19.1 1.51 3.35† 2.92

WSe2
[38, 39] van der Waals P63/mmc OAL[44] 15.8 16.2 1.59 3.36† 2.75

MoTe2
[38, 39] van der Waals P63/mmc OAL[44] 22.6 22.1 1.03 3.62† 2.80

hBN[62, 63] van der Waals P63/mmc trivial 4.95 — 5.97 2.51† 2.09

CdTe[40] zincblende F4̄3m trivial 7.1 — 1.48 6.46 2.03

GaAs[40] zincblende F4̄3m trivial 10.9 — 1.42 5.65 2.76

InP[40] zincblende F4̄3m trivial 10.9 — 1.34 5.87 2.70

GaN[40] zincblende F4̄3m trivial 4.86 — 3.17 4.53 1.92

ZnSe[40] zincblende F4̄3m trivial 5.7 — 2.82 5.67 2.61

Si[40] diamond cubic Fd3̄m OAL 12 — 4.14 5.43 8.6

Ge[40] diamond cubic Fd3̄m OAL 16 — 0.81 5.66 2.39

C[40] diamond cubic Fd3̄m OAL 5.7 — 6.02 3.57 3.51

MgO[40] rocksalt Fm3̄m trivial 2.94 — 7.9 4.22 2.25

SiO2
[64, 65] wurtzite P63mc trivial 2.19 — 8.50 5.40 1.23

ZnO[64, 65] wurtzite P63mc trivial 4.41 — 3.4 5.25 2.11

NaCl[64] rocksalt Fm3̄m trivial 2.38 — 8.97 5.64 2.42

CaF2
[64] rocksalt Fm3̄m trivial 2.05 — 12.1 5.46 2.39

LiF[66] rocksalt Fm3̄m trivial 1.92 — 14.2 4.03 1.83

Supplementary Table I. Electronic in-plane dielectric constants, values of the direct gap, and lattice constants az for selected
semiconductors. The theoretical values of ϵ are obtained using the linear response expression (H2). For transitional metal
dichalcogenides, a 3-band tight-binding model [39] is used — the comparison of the 2D ab initio with the 3D experimental
values is justified by the weak dependence of the dielectric constant on the number of layers [62]. The theoretical values for
Bi2Se3 and Bi2Te3 are obtained using a tight-binding simulation with Slater-Koster parameters given in [41].† For van der Waals
materials az refers to monolayer thickness, and the theoretical value of ϵ is computed for a monolayer.
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Supplementary Figure 2. Comparative figure demonstrating the conventional way of analyzing the dielectric constant as a
function of the gap. Here we plot ϵ∞∆, rather than ⟨ḡ⟩z ∝ az∆χ (Fig. 4 of the main text). Note that there is a substantially
wider spread of the datapoints between large-gap insulators and small-gap semiconductors, with ϵ∞∆ varying by a factor of 10
between largest to smallest values. In Fig. 4 of the main text, the dynamic range of ⟨ḡ⟩z is below 2.5.
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