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1 Introduction

Near-Extremal black holes have a universal structure near their horizons: there is an

AdS2 throat with a slowly varying internal space. Its low energy gravitational dynamics is

captured universally by the following effective action in two dimensions [1]:

I = −φ0

2

(∫
R+ 2

∫
∂M

K

)
︸ ︷︷ ︸

Einstein-Hilbert Action

−1

2

(∫
M
φ(R+ 2) + 2

∫
∂M

φbK

)
︸ ︷︷ ︸

Jackiw-Teitelboim action

+Smatter(g, ψ), (1.1)
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where the dilaton field φ+ φ0 represents the size of internal space. We have separated the

size of internal space into two parts: φ0 is its value at extremality. It sets the value of

the extremal entropy which comes from the first term in (1.1). φ is the deviaton from this

value. We have also added matter that only couples to the metric. This is a reasonable

assumption when matter comes from Kaluza Klein reduction, where the coupling to the

dilaton would involve φ/φ0 � 1.

The action
∫
φ(R + 2) + 2

∫
φbK is the so-called Jackiw-Teitelboim action [2, 3], and

will be the main focus of our paper. This action is one of the simplest nontrivial gravita-

tional actions in two dimensions.1 It is simple because the bulk geometry is a rigid AdS2

space fixed by the equation of motion of the dilaton field. Its nontriviality arises from

the remaining boundary action. Schematically, the gravitational action is reduced to the

following form:

I = −2πφ0χ(M)− φb
∫
∂M

K + Smatter(g, ψ). (1.2)

And the motion of the boundary is controlled by its extrinsic curvature. Our goal will be

to quantize this action and to provide expression for the full quantum gravity correlators

of (1.1). This problem was considered before in [4–8] from various points of view. Here

we will add one other point of view where we reduce the problem to the motion of a

relativistic particle in an electric field, building on a suggestion in Kitaev’s talk at IAS [9].

More precisely, one can consider a relativistic particle in a Lorentzian AdS2 target space

moving under the influence of an electric field. The coupling to electric field can also

be viewed as a coupling to a spin connection so that it becomes a particle with spin as

suggested by Kitaev. Alternatively we can start from a non-relativistic particle moving in

hyperbolic space, H2, under the influence of a magnetic field b. After analytic continuation

in b to imaginary values we get the problem of interest.

Using this point of view one can think of the full quantum gravity problem as the

combination of two problems. First we consider quantum fields propagating in AdS2 (or

H2 in the Euclidean case) and then we add the “gravitational particle” which couples to the

quantum fields by changing their boundary location in AdS2. The discussion of quantum

fields will be standard and depends on the particular model one interested in, therefore

we will mainly focus on solving the second problem. Generically, solving the gravitational

problem is challenging and is not exactly equivalent to a quantum mechanical particle. One

needs to worry about what functional space one will integrate over. For example, in path

integrals, one usually integrates over all trajectories including those with self-intersections.

However self-intersecting boundaries in gravitational system have no obvious meaning. On

that account, more precisely the gravitational problem is equal to a self-avioding particle.

Nevertheless, it turns out that one can take a particular limit of this model, namely large

φb, to avoid this issue and a treatment of the boundary theory as an ordinary particle is

justified. It is also true that the JT gravity can be rewritten as a Schwarzian action only

in this limit. We call this the Schwarzian limit and will only focus on solving the JT action

1Another nontrivial action is the CGHS model which could be written as
∫

(φR + C), and that charac-

terizes the horizon structure of general black holes.
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in the Schwarzian limit. Solving the model away from Schwarzian limit was considered

recently by Kitaev and Suh [8].

Our result can be summarized as follows:

First, we will give a formula to calculate all correlation functions with quantum gravity

backreaction (formula (6.5)). Second, we will give the exact Wheeler-DeWitt wavefunction

in the Schwarzian limit, which has been analyzed classically by Harlow and Jafferis [10].

Last, we consider the recent proposed conjecture about complexity growth in this exact

Wheeler-DeWitt wavefunction and show that the complexity maintains linear growth after

taking quantum gravity effects into account. This, to our knowledge, is the first test of the

gravitational conjecture made by Susskind [11] that the size of ERB grows linearly for as

long as quantum mechanics allows.

This paper is organized as follows: in the first section, we will review the classical

calculation of this model and introduce notations; in the second section, we will make

the dictionary between the JT model and a particle in a magnetic field; in the third and

fourth sections, we will solve the quantum mechanical problem and derive the propagator

and WdW wavefunction in the Schwarzian limit; in the last section, we will talk about

gravitaional backreaction on correlators as well as complexity growth. As a useful notion

in our calculation, we introduce a notation called gravitational Feyman diagrams.

2 Classical solutions

Let us first consider the classical solutions of the Jackiw-Teitelboim model (1.1). See [12]

for further discussion. The equation of motion of the dilaton field imposes R = −2 and

fixes the geometry to be AdS2, or H2 in the Euclidean case. This is also true if we have

additional matter coupled with metric only, as in (1.1). The equations for the metric

constrain the dilaton (
∇µ∇νφ− gµν∇2φ+ gµνφ

)
+ TMµν = 0 (2.1)

These equations are compatible with each other thanks to the conservation of the matter

stress tensor. They do not allow any propagating mode. In fact, setting TMµν = 0, and using

a high momentum approximation we can write (2.1) as (kµkν−gµνk2)φ(~k) = 0, which then

implies φ(~k) = 0, for large k.

More precisely, after introducing the Euclidean AdS2 coordinates ds2 = dρ2+sinh2 ρdϕ2,

we can solve (2.1) in AdS2 with no matter. Up to an SL(2) transformation the solution is

φ = φh cosh ρ, (2.2)

where φh is a constant that is fixed by the boundary conditions. At the boundary we fix

the metric along the boundary and the value of the dilaton field

ds‖ = du
φr
ε
, φ = φb =

φr
ε

(2.3)

where we think of u as the time of the boundary theory. It is simply a rescaled version of

proper time. Similarly φr is a rescaled value of the dilaton. We will be interested in taking

– 3 –
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ε→ 0. With these rescalings the value of φh in the interior remains fixed as we take ε→ 0

as φh = 2π/β where β is the inverse temperature, u ∼ u+β. Notice that due to the factor

of φr in the first expression in (2.3) we are measuring time in units of the constant φr,

which has dimensions of length. We did this for convenience. A nice feature that appears

after taking the ε→ 0 limit is that the action (1.2) can be written as the Schwarzian action

for the boundary curve labeled by ϕ(u) [13]:

I = −
∫
duSch

(
tan

ϕ(u)

2
, u

)
(2.4)

The fluctuation of the boundary shape can be understood as the fluctuation of the dilaton

distribution in the bulk. A bit more explicitly we can say that the dilaton boundary

condition fixes the location of the boundary at ρb given by φb = φh cosh ρb, and the metric

at that location relates the time ϕ to u by φrdu = ε sinh ρbdϕ. We get the above formulas

noticing that the period of ϕ is 2π while that of u is β, which fixes ε sinh ρb.

3 Charged particle in AdS2

Despite the absence of a bulk propagating mode there is still a non-trivial dynamical

gravitational degree of freedom. There are various ways to describe it. Here we will think

of it as arising from the motion of the physical boundary of AdS2 inside a rigid AdS2 space.

This picture is most clear for finite ε in (2.3), but it is true even as ε → 0. The dynamics

of the boundary is SL(2) invariant. This SL(2) invariance is a gauge symmetry since it

simply reflects the freedom we have for cutting out a piece of AdS2 space that we will call

the “inside”. It is important that the dilaton field we discussed above is produced after

we put in the boundary and it moves together with the boundary under this SL(2) gauge

transformation. It is a bit like the Mach principle, the location in AdS2 is only defined

after we fix the boundary (or distant “stars”).

We can make this picture of a dynamical boundary more manifest as follows. Since

the bulk Jackiw-Teitelboim action (1.1) is linear in φ, we can integrate out the dilaton field

which sets the metric to that of AdS2 and removes the bulk term in the action, leaving

only the term involving the extrinsic curvature

I = −φr
ε

∫
du
√
gK (3.1)

This action, however, is divergent as we take ε to zero. This divergence is simply propor-

tional to the length of the boundary and can be interpreted as a contribution to the ground

state energy of the system. So we introduce a counterterm proportional to the length of

the boundary to cancel it. This is just a common shift of the energies of all states. It is

also convenient to use the Gauss-Bonnet theorem to relate the extrinsic curvature to an

integral over the bulk ∫
∂M

du
√
gK = 2πχ(M)− 1

2

∫
M
R (3.2)
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Since the curvature is a constant, the bulk integral is actually proportional to the total

area A of our space. That is we have the regularized action:

I = −φr
ε

∫
∂M

du
√
g

(
K − 1︸︷︷︸

counterterm

)
= −φr

ε

(
2πχ(M)− 1

2

∫
M
R−

∫
∂M

du
√
g

)
= −2πqχ(M)− qA+ qL, q ≡ φr

ε
, L =

βφr
ε

(3.3)

We now define an external gauge field aµ as

aϕ = cosh ρ− 1, aρ = 0, fρϕ = sinh ρ =
√
g, (3.4)

and write the action as follows

I = −2πq + qL− q
∫
a (3.5)

where we used that χ(M) is a topological invariant equal to one, in our case, where the

topology is that of a disk. The term qL is just the length of the boundary. So this action has

a form somewhat similar to the action of a relativistic charged particle moving in AdS2 in

the presence of a constant electric field. There are a couple of important differences. First

we are summing only over trajectories of fixed proper length set by the inverse temperature

β. Second, in the JT theory we are treating the SL(2) symmetry as a gauge symmetry.

And finally, in the JT theory we identify the proper length with the boundary time, viewing

configurations which differ only by a shift in proper time as inequivalent. In fact, all these

changes simplify the problem: we can actually think of the problem as a non-relativistic

particle moving on H2 in an electric field. In appendix D we discuss in more detail the

connection to the relativistic particle.

In fact, precisely the problem we are interested in has been discussed by Polyakov

in [14], chapter 9, as an intermediate step for the sum over paths. Now we would also like

to point out that we can directly get to the final formula by using the discussion there,

where he explicitly shows that for a particle in flat space the sum over paths of fixed proper

length that stretch between two points ~x and ~x′ gives∫
D~xe−m0τ̃δ(~̇x2 − 1) = e−

1
2
µ2τ 〈x′|e−τH |x〉 = e−

1
2
µ2τ

∫
Dx exp

(
−
∫ τ

0
dτ ′

1

2
~̇x2

)
(3.6)

µ2 is the regularized mass and τ̃ is related to τ by a multiplicative renormalization. The

JT model consists precisely of a functional integral of this form, where we fix the proper

length along the boundary. There are two simple modifications, first the particle is in a

curved H2 space and second we have the coupling to the electric field. These are minor

modifications, but the arguments leading to (3.6) continue to be valid so that the partition

function of the JT model can be written directly:∫
D~xe2πq−m0τ̃+q

∫
aδ

(
ẋ2 + ẏ2

y2
− q2

)
= e2πq− 1

2
µ2τ Tr e−τH (3.7)

= e2πq− 1
2
µ2τ

∫
Dx exp

(
−
∫ τ

0
dτ ′

1

2

ẋ2 + ẏ2

y2
− q ẋ

y

)
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The delta function implements the first condition in (2.3) at each point along the path.

The last path integral can be done exactly by doing canonical quantization of the action

(section 4) and by comparing the result with the one from the Schwarzian action [6] we

can determine that τ is the inverse temperature β.

In the above discussion we have been fixing the time along the boundary. Instead we

can fix the energy at the boundary, where the energy is the variable conjugate to time. This

can be done by simply integrating (3.7) times eβE over β along the imaginary axis. This

fixes the energy of the non-relativistic problem by generating a δ(H −E). More precisely,

we will argue that after doing a spectral decomposition we can write the propagator at

coincident points as

ZJT(β) =

∫ ∞
0

ρ(E)e−βEdE −→ ρ(E) =

∫ i∞

−i∞

dβ

i
eEβZJT(β) (3.8)

where the function ρ(E) can then be interpreted as a “density of states” in the microcan-

nonical ensemble. We will give its explicit form in section (4.2). For now, we only want to

contrast this integral with a superficially similar one that appears when we compute the

relativistic propagator

e−2πq

∫ ∞
0

eEβZJT(β) = 〈φ(x)φ(x)〉 (3.9)

which gives the relativistic propagator of a massive particle in an electric field at coincident

points (we can also compute this at non-coincident points to get a finite answer). The total

mass of the particle is

m = q − E

q
(3.10)

For large q this is above threshold for pair creation.2 The pair creation interpretation

is appropriate for the problem in (3.9), but not for (3.8). In both problems we have a

classical approximation to the dynamics that corresponds to a particle describing a big

circular trajectory in hyperbolic space at radius ρc:

tanh ρc =
m

q
(3.11)

For the problem in (3.9), fluctuations around this circle lead to an instability, with a

single negative mode and an imaginary part in the partition function (3.9). This single

negative mode corresponds to small fluctuations of the overall size of the circular trajectory

around (3.11). On the other hand in (3.8) we are integrating the same mode along a different

contour, along the imaginary axis, where we get a real and finite answer. Furthermore, the

imaginary part in the partition function (3.9) comes precisely from the trajectory describing

pair creation, which is also the type of contribution captured in (3.8).

Finally, in the relativistic particle problem, we expect that the pair creation amplitude

should be exponentially suppressed for large q, while the partition function for the JT

model is not. In fact, for large q the exponential suppression factor for pair creation goes

as e−2πq, which is precisely cancelled by a similar factor in (D.2), to obtain something finite

in the large q limit.

2See appendix D.
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4 Solving the quantum mechanical problem

As we explained above the solution of the JT theory is equivalent to considering a non-

relativistic particle in AdS2 or H2. We first consider the Euclidean problem, of a particle

moving in H2. An ordinary magnetic field in H2 leads to an Euclidean action of the form

S =

∫
du

1

2

ẋ2 + ẏ2

y2
+ ib

∫
du
ẋ

y
− 1

2

(
b2 +

1

4

)∫
du , b = iq (4.1)

If b is real we will call it a magnetic field, when q is real we will call it an “electric”

field. The last term is a constant we introduced for convenience. Its only effect will be to

shift the ground state energy. It is interesting to compute the classical solutions and the

corresponding action for (4.1). These solutions are simplest in the ρ and ϕ coordinates,

using the SL(2) symmetry we find that the trajectories are given by (t = −iu):

1

2
sinh2 ρ

(
dϕ

dt

)2

+
q2

2
− 1

8
= E, cosh ρ =

qβ

2π
,
dϕ

du
=

2π

β
. (4.2)

In this classical limit we get the following relations for the action and the temperature:

β

2π
=

1√
2E + 1

4

−S =
2π2

β
+
β

8
− 2πq (4.3)

When b is real, this system is fairly conventional and it was solved in [15]. Its detailed

spectrum depends on b. For very large b we have a series of Landau levels and also a

continuous spectrum. In fact, already the classical problem contains closed circular orbits,

related to the discrete Landau levels, as well as orbits that go all the way to infinity.3

The number of discrete Landau levels decreases as we decrease the magnetic field and for

0 < b < 1
2 we only get a continuous spectrum. The system has a SL(2) symmetry and

the spectrum organizes into SL(2) representations, which are all in the continuous series

for 0 < b < 1/2. For real q we also find a continuous spectrum which we can view as the

analytic continuation of the one for this last range of b.

The canonical momenta of the action (4.1) are:

px =
ẋ

y2
+
iq

y
; py =

ẏ

y2
. (4.4)

And the Hamiltonian conjugate to τL is thus:

H =
ẋ2 + ẏ2

2y2
+
q2

2
=
y2

2

[(
px − i

q

y

)2

+ p2
y

]
+
q2

2
− 1

8
(4.5)

Note that the Hamiltonian is not Hermitian. However, it is PT-symmetric (here parity

reflects x and px) and for that reason the spectrum is still real, see [16]. The action is

invariant under SL(2, R) transformations generated by

L0 = xpx + ypy; L−1 = px; L1 = (y2 − x2)px − 2xypy − 2iqy (4.6)

3See appendix F.
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Notice the extra q dependent term in L1 that arises due to the presence of a magnetic field.

Up to a simple additive constant, the Hamiltonian is proportional to the Casimir operator

H =
1

2

(
L2

0 +
1

2
L−1L1 +

1

2
L1L−1

)
+
q2

2
− 1

8
(4.7)

As is common practice, let us label the states by quantum numbers j = 1
2 + is and k, so

that H|j, k〉 = j(1 − j)|j, k〉 and L−1|j, k〉 = k|j, k〉. We can find the eigenfunctions by

solving the Schrödinger equation with boundary condition that the wavefunction should

vanish at the horizon y →∞ [15, 17, 18]:

ωs,k =
s2

2
, fs,k(x, y) =

( s sinh 2πs
4π3k

)
1
2 |Γ(is− b+ 1

2)|e−ikxWb,is(2ky), k > 0;

( s sinh 2πs
4π3|k| )

1
2 |Γ(is+ b+ 1

2)|e−ikxW−b,is(2|k|y), k < 0.
(4.8)

where ωks is giving the energy of the states labelled by s and k, and W is the Whittaker

function. The additive constant in (4.1) was introduced to simplify this equation. We can

think of s as the quantum number of the continuous series representation of SL(2) with

spin j = 1
2 + is.

After continuing b → iq we find that the gravitational system has a continuous

spectrum

E(s) =
s2

2
. (4.9)

4.1 The propagator

It is useful to compute the propagator for the non-relativistic particle in a magnetic field,

K(u,x1,x2) = 〈x1|e−uH |x2〉. Here, x stands for x, y. The propagator for a real magnetic

particle was obtained in [15]:

G(u,x1,x2) = eiϕ(x1,x2)

∫ ∞
0

dsse−u
s2

2
sinh 2πs

2π (cosh 2πs+ cos 2πb)

1

d1+2is

×2 F1

(
1

2
− b+ is,

1

2
+ b+ is, 1, 1− 1

d2

)
.

d =

√
(x1 − x2)2 + (y1 + y2)2

4y1y2

eiϕ(x1,x2) = e
−2ib arctan

x1−x2
y1+y2 (4.10)

In the case that we have a real magnetic field the prefactor is a phase and it is gauge

dependent. It is equal to the value of Wilson Line ei
∫
a stretched along the geodesic

between x2 and x1. Here we quoted the value in the gauge where the action is (4.1).

The second equation defines the parameter d, which is a function of the geodesic distance

between the two points. Note that d = 1 corresponds to coincident points. We can get

the answer we want by making the analytic continuation b → iq of this formula. We can

check that this is the right answer for our problem by noticing the following. First one can

check that this expression is invariant under the SL(2) symmetry La = L1
a + L2

a where La

– 8 –
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Figure 1. Free Energy diagram with inverse temperature β.

are the generators (4.6) acting on x1 and L2
a are similar generators as in (4.6), but with

q → −q. It is possible to commute the phase eiϕ(x1,x2), in (4.10) past these generators

which would remove the q dependent terms. This implies that the rest should be a function

of the proper distance, which is the case with (4.10). Then we can check the equation

0 = (∂u +H1)G(u,x1,x2) (4.11)

which is also indeed obeyed by this expression. The s dependent prefactor is fixed by the

requirement that the propagator composes properly, or more precisely, by saying that for

u = 0 we should get a δ function.

4.2 Partition function

The gravitational partition function is related with the particle partition function with

inverse temperature β. The canonical partition function of the quantum mechanical sys-

tem is

ZParticle = Tre−βH =

∫ ∞
0

ds

∫ ∞
−∞

dk

∫
M

dxdy

y2
e−β

s2

2 f∗s,k(x, y)fs,k(x, y)

= VAdS

∫ ∞
0

dse−β
s2

2
s

2π

sinh(2πs)

cosh(2πq) + cosh(2πs)
. (4.12)

The volume factor VAdS arises because after momentum integration there is no position

dependence. In a normal quantum mechanical system, the volume factor means that the

particle can have independent configurations at different locations of our space, however

for a gravitational system this should be thought as redundant and should be cancelled by

the volume of SL(2, R) gauge group 2πVAdS.4 In gravitational system, there can also other

contributions to the entropy from pure topological action. These give a contribution to the

ground state entropy S0. Including the topological action in (3.5), we find a gravitational

4There might be a multiplicative factor in the volume of gauge group, but we can always absorb that

into S0.

– 9 –
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Figure 2. Density of States and the Two Instantons configuration.

“density of states” as

ρ(s) = eS0e2πq︸ ︷︷ ︸
extra terms

1

2π︸︷︷︸
residue gauge

s

2π

sinh(2πs)

cosh(2πq) + cosh(2πs)︸ ︷︷ ︸
particle in magnetic field

= eS0e2πq s

2π2

∞∑
k=1

(−1)k−1e−2πqk sinh(2πsk).

(4.13)

We have not given an explicit description of these states in the Lorentzian theory. More

details were discussed in [8, 19].

This expression has some interesting features. Notice that the classical limit corre-

sponds to large q and large s, where we reproduce (4.3). After approximating, the density

of states are log ρ(s) ∼ S0 + 2πs for s/q < 1 and S0 + 2πq for s/q > 1.

We can also expand the partition function for very small and very large temperatures

where we obtain

ZJT ∼ eS0e2πq 1

4π2β
, β � 1

q

ZJT ∼ eS0
1√

2πβ3/2
, β � 1 (4.14)

Notice that at leading order we get an almost constant entropy both at low and high

temperatures, with the high temperature one being higher. In both cases there are power

law corrections in temperature.

Before we try to further elucidate the interpretation of this result, let us emphasize

a couple of important defects of our discussion. First, when we replaced the partition

function of the JT theory by the action of a non-relativistic particle in an electric field,

we were summing over paths in H2. This includes paths that self intersect see figure 2(b).

Such paths do not have an obvious interpretation in the JT theory and it is not even clear

that we should include them. For example, the sum over k in (4.13) can be understood in

terms of classical solutions which wind k times around the circle. These make sense for the

problem of the particle in the electric field but apparently not in the JT theory. Maybe

such paths could be given some interpretation in the gravity theory. Alternatively, we
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might want to sum over paths that do not self intersect. A second de fect is that we would

be eventually interested in adding some matter fields propagating in the bulk geometry.

These matter fields have boundary conditions at the boundary of the region of hyperbolic

space cut out by the boundary trajectory. The partition function of the fields with such an

arbitrary boundary trajectory could also modify the results we described above. Of course,

this issue does not arise if we have the pure JT theory. It is only important if we want to

introduce bulk matter fields to define more complex observables.

Instead of attempting to address the above issues, we will take an easy route, which

is to consider the system only in the large q (or small ε) limit. In this regime, we address

the above issues, and we can still trust the description of the particle in the electric field.

This large q or small ε limit is the same one that isolates the Schwarzian action from the

JT theory [13, 20, 21]. It turns out that the limit can be taken already at the level of

the mechanical system, a simple rescaled version of the above system. This provides an

alternative method for quantizing the Schwarzian theory. It has the advantage of being

a straightforward second order action of a particle moving in a region near the boundary

of hyperbolic. Of course, the Schwarzian theory was already quantized using a variety

of methods in [4–7, 22]. We will simply provide yet another perspective, recover the old

results, and write a few new expressions.

5 Quantum gravity at Schwarzian limit

Before getting into the details notice that the large q limit of (4.13) gives

ρ(s) = eS0
s

2π2
sinh(2πs), E =

s2

2
, ZJT =

∫ ∞
0

dsρ(s)e−β
s2

2 = eS0
1

√
2πβ

3
2

e
2π2

β . (5.1)

This reproduces what was found in [6, 7, 23, 24] by other methods. We see that we

get a finite answer and also that the contributions from the k > 1 terms in (4.13) have

disappeared. Because the S0 part decouples with JT gravity, from now on, we will drop it

and discuss S0 only when it is necessary.

5.1 The propagator

To get a limit directly at the level of the mechanical system it is useful to define a rescaled

coordinate, z, via

y = z/q. (5.2)

After taking the large q limit, the boundary particle propagator becomes:5

G(u,x1,x2) =
1

q
e−2πqθ(x2−x1)K̃(u,x1,x2); q � 1. (5.3)

K̃(u,x1,x2) = e
−2

z1+z2
x1−x2

2
√
z1z2

π2|x1 − x2|

∫ ∞
0

dss sinh(2πs)e−
s2

2
uK2is

(
4
√
z1z2

|x1 − x2|

)
; (5.4)

= e
−2

z1+z2
x1−x2

√
2

π3/2u3/2

√
z1z2

|x1 − x2|

∫ ∞
−∞

dξ(π + iξ)e
−2

(ξ−iπ)2

u
− 4
√
z1z2

|x1−x2|
cosh ξ

. (5.5)

5see the appendix E for details.
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The original phase factor eiϕ(x1,x1) factorizes into a product of singular “phase”

e−2πqθ(x2−x1), with θ the step function, and a regular “phase” e
−2

z1+z2
x1−x2 . The singular

“phase” is the same order as the topological piece in (3.5). In order to have a finite result

they should cancel between each other. This can only be satisfied if the xis are in cyclic

order. As shown in figure 3(a), the product of singular “phase” gives −2πq for cyclic order

xis and this would cancel with the topological action 2πq. While for other ordering of the

xis, this would have −2πnq for n = 2, 3, . . . and is highly suppressed in the limit q goes to

infinity. This cyclic order is telling us where the interior of our space time is. The magnetic

field produces a preferred orientation for the propagator. After fixing the order, all our

formulas only depend on K̃(u,x1,x2) which has no q dependence. The residual q factor

in (5.3) cancels out the additional q from the measure of coordinate integral, dxdy
y2 → q dxdz

z2 .

In conclusion, after taking the limit we get a finite propagator equal to (5.4), which should

be multiplied by a step function θ(x1 − x2) that imposes the right order.

The final function K̃(u,x1,x2) has the structure of e
−2

z1+z2
x1−x2 f(u, z1z2

(x1−x2)2 ). This can be

understood directly from the SL(2) symmetry. After taking the large q limit, the SL(2, R)

charges become

L0 = i(x∂x + z∂z); L−1 = i∂x; L1 = −ix2∂x − 2ixz∂z − 2iz. (5.6)

We can check that they still satisfy the SL(2) algebra. If we drop the last term in L1, the

SL(2, R) charges become the usual differential operators on EAdS2. And the propagator

will have only dependence on the geodesic distance. When L1 operator is deformed, the

condition of SL(2, R) invariance fixes the structure of the propagator as follows. The L0

and L−1 charges are not deformed and they imply that the only combinations that can

appear are

v ≡ z1 + z2

x1 − x2
and w ≡ z1z2

(x1 − x2)2
. (5.7)

Writing the propagator as K̃(u,x1,x1) = k(v, w) and requiring it to be invariant under

L1 gives the following equation for α:

∂vk + 2k = 0 −→ k = e−2vh(w) (5.8)

K̃(u,x1,x2) = e
−2

z1+z2
x1−x2 f

(
u,

z1z2

(x1 − x2)2

)
. (5.9)

The full function can also be determined directly as follows. Again we impose the propa-

gator equation (or heat equation)

0 =

[
∂u +

1

2

(
L2

0 +
1

2
L−1L1 +

1

2
L1L−1

)
− 1

8

]
K̃

0 =

[
s2

2
+
w2

2
∂2
w + 2w +

1

8

]
Ks(w) (5.10)

where La are given in (5.6) and are acting only on the first argument of K̃. The solution

of the last equation which is regular at short distances (w →∞) is
√
w times the Bessel K

function in (5.3).
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We can also directly determine the measure of integration for s by demanding that

the propagator at u = 0 is a δ function or by demanding the propagator compose properly.

This indeed is the case with the s sinh 2πs function in (5.4). To explicitly show the above

statement, it will be useful to use spectral decomposition of the propagator:

K̃(u,x1,x2) =

∫
ds

2s sinh(2πs)

π3
e−

s2u
2

∫
dk
√
z1z2e

ik(x1−x2)K2is(2
√

2ikz1)K2is(2
√

2ikz2).

(5.11)

It can be easily checked that the special functions fk,s(x, z) =
√
zeikxK2is(2

√
2ikz) are

delta function normalizable eigenmodes of the large q Hamiltonian:∫
dxdz

z2
fk1,s1fk2,s2 = δ(k1 − k2)δ(s1 − s2)

π3

2s sinh(2πs)
(5.12)

Notice that the inner product fixes the integral measure completely in (5.11), and the

composition relation is manifestly true:∫
dxdz

z2
K̃(u1,x1,x)K̃(u2,x,x2) = K̃(u1 + u2,x1,x2) (5.13)

At short time the propagator has the classical behavior:

K̃(u,x1,x2) ∼ δ(x1 − x2 + uz2)e
− (z1−z2)2

2uz2 (5.14)

This form of singularity is expected since we are taking the large q limit first and thus the

velocity in x direction is fixed to be z. In the original picture of finite q we are looking

at the time scale which is large compare to AdS length but relatively small such that the

quantum fluctuations are not gathered yet.

The integral structure in the propagator (5.4) has an obvious meaning: integrating over

s represents summing over all energy states with Boltzmann distribution e−Eu, and the

Bessel function stands for fixed energy propagator. We want to stress that the argument

in the Bessel function is unusual, and at short distance it approaches a funny limit:

K2is

(
4

`

)
'
√
π

8`
e−

4
` , ` =

|x1 − x2|√
z1z2

→ 0. (5.15)

One should contrast this exponential suppression with the short distance divergence in

QFT which is power law. In our later discussion of exact correlation function with gravity

backreaction, we will see that this effect kills UV divergence from matter fields.

To obtain the expression (5.5), we use the integral representation for the Bessel function

and the final result has some interesting physical properties:

Firstly, we see that at large u the time dependence and coordinate dependence factor-

ized. So, at large time we have a universal power law decay pointed out in [4].

Secondly, as we said before, the phase factor e
−2

z1+z2
x1−x2 is equal to the Wilson line e−q

∫ 2
1 a

stretched along the geodesic connection between location 1 and 2 (figure 3(b)). The field

a depends on our choice of gauge, our convention corresponds to fix the minimum value of

a at infinity and then the Wilson line is equal to e−qA, where A is the area of a hyperbolic

triangle spanned by 1, 2 and ∞.
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x

1

3

2

1

2

3

“phase”=-2 q “phase”=-4 q

(a) singular “phase” factor for different ordering.

α

β

૪

u

∞

1

Ө
2

(b) A geometric representation of the propaga-

tor. Here we fix the span angle θ, the propagator

is a summation over such geometries.

Figure 3. The singular “phase” for different ordering and the geometric representation of the prop-

agator.

Thirdly, defining 2π + 2iξ as θ, then θ has the meaning of the spanned angle at the

horizon (figure 3(b)). Then the gaussian weight e−2
(ξ−iπ)2

u = e
θ2

2u can be understood from

the classical action along the boundary with fixed span angle θ. The boundary drawn in

the figure represents a curve with fixed (regularized) proper length u in H2.

Lastly, the factor e
− 4
√
z1z2

|x1−x2|
cosh ξ

= e−
4 cos θ
` is equal to eq(α+β), which is a corner term

that arise from JT gravity in geometry with jump angles. Here α and β are defined as

the angle spanned by the geodesic with fixed length and the ray coming from horizon to

the boundary.

In summary the propagator can be understood as an integral of JT gravity partition

functions over geometries 3(b) with different θs.

Finally, let us comment on the issues we raised in section 4.2. In the large q limit we

are considering the propagator at relatively large distances and in a regime where locally

in AdS the integration over paths that fluctuate wildly is suppressed. Alternatively we can

say that in the integration over paths we put a UV cutoff which is large compared to 1/q

but small compared to the AdS radius. This is the non-relativistic regime for the boundary

particle. The quantum effects are still important at much longer distances due to the large

size of AdS. In addition, if we have quantum fields in AdS, then their partition functions for

these fluctuating contours that have fluctuations over distances larger than the AdS radius

are expected to depend on this shape in a local way. Due to the symmetries of AdS2, this

is simply expected to renormalize the action we already have without introducing extra

terms. This can be checked explicitly for conformal field theories by using the conformal

anomaly to compute the effective action of the CFT2 on a portion of H2 (appendix C).

5.2 Wheeler-DeWitt wavefunction

In the pure JT theory we can think about quantizing the bulk theory and obtaining the

Wheeler-DeWitt wavefunction. This was discussed in the classical limit by Harlow and

Jafferis [10].
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The Wheeler-DeWitt wavefunction can be created by Euclidean evolution of the bound-

ary and hence is closely related to the propagator we have discussed above. The wave-

function in Lorentzian signature could then be obtained by analytic continuation of the

boundary time. The Euclidean evolution can be specified by either of the two parameters:

the proper length u or energy E. Choosing a different parameter corresponds to imposing

a different boundary condition in JT theory. In general there are four possible choices

of boundary conditions in 2d dilaton gravity, there are two sets of conjugate variables:

{φb,K}, and {u,E}.6 In preparing the wavefunction we fix the boundary value of dilaton

and hence there are only two choices of the parameter (u or E). We denote the correspond-

ing wavefunction as |u〉G and |E〉G respectively. In terms of holographic considerations,

|u〉G represents a thermofield double state:

|u〉G ∼
∑
n

e−Enu|En〉L|Ēn〉R (5.16)

and |E〉G is like an average of energy eigenstates in a window of energy E:

|E〉G ∼
1

δE

∑
|E−En|<δE

|En〉L|Ēn〉R. (5.17)

The width of the energy window is some coarse graining factor such that the summation

contains eS0 states and does not show up clearly in gravity.7

With the definition of the states, one can evaluate them in terms of different basis.

There are three natural bases turn out to be useful, we call them S, η and ` bases. Basis

S corresponding to fix the horizon value of dilaton field φh, or equivalently by Bekenstein-

Hawking formula, the entropy of the system. The canonical conjugate variable of S will

be called η and that characterizes the boost angle at the horizon. ` stands for fixing

geodesic distance between two boundary points. To see that the horizon value of the

dilaton field is a gauge invariant quantity, one can do canonical analysis of JT gravity.

With ADM decomposition of the spacetime metric, one can get the canonical momenta

and Hamiltonian constraints of the system [26]:

ds2 = −N2dt2 + σ2(dx+Nxdt)2; (5.18)

H = −ΠφΠσ + σ−1φ′′ − σ−2σ′φ′ − σφ; Hx = Πφφ
′ − σΠ′σ; (5.19)

Πφ = N−1(−σ̇ + (Nxσ)′) = Kσ; Πσ = N−1(−φ̇+Nxφ′) = ∂nφ. (5.20)

That is the dilaton field is canonically conjugate to the extrinsic curvature and boundary

metric is canonical conjugate to the normal derivative of the dilaton field (both are pointing

inwards). By a linear combination of the Hamiltonian constraints (5.19), one can construct

the following gauge invariant quantity C:

− 1

σ
(φ′H+ ΠσHx) =

1

2

(
Π2
σ + φ2 − φ′2

σ2

)′
≡ C[Πσ, φ, σ]′ ∼ 0 (5.21)

6Energy E is proportional to the normal derivative of the dilaton field at the boundary.
7If one understand getting |E〉 state from integrating over thermofield double state in time direction,

then a natural estimate on δE is 1
T

, where T is the total time one integrate over. The validity of JT

description of boundary theory is T < eS0 , and we get δE > e−S0 . For T > eS0 , there are other possible

instanton contributions. The proper gravitational theory at this regime is studied in paper [25].
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The Dirac quantization scheme then tells us that the quantity C has a constant mode

which is gauge invariant (commute with Hamiltonian constraint). Choosing the gauge that

normal derivative of the dilaton is zero, we can solve the Hamiltonian constraint:

φ2 − (∂Xφ)2 = 2C ≡ S2 → φ(X) = S coshX, (5.22)

where dX = σdx is the proper distance along the spatial slice. Because the normal deriva-

tive of dilaton field is zero, the minimum value of dilaton at this spatial slice is actually a

local extremum in both directions. Therefore, the minimal value of dilaton field, namely

S, is a global variable. The classical geometry in this gauge is a “Pac-Man” shape (right

figure in figure 4). Focusing on the intersection region of the spatial slice and the boundary,

we have the spatial slice is orthogonal to the boundary. This is because we are gauge fixing

∂nφ = 0 on the spatial slice, and φ = φb on the boundary. The ADM mass of the system,

after regularization, is then M = φb(φb − ∂Xφ) [13]. Substituting the behavior of φ(X)

we get:

M =
S2

2
. (5.23)

This is the same relation in (4.9) and therefore we can interpret the s variable as entropy

of our system S.

For the purpose of fixing geodesic distance, it is convenient to think of doing the path

integral up to a slice L with zero extrinsic curvature. This picks out a particular slice (left

figure in figure 4) among the solutions obeying the Hamiltonian constraint. The WdW

wavefunction can be evaluated as an Euclidean path integral with fixed (rescaled) geodesic

distance d between the two boundary points:

Ψ(u; d) =

∫
DgDφe

1
2

∫
φ(R+2)+

∫
L φK+φb

∫
Bdy(K−1) =

∫
Dfeφb

∫
Bdy(K−1)

=

∫
Dxe−m

∫
Bdy

√
g+q

∫
Bdy a+q

∫
L a+(π−α1−α2)q (5.24)

Here we are fixing the total length of L to be d and the proper length of the boundary to be

u. α1 and α2 in the last expression denotes the jump angle at the corner coming from the

singular contribution of the extrinsic curvature and should be integrated over. Without the

eq
∫
L a factor in (5.24), the path integral corresponds to the propagator (5.4). Remember

that the phase factor is equal to e−q
∫
L a, so the wavefunction in ` basis is actually the

propagator (5.4), with the phase factor stripped out

Ψ(u; `) ≡ 〈`|u〉G =
2

π2`

∫ ∞
0

dss sinh(2πs)e−
s2

2
uK2is

(
4

`

)
, ` =

|x1 − x2|√
z1z2

. (5.25)

` is a function of the regularized geodesic distance d between x1 and x2: ` = e
d
2 . The

semiclassical of Ψ(u; `) can be obtained using formula (5.5), in the exponent we get saddle

point result:

Ψ(u; `) ∼ exp

[
−2(ξ∗ − iπ)2

u
+

4

u

ξ∗ − iπ
tanh ξ∗

]
;

ξ∗ − iπ
u

= −sinh ξ∗
`

. (5.26)
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The same saddle point equation and classical action was obtained in [10] by a direct eval-

uation in JT gravity.

The wavefunction with fixed energy boundary condition can obtained by multiplying

Ψ(u; `) by e+Eu and integrating over u along the imaginary axis. This sets E = s2

2 in the

above integral over s. So this wavefunction has a very simple expression:

Ψ(E; `) ≡ 〈`|E〉G = ρ(E)
4

`
Ki
√

8E

(
4

`

)
. (5.27)

The classical geometry for Ψ(E; `) is the same as the left figure in figure 4, with fixing

energy on the boundary. We want to stress that it is important to have the ρ(E) factor

in (5.27) for a classical geometry description since we are averaging over the states. We

can roughly think of 4
`Ki

√
8E(4

` ) as a gravitational “microstate” |E〉 with fixed energy E.

Such a “microstate” will not have a classical geometry representation and therefore is just

a formal definition. The inner product between wavefunctions is defined as 〈Ψ1|Ψ2〉 =∫∞
0 d``Ψ∗1(`)Ψ2(`).

Going to the entropy basis S, it is easy to start with Ψ(E). Because of the identity

E = S2

2 , expanding Ψ(E) in the S basis is diagonal:

Ψ(E;S) ≡ 〈S|E〉G =
√
ρ(S)δ

(
E − S2

2

)
(5.28)

We put this square root of ρ(S) factor in the definition of S basis such that inner product

between different S state is a delta function 〈S|S′〉 = δ(S−S′). This factor is also required

such that the classical limit matches with gravity calculation. Integrating over energy with

Boltzman distribution, we can get the expression of thermofield double state in the S basis:

Ψ(u;S) ≡ 〈S|u〉G =

∫
dEe−uE〈S|E〉G =

√
ρ(S)e−

uS2

2 (5.29)

In the semiclassical limit, the wavefunction becomes gaussian and coincides with the on

shell evaluation of the “Pac-Man” geometry (figure 4):

Ψ(u, S) ∼
√
SeπS−

uS2

2 (5.30)

The on shell calculation is straightforward: JT action in this geometry contains two parts:

the Schwarzian action
∫

(K − 1) on the boundary and a corner contribution at the center:

S(π−θ), where θ is the span angle at the horizon (figure 4). The Schwarzian action simply

gives Eu = S2u
2 by direct evaluation. We can determine θ from u since they are related

with redshift: θ = uS. Therefore the corner term gives: πS − S2u. Adding them up then

gives us the classical action. We can also expand S in terms of the ` basis, and relate Ψ(`)

with Ψ(S) by a change of basis:

〈`|S〉 =
√
ρ(S)

4

`
K2iS

(
4

`

)
; Ψ(E; `) =

∫ ∞
0

dS〈`|S〉〈S|E〉G; (5.31)

Before discussing our last basis, we want to stress the simplicity of the wavefunction in

S basis (5.30) and the Gaussian factor resembles an ordinary particle wavefunction in
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Classical Geometry in S  basis

θα1 α2

Figure 4. Classical Geometry in ` and S basis.

momentum basis. We introduce our last basis η as canonical conjugate variable of S, with

an analog of going to position space of the particle picture in mind:

|η〉 =

∫ ∞
0

dS cos(ηS)|S〉; 〈`|η〉 =

∫ ∞
0

dS cos(ηS)
√
ρ(S)K2iS

(
4

`

)
4

`
;

(5.32)

Ψ(E, η) =

√
sinh(2π

√
2E)

2π2
√

2E
cos(η

√
2E); Ψ(u, η) =

∫ ∞
0

dS
√
ρ(S) cos(ηS)e−

uS2

2 . (5.33)

To understand the meaning of η better, we can look at the classical behavior of Ψ(u; η):

Ψ(u; η) ∼ 1

u
exp

[
π2

2u
− η2

2u

](
e
iηπ
u

√
π + iη + e−

iηπ
u

√
π − iη

)
(5.34)

When u is real, the wavefunction is concentrated at η = 0 and has classical action of a

half disk in the exponent. When u = β
2 + it which corresponds to the case of analyt-

ically continuing into Lorentzian signature, the density of the wavefunction |Ψ(u, η)|2 is

dominated by:

|Ψ
(
β

2
+it,η

)
|2∼

√
π2+η2

β2+4t2
exp

[
2π2

β

]exp

−2β
(
η− 2πt

β

)2

β2+4t2

+exp

[
−

2β(η+ 2πt
β )2

β2+4t2

]
(5.35)

showing the fact that η is peaked at the Rindler time 2πt
β . We can therefore think of fixing

η as fixing the IR time or the boost angle at the horizon. The classical intuition for the

boost angle is most clear in Euclidean geometry, where for fixed boundary proper time

there can be different cusps at the horizon (figure 5).

One application of those wavefunctions is that we can take an inner product and get

the partition function. However, there are also other ways to get the partition function.

For example, we can concatenate three propagators and integrate over their locations. This

also gives the partition function by the composition rule of propagator. By the relation
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Figure 5. Euclidean geometries with different cusps.

u12

u23
u31

 12

 23 31

Figure 6. Partition function from inner product of three wavefunctions.

between propagator and wavefunction, we can also view this as taking an inner product

of three wavefunctions with an interior state as in figure 6, where the interior state can

be understood as an entangled state for three universes. To be more precise, we can

view the wavefunction as the result of integrating the bulk up to the geodesics with zero

extrinsic curvature. Then the interior state is given by the area of the hyperbolic triangle

in figure 6. The path integral for the hyperbolic triangle (denoted as I(`12, `23, `31), where

`ij =
|xi−xj |√
zizj

), is a product of three phase factors, which satisfies a nontrivial equality (with

ordering x1 > x2 > x3):

I(`12, `23, `31) = e
−2
(
z1+z2
x1−x2

+
z2+z3
x2−x3

+
z3+z1
x3−x1

)

=
16

π2

∫ ∞
0

dττ sinh(2πτ)K2iτ

(
4

`12

)
K2iτ

(
4

`23

)
K2iτ

(
4

`31

)
.

(5.36)

Recalling that the Bessel function represents the fixed energy “microstate” |E〉 (5.27) and
τ

2π2 sinh(2πτ) is the density of state, this formula tells us that the interior state is a GHZ

state for three universe:

I123 ∼
∑
n

|En〉1|En〉2|En〉3. (5.37)

I can also been viewed as a scattering amplitude from two universes into one universe. It

constrains the SL(2,R) representation of the three wavefunctions to be the same.8 We can

8Some thing similar happens for 2d Yang-Mills theory [22, 27, 28].
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write down the partition function as:

ZJT =

∫ ∞
0

∏
{ij}∈{12,23,31}

d`ijΨ(u12, `12)Ψ(u23, `23)Ψ(u31, `31)I`12,`23,`31 . (5.38)

This same result also holds if we repeat the process n times. It is interesting that we can

view the full disk amplitude in these various ways.

One can also extend our analysis to include matter field. One type of such wavefunc-

tion can be created by inserting operator during Euclidean evolution, and is analysed in

appendix B. Note that because of the SL(2,R) symmetry is a gauge symmetry, our final

state has to be a gauge singlet including matter field.

6 Correlation functions in quantum gravity

6.1 Gravitational Feynman diagram

The propagator enables us to “dress” quantum field theory correlators to produce quantum

gravity ones. Namely, we imagine that we have some quantum field theory in H2 and we

compute correlation functions of operators as we take the points close to the boundary

where they take the form

〈O1(x1) . . . On(xn)〉QFT = q−
∑

∆iz∆1
1 ..z∆n

n 〈O1(x1) . . . On(xn)〉CFT (6.1)

The factor of q arises from (5.2), and the last factor is simply defined as the function that

results after extracting the z dependence. For example, for a two point function we get

〈O1(x1)O2(x2)〉QFT = q−2∆z∆
1 z

∆
2

1

|x1 − x2|2∆
. (6.2)

We can now use the propagator (5.4) to couple the motion of the boundary and thus

obtain the full quantum gravity expression for the correlator. The factors of q are absorbed

as part of the renormalization procedure for defining the full quantum gravity correlators.

In this way we obtain

〈O1(u1) . . . On(un)〉QG = e2πq

∫ ∏n
i=1

dxidyi
y2
i

V(SL(2,R))
G(u12,x1,x2)G(u23,x2,x3) . . . G(un1,xn,x1)

× 〈O1(x1) . . . On(xn)〉QFTq
∑
i ∆i (6.3)

where the left hand side is the full quantum gravity correlator by definition. The last factor

is the usual renormalization necessary to get something finite.

The factor of e2πq cancels with the q dependent “phase” factors in (5.3) to give one

if we order the points cyclically (x1 > x2 . . . > xn). This requires that we define more

carefully the last propagator G(un1,xn,x1) as:

e−2πqK̃(un1,xn,x1) = e−2πqe
−2

zn+z1
xn−x1

2
√
znz1

π2|xn − x1|

×
∫ ∞

0
dss sinh(2πs)e−

s2

2
un1K2is

(
4
√
znz1

|xn − x1|

)
.

(6.4)
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(a) Witten Diagram. (b) Gravitational Feynman Diagram.

Figure 7. Summation of 1
N effects fluctuates the boundary of Witten Diagram.

The factor 1
V(SL(2,R)) in (6.3) means that we should fix the SL(2, R) gauge symmetry

(appendix A).

In the end we can write down an expression where we have already taken the q →
∞ limit

〈O1(u1) . . . On(un)〉QG =

∫
x1>x2..>xn

∏n
i=1 dxidzi

V(SL(2,R))
(6.5)

× K̃(u12,x1,x2) . . . K̃(un1,xn,x1)z∆1−2
1 ..z∆n−2

n 〈O1(x1) . . . On(xn)〉CFT.

This is one of the main results of our paper and it gives a detailed expression for

correlation function in 2 dimensional quantum gravity in terms of the correlation functions

of the QFT in hyperbolic space, or AdS2.

Notice that in usual AdS/CFT the correlators 〈O1(x1) . . . On(xn)〉CFT are an approx-

imation to the full answer. This is sometimes computed by Witten diagrams. We get a

better approximation by integrating over the metric fluctuations. In this case, the non-

trivial gravitational mode is captured by the boundary propagator. The formula (6.5)

includes all the effects of quantum gravity in the JT theory (in the Schwarzian limit). The

final diagrams consist of the Witten diagrams for the field theory in AdS plus the propaga-

tors for the boundary particle and we can call them “Gravitational Feynman Diagrams”,

see figure 7.

6.2 Two point function

Using formula (6.5), we can study gravitational effects on bulk fields such as its two

point function:

〈O1(u)O2(0)〉QG =

u

-u

O1 O2 (6.6)
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The explicit expression for 〈O1(u)O2(0)〉QG with dimension ∆ at temperature 1
β is:9

1

V(SL(2,R))

∫
x1>x2

dx1dx2dz1dz2

z2
1z

2
2

∫ ∞
0

ds1ds2ρ (s1) ρ (s2) e−
s21
2
u− s

2
2
2

(β−u)

×K2is1

(
4
√
z1z2

|x1 − x2|

)
K2is2

(
4
√
z1z2

|x1 − x2|

)( √
z1z2

|x1 − x2|

)2∆+2

. (6.7)

To fix the SL(2, R) gauge, we can choose z1 = z2 = 1 and x2 = 0. Then the integral over

H2 space is reduced to a single integral over x1, with a Jacobian factor 2x1 (appendix A):∫ ∞
0

ds1ds2ρ(s1)ρ(s2)e−
s21
2
u− s

2
2
2

(β−u)

∫ ∞
0

dx1

(
1

x1

)2∆+1

K2is1

(
4

x1

)
K2is2

(
4

x1

)
, (6.8)

the last integral can be interpreted as a matrix element of two point operator O1O2 be-

tween states |E1, ψ〉 and |E2, ψ〉, where |ψ〉 is the wavefunction of quantum field theory and

|E〉G represents the fixed energy gravitational state. Integrating over x can be thought as

integrating over a particular gravitational basis, and we can see that the gravity wavefunc-

tion suppress the UV contributions from quantum field theory (K2is(
4
x) ∼

√
πx
8 e
−4/x for

x ∼ 0). The final expression for the two point function is:

〈O1(u)O2(0)〉QG =
1

N

∫
ds1ds2ρ(s1)ρ(s2)e−

s21
2
u− s

2
2
2

(β−u) |Γ(∆−i(s1+s2))Γ(∆+i(s1−s2))|2

22∆+1Γ(2∆)
; (6.9)

=
1

N
Γ(2∆)

u3/2(β−u)3/224∆+4π3

∫ c+i∞

c−i∞
dθ1dθ2θ1θ2e

θ21
2u

+
θ22

2(β−u)
1

(cos θ1
2

+cos θ2
2

)2∆
.

(6.10)

In the second expression we write the integral in terms of variable θ using the second integral

representation of the propagator (5.5). The normalization constant can be determined by

taking the ∆ = 0 limit: N = ZJT.

If we contemplate the result (6.9) a little bit, then we find that the two integrals of s1

and s2 just represent the spectral decomposition of the two point function. Indeed, under

spectral decomposition we have 〈O(u)O(0)〉 =
∑
n,m

e−Enu−Em(β−u)|〈En|O|Em〉|2. Compare

with (6.9), we can read out the square of matrix element of operator O:

G〈E1|OLOR|E2〉G = δE−2
∑

|En−E1|<δE
|Em−E2|<δE

|〈En|O|Em〉|2 (6.11)

= ρ(E1)ρ(E2)
|Γ(∆− i(

√
2E1 +

√
2E2))Γ(∆ + i(

√
2E1 −

√
2E2))|2

22∆+1Γ(2∆)
.

Remember the notation is that |E〉G stands for a gravitational state with energy E and |En〉
stands for one side microstate (5.17). We have put the measure ρ(E) = 1

2π2 sinh(2π
√

2E)

in the definition of matrix element for the reason that in gravity it is more natural to

consider an average of energy states as a bulk state. To understand this formula a little

9We will just keep the ∆ dependent constant since at last we will normalized with respect of partition

function which corresponds to set ∆ = 0.
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bit better, we can consider the classical limit, namely large E. In this limit the matrix

element squared can be approximated as a nonanalytic function:

G〈E1|OLOR|E2〉G ∝ |E1 − E2|2∆−1e2πmin(
√

2E1,
√

2E2). (6.12)

If we fix E1 and varying E2 from 0 to infinity, the matrix element changes from |E1 −
E2|2∆−1ρ(E2) to |E1 − E2|2∆−1ρ(E1) after E2 cross E1. We can understand this behavior

qualitatively as a statistical effect: the mapping from energy subspace E1 to E2 by operator

O is surjective when the Hilbert space dimension of E2 is less that E1 and is injective

otherwise. Another understanding is the following: the two point function is finite in a

fixed energy state |En〉, which means the following summation of intermediate states |Em〉 is

order one:
∑
m
|〈En|O|Em〉|2. Looking at the case Em > En, because of the density of states

grows rapidly, the matrix element squared has to be proportional to 1
ρ(Em) to get a finite

result. Multiplied by ρ(En)ρ(Em), we have ρ(En)ρ(Em)|〈En|O|Em〉|2 ∼ ρ(min(En, Em)).

6.3 ETH and the KMS condition

The Eigenstate Thermalization Hypothesis (ETH) is a general expectation for chaotic

system. It expresses that the operator expectation value in an energy eigenstate can be

approximated by thermal expectation value with effective temperature determined from the

energy. Such hypothesis can be tested with the knowledge of operator matrix elements.

The two point function in microcanonical essemble is:

1

δE

∑
|En−E|<δE

〈En|O(u)O(0)|En〉 = ρ(E)euE〈E|Oe−uHO|E〉 (6.13)

〈E|Oe−uHO|E〉 =

∫ ∞
0

dsρ(s)e−
s2

2
u |Γ(∆ + i(s+

√
2E))|2|Γ(∆ + i(s−

√
2E))|2

22∆+1Γ(2∆)
.

Notice that |E〉 is not |E〉G, the former represents a one side microstate, while the later

is a gravitational state. Accordingly 〈E|O(u)O(0)|E〉 stands for a two point function in

a microstate. To study ETH, we will consider the case of a heavy black hole E = S2

2 =
2π2

β2 � 1. From the discussion in last section, we know that the matrix element tries to

concentrate s around
√

2E and thus we can approximate ρ(E)ρ(s)|Γ(∆ + i(s + S))|2 as

proportional to sS2∆−1eπ(s+S). Using integral representation for |Γ(∆ + i(s − S))|2 we

derive the two point function in microcanonical essemble with energy E is proportional to:

ρ(E)S2∆−1

u3/2

∫
dξ(π + iξ)e−

2
u

(ξ−iπ
2

)2−(π+2iξ)S+uS
2

2
1

(cosh ξ)2∆
. (6.14)

The ξ variable can be understood as the measure of time separation in units of effective

temperature between two operators and its fluctuation represents the fluctuation of the

effective temperature. And the final integral can be understood as a statistical average

of correlation functions with different temperatures. If we put back the Newton Constant

GN = 1
N , we have S ∼ N and u ∼ N−1 (2.3). As can be seen from the probability

distribution, the fluctuation is of order 1√
N

, and hence for large N system we can use
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Figure 8. Bulk Diagram for Three Point Function.

saddle point approximation:

ξ = i

(
π

2
− S

2
u

)
− u∆ tanh ξ

2
= i

(
π

2
− πu

β

)
− u∆ tanh ξ

2
. (6.15)

The first piece gives the typical temperature of the external state, while the last piece

comes from the backreaction of operator on the geometry. If we first take the limit of large

N, one simply get that the two point function in microcanonical essemble is the same as

canonical essemble. However, the euclidean correlator in canonical essemble is divergent as

euclidean time approach to inverse temperature β because of KMS condition. Such singular

behavior plays no role in the microcanonical essemble so is called a “forbidden singular-

ity” in ETH [29, 30]. In our situation we can see directly how the forbidden singularity

disappears in the microcanonical essemble. When ξ approach −iπ2 at the forbidden singu-

larity the backreaction on the geometry becomes large and hence the effective temperature

becomes lower:
2π

β∗
→ 2π

β
− ∆

π − πu
β

. (6.16)

At the time β−u
β ∼ ∆

N , the backreaction is important and we expect to see deviation from

thermal correlators. Therefore the correlation function in microcanonical essemble will

never have singularity away from coincide point.

6.4 Three point function

The bulk diagram of the three point function will be like figure 6 with additional operator

inserting at the intersection points (See figure 8). The QFT three point correlation function

in AdS2 is fixed by conformal symmetry and we can write it down as:

〈O1O2O3〉 = C123
z∆1

1 z∆2
2 z∆3

3

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2

=
C123

`∆1+∆2−∆3
12 `∆2+∆3−∆1

23 `∆1+∆3−∆2
13

.

(6.17)

∆i is the conformal dimension of Oi. Putting them in formula (6.5) and rewrite the

propagator in terms of the wavefunction (5.25), we have the quantum gravitational three
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point function:

〈O1O2O3〉QG =

∫
x1>x2>x3

∏3
i=1 dxidzi

V(SL(2,R))
Ψu12,`12Ψu23,`23Ψu13,`13I`12,`23,`13

× C123

`∆1+∆2−∆3
12 `∆2+∆3−∆1

23 `∆1+∆3−∆2
13

.

(6.18)

We can view this expression as an inner product of three universe wavefunction with the

interior, inserting three bilocal operators Õij;kÕij;k with dimension ∆̃ij;k = 1
2(∆i+∆j−∆k)

between them. One can fix the SL(2, R) symmetry and express the integral in terms of `ij ,

it is the same exercise as in open string calculation to find the Jacobian factor (appendix A).

Here we can just argue that in order to get the partition function at ∆ = 0, the measure

has to be flat. Therefore the three point function factorizes into form:

〈O1(u1)O2(u2)O3(u3)〉QG ∝ C123

∫ ∞
0

dτρ(τ)Iτ (u12, ∆̃12;3)Iτ (u23, ∆̃23;1)Iτ (u31, ∆̃31;2)

(6.19)

while Iτ (uij , ∆̃ij;k) is an integral of `ij which gives the two point function in microstate

Eτ (6.13) with the euEτ factor stripped off:

Iτ (uij , ∆̃ij;k) =
1

2

∫ ∞
0

d`ijΨuij ,`ij

1

`
∆i+∆j−∆k

ij

K2iτ

(
4

`ij

)

= 〈Eτ |Õij;ke−uijHÕij;k|Eτ 〉; Eτ =
τ2

2
.

(6.20)

Again the normalization constant can be fixed by choosing Oi to be identity.

6.5 Einstein-Rosen Bridge

The Einstein-Rosen Bridge in a classical wormhole keeps growing linearly with time and

this behavior was conjectured to related with the growth of computational complexity

of the dual quantum state [31]. Based on the universal behavior of complexity growth,

Susskind proposed a gravitational conjecture in a recent paper [11] about the limitation

of classical general relativity description of black hole interior. The conjecture was stated

as follows:

Classical general relativity governs the behavior of an ERB for as long as possible.

In this section, we will test this conjecture using the exact quantum wavefunction of

JT gravity (5.25). We will in particular focusing on the behavior of ERB at time bigger

than 1. The size of Einstein-Rosen Bridge V in two dimensions is the geodesic distance d

between two boundaries, and can be calculated in thermofield double state |u〉 as:

V = 〈u|d|u〉 (6.21)

We want to focus on the dependence of volume on Lorentzian time evolution. Therefore we

do analytic continuation of u in Lorentzian time: u = β
2 +it. Using the WdW wavefunction

in ` basis (5.25) and the relation between d and `, we can calculate the expectation value

exactly. This can be done by taking the derivative of the two point function (6.9) with
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respect to ∆ at ∆ = 0. Using the integral representation for |Γ(∆ + i(s1 − s2))|2, the only

time dependence of volume is given by:

V(t) =
1

N

∫ ∞
−∞

dξ

∫ ∞
0

ds1ds2ρ1ρ2e
i(s1−s2)ξ−i(s1−s2)

(s1+s2)
2

t−β
4

(s21+s22)

× log

(
2 cosh

ξ

2

)
|Γ(is1 + is2)|2.

(6.22)

The limit we are interested in is β � 1 � t,10 in which case the integral has a saddle

point at:11

s1,2 =
2π

β
; ξ =

2πt

β
. (6.23)

Therefore the volume has linear dependence in time:

V(t) ∼ 2πt

β
. (6.24)

Using the complexity equal to volume conjecture [31, 32], the complexity of thermofield

double state is proportional to the maximum volume:

C(t) = #V(t) = #
2πt

β
. (6.25)

The proportionality constant is suggested in [33] to be S0 based on classical calculation

of near extremal black hole. This, however, is not very clear in our model since S0 is the

coupling constant of the pure Einstein-Hilbert action and decouples with JT theory (1.1).

Since the saddle point (6.23) is actually valid from early time to late time, the proportion-

ality constant can be fixed at classical level and once we fix it we can conclude that the

length of Einstein-Rosen Bridge (or complexity of the state) keeps linearly growing even

considering quantum gravity effects in JT theory. We want to comment that this is not

an obvious result that one can expect from classical observables. For example, one might

argue that we can extract the information of the ERB from two sided correlators for the

reason that semiclassically we can approximate the correlator as e−md. Therefore one can

conclude the ERB has linear growth from the quasinormal behavior of the correlator. How-

ever such observables can only give us information of ERB up to time order 1, which is

the same time scale we can trust the classical general relativity calculation. After that

the correlation function changes from exponential decay into universal power law decay 1
t3

as one can directly derive from analytic continuation of result (6.9). If we still use such

correlator to extract information about ERB we would get the wrong conclusion that it

stops its linear growth after time order 1. The reason why it is incorrect is that at this

time scale the operator disturbs the state and causes different energy states interfere each

other strongly. It is simply that the correlator can no longer be described by the classical

geometry, rather than the interior stops to behave classically. From our calculation, we see

that if we probe of the state in a weaker and weaker way, we are still able to see the classical

10Remember that we are measuring time in units of φr (2.3), so time order 1 is a quantum gravity region.
11Actually this saddle point is valid for any range of t as long as β � 1.
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geometry. Lastly, we want to talk a little about when JT gravity needs to be modified.

A naive estimate can be made from the partition function that when β approaches e
2
3
S0 ,

the partition function becomes less than one and definitely at this time scale we need new

physics. A recently study of gravitational physics at this time scale was discussed in [25].

7 Conclusion

Our result gives an explicit formula (6.5) to calculate all order corrections to correla-

tion functions from quantum gravity in two dimensions. The formula can be under-

stood diagrammatically and we call it Gravitational Feynman Diagram. We also give

the exact Wheeler-DeWitt wavefunction and discuss the growth of its complexity quantum

mechanically.

Although we are focusing on theoretical description of two dimensional black holes,

the near-extremal black holes in nature should contain these features. Both Reissner-

Nordström black holes and Kerr black holes have an AdS2 throat near their extremality. For

those black holes, the gravitational effects are enhanced by the their near extremal entropies

(the coupling constant is φh rather than φ0 + φh) and therefore are better backgrounds to

test gravitational effects. We should however point out that the observational black holes

all have large near extremal entropies and thus are very classical [34]. In addition, the

Thorne limit of Kerr black hole sets a lower bound on the near extremal entropy in nature.

But for the Primordial black holes in early universe, our story might play a role and it will

be interesting to study the physical consequence in that situation.

Another application of our result is to connect with SYK type models [35–38] since

those models all have an emergent Schwarzian action at low energy. On that account, the

exact Schwarzian quantization can be used to test 1
N corrections to those models. For

example, one can try to directly test the two point function with SYK numerics [39] or

one can use SYK models to understand the microscopic description of WdW wavefunction

and its complexity. It might also be interesting to consider the black hole information

paradox [40] and late time traversable wormholes including the quantum fluctuations of

the boundary [41–45].
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A Gauge fix SL(2,R)

This section reviews the procedure to fix SL(2,R) gauge which is needed for calculating

correlation functions in quantum gravity using formula (6.5). With the parametrization of
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group elements in SL(2,R) by g = eiεαLα (α = ±1, 0) near the identity, we have g acting

on x as following (5.6):

gx = x− ε−1 − ε0x+ ε1x
2; gz = z − ε0z + ε12xz. (A.1)

Choosing the gauge fixing condition as fα(gx) = 0, we can fix the SL(2,R) symmetry

in (6.5) using Faddeev-Popov method. First we have the identity:

1 = M(x)

∫
dgδ(fα(gx)) (A.2)

Because the measure is invariant under group multiplication, M(x) is equal to M(gx) and

we can calculate it at the solution x0 of the gauge constraints on its orbit: fα(x0) = 0,

x0 ∈ G(x). Since the Haar measure is flat near the identity we have:12

M(x) = det

(
∂fα(gx0)

∂εβ

) ∣∣∣∣
εβ=0

. (A.3)

Inserting 1 in integrals of SL(2,R) invariant function F (x) like the one in (6.5), we have:∫
dxF (x) =

∫
dxM(x)

∫
dgδ(fα(gx))F (x) =

∫
dg

∫
dxM(x)δ(fα(x))F (x). (A.4)

We see that the volume of SL(2,R) factorizes out and we have the gauge fixed expression:∫
dx det

(
∂fα(gx0)

∂εβ

) ∣∣∣∣
εβ=0

δ(fα(x))F (x). (A.5)

B Wavefunction with matter

Including matter sector in JT gravity (action (1.1)), we can discuss the exact wavefunction

including matter backreaction. Schematically, since the geometry on which the matter field

propagates is not changed, the WdW wavefunction Φ including matter sector will be:

|Φ〉 =
∑
n

|Ψn〉 ⊗ |n〉, (B.1)

where |n〉 denotes the matter state in fixed AdS background, and |Ψn〉 means the gravita-

tional wavefunction after backreaction from matter state |n〉. By specifying the boundary

condition of the matter in Euclidean evolution, one can create different types of states such

as vacuum state. The vacuum state in AdS is stable and will not backreact on the gravity

sector and thus one will get the same story discussed in section 5.2. We will consider

another type of state that is created by inserting one boundary operator O during the eu-

clidean evolution (figure 9). The operator O creates a single SL(2,R) representation with

conformal dimension ∆. For the reason that the boundary is fluctuating, O does not create

only one asymptotic state, but a superposition of its descendants: |∆, n〉. The transition

12The normalization constant is arbitrary and we choose it to be one.
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1 2

Figure 9. WdW wavefunction with matter.

amplitude from |O(x)〉 to |∆, n〉 can be determined from the asymptotic behavior of two

point function:

lim
x′→∞

∑
n

〈O(x′)|n〉〈n|O(x)〉 =
z′∆z∆

|x− x′|2∆

=
z′∆z∆

x′2∆

(
1 + 2∆

x

x′
+ . . .+

Γ(2∆ + n)

Γ(2∆)Γ(n)

xn

x′n
+ . . .

) (B.2)

Therefore we have:

|O(x)〉 =
∑
n

√
Γ(2∆ + n)

Γ(2∆)Γ(n)
z∆xn|∆, n〉 (B.3)

Notice that because the matter carries SL(2,R) charge, the gravitational part is not a

singlet and in particular will depend on the location of two boundary points x1 and x2.

By choosing our time slice to be the one with zero extrinsic curvature, we can get the

backreacted gravitational wavefunction:

Ψn(x1,x2) = e
−2

z2+z2
x2−x1

∫
dxK̃(u1,x1,x)K̃(u2,x,x2)

√
Γ(2∆ + n)

Γ(2∆)Γ(n)
z∆xn. (B.4)

C Boundary effective action from CFT

CFT partition function in two dimension has simple dependence on the shape of geometry

by Liouville action. More precisely, the CFT partition function of central charge c on

geometries related by g = e2ρĝ is related:

Z[g] = e
c
6
SLZ[ĝ]; SL =

1

4π

[∫
(∇̂ρ)2 + ρR̂+ 2

∫
ρK̂

]
. (C.1)

Our strategy to get the effective action of the boundary shape is to first find a conformal

map that maps the boundary into a circle, and then evaluate the Liouville action on that

new metric. By Cauchy’s Theorem, such a conformal map always exists and is uniquely

determined up to SL(2,R) transformation. The SL(2,R) transformation does not change the
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weyl factor and therefore does not affect our final result. The original metric has constant

negative curvature and we will parametrize it by a complex coordinate h as 4
(1−|h|2)2dhdh̄.

If we denote the conformal map as h(z), where z is the coordinate in which the boundary

is a circle |z| = 1, then the new metric in coordinate z is:

ds2 =
4∂h∂̄h̄

(1− |h|2)2
dzdz̄. (C.2)

The holomorphic function h(z) determines the boundary location in h coordinate

(parametrized by u) at:13

r(u)eiθ̃(u) = h(eiθ(u)), (C.3)

where r(u) and θ̃(u) are related by the metric boundary condition:

4(r′2 + r2θ̃′2)

(1− r2)2
= q2; r(u) = 1− q−1θ̃′(u) +O(q−2). (C.4)

Combine these two equations at large q we get a Riemann Hilbert type problem:

eiθ̃(u)(1− q−1θ̃′(u)) = h(eiθ(u)). (C.5)

This equation can be solved by the holomorphic property of h(z) and the solution is:

h(z) = z

(
1− 1

2πq

∫
dα
eiα + z

eiα − z
θ′(α)

)
(C.6)

Choosing our reference metric ĝ to be flat, we have:

ρ =
1

2

(
log ∂h+ log ∂̄h̄

)
− log(1− hh̄). (C.7)

Evaluation of the Liouville action (C.1) is then straightforward and gives us a Schwarzian

action:

SL = −1

2
− 1

4πq

∫
duSch

(
tan

(
θ

2

))
. (C.8)

We want to remark that the sign in front of the Schwarzian action is negative so a naive

attempt to get induced gravity from large number of quantum fields does not work.14

D Connection with the relativistic particle and pair production

We will start from a formal expression for the relativistic particle with mass m and charge

q in an electric field and gradually implement these changes to get the partition function

of the JT theory. The partition function for the relativistic particle has the form

Zrel(m0, q) =
∑

Paths

e−m0Le−q
∫
a

=

∫ ∞
0

dτ

τ
e−

1
2
τµ2

∫
DxDy exp

(
−
∫ τ

0
dτ ′

1

2

ẋ2 + ẏ2

y2
− q

∫
dx

y

) (D.1)

13z = eiθ and h = reiθ̃.
14For an other interpretation of this result, see [46]. Matter quantization with JT theory was also

considered in [47] in the context of non-critical string theory.
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where L is the length of the path. In the right hand side τ is Schwinger’s proper time, which

is related by a renormalization factor to the actual proper time of the path [14] (chapter

9). Also, we have that µ2 = (m0−mcr)
ε̃ , where ε̃ is a UV cutoff for the path integral (not

to be confused with ε in (2.3)). If we are interested in the JT partition function at finite

temperature, then we are interested in fixing the length of the paths. As we mentioned,

this is the same as fixing the Schwinger time in (D.1). More explicitly, we can multiply

Zrel(m0, q) by e
m0β
ε̃ and then integrate over m0 along the imaginary axis (with a suitable)

real part to fix the length of the path. This then gives β = τ in the above expression. The

precise value of µ2 can be absorbed by shifting the ground state energy. It will be convenient

for further purposes to set µ2 = q2− 1/4. The path integral in the right hand side of (D.1)

has an infinite volume factor. We drop this factor when we divide by the volume of SL(2).

In addition, the factor of 1/τ should be dropped because we view configurations that differ

by a shift in proper time as inequivalent. After all these modifications we find

ZJT(β) = eS0e2πq 1

2π
G(β, x, y;x, y) (D.2)

where G denotes the propagator of the non-relativistic problem of a particle in an elec-

tric field

G(τ ;x,y;x′,y′) = 〈x,y|e−τH |x′,y′〉=
∫
DxDy exp

(
−
∫ τ

0
dτ ′

1

2

ẋ2+ẏ2

y2
−q
∫
dx

y

)
(D.3)

At first sight, the statement that a gravitational system is equivalent to a particle

makes no sense, since we know that the entropy of a particle is very small. Usually the

partition function is of the form Z|particle ∼ (~)# for a particle system, but black hole

has entropy of order 1
~ , that is Z|BH ∼ e

#
~ . This is because in the particle case, the major

contribution in functional integral is given by stationary solution, and the fluctuations near

the stationary solution give the power of ~, while for the gravitational system, a stationary

solution will corresponding to no geometry and we have the requirement of the boundary

should have winding number one. A solution with winding number one in the particle

system is an instanton contribution for particle pair production, which is usually very

small and is in addition imaginary, so how can this matches with gravity system? The

pair creation rate for a particle with charge q and mass m in AdS can be estimated from

Euclidean solution which is a big circle with radius ρb = arctanh(mq ):

I = mL− qA ∼ 2πm sinh ρb− 2πq(cosh ρb− 1) + π(m sinh ρb− q cosh ρb)δρ
2 ∼ 2πq. (D.4)

We see that the damping factor is exactly cancelled out by our gravitational topological

piece. The negative norm mode is related with the rescaling of the circle. That is not

allowed in canonical essemble because of the temperature constraint.
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(a) Landau Level. (b) Scattering State.

Figure 10. Particle in real magnetic field.

E Details on the Schwarzian limit of propagator

The main technical difficulty in finding the large q limit of propagator (4.10) is the hyper-

geometric function. To properly treat it, we can first use transformation of variables:

1

d1+2is
F

(
1

2
− iq + is,

1

2
+ iq + is, 1, 1− 1

d2

)
= (E.1)

Γ (−2is)

d1+2isΓ
(

1
2 − is+ iq

)
Γ
(

1
2 − is− iq

)F (1

2
+ is− iq, 1

2
+ is+ iq, 1 + 2is,

1

d2

)
+ (s→ −s)

In the limit of large q (d scales with q), we have approximation of hypergeometric function:

F

(
1

2
+ is− iq, 1

2
+ is+ iq, 1 + 2is,

1

d2

)
∼ Γ (1 + 2is)

(
d

q

)2is

I2is

(
2q

d

)
. (E.2)

Using reflection property of gamma function together with large q approximation of Γ( 1
2 −

is+ iq)Γ(1
2 − is− iq) ∼ 2πe−πqq−2is, we have:

(E.1) ∼ − ieπq

2 sinh(2πs)d

(
I−2is

(
2q

d

)
− I2is

(
2q

d

))
=
eπq

πd
K2is

(
2q

d

)
. (E.3)

Putting everything together will give us (5.3).

F Trajectories in real magnetic field

The equation of motions for a particle in real magnetic field b are:

ẋ2 + ẏ2

2y2
= E; (F.1)

ẋ

y2
+
b

y
= k, (F.2)

where E and k are the conserved energy and momentum respectively. Since we are only

interested in the trajectories, we can introduce a time parametrization ξ such that dτ
dξ = 1

2ky .
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Then in coordinate ξ, we have:

(∂ξx)2 + (∂ξy)2 =
E

2k2
; ∂ξx =

(
y − b

2k

)
. (F.3)

This means that we have solutions:

x2 +

(
y − b

k

)2

=
E

2k2
. (F.4)

Those are circles with radius
√

E
2

1
k and center at location (0, b2k ). So classically we have

two types of states as shown in figure 10: for E < b2

2 , the particle is confined by magnetic

field and becomes Landau level in the hyperbolic plane; for E > b2

2 , the gravitational effect

dominates and particle scatters out of the space.

Open Access. This article is distributed under the terms of the Creative Commons
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