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Abstract

In this paper, we present a method to solve the quantum marginal problem for symmetric d-level
systems. The method is built upon an efficient semi-definite program that uses the compatibility
conditions of an m-body reduced density with a global n-body density matrix supported on the
symmetric space. We illustrate the applicability of the method in central quantum information
problems with several exemplary case studies. Namely, (i) a fast variational ansatz to optimize local
Hamiltonians over symmetric states, (ii) a method to optimize symmetric, few-body Bell operators
over symmetric states and (iii) a set of sufficient conditions to determine which symmetric states
cannot be self-tested from few-body observables. As a by-product of our findings, we also provide
a generic, analytical correspondence between arbitrary superpositions of n-qubit Dicke states and
translationally-invariant diagonal matrix product states of bond dimension n.

1. Introduction

The quantum marginal problem (QMP) is ubiquitous not only in modern physics, but also in modern

chemistry, where it is usually referred to as the n-representability problem [1]. The QMP can be stated as

determining whether a set of reduced density matrices (RDMs) are compatible with a global wavefunction.

The QMP arises naturally when computing physically important quantities such as the energy of a system

or its entropy, as they often only depend on few particles. As an illustrative example, let us imagine one is

interested in computing the ground energy of a k-local Hamiltonian H =
∑

i Hi, where each Hi acts

nontrivially on at most k particles. The solution to this problem is 〈ψ|H|ψ〉, where |ψ〉 is an eigenvector of

H with lowest corresponding eigenvalue. Unfortunately, the amount of computational resources to describe

|ψ〉 grows, in general, exponentially with the system size, rendering this approach impractical. Alternatively,

one can exploit the fact that H is a sum of much simpler terms, and compute instead

〈ψ|H|ψ〉 = ∑

i Tr[Hiρi], where each ρi is the reduced density matrix of |ψ〉〈ψ| on the particles Hi acts

upon. The latter formulation, however, only appears to circumvent the exponential cost of describing |ψ〉.
As a matter of fact, it actually comes at the cost of knowing the compatibility conditions of {ρi} with a

global state |ψ〉〈ψ|.
Despite this apparent simplification, the QMP has challenged the physics and chemistry communities

since the 60s and every nontrivial advance has already supposed a milestone in the field [2]. The QMP is

strongly believed to be very hard, even for a quantum computer: it is complete for the complexity class

quantum Merlin–Arthur (QMA) [3] which, roughly speaking, is the analogous of NP for a quantum

computer. This may be not so surprising, since the k-local Hamiltonian problem itself is QMA-complete

[4], even for k = 2 [5] or for quantum systems on a 1D geometry [6], and existing quantum algorithms

take typically exponential time to solve it [7–10]. In spite of these intractability results, tremendous progress
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has been achieved over the years in the QMP, even before the advent of the quantum information

processing era [11–13].

A great deal of the aforementioned progress has centered onto the one-body RDM problem; i.e.

determining if a set of one-body RDMs is compatible with a global (pure) state. Klyachko showed that in

this case it is sufficient to characterize the QMP compatibility conditions solely from the eigenvalues of the

one-body RDMs [2, 14]. For instance, the case of RDMs of a bipartite system is completely solved in terms

of linear inequalities on the spectra [14], a rather surprising fact, since it is not obvious that compatible

spectra form convex sets, let alone polytopes. This formalism has allowed for an elegant and mathematically

tractable characterization, from which further results have stemmed [15, 16], for instance, in the context of

witnessing genuinely multipartite entanglement from one-body RDMs [13].

The few-body QMP is encompassed with substantial additional challenges. First of all, the relevant

information cannot be extracted solely from the eigenvalues of the RDMs, as it was the case on the

one-body case. In the one-body case, the supports of different RDMs were necessarily disjoint; therefore,

the action of local unitaries did not affect global compatibility and, in consequence, only the spectrum of

the one-body RDMs was relevant. In the case that one considers few-body RDMs, their supports may

intersect. Therefore, these must, at least, have the same reduced density matrix on the intersection of their

supports. Despite the additional requirements, some progress has been made [17]: for instance, almost all

four-partite pure states are determined by their two-body marginals [18]. The QMP has also been

extensively studied under the bosonic and fermionic formalism [2, 12, 19–21]: there, one uses the

assumption of the global pure state being either fully symmetric or antisymmetric and obtains conditions

on the RDMs on a given subset of parties. These RDMs are all equal due to the symmetry of the global

state. The QMP remains today a topic of intense research activity [22–24].

In this work we consider the following problem: given a reduced density matrix σ of m qudits, i.e. acting

on the Hilbert space (Cd)⊗m, is it compatible with a global density matrix ρ acting on the symmetric space

of n qudits Sym(Cd)⊗n? Note that we denote the symmetric space as the subspace which is spanned by the

Dicke states defined in section 2. We present the solution to this problem by analytically writing the

compatibility conditions between σ and ρ and we show that they can be efficiently determined numerically

as a feasibility semidefinite program (SdP) (section 3.1).

The core results of our work can be summarized as follows:

• We give the analytical conditions for any m-qudit RDM to be compatible with a larger n-qudit

symmetric state

• We show how these compatibility conditions can be efficiently solved (polynomially in n, with degree

d − 1) via a SDP, thus enabling fast optimization over symmetric states

Our results can be seen as a solution to the N-representability problem for bosons in first quantization;

i.e. for spin systems of identical, but distinguishable particles [25]. The N-representability problem also

exists for bosons in second quantization, but there it was shown to be QMA-hard [26], mainly because the

scaling that is taken is that the number of modes to be considered is proportional to the number of particles

in the system. This yields an exponential scaling, whereas in our work the physical dimension of the qudits

is fixed and independent of the number of particles in the system.

Our work has implications in several aspects of quantum information processing, as we show in

subsequent sections with exemplary case studies. We show in section 3.3 how this provides a

computationally undemanding variational approach to the ground state energy of any local Hamiltonian.

We benchmark our results with different physical models, such as the Lipkin–Meshkov–Glick (LMG) from

nuclear physics [27–29], an Ising chain with power-law interactions, and various XXZ chains with

transverse and longitudinal magnetic fields (section 4.1). We further showcase how our method leads to a

natural tool to optimize symmetric, few-body, Bell inequalities [30–32] and we apply our method to show

the ground state of some XXZ one-dimensional model with 128 particles contains Bell correlations

(section 4.2). In order to benchmark our results in large system sizes, we have also developed an analytical

correspondence between pure symmetric states of n qubits and translationally invariant diagonal matrix

product states (MPS) of bond dimension n (section 4.3) which may be of independent interest. Another

exemplary case study that stems from our method may have implications on the self-testing of symmetric

states from few-body correlators. Our method allows us to find sufficient conditions to certify which

symmetric states cannot be self-tested from their marginals, by analyzing when the compatibility conditions

do not lead to a unique solution (section 4.4). We discuss the implications of our results and discuss further

research directions in section 5. The results presented in this manuscript are partly adapted from chapter 6

of the doctoral thesis in [33].
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2. Preliminaries

Symmetric states constitute one of the most prominent classes of quantum states [34]. These are linear

combinations of the so-called Dicke states, which arise naturally from the superradiance effect [35]. Dicke

states and symmetric states have been successfully prepared in the laboratory in a plethora of systems,

ranging from photons [36] to ultracold atoms [37, 38]. Their entanglement properties have been extensively

studied [39–41]. Furthermore, device-independent (DI) self-testing protocols exist for Dicke states [42, 43],

and symmetric states provide an advantage in quantum metrology [44]. Symmetric states are simple to

describe, as their permutational invariance allows one to circumvent the exponential growth of the Hilbert

space representability problem, therefore being confined to a subspace of the multipartite Hilbert space

whose dimension scales only polynomially with n, with degree d − 1: more precisely, we have

dimC Sym(Cd)⊗n =
(

n+d−1
d−1

)

.

Symmetric states are spanned by the Dicke states and, thus, can be conveniently represented by the

so-called Dicke basis. In the case of n qubits, the Dicke states are typically denoted |Dn
k〉 and take the

following form:

|Dn
k〉 ∝

∑

τ∈Sn

τ(|0〉⊗(n−k)|1〉⊗k), (1)

where Sn denotes the symmetric group (the group of permutations of n elements), and τ is a permutation

acting on the different local Hilbert spaces.

For instance, the half-filled Dicke state of n = 4 qubits has two excitations k = 2, but they are

delocalized among the different subsystems, in an equally-weighted coherent superposition of the same

phase:

|D4
2〉 =

1√
6

(

|0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉
)

. (2)

The number of different terms in a qubit Dicke state of k excitations is given by the combinatorial

expression
(

n
k

)

and there are n + 1 Dicke states for d = 2.

In the general case of qudits, now one needs to specify how many |1〉 excitations there are, how many |2〉
excitations, etc. Hence, it is a natural choice to index Dicke states by partitions of n. For this purpose,

whenever λ = (λi)
d−1
i=0 be a vector with non-negative entries, then we denote λ ⊢ n if λ is a partition of n in

d elements, i.e.
∑d−1

i=0 λi = n. We will omit mentioning d whenever it is clear from the context. There are
(

n+d−1
d−1

)

such partitions and a qudit Dicke state is denoted by |Dλ〉, where

|Dλ〉 ∝
∑

τ∈Sn

τ(|0〉⊗λ0 ⊗ · · · ⊗ |d − 1〉⊗λd−1). (3)

The number of different terms in equation (3) is given by the multinomial combinatorial expression

( n

λ

)

=
n!

λ0! . . . λd−1!
. (4)

For the sake of a more compact notation, in the rest of this manuscript we will denote the qudit Dicke state

|Dλ〉 simply as |λ〉, since D is void of meaning.

3. Main result: the QMP for symmetric states

In this section we present our main results: first, in section 3.1 we derive a complete set of necessary and

sufficient conditions for an m-qudit reduced density matrix to be compatible with a global n-qudit

symmetric density matrix; second, in section 3.2 we show that, by means of the compatibility conditions

from section 3.1, one can express the QMP for symmetric states as a feasibility problem which is efficiently

solvable with semidefinite programming techniques; finally, in section 3.3 we illustrate how the solution

from section 3.2 can be used as a variational ansatz, whose applications are further explored in section 4.

3.1. Compatibility conditions with a global symmetric state

Here we outline the fundamental building block of our work. We derive a set of necessary and sufficient

conditions for compatibility of an m-qudit (symmetric) density matrix σ with a global n-qudit symmetric

density matrix ρ.

3
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Let us consider a quantum system of n qudits in the symmetric state ρ. Let us denote the components of

ρ by ρλµ, where λ,µ ⊢ n. Thus,

ρ =
∑

λ,µ⊢n

ρλµ|λ〉〈µ|. (5)

Our first goal is to find closed-form expressions, both in the computational and in the Dicke basis, that

relates the matrix elements of ρ, with the matrix elements of its m-particle RDM. Note that, since ρ is

symmetric, the choice of which n − m subsystems to trace out plays no role.

Before stating theorem 1, we introduce the following notations. We define [d] := {0, . . . , d − 1}, and we

shall use indices with an overhead arrow (e.g.�i) to denote matrix elements in the computational basis, as

opposed to indices in boldface (e.g. λ) that denote matrix elements in the Dicke basis. We recall once more

that such boldface indices consist in partitions of n, and they are associated to the Dicke basis elements

through equation (3).

Theorem 1. Let ρ be a symmetric state of n qudits, and m � n. Let�i,�j ∈ [d]m and α,β ⊢ m, so that we define

σ := Trn−m(ρ); i.e.

σ =
∑

�i,�j∈[d]m

σ
�i
�j
|�i〉〈�j| =

∑

α,β⊢m

σα
β |α〉〈β|. (6)

Then, we have the coefficients in the computational basis

σ
�i
�j
=

∑

λ,µ⊢n

ρλµ
∑

κ⊢n−m

(

n−m
κ

)

√

(

n
λ

)

(

n
µ

)

δ(w(�i) + κ− λ)δ(w(�j) + κ− µ), (7)

where δ(v) = 1 iff v is the zero vector and δ(v) = 0 otherwise. We have also defined the function

w(�i) := (w0(�i), . . . ,wd−1(�i)), with wk(�i) counting how many coordinates of�i are equal to k ∈ [d] (for the details

see appendix A), and the coefficients in the Dicke basis

σα
β =

∑

λ,µ⊢n

ρλµ
∑

κ⊢n−m

(

n − m

κ

)

√

√

√

√

√

(

m
α

)

(

m
β

)

(

n
λ

)

(

n
µ

) δ(α+ κ− λ)δ(β + κ− µ). (8)

A proof of theorem 1 can be found in appendix A. Note that equations (7) and (8) provide a set of

compatibility conditions for all the elements of a reduced density matrix σ of m qudits to be compatible

with a global (possibly mixed) symmetric state ρ of n qudits. Therefore, by also imposing the constraints for

ρ to be a valid quantum state, i.e. ρ 
 0 & Tr(ρ) = 1, then one has a complete set of necessary and

sufficient compatibility conditions.

3.2. Efficient solution as a feasibility problem

In this section we describe an efficient solution to the QMP for symmetric states. In particular, we express

the QMP for symmetric states as a feasibility problem by means of semidefinite programming (SDP)

techniques. In appendix B a brief summary of SDP basic notions is included.

In particular, the complete set of compatibility conditions from section 3.1 makes it straightforward to

write them down as an SDP that tests feasibility for an m-qudit RDM σ to be compatible with an n-qudit

global symmetric state ρ:

min
ρ

0

subject to ρ 
 0, Tr(ρ) = 1,
∑

λ,µ⊢n

ρλµaλ,α
µ,β = σα

β ∀α,β ⊢ m,

(9)

where the coefficients aλ,α
µ,β are defined to account for the compatibility conditions in equation (8) (similarly

for equation (7)); namely,

aλ,α
µ,β :=

∑

κ⊢n−m

(

n − m

κ

)

√

√

√

√

√

(

m
α

)

(

m
β

)

(

n
λ

)

(

n
µ

) δ(α+ κ− λ)δ(β + κ− µ). (10)

Furthermore, by expressing aλ,α
µ,β as the entries of a matrix Aα

β indexed by λ and µ, the SDP equation (9)

is automatically written in canonical form:

4
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min
ρ

〈0, ρ〉

subject to ρ 
 0, Tr(ρ) = 1,

〈Aα
β , ρ〉 = σα

β ∀α,β ⊢ m,

(11)

where 〈·, ·〉 denotes the Hilbert–Schmidt inner product.

Some comments are in order. First, let us start by noting that in the SDPs in equations (9) and (11) we

are taking 0 as the objective function, thus expressing the SDPs as a feasibility problem, meaning that the

only output from the SDP is the answer feasible or infeasible, depending on whether the feasible set of ρ is

empty or not (cf appendix B for details). Therefore, when the SDP in equation (11) is feasible, then it is

certified that σ admits an extension into a symmetric Dicke state ρ of n qudits (which is precisely the

solution of that SDP). In section 4.4 we discuss the uniqueness of that solution.

Second, let us note that the free variables of ρ act as the decision variables to be optimized with the SDP

technique. More precisely, the free variables from ρ can be seen as extra variables on the original problem,

thus defining the set of feasible σ’s as a projected spectrahedron (see e.g. section 5.6 of [45]). Since ρ acts in

the symmetric subspace, the number of extra variables will be at most polynomial in the system size n with

degree d − 1, which makes the procedure efficient. Let us emphasize that the optimization is not directly

carried over the whole symmetric space of ρ, since some entries of ρ are eliminated by the equality

constraints in section 3.1.

Finally, let us comment on the purity of the compatible state ρ. One can easily combine our

methodology with the algorithm in section 3.7 of [17] in order to obtain a pure global state ρ (if such a ρ
exists for a given σ). In particular, the algorithm would need to iterate equation (11), where at each

iteration one would keep the projector onto the highest eigenvalue subspace of the obtained solution ρ until

convergence to a rank-1 projector, thus attaining purity (which in the average case happens in less than 4

iterations [17]).

3.3. Variational ansatz

We can now easily modify the SDP in equation (11) to optimize any linear functional H on ρ, while

maintaining compatibility over a given marginal state σ. This is done by considering the following SDP:

min 〈H, ρ〉
s.t. ρ 
 0

〈Aα
β , ρ〉 = σα

β ∀α,β ⊢ m.

(12)

The most interesting case arises when such a functional can be expressed as a sum of terms with support

on, at most, m qudits. This includes many cases of physical interest, such as Hamiltonians or Bell operators

composed of, at most, m-body interactions/correlators. In this case, let us denote H =
∑

i Hi. Then, 〈H, ρ〉
can be expressed as a linear combination of terms of the form 〈Hi,σ〉, namely:

min
∑

i

〈Hi,σ〉

s.t. ρ 
 0

〈Aα
β , ρ〉 = σα

β ∀α,β ⊢ m.

(13)

Note that, while in section 3.2 we were interested in the case where σ is given, in equation (13) both ρ and σ

are treated as positive-semidefinite variables. The positive-semidefiniteness of σ is automatically implied by

that of ρ. In fact, σ can be completely removed from equation (13) and embedded into the objective

function; however we keep it in this form for clarity of exposition. The form of equation (13) is thus useful

to optimize a functional H that depends only on the marginal information contained in the reduced states,

while keeping compatibility with a global symmetric state. Recall that the size of ρ depends polynomially on

n, with a degree d − 1, so that this procedure is efficient for systems of qudits of large n and fixed d.

4. Some applications

The aim of this section is to illustrate several applications in various, apparently uncorrelated, problems in

quantum information, all of which have deep roots in the QMP.

In section 4.1 (and appendix C) we apply equation (13) to benchmark our method as a variational

ansatz to find a fast, upper bound, to the ground state energy and, in some cases, to well approximate the

5
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ground state of several paradigmatic Hamiltonians. In section 4.2 we adapt our method to optimize Bell

functionals composed of symmetric, few-body observables. In section 4.3 we provide a method to

approximate any n-qubit Dicke state with a translationally-invariant (TI) diagonal MPS of bond dimension

n. Finally, in section 4.4 we show how our method can be used to show which symmetric states cannot be

self-tested from few-body marginals.

4.1. Benchmarking the variational ansatz

Here we consider some Hamiltonians of exemplary spin models, complemented in appendix C, in order to

benchmark the performance of the variational ansatz presented in section 3.3. In particular, we consider:

the LMG model (section 4.1.1) and one of its SU(3) variations (appendix C.4); an Ising chain under a

transverse field with power-law decaying interactions (section 4.1.2) and with nearest-neighbours

interactions (appendix C.1); and the XXZ chain under a transverse field (appendix C.2) and the

ferromagnetic (FM) XXZ with longitudinal magnetic field and periodic boundary conditions (appendix

C.3). Furthermore, for the Ising chain with power-law decaying interactions model we provide in

section 4.1.3 the runtime and estimated resources consumed by our method, compared to density matrix

renormalization group (DMRG) as a benchmark.

The variational ansatz approximates the ground state and energy of an m-local Hamiltonian by an

m-qudit RDM (denoted m-RDM for short) compatible with a global many-body symmetric state.

Therefore, we expect the variational ansatz to provide a good approximation when the coupling interactions

are similar between all pairs and to provide exact results when the ground state lies in the symmetric space.

4.1.1. Lipkin–Meshkov–Glick model

Let us start by considering a spin model for which our variational method (VM) recovers the ground state

exactly. We picked as an example the LMG model [27–29], which involves long-range interactions that

result in ground states that are symmetric under any permutation of the particles. The LMG model was

originally proposed in nuclear physics to describe phase transitions in nuclei. However, nowadays it also

serves to describe e.g. two-mode Bose–Einstein condensates experiments, since it captures the physics of

interacting bosons in a double-well trapping potential. Furthermore, in its isotropic version, the ground

states of the LMG model are pure Dicke states, which have been shown to display Bell correlations [30, 32,

46]. The phase transitions of the general model are also well understood [47]. Analytical expressions for the

ground state entanglement entropy have been found [48–50] and exact solutions of the model are known

[51–53], which we use here to benchmark our method.

In particular, we consider the following LMG Hamiltonian which describes a set of n spin-1/2 particles

with anisotropic long-range interactions under an external transverse magnetic field h:

H = −λ

n

∑

i<j

(

σ(i)
x σ(j)

x + γσ(i)
y σ(j)

y

)

− h

n
∑

i=1

σ(i)
z , (14)

where σ(i)
k denotes the Pauli matrix in position i and direction k, λ > 0 correspond to FM interactions,

λ < 0 correspond to anti-ferromagnetic (AFM) interactions, and γ marks the anisotropy in the coupling

terms, with γ = 1 being the isotropic case.

By adapting the SDP optimization problem in equation (13), we can use the 2-RDM compatibility

constraints to approximate its ground state by means of SDP. In particular, the optimization problem to

find the best approximation within the variational ansatz can be reduced to the following SDP:

min Tr
(

H̃σ
)

s.t. ρ 
 0

〈Aα
β , ρ〉 = σα

β ∀α,β ⊢ m,

(15)

where we emphasize that H̃ := −
(

n
2

)

λ
n

(

σx ⊗ σx + γσy ⊗ σy

)

− nh (σz ⊗ �+ �⊗ σz) /2 is now an

effective two-body Hamiltonian.

In figure 1 we show that the ground state energy of the model we considered is faithfully recovered using

our VM.

We note that this method unlocks the possibility to have access to an efficient description of the n-qubit

state (given in the symmetric basis equation (8)), since it is a matrix of size (m + 1) × (m + 1). This, in

turn, allows to obtain any associated m-RDM ∀1 � m � n. This enables us to study the method against

extensive quantities such as entropy, since it is now easy to obtain the m-block size entanglement entropy

Sm,n = −
∑m

i=0 pi log2 pi by finding the eigenvalues pi of the m-RDM [47]. In figure 1 we have used such a

procedure to obtain the half-system entanglement entropy. The method reproduces the features of the LMG

model phase diagram, as expected.

6
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Figure 1. Numerical results for the LMG Hamiltonian (14) with h = λ = 1. Left: the VM faithfully reproduces the ground state
energy of the LMG model for n = 128. Up to numerical error (∼ 10−14 using SeDuMi [54]) the values coincide. Center: always
for n = 128, we use the RDM compatibility constraints to obtain the half-system RDM from the ground state found by the VM.
This enables us to compute the entanglement entropy, and to characterize the phase diagram of the model [47]. Right:
half-system entanglement entropy for γ = 0 and different values of n obtained from the VM using the RDM compatibility
constraints in the symmetric basis. For γ 
= 1, one can appreciate the anomaly in h = 1 as we increase n, which becomes a critical
point in the asymptotic limit.

In order to illustrate that the VM can easily be implemented to d-level systems with local Hilbert space

of dimension d > 2, in appendix C.4 we consider the three-orbital LMG Hamiltonian for which we obtain

similar results as the ones presented in this section.

4.1.2. Ising chain with variable-range interactions under a transverse field

As a second example, we consider the Ising model with variable-range interactions in a transverse field. The

tuneable interaction range allows us to explore how our VM performs as the range of interactions decreases

from the infinite-range case (equivalent to the LMG model) to the nearest-neighbour case. In particular, we

consider the following Hamiltonian for an Ising chain with decaying power-law interactions:

H = sin(θ)
∑

i<j

Jijσ
(i)
z σ(j)

z + cos(θ)

n
∑

i=1

σ(i)
x , (16)

where Jij = |i − j|−α, the parameter α tunes the range of interactions, and θ > 0 (θ < 0) results in AFM

(FM) interactions. We note that in the limit α→ 0 all pairs interact with the same strength [55], whereas in

the other extreme α→∞ we have interactions only between nearest neighbors. The phase diagram for this

model has been extensively characterised [56–58]. In particular, for α > 0 the model exhibits three phases:

an ordered FM phase for −π/2 � θ < θ−c (α); a disordered paramagnetic phase for θ−c (α) < θ < θ+c (α);

and an ordered AFM phase for θ+c (α) < θ � π/2. Notably, such a model has also been shown to display

Bell correlations at the critical points for the FM couplings [59].

In order to construct the VM for equation (16), we consider the SDP in equation (15) with the effective

Hamiltonian H̃ := J sin(θ)σz ⊗ σz + n cos(θ)(σx ⊗ �+ �⊗ σx)/2, where J :=
∑

i<j Jij.

In figure 2 we compare the ground states obtained using our VM with those obtained from exact

diagonalisation (ED), in terms of relative energy and fidelity. To compare the ground state energies we look

at their ratio, EVM
0 /EED

0 . For this, a few comments are in order: first of all, note that the ground state energy

is negative and sufficiently far from zero to constitute a good approximation of 1 − δ, where δ is the relative

error. Second, we have chosen the ratio as a figure of merit, instead of the relative error, as it gives a better

visual comparison with the fidelity also plotted in figure 2. To compute the ground state fidelity we use the

definition F(ρED, ρVM) :=
(

Tr
√√

ρEDρVM
√
ρED

)2
. For this model we expect that the analytical solutions for

the long-range interaction regime are well approximated by the one for the LMG model, where our VM

yields exact results. However, in the transition from α ≫ 1 to α ≃ 0 the quality of the approximation is a

priori not so clear. In figure 2 it can be appreciated that for α > 0 the method fails to capture the AFM

phase θ+c (α) < θ, eventually yielding fidelities close to zero. On the other hand, for values θ < θ+c (α) the

method provides a good approximation, even though for sufficiently large α the method is less accurate

near the critical point θ−c .

In figure 3 we compare half-system entanglement entropies obtained from the VM and ED. As expected,

we observe a discrepancy in the AFM phase, because of the little overlap between the ground state and the

symmetric space in that region. Interestingly, we see from figure 3 that in the FM regime one can use the

VM (without ED) to approximate its phase transition (between paramagnetic and FM) for different

number of particles, and extrapolate its asymptotic limit. Such an approximation naturally works better as

the range of interactions increases.

7
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Figure 2. Numerical results for the Ising Hamiltonian (16) with n = 10, compared to exact diagonalization. Left: energy ratio,
right: ground state fidelity. As expected, the case α = 0 is faithfully recovered by the VM. However, we observe that as the value
of α increases (the range of interaction decreases) the VM fails to capture the AFM phase for which the fidelity eventually drops
to zero. The ground state energy and fidelity in the FM and paramagnetic phases are well approximated, although for large values
of α there is a little discrepancy near the critical points θ ≈ θ−c (α).

Figure 3. Numerical results for the Ising Hamiltonian (16) with n = 10. Left: half-system entanglement entropy residual
obtained from comparing VM with ED (a value of 0 indicates an exact result). Although the paramagnetic to AFM phase
transition is not reproduced by the VM, one observes that the transition from FM to paramagnetic is well approximated by
looking at the discrepancies for values of α� 1.5. Right: half-system entanglement entropy for α = 2. Note that the transition
from FM to paramagnetic manifest itself in the vicinity of θ ≃ −0.1π for n = 10. From this observation we conjecture that our
VM can be used to extrapolate some critical points where phase transitions occurs. We remark that the ED has not been used in
this case and that the behavior observed arises from the VM alone.

The VM has the potential to identify a phase transition in the model due to the following argument: one

might expect that in many cases of interest, and for a finite number of particles, the sudden change in

nature (e.g. symmetry) of the ground state is actually ‘smeared’ rather smoothly around the critical point.

Therefore, everywhere around this point the ground state may still have some overlap with the symmetric

space, which is the one considered by our VM. The numerical evidence presented in figure 3 supports this

conjecture.

Let us finish this section by mentioning that in appendix C.1 we have examined the VM performance in

the particular case of nearest-neighbours interactions (i.e. α→∞). Furthermore, since the

nearest-neighbours case is solvable by equivalently describing the model as a system of free fermions, in

appendices C.2 and C.3 we explore the performance of our variational ansatz beyond the free fermion scope

by considering various XXZ chains with transverse and magnetic fields.

4.1.3. Benchmarking performance with existing methods

One of the most appealing features of the VM proposed here is its ability to yield results for large system

sizes with very modest time and memory requirements (and, consequently, energy consumption). Indeed,

since the computations take place in the symmetric space, its dimension grows only polynomially with the

system size. In particular, it is linear for qubits, quadratic for qutrits, etc. In the previous sections we have

argued that the method yields results that capture traces of some quantities of physical interest. Therefore, it

can be a good candidate to a first order exploration before trying more numerically-intensive results. To

8



New J. Phys. 23 (2021) 033026 A Aloy et al

Figure 4. Runtimes observed in order to preallocate the 2-RDMs and n/2-RDMs compatibility constraints in the computational
and symmetric basis. Apart from the memory storage advantage, it is observed that the symmetric spaces offers a significant
advantage also in runtimes. The computations have been carried out on a 64-bit operating system with 32 GB ram and a
3.70 GHz processor. No parallelization has been used, which can be easily be implemented, significantly speeding up the process.
The runtimes might slightly vary at each run and are not meant to be taken as exact, but as an illustration of their order.

make this comparison quantitative, we here benchmark the computational requirements of the method

with other existing techniques.

In this section we briefly comment on the time, memory and energy consumption devoted to the

variational ansatz. The runtime of the VM can be split in two steps: (1) to precompute the A matrices in

equation (11) for a fixed n, m and d and (2) to load and solve the SDP. The most expensive task, both in

time and memory, is to compute the compatibility constraints. Hence, in order to agilitate the process, one

would first preallocate and store the compatibility constraints for a fixed number of particles n, of local

Hilbert space dimension d and with RDMs of size m. Then, once the compatibility constraints are

preallocated, one can scan the phase diagram of the desired parametrized Hamiltonian model just by

loading the compatibility constraints and proceeding to solve the corresponding SDP.

In figure 4 we present a representative sample of the computing runtimes we have observed in order to

preallocate the compatibility constraints of the 2-RDMs and half-system n/2-RDMs for different number of

particles n and different local Hilbert space dimensions d. We have considered the 2-RDMs compatibility

constraints case both in the computational basis (equation (7)) and the symmetric basis (equation (8)).

Apart from requiring less memory, one observes a clear advantage in runtime when obtaining the

compatibility constraints directly in the symmetric basis, as expected. Therefore, for the VM it is desirable

to project the effective Hamiltonian onto the symmetric subspace. For the n/2-RDMs case, we have

considered only the symmetric representation which decreases the memory storage limitations in order to

find, for instance, the half-system entanglement entropies. An additional comment is in order: for a

constant value of d, note that the multinomial coefficients in equation (7) or equation (8) do not require a

full expansion of the factorials, but there exist closed analytical formulas for them (see e.g. [32]). This has

been taken into consideration in our calculations. Furthermore, it is desirable to apply such closed

expressions, not only for speed, but more importantly for numerical stability issues (quotients of factorials

of large numbers may give problems in floating-point arithmetic if these numbers are of the order

of ∼100).

In figure 5 we present some of the computing runtimes in order to load the constraints and solve the

SDP for the Ising chain with decaying power-law interactions previously considered in section 4.1.2. We

have considered the constraints and effective Hamiltonian in the symmetric basis, and in order to solve the

SDP we have set the solver SDPT3 [60] to its maximal precision providing a numerical error up to

O(10−14) when the variational ansatz can reach the exact solution. We have carried out the comparison

with the solution provided by DMRG. In order to find the fidelity between the DMRG solution and the VM

solution, we have used the auxiliary results developed in section 4.3 in order to represent the VM solution

as a translationally invariant diagonal MPS.

Let us finish this section by remarking that, in order to compute the fidelity of our variational solution

with respect to the exact one, the most straightforward way we have considered is to contract the MPS

representation of the ground state with the solution of the VM. However, the latter is not given in a MPS

form and it therefore has to be converted in a MPS form. In order to do so, we need to establish a

correspondence between arbitrary superpositions of Dicke states and MPS. To the best of our knowledge, in

general such a correspondence has not been established before, and this result may be of independent

interest. Therefore, we have devoted a full section (section 4.3) to it.

4.2. Bell non-local correlations

The proposed variational ansatz is also convenient to investigate Bell non-local correlations in many-body

systems. The permutational symmetry naturally synergizes with the so-called two-body permutation

9
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Figure 5. Numerical results of the VM for the Ising Hamiltonian (16) with n = 64, compared with DMRG. The DMRG
algorithm follows [59, 61, 62] increasing the bond dimension up to 20. Left and center: energy ratio and fidelity of the VM
solution with respect to the DMRG solution. In order to compute the fidelity we use the result in section 4.3 to transform the
symmetric basis representation of the VM solution into a MPS representation. Right: runtimes comparison to achieve
convergence with DMRG and VM method. The VM is significantly faster, making it a good candidate for a first rough
exploration of large phase diagrams, and to upper bound ground state energies. Note that runtimes might slightly vary at each
run. The total runtimes are 525.04 s (1 s preallocation) for the VM and 2854.25 s for the DMRG. With a power consumption of
425 W in our workstation, amounts to an environmental impact of around 18 g vs 100 g of CO2 into the atmosphere for the VM
vs the DMRG methods (we have taken the 0.296 EU coefficient of kW h to kg of CO2 given by the European Environment
Agency for 2016). We remark that the DMRG is an extremely optimized and efficient method that cannot be applied beyond 1
geometric dimension. In these cases, the benchmark with existing methods would be separated by even more orders of
magnitude.

invariant Bell inequalities (PIBIs) presented in [30]. This type of Bell inequalities involve at most two-body

correlation functions, and some of them are violated by symmetric states [32]. One can now consider two

approaches: on the one hand, to obtain the quantum state that gives the maximal violation of such

equalities within the variational ansatz. On the other hand, to find quantum states that also have Bell

correlations by using the VM to approximate the ground state of a many-body Hamiltonian. In the latter

case, the Hamiltonian considered needs not correspond to the Bell operator [46]. It is worth mentioning

that the measurement settings might need to be optimized in order to increase the visibility of the Bell

correlations.

4.2.1. Optimizing permutationally invariant two-body Bell inequalities

We first focus on two particular classes of two-body PIBIs. These inequalities satisfy the following condition

for all correlations that can be described under local-realism assumptions (meaning that their violation

signals the presence of non-local correlations, the so-called nonlocality [63]):

− 2S0 +
1

2
S00 − S01 +

1

2
S11 � −2n (17)

and

(n mod2)(n − 1)(nS0 + S1) +
(n

2

)

S00 + nS01 − S11 �
(n

2

)

(n + 2 + n mod2), (18)

where Sk =
∑n

i=1 〈M(i)
k 〉, Skl =

∑

i
=j 〈M(i)
k M(j)

l 〉 are the one- and two-body symmetric correlators with

M(i)
k denoting the measurement in direction indexed by k = {0, 1} corresponding to particle i. The first

inequality equation (17) is particularly fitted to detect non-local correlations in superpositions of Dicke

states, while the second inequality equation (18) is tailored to detect non-local correlations in half-filled

pure Dicke states [32, 64].

In order to know if there exists a quantum state that violates such Bell inequalities, one still needs to find

appropriate n pairs of measurement settings. This gives rise to the so-called Bell operator, a quantum

observable in the n-partite Hilbert space whose expectation value with respect to a quantum state

corresponds to the value of the Bell inequality for the chosen measurement settings. In general, finding such

measurements consist in a very demanding non-convex optimization problem with no trivial solution.

However, since the variational ansatz provides a global state, the complexity of the problem gets greatly

reduced when we restrict the optimization to the case where all the measurement settings are the same for

each party, in the same reference frame. This gives rise to a permutationally invariant Bell operator, whose

extremal values within the symmetric space can be found using our VM.

Contrary to previous approaches (see e.g. [32, 65]), where one could use representation theory methods

such as Schur–Weyl duality to project the permutationally invariant Bell operator onto the different

symmetric blocks (see also [66]), here the VM circumvents this intermediate step: it is enough to consider

an effective two-body Bell operator B̃. For instance, for the Bell inequality in equation (17) the

10
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Figure 6. Detection of non-local correlations using inequality equation (17) in the XXZ chain equation (C2) with n = 128
particles. Left: Bell inequality value normalized to the classical bound using the VM with equation (19) for J = 1 FM couplings.
Values below zero indicate non-local correlations with the VM solution. Center: same for J = −1 AFM couplings. Right:
zoom-in of the region with largest relative violation for the FM case with largest fidelities according to figure 10, conditioned on
finding Bell correlations with the VM. Here the expectation values have been computed using the actual ground state given by the
DMRG solution with the (non-symmetric) Bell operator equation (21). We have chosen a bond dimension of 32 for the DMRG
solution.

corresponding effective Bell operator can be defined as

B̃ := − 2n (M0 ⊗ �+ �⊗M0) +
(n

2

)

(M0 ⊗M0 − 2M0 ⊗M1 +M1 ⊗M1) , (19)

so that the Bell inequality in equation (17) reduces to

Tr
(

B̃σ
)

� −2n, (20)

where σ can be the 2-RDM obtained with the variational ansatz. We parametrize the measurements as

Mk := sin (θk) σx + cos (θk) σz , where k ∈ {0, 1} and σx,σz are the Pauli matrices, and use the VM to find

the symmetric state minimizing the energy of the effective Hamiltonian. We note that this approach

becomes particularly useful in the case of large d, since the number of blocks arising from the

symmetry-adapted basis increases with d. We also remark that, since one can always apply a dual U⊗n

symmetry to both state and measurements without departing from the symmetric space, it is enough to

optimize over the difference between measurement directions, e.g. θ0 − θ1. Furthermore, since

equations (17) and (18) have two inputs and two outputs per party, Jordan’s lemma guarantees that using

d = 2 is sufficient to find its maximal violation.

4.2.2. Looking for Bell non-local correlations in a direction specified by a Hamiltonian

Here we propose a two-step process to find Bell non-local correlations in the ground state of Hamiltonians

of physical interest (e.g. an XXZ chain). First, we use the VM to do a quick scan over the parameter space of

a given Hamiltonian family, in order to find potential candidates whose ground state might display Bell

correlations (see figure 6). If Bell correlations are found by the VM, then a symmetric state has been

obtained which displays them, albeit we have no guarantee of the fidelity with the ground state of the model

at this point. Second, we narrow down the search to the parameter regime in which nonlocality has been

detected and compute the actual ground state with other more computationally expensive methods, such as

DMRG (see figure 6).

As toy models we consider an XXZ chain under transverse field (see appendix C.2) and the particular

case of a FM XXZ chain with periodic boundary conditions and longitudinal magnetic field (see appendix

C.3). As a result, for the first time to the best of our knowledge, we observe that the ground state of the XXZ

chain under transverse field in equation (C2) violates the Bell inequality equation (17), thus exhibiting Bell

correlations in the corresponding parameter regime. Bear in mind that, in order to carry out the

measurement optimization, one can no longer consider a single 2-RDM as we posed in equation (19), but

one has to sum over all the different 2-RDMs σij obtained with the DMRG. That is, similar to the effective

Bell operator approach in equation (19), now the Bell inequality takes the following form:

− 2

n
∑

i=1

Tr
((

M(i)
0 ⊗ �+ �⊗M(i)

0

)

σi

)

+
∑

i<j

Tr
((

M(i)
0 ⊗M(j)

0 − 2M(i)
0 ⊗M(j)

1 +M(i)
1 ⊗M(j)

1

)

σij

)

� −2n. (21)

Also note that, since the RDMs are fixed in this case (by the exact solution), the measurement directions

should not be restricted to the XZ plane in the Bloch sphere, but allowed to point in any direction.

Furthermore, the measurement settings for each party do not need to coincide.
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Figure 7. Detection of non-local correlations of the solution given by the VM using inequality equation (18) for the FM XXZ
chain with periodic boundary conditions and under a longitudinal magnetic field b equation (C3) with n = 10 and n = 128
particles respectively. We observe non-local correlations not only in the region where the variational ansatz approximates the
ground state with pure half-filled Dicke states, but also where such ansatz approximates the first excited state. Negative numbers
indicate the presence of Bell correlations.

We proceed similarly for the FM XXZ chain with periodic boundary conditions and longitudinal

magnetic field b presented in appendix C.3, for which pure Dicke states provide a good approximation of

the ground state. As we have previously mentioned, inequality equation (18) is tailored to half-filled Dicke

states which happen to approximate the ground state in the range − 1
n−1

(Jx − Jz) < b < 1
n−1

(Jx − Jz) (see

appendix C.3 for details). Therefore, in such region we expect to witness non-local correlations with

equation (18). Indeed, in figure 7 we show the witnessed nonlocality, where we have used the variational

ansatz to approximate the ground state and optimized using equation (19). We also observe that nonlocality

detection goes beyond the specified region where the half-filled Dicke state approximates the ground state.

As discussed in appendix C.3, such extra range of nonlocality detection seems to arise from the variational

ansatz approximating the first excited state instead of the ground state.

4.3. Generically expressing symmetric states as TI diagonal MPS

In this section we present an analytical method to generically represent any n-qubit Dicke state with a TI

MPS. More precisely, the goal is that, given a state of the form

|ψ〉 =
n

∑

k=0

dk|Dk
n〉, dk ∈ C, (22)

find two matrices A0, A1 ∈ MD×D(C) such that

|ψ〉 =
∑

(i1 ,...,in)∈{0,1}n

ψ(i1 ,...,in)|i1, . . . , in〉 =
∑

(i1 ,...,in)∈{0,1}n

Tr[Ai1 . . .Ain ]|i1, . . . , in〉. (23)

Some representations of important symmetric states have been known since their inception. For

instance, the GHZ state (up to normalization) can be generated with D = 2 [67] using the following TI

MPS:

A0 =

(

1 0

0 0

)

, A1 =

(

0 0

0 1

)

. (24)

On the other hand, for the |W〉 state, there exists no TI representation with bond dimension 2 [68].

However, it does admit (up to normalization) the following non-TI representation [68]:

(A[i]
0 , A[i]

1 ) =

⎧

⎨

⎩

(

σ+, �
)

if i < n
(

σ+σx,σx

)

if i = n.
(25)

We observe that in equation (25), all the coefficients of the MPS are either 1 or 0. Indeed, some MPS can

be used to represent Boolean formula solutions [69]. More generally, the representability of quantum states

with MPS of a particular form has deep connections with modern algebraic geometry [70–72]. For

instance, the |W〉 state can be arbitrarily well-approximated with a diagonal TI MPS of bond dimension

D = 2:

Lemma 1. Let ε > 0 and

A0 =

(

x0 0

0 x1

)

, A1 =

(

y0 0

0 y1

)

, (26)
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where
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x0 = 2−1/nε−1/[n(n−1)]

x1 = e�π/nx0

y0 = 2−1/nε1/n

y1 = −e�π/ny0.

(27)

The n-qubit |W〉 state can be obtained as the limit of ε→ 0 of the TI MPS given by equation (26).

Proof. One simply notes that, since the MPS is diagonal, the element corresponding to the physical index

(i1, . . . , in) with k :=
∑

j ij is given by

ψ(i1 ,...,in) = xn−k
0 yk

0 + xn−k
1 yk

1, (28)

which amounts to 0 if k ≡ 0 mod 2 and ε(k−1)/(n−1) if k ≡ 1 mod 2. Hence, noting

lim
ε→0

ε
k−1
n−1 =

⎧

⎨

⎩

1 if k = 1

0 if k > 1
(29)

yields the result. �

Inspired by lemma 1, we propose now a TI MPS of bond dimension n to approximate generically any

superposition of Dicke states of the form equation (22). We propose the following parameterization of A0

and A1:

A0 ∝ �D; A1 = diag(x1, . . . , xD). (30)

For simplicity let us denote A0 = y� and k =
∑

j ij. It is then easy to see that equation (23) leads to the

following system of equations:

D
∑

a=1

yn−kxk
a = ψ(i1 ,...,in), {i1, . . . , in} ∈ {0, 1}n. (31)

Note that for states of the form of equation (22) we only require n + 1 equations. Hence, it is natural to

choose D = n. This motivates the following lemma:

Lemma 2. Consider the system of equations

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x1 + · · ·+ xn = z1

x2
1 + · · ·+ x2

n = z2

· · ·
xn

1 + · · ·+ xn
n = zn

, (32)

where z1, . . . , zn ∈ C. The solutions of equation (32) are the roots of the polynomial P(X) defined in

equation (D10).

Lemma 3. The system of equations that determines the coefficients y and x1 . . . xn of the diagonal tensors A0 and

A1, used to represent the linear combination of Dicke states equation (22), is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

y = n
√

d0/n

x1 + · · ·+ xn =
d1

yn−1
√

n

x2
1 + · · ·+ x2

n =
d2

yn−2

√

(

n
2

)

· · ·

xk
1 + · · ·+ xk

n =
dk

yn−k

√

(

n
k

)

· · ·
xn

1 + · · ·+ xn
n = dn

(33)
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The value of y is readily determined from the first equation, and the x’s are found by finding the roots of the

polynomial P(X) constructed from lemma 2 using the remaining set of equations.

Note that generically, we will have n complex solutions, up to n! permutations. However, there is the

possibility that some of the solutions lie at infinity in some pathological cases. Nevertheless, these cases

form a zero-measure set which can in practice be avoided by adding an ε-perturbation to dk, in the same

spirit as in equation (27).

It is now clear that the bottleneck is solving equation (32) in lemma 2. We propose two approaches in

order to do so: in this section, a variant of the Faddeev–Leverrier algorithm to solve Newton’s identities in

order to find the roots of power-sum symmetric polynomials. In appendix D, we propose a step-by-step

computation of the solutions via Gröbner basis which could provide solutions for more general systems of

equations.

We make two observations in order to solve equation (32). The first one is that, if we consider a matrix

A with eigenvalues {x1, . . . , xn}, then equation (32) can be thought of as

Tr[Ak] = zk, 1 � k � n. (34)

The second observation is that there exists a way to express the characteristic polynomial of a matrix A in

terms of Tr[Ak]. Indeed, if P(X) = det (X�− A) = (X − x1) . . . (X − xn) =
∑n

k=0 ckXk is the characteristic

polynomial of A, then P(A) = 0, and taking the trace in both sides yields such an equation. The

Faddeev–Leverrier algorithm provides an easy-to-compute form for the coefficients ck: they are given by

cn−m =
(−1)m

m!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tr[A] m − 1 0 · · · 0

Tr[A2] Tr[A] m − 2 · · ·
...

...
...

Tr[Am−1] Tr[Am−2] · · · Tr[A] 1

Tr[Am] Tr[Am−1] · · · · · · Tr[A]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(−1)m

m!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z1 m − 1 0 · · · 0

z2 z1 m − 2 · · ·
...

...
...

zm−1 zm−2 · · · z1 1

zm zm−1 · · · · · · z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(35)

The values of x are found by finding all the roots of the polynomial P(X) =
∑n

k=0 ckXk with cn = 1. In

appendix D we give an alternative approach to solve equation (32) from a more algebraic point of view that

gives more insight to the combinatorial structure underlying equation (32).

Having an efficient way to represent a state of the form equation (22), we can now use its MPS form to

efficiently compute the fidelity of DMRG solutions, which are already given in the MPS formalism, for large

n, thus being able to benchmark our method.

4.4. Determining which symmetric states cannot be self-tested from their marginals

Self-testing is one of the most stringent protocols in the paradigm of DI quantum information processing.

Self-testing consists in inferring, solely from the statistics of a Bell experiment, which quantum states and

measurements are being used and performed, respectively [73–75]. Much of the existing work has been

centered around the bipartite case [76, 77], partly motivated by its more accessible physical

implementations [78, 79], but also motivated by its more accessible theoretical analysis, exploiting in most

cases properties of the maximally entangled state of two qudits [80–82]. In the multipartite case, the

analysis becomes more complicated, although some ideas for the bipartite case have inspired some

extensions [42]. In the multipartite case, symmetric states constitute a natural candidate to begin their

study: for instance, the robust self-testing of the W state (|D1〉) [83] inspired schemes to self-test Dicke

states of the form |Dk〉 [42, 43, 84]. Nevertheless, these schemes use full-body correlators and require

individual addressing, thus being less appealing from an experimental point of view. Therefore, some

studies have been carried to find out whether self-testing is possible using only marginal information [85]

(see also [86, 87]): in [85], some efforts showed that the three-qubit states maximally violating some of the

translationally invariant, two-body Bell inequalities from [88] could be self-tested using two-body

correlators, thus giving a positive answer to this question.

Interestingly, the question of how much information from the statistics is needed (i.e. how many parties

one can trace out) in order to self-test a quantum state is still open. In this section, we aim at showing how

our method can be used to guarantee a negative answer to the previous question and to give numerical

evidence toward a positive answer as well, depending on the uniqueness of the solution to equation (11).

More precisely, we show how our method can be used to explore which symmetric states could potentially

be self-tested from marginals and which symmetric states definitely could not, because their marginals do

not have a unique (modulo local unitaries) extension in the symmetric space.

Let us first consider an n-qubit density matrix being a projector onto an n-qubit Dicke state |Dk〉 as in

equation (1). We shall denote it ρn,k. Let σ = Tr1(ρ) be the resulting density matrix from tracing out a

14



New J. Phys. 23 (2021) 033026 A Aloy et al

Figure 8. Numerical results on the dependence between n, m, rank(ρ) for an m-RDM to have a unique symmetric extension ρ of
n = 15 and n = 30 qubits respectively with a given rank(ρ). For each case we have carried out 100 trials forcing the SDP to
explore the feasible set in a random direction A at each trial. The black squares correspond to the configurations for which the
recovered global symmetric state has fidelity > 0.9999 with the original global state for 100% of the trials, thus providing
evidence of having a unique symmetric extension. The numerical tolerance has been set to take into account the imprecision of
the SDP solver. For the non-black squares, some of the trials have exhibited a fidelity < 0.9999. For those cases, we show the
minimal fidelity obtained out of all the trials as a way to illustrate the tolerance. One clearly observes a certain correlation
between size of the RDM m and rank(ρ), showing more chances to have a unique extension for low rank(ρ) by tracing out few
particles.

single particle. In virtue of equation (7), we have

σ =
(n

k

)−1
((

n − 1

k − 1

)

ρn−1,k−1 +

(

n − 1

k

)

ρn−1,k

)

. (36)

To gain some intuition, let us first study under which conditions is it possible to show that the purification

of σ is unique. Following the spirit of lemma 5.2 of [89], we begin by considering a purification with an

auxiliary system of the form

|Φ〉 = |Dk−1〉|P1〉+ |Dk〉|P2〉, (37)

where the Dicke states vectors are supported by the Hilbert space of n − 1 qubits and

|P1〉 = α0|0〉|x10〉+ α1|1〉|x11〉 (38)

|P2〉 = β0|0〉|x20〉+ β1|1〉|x21〉, (39)

where |xij〉 have support in Cd with a sufficiently large d to represent the purification.

It follows from elementary algebra that the (n − 1)-body RDM of |Φ〉〈Φ| is equal to σ if, and only if,

α0 = 0, α1 =

√

k

n
, β0 =

√

n − k

n
, β1 = 0. (40)

Hence, in this case there exists a purification, it is unique, and it must be of the form

|Φ〉 = |Dk
N〉|x11〉. (41)

Corollary 1. The (n − 1)−partite reduced state of |Dk〉 uniquely determines |Dk〉 in the symmetric space.

In appendix E we show how the above example can be generalized to tracing out any number of parties.

The uniqueness of the extension is in one-to-one correspondence to the uniqueness of a linear program (see

equation (E9)). We have numerically observed that such a solution is unique if we trace out up to n − 2

parties for a basis Dicke state. However, it is not a priori clear how generic the above property is. A more

in-depth study suggests that generically, the uniqueness property depends on both the rank of the global

density matrix and the number of parties traced out. In figure 8 we provide numerical evidence that

generically the uniqueness of the symmetric extension depends on the number of particles n, the number m

of parties in the RDMs and the rank of the global density matrix ρ. We have followed the procedure below:

(a) Generate a random symmetric state whose density matrix has a given rank

(b) Use the compatibility conditions to obtain its RDM
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(c) Choose a random Hermitian matrix A and find a new global state compatible with the RDM by

making use of the SDP in equation (11), but with objective function −〈A, ρ〉 and check its fidelity with

the original global state. The matrix A forces the SDP to explore the feasible set in the direction given

by A

(d) We repeat step (c) a sufficient number of times (in our case, 100 times). If the fidelity remains always

one up to numerical accuracy error, this is strong numerical evidence that the global state is unique.

On the other hand, if the fidelity falls below one in some case, this indicates that too many parties have

been traced out and the RDM would no longer be sufficient to self-test the original state, since it does

not have a unique global extension of size n

We note that, although mixed states in their generality cannot be self-tested, the fact that for some rank

configurations and sizes of the RDM the extension to the symmetric state seems to be unique could open

the door to a weaker form of self-testing, under the assumption that the global state is symmetric.

5. Conclusions and outlook

In the present work we have presented a study of the QMP restricted to symmetric states. We have provided

a complete set of analytical compatibility conditions for an m-qudit RDM σ to be compatible with an

n-qudit global symmetric state ρ. We then use said compatibility conditions to answer the question of

whether a given reduced density matrix σ is compatible with a global symmetric state ρ by turning it into a

feasibility problem efficiently solvable via an SDP. Our results have implications in different fields. We have

explored some of them in several case-studies:

• We have developed a computationally efficient variational optimization method to upper bound the

ground state energy of any local Hamiltonian. This method considers the resulting marginals to be

compatible with a global symmetric state in order to carry out the optimization by means of SDP with

the compatibility conditions as constraints. In order to benchmark the VM, we have considered

several paradigmatic Hamiltonian spin models, that go from long-range to nearest-neighbor

interactions. In general, we observe that the VM provides a good upper bound for FM and long-range

interactions, yielding exact results in the infinite-range limit; while it misses to capture AFM

short-range interactions, where the ground state has poor overlap with the symmetric space. We have

also used the compatibility conditions in order to obtain the half-system entanglement entropy in the

symmetric space, which is an insightful quantity for many-body systems. Remarkably, we present

numerical evidence that for some cases our VM can also be used to approximately locate phase

transitions. This numerical observation hints that the properties of the ground state in a phase

transition also manifest, to some extent, in the symmetric space projection and are, therefore,

captured by our method. Another observed feature is that for some specific models the VM has

recovered the first excited state, instead of the ground state, in some regions of the phase diagram.

Finally, we have observed a significant speed advantage of the VM compared to a typical DMRG

algorithm. The advantage of the VM lies on the low memory storage required and high speed, making

the VM a suitable candidate for a first order exploration of large sets of parameters characterizing the

phase diagram of spin Hamiltonians. While we have only considered qubits, qutrits and chain

configurations, our VM is straightforwardly applicable to any qudit and lattices of arbitrary geometry

and dimension. We leave open to implement and explore the VM in corresponding cases of interest.

• We have considered the VM in the context of Bell non-local correlations. In particular, we have

explored its synergy with the so-called two-body permutationally invariant Bell inequalities. The

results in this context are two-fold: first, we have shown how the VM comes as a natural tool to

optimize a multipartite two-body PIBI in order to find whether the inequality detects non-local

correlations; second, we have used the low computational cost of the VM to look for non-local

correlations in a spin-1/2 XXZ chain under a transverse field, narrowing the parameters to be

considered and eventually leading to the detection of non-local correlations in the ground state with

n = 128 parties. We have also considered another spin-1/2 XXZ chain this time with periodic

boundary conditions with longitudinal magnetic field, detecting non-local correlations on its ground

state and first excited state of a specific phase. The tool we have here presented can be readily used in

the context of Bell correlation depth [90] or DI entanglement depth certification [91, 92] in the

context of two-body PIBIs.

• We have developed an analytical methodology to derive a translationally invariant diagonal

matrix-product state representation of bond dimension n for pure symmetric states. This result is

generic, and could be of independent interest. For our purposes, we have used it to transform the
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symmetric state solution obtained with the VM into a translationally invariant, diagonal, MPS,

allowing us to check its fidelity with the DMRG solution.

• Finally, we have shown how the compatibility conditions can be used to determine which symmetric

states ρ cannot be self-tested solely from their marginals. Remarkably, we present numerical evidence

suggesting a correlation between the size of the global state n, its rank rank(ρ), how many particles m

remain in the observed RDM and the uniqueness of a symmetric global state. This uniqueness

property could open the way to a weaker form of self-testing, that uses the assumption that the global

state is symmetric.

Our work, however, is not limited to the above applications. For instance, on a recent work by us we

have used the present work to tackle the problem of bounding the fidelity of a many-body quantum state in

atomic ensembles [93]. Further interesting connections that deserve to be explored include symmetric

extensions of quantum states, intimately related to the separability problem, which are also naturally treated

as SDP [23, 94], with direct applications to symmetric and permutationally invariant states [95, 96].

Furthermore, one may also wish to explore the role of different symmetries in the SDP. Whether there exists

a SDP invariant formulation of our problem [66, 97] that could allow it to be formulated for other

symmetry groups is unclear and we leave it for future research. In a following work, we shall investigate

variations of the VM in order to perform tomography/fidelity estimates with respect to a target symmetric

state. This is of wide experimental relevance, as in the case of Bose–Einstein condensate where only partial

information (e.g. not an informationally complete set of measurements) is available [31, 98].
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Appendix A. Proof of theorem 1

We begin by noting that, in the computational basis, the partial trace of n − m subsystems of an n-qudit

density matrix ρ has the following expression:

Trn−m(ρ) =
∑

�i,�j∈[d]m

|�i〉〈�j|
∑

�k∈[d]n−m

ρ
�i|�k
�j|�k, (A1)

where the operator | denotes index concatenation, and the indices have been properly rearranged so that the

n − m traced out parties are the last ones.

Hence, our goal is to express the symmetric state in the computational basis in order to apply

equation (A1) and then go back to the symmetric space. Since Dicke states are enumerated by the partitions

of m it will be useful to define the following function:

wk: [d]n −→ {0, . . . , n}
�i �→ #{p ∈ [n] : ip = k} (A2)

In words, wk(�i) counts how many coordinates of�i are equal to k. It is then natural to define w(�i) :=

(w0(�i), . . . ,wd−1(�i)). Note that, by construction, w(�i) ⊢ n for every�i ∈ [d]n.
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The weight counting function w is useful to represent the Dicke state |λ〉 in the computational basis.

For the purpose of this proof, we use the notation |Dλ〉 to specify that the Dicke state is in the

computational basis representation:

|Dλ〉 =
( n

λ

)−1/2 ∑

�i∈[d]n

|�i〉δ(w(�i) − λ), (A3)

where δ is the Kronecker Delta function, which is 1 if, and only if, its argument is the zero vector; 0

otherwise. Thanks to equation (A3) we can now define the inclusion operator Π : Sym(Cd)⊗n →֒ (Cd)⊗n

onto the symmetric space

Π :=
∑

λ⊢n

|Dλ〉〈λ|. (A4)

We note that Π†Π = �Sym(Cd)⊗n and that Π† : (Cd)⊗n ։ Sym(Cd)⊗n is the projector onto the symmetric

space.

Let now ρ be a density matrix on Sym(Cd), whose components are labeled ρλµ in the Dicke basis and ρ
�i
�j

in the computational basis. The relation between them is given by

ρ
�i
�j
=

(

Π(ρλµ)Π†)�i
�j
=

∑

λ̃,µ̃⊢n

δ(w(�i) − λ̃)δ(w(�j) − µ̃)
( n

λ̃

)−1/2
(

n

µ̃

)−1/2

ρλ̃µ̃. (A5)

Now we are ready to trace out n − m parties of ρ, e.g. the last. Note that w(�a|�b) = w(�a) +w(�b). Hence,

using equation (A1) we obtain σ := Trn−m(ρ) as

σ
�i
�j
=

∑

k∈[d]n−m

ρ
�i|�k
�j|�k =

∑

λ,µ⊢n

ρλµ

( n

λ

)−1/2
(

n

µ

)−1/2
∑

�k∈[d]n−m

δ(w(�i) +w(�k) − λ)δ(w(�j) +w(�k) − µ), (A6)

yielding equation (7). Finally, equation (8) is obtained via the transformation (σα
β ) = Π†(σ

�i
�j
)Π. �

Appendix B. Basics of semidefinite programming

Semidefinite programming (SDP) is a class of convex, constrained optimization problems which constitutes

one of the main theoretical and computational techniques in convex algebraic geometry [45]. In particular,

SDP takes Hermitian matrices as optimization variables and optimizes linear functions subject to linear

matrix inequalities (LMIs). The set of matrices that satisfy all the LMIs in the problem constitutes the

so-called feasible region (which may be empty if no matrix satisfies all the LMIs simultaneously). In

mathematical terms, the feasible region of an SDP problem is called a spectrahedron, and it is then the

intersection between some affine linear subspace (given by the LMIs) and the cone of positive symmetric

matrices. Note that the feasible region will always be convex since it is the intersection of convex sets.

Such conditions grant SDP problems desirable numerical properties, which allow for efficient solutions

by numerical algorithms based on, e.g. the interior point methods and the primal-dual method. Moreover,

the optimality of the solution given by said algorithms is by construction a certificate or, in other words, a

numerical mathematical proof. Consequently, SDP has found success in many distinct fields. For instance,

the interest of using SDP in quantum information problems keeps increasing and is crucial for topics like

non-local correlations [64, 99], quantum steering [100] or separability [94].

The general primal SDP formulation can be stated as follows:

min
X

〈C, X〉

s.t. X 
 0

〈Ai, X〉 = bi i = 1, . . . , m,

(B1)

where 〈X, Y〉 = Tr(X†Y) is the Hilbert–Schmidt scalar product, C, Ai, X are n × n Hermitian matrices, and

X is the matrix variable over which the optimization is performed. Notice that in the cases presented in the

main text, we treat X as a density matrix (thus we require it to be positive semidefinite and have unit trace).

If there exists a set of matrices which satisfies the given constraints forming a spectrahedron (i.e. the

feasible set), then the SDP problem is said to be feasible and has at least one solution. Conversely, the SDP

problem is said to be infeasible when the spectrahedron cannot be formed by the given constraints.

Therefore, the SDP formulation in (B1) can be turned into a feasibility problem by taking the objective

function to be a constant independent of the decision variables (i.e. by making the objective function
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irrelevant) and using the algorithms to probe only for the non-emptiness of the spectrahedron. For

instance, one way to pose (B1) as a feasibility problem is to consider the particular case where C = 0n,n is

the n × n zero matrix and, therefore, 〈C, X〉 = 0.

An important feature of SDP problems is that to every primal SDP formulation there exists an

associated dual SDP problem which is stated as follows:

max
y

bTy

s.t.

m
∑

i=1

Aiyi � C,
(B2)

where b = (b1, . . . , bm) and y = (y1, . . . , ym) are the dual decision variables. The relevance of having a dual

formulation comes clear by noting that, by construction, the dual optimal value provides an upper bound

on the primal optimal value. In particular, it can be easily checked that the difference between any primal

and dual feasible solutions X and y is:

〈C, X〉 − bTy = 〈C −
m
∑

i=1

Aiyi, X〉 � 0, (B3)

which is known as the duality gap, and the inequality 〈C, X〉 � bTy for any feasible matrix X and vector y is

known as the weak duality. Therefore, by evaluating the objective function of (B1) with any feasible matrix

X, one obtains an upper bound on the objective function of (B2) (and viceversa to obtain a lower bound on

the objective function of (B1)). Moreover, when considering a feasibility problem and obtaining an

infeasible solution, the dual problem can be used to certify the non-existence of solutions in the primal

problem. In most non-pathological cases (e.g. when strict feasibility is present [45]) the duality gap is closed

for an optimal pair (X∗, y∗), yielding strong duality and a certificate of convergence.

Appendix C. Variational method: further examples

C.1. Ising chain for nearest neighbors interactions

In section 4.1.2 we explored how our VM behaves as we decrease the range of interactions on an Ising chain

with power-law decaying interactions, and in section 4.1.1 we focused on the extreme case of having

infinite-range interactions (the LMG). Here we investigate what happens in the other extreme case: an Ising

model with nearest-neighbours interactions in a transverse field. The Hamiltonian we consider is:

H = −Jz

n−1
∑

i=1

σ(i)
z σ(i+1)

z − h

n
∑

i=1

σ(i)
x , (C1)

where Jz > 0 (Jz < 0) corresponds to FM (AFM) coupling, and h tunes the transverse field strength. For

equation (C1), the VM is taken with the effective Hamiltonian H̃ := − (n − 1)Jzσz ⊗ σz − nh(σx ⊗ �

+ �⊗ σx)/2. Similar as done in sections 4.1.1 and 4.1.2, in figure 9 we compare the VM with ED for low

number of particles. As expected, the VM yields almost orthogonal solutions in the AFM region, while it

provides fidelities close to unity in the FM region. Still, slight discrepancies arise in the FM case. In

particular, one observes that in the vicinity of what is a critical point (in the asymptotic limit) the fidelity

drops, nevertheless still providing a good upper bound to the ground state energy (see figure 9). We remark

that, by using the VM to determine the half-system entropy scaling in the FM case (Jz = 1/2), we observe

an anomaly at h ≈ 1 (see figure 9), which signals the presence of critical point. Therefore, despite the

discrepancy in fidelity, the FM critical point can still be well approximated by our VM.

C.2. XXZ model under a transverse field

In appendix C.1 we have looked at a spin system in one dimension and with nearest-neighbour interactions.

This model is actually solvable via Jordan–Wigner transformation [101], as it can be equivalently described

as a system of free fermions (see e.g. [46]). Here we consider the validity of our variational ansatz beyond

the free fermion scope, in an XXZ spin chain with an homogeneous magnetic field in the X direction:

H = −J
∑

〈i,j〉

(

σ(i)
x σ(j)

x + σ(i)
y σ(j)

y +∆σ(i)
z σ(j)

z

)

+
∑

i

hσ(i)
x , (C2)

where we take J = 1 (J = −1) for the FM (AFM) couplings, ∆ marks the anisotropy (with ∆ = 1

corresponding to the isotropic case, the XXX model) and h tunes the transverse field strength. In this case,
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Figure 9. Numerical results for the Ising Hamiltonian (C1) with n = 10. Left and center: comparison of the ground state energy
and fidelity with respect to results from exact diagonalization. We observe that energies disagree mostly in the AFM case, due to
its inherent asymmetry. The FM case is in general well approximated, with only some minor discrepancies near the values that
hint at a critical point in the asymptotic limit. Right: the VM is used in the FM case (Jz = 1/2) in order to investigate the scaling
of the half-system entanglement entropy, hinting at the existence of a critical point when extrapolating to the asymptotic limit.

Figure 10. Numerical results for the XXZ Hamiltonian (C2) with n = 10, compared to exact diagonalization. The first row
corresponds to FM interactions (J = 1) while the second row corresponds to AFM interactions (J = −1). Left: ground energy
ratio. Right: ground state fidelity. We observe how the ground state fidelity and energy are well approximated for values ∆� 1
(∆ � −1) when considering FM (AFM) interactions. In such regime it provides close to exact results except in the vicinity of the
phase transition between regions 2–3 and 2–4 of figure 1 of [102].

the effective Hamiltonian for the VM is H̃ := J
(

(n − 1)
(

σx ⊗ σx + σy ⊗ σy +∆σz ⊗ σz

)

+ nh(σx ⊗ �

+ �⊗ σx)/2
)

.

In figure 10 we compare the ground states obtained from our VM with those obtained from ED, in

terms of relative energy and fidelity. For this case we observe numerically that the VM provides a faithful

approximation for values ∆� 1 (∆ � −1) when considering FM (AFM) interactions. In particular, in such

a regime the VM yields exact results except around a line which likely corresponds to critical points in the

asymptotic limit [102, 103].

C.3. Ferromagnetic XXZ with periodic boundary conditions

Let us now consider the following instance of an XXZ model: a periodic anisotropic FM spin-1/2 chain,

placed in an homogeneous magnetic field in the z direction. This model is described by the Hamiltonian

H = −Jx

n
∑

i=1

(

σ(i)
x ⊗ σ(i+1)

x + σ(i)
y ⊗ σ(i+1)

y

)

− Jz

n
∑

i=1

σ(i)
z ⊗ σ(i+1)

z + b

n
∑

i=1

σ(i)
z , (C3)
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Table 1. Ground state for the model in equation (C3), as a function of the

magnetic field b and the coupling parameter ∆J = Jx − Jz, according to the

perturbative results presented in [104]. In figure 11 we recover and

strengthen the result.

b Ground state

b < −∆J |Dn
0〉

− n−2k+1
n−1

∆J < b < − n−2k−1
n−1

∆J |Dn
k 〉, 0 < k < n

∆J < b |Dn
n〉

Figure 11. Numerical results for the XXZ model equation (C3) with n = 10, compared to exact diagonalization. Left: energy
ratios. Center: ground state fidelity. Right: first excited state fidelity. We note that the overlap of the right and center figures would
cover the whole phase diagram.

where σ(n+1) = σ(1), Jx, Jz � 0 are the exchange coupling constants, and b tunes the strength of the external

magnetic field. The preparation of Dicke states as ground states of equation (C3) has been studied in

reference [104], for which our variational ansatz comes as a natural tool to benchmark their fidelity. In

table 1 we show the ground state distribution predicted with the perturbative results of [104] and in

figure 11 we see that, up to n = 10, the fidelity remains > 85%, which is consistent with the predictions of

[104]. For this case, in the VM we take the effective Hamiltonian H̃ := − n
(

Jx

(

σx ⊗ σx + σy ⊗ σy

)

+ Jzσz ⊗ σz) + nb(σz ⊗ �+ �⊗ σz)/2.

The perturbative prediction from [104] splits the phase diagram among different regions, each having

substantial overlap to a different Dicke state. However, there are already some discrepancies observed: in

between these regions, the approximation with Dicke states does not have good overlap with the ground

state (see figure 1 in [104]), however it has good overlap with other basis Dicke states (see figure 2 in [104]).

Here, our method enables us to understand this discrepancy from a different perspective: in figure 11 we see

that the regions in which the perturbative approach fails actually correspond to a good overlap for the first

excited state and a Dicke state. The low-end of the spectrum of the Hamiltonian considered has a good

overlap with the symmetric space. However, it can happen that the VM chooses to approximate the first

excited state instead of the ground state if the energy obtained becomes more favorable. This depends on

both the overlap with the ground space and the energy gap of the Hamiltonian. Let us denote by E0 and by

E1 the ground and first excited state energies, respectively. Let us also denote by F0 (F1) the fidelity between

the ground state (first excited state) and the symmetric space. The discontinuities may happen when

F0E0 = F1E1. Indeed, in figure 11 we observe that, while the energy ratio is smooth, the fidelity may

suddenly drop to zero or jump to almost one due to the above mentioned reason.

For the larger n limit, the ground state of equation (C3) can be found exactly using MPS and the DMRG

algorithm, case for which the representation of superpositions of Dicke states as an MPS presented in

section 4.3 might come in handy.

C.4. Many-body SU(3) Hamiltonian with collective interactions

Here we illustrate that our proposed VM can be also easily applied to d-level systems with local Hilbert

space of dimension d > 2. To do so, we consider the three-orbital LMG Hamiltonian [105] (equivalently,

the generalisation of the Lipkin Hamiltonian as proposed in [25]). Similarly to section 4.1.1, the variational

ansatz is expected to recover exact results due to the long-range interactions resulting in ground states with

permutation symmetry. The model is constructed by n identical but distinguishable three-level atoms, and

it is also commonly used in nuclear shell models. It can also arise for three-level atoms collectively coupled

to electromagnetic field modes of a cavity. Concretely, the model is described by the Hamiltonian:

H = a (S00 − S22) + b
∑

i
=j

S2
ij , (C4)
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Figure 12. Numerical results for the three-level generalized Lipkin Hamiltonian equation (C4) with n = 32. Left: the VM
provides exact ground state up to numerical error of the solver (≈ 10−14 using SeDuMi [54]). Center: half-system entanglement
entropy obtained through the compatibility conditions equation (8), capturing features of phase transitions. Right: half-system
entanglement entropies for different number of particles at a = 3. The scalability can be used to extrapolate the peak anomalies
to the asymptotic limit.

where Sij =
∑n

l=1 τ
(l)
ij with τ ij = |i〉〈j| for i, j = {0, 1, 2}. In this case the effective Hamiltonian used in the

SDP is H̃ := na (S00 ⊗ �+ �⊗ S00 − S22 ⊗ �− �⊗ S22) /2 +
(

n
2

)

b
∑

i
=j

(

Sij ⊗ Sij + (S2
ij ⊗ �+ �⊗ S2

ij )/2
)

.

In figure 12 we show that the variational ansatz reproduces exactly the ground state energy, as expected.

Furthermore, we use the compatibility conditions to obtain the half-system entanglement entropy, which is

useful to provide insights about the phase diagram of the model.

Appendix D. Alternative solution to the system of equations in lemma 2

Before introducing the form of P(X) let us motivate its definition by illustrating the idea with a sequence of

examples. In these examples, we turn equation (32) into an equivalent system that is much easier to solve.

In algebraic geometry terms, the second system forms a reduced Groebner basis, meaning that its first

equation is a polynomial in a single variable, the second is a polynomial in the previous variable and a new

one, etc. This allows one to find all the solutions by solving only univariate polynomials and plugging the

found roots into the next equations by substitution.

• N = 2. Solving the system of equations

⎧

⎨

⎩

x1 + x2 − z1 = 0

x2
1 + x2

2 − z2 = 0
(D1)

is equivalent to solving
⎧

⎨

⎩

2x2
2 − 2z1x2 + (z2

1 − z2) = 0

x1 + x2 − z1 = 0
(D2)

• N = 3. Solving the system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1 + x2 + x3 − z1 = 0

x2
1 + x2

2 + x2
3 − z2 = 0

x3
1 + x3

2 + x3
3 − z3 = 0

(D3)

is equivalent to solving

⎧

⎪

⎪

⎨

⎪

⎪

⎩

6x3
3 − 6z1x2

3 + 3(z2
1 − z2)x3 + (−z3

1 + 3z1z2 − 2z3) = 0

2x2
3 − 2(z1 − x2)x3 + [(z1 − x2)2 − (z2 − x2

2)] = 0

x2 + x3 − (z1 − x1) = 0

(D4)
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• N = 4. Solving the system of equations

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x1 + x2 + x3 + x4 − z1 = 0

x2
1 + x2

2 + x2
3 + x2

4 − z2 = 0

x3
1 + x3

2 + x3
3 + x3

4 − z3 = 0

x4
1 + x4

2 + x4
3 + x4

4 − z4 = 0

(D5)

is equivalent to solving

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

24x4
4 − 24z1x3

4 + 6(z2
1 − z2)x2

4 − 2(z3
1 − 3z1z2 + 2z3)x4 + (z4

1 − 6z2
1z2 + 3z2

2 + 8z1z3 − 6z4) = 0

6x3
4 − 6(z1 − x3)x2

4 + 3([z1 − x3]2 − [z2 − x2
3])x4 − ([z1 − x3]3 − 3[z1 − x3][z2 − x2

3] + 2[z3 − x3
3]) = 0

2x2
4 − 2(z1 − x2 − x3)x4 + [(z1 − x2 − x3)2 − (z2 − x2

2 − x2
3)] = 0

x2 + x3 + x4 − (z1 − x1) = 0

(D6)

From the above examples the recursion is clear. In the easy systems equations (D2), (D4), (D6) the first

equation is a polynomial in a single variable xn. The rest of the equations correspond to the system of

equations for n − 1 with a slight transformation, where we have decreased by 1 the index of xi; i.e. xi �→ xi−1

and we have made the substitution zi �→ zi − xi
n−1 in the first equation, zi �→ zi − xi

n−2 in the second

equation and so on until we substitute z1 �→ z1 − x1 in the last one. Note that since the first equation is a

polynomial in xn, the second equation is a polynomial in xn, xn−1, the third equation a polynomial in

xn, xn−1, xn−2 and so on the transformed systems form a reduced Groebner basis and are therefore easy to

solve.

Before thinking of writing the Groebner basis in its full generality, let us observe the following:

Corollary 2. Let P(X) be the first element of the Groebner basis for equation (32) (i.e. the left-hand side of the

first equation in the systems equations (D2), (D4), (D6), etc). Since the system of equations (32) is

permutationally invariant, we must have

P(X) = (X − x1) . . . (X − xn), (D7)

i.e. the roots of P correspond to the values of xi, up to a permutation.

Therefore, we only need to find the general form of P(X). The coefficients of P(X) are closely related to

the partitions of n. Let us define the following:

Definition 1. Let λ ⊢ m denote a partition of m; i.e. λ = (λμ1
1 , . . . λ

μk
k ) where

∑k
i=1 μiλi = m and

λi > λi+1 with λi,μi ∈ N. We define the polynomial

Qm(z) :=
∑

λ⊢m

ξλ

k
∏

i=1

z
μi
λi

, (D8)

where

ξλ = m!

k
∏

i=1

(−1)μi

μi!λ
μk
i

. (D9)

We define by convention Q0 := 1.

Note that
∑

λ⊢m |ξλ| = m! since ξλ counts (with sign) the number of permutations of m elements of

cycle type λ. In addition, we remark that the number of partitions p(m) of a given integer m scales as

log p(m) ∼ C
√

m, where C is a universal constant. This makes the sum in equation (8) prohibitive to

evaluate already for modestly large values of m. However, as shown in section 4.3, it is possible to efficiently

compute Qm(z) without splitting it into its different summands.

Definition 2. We define P(X) to be

P(X) :=

n
∑

m=0

n!

m!
Qm(z)Xn−m. (D10)

Now that we know how to obtain the x that satisfy z in equation (32), let us turn to the system of

equations that actually arises from equation (23). Note that equation (32) does not take into consideration

the z0 term, but by incorporating the condition that A0 ∝ � then the system of equations of interest

becomes equation (33).
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The system of equations equation (32) is also known the power sum ideal. Its reduced Groebner basis is

found as the elimination ideal of the power sums.

Corollary 3. The elimination ideal of the power sums gives the compatibility conditions on the weights dk of

equation (22) to be representable with a diagonal TI MPS of bond dimension D < n.

Indeed, let us consider n = 4 and D = 3. The elimination ideal of the power sums of three variables and

degree four is

〈x1 + x2 + x3 − z1, x2
1 + x2

2 + x2
3 − z2, x3

1 + x3
2 + x3

3 − z3, x4
1 + x4

2 + x4
3 − z4〉 ∩K[z1, z2, z3, z4] = 〈q(z1, z2, z3, z4)〉,

(D11)

where

q(z1, z2, z3, z4) = z4
1 − 6z2

1z2 + 3z2
2 + 8z1z3 − 6z4 (D12)

Note that the compatibility polynomial in equation (D12) is precisely the same polynomial Q4(z) in the

constant term of the univariate polynomial in equation (D6). Hence, all the symmetric Dicke states for

which the z obtained from their dk belongs to the elimination ideal of the power sums of D variables with

degree n are representable as a diagonal TI MPS of the form A0 ∝ � and A1 = diag(x).

Appendix E. Linear programming approach for Dicke-diagonal states

Let us see how we can now apply equation (9) in a more systematic way to determine that the states of the

Dicke basis are the only ones in which corollary 1 applies.

Let us consider ρ as a rank-1 projector onto a quantum state of the form equation (22). In virtue of

equation (8) we have (note that for qubits the partition of n is identified by a single number, therefore we

write α instead of α)

σα
β =

n−m
∑

p=0

√

√

√

√

√

(

m
α

)

(

m
β

)

(

n
α+p

)(

n
β+p

)

(

n − m

p

)

d∗
α+pdβ+p. (E1)

• If we set dα = δ(α− k) then we have

σα
β = δ(α− β)

(n

k

)−1 (m

α

)

(

n − m

k − α

)

I[0,n−m](k − α), (E2)

where IS(x) is the indicator function, which evaluates to 1 if x ∈ S and 0 otherwise. This allows us to

write the set of equations for any basis Dicke state:

n−m
∑

p=0

ρ
α+p
β+p

√

√

√

√

√

(

m
α

)

(

m
β

)

(

n
α+p

)(

n
β+p

)

(

n − m

p

)

= δ(α− β)
(n

k

)−1 (m

α

)

(

n − m

k − α

)

I[0,n−m](k − α). (E3)

• If we take m = n − 1, we recover the result of corollary 1 in the following way: since

σ =
(n

k

)−1
k

∑

α=k−1

(

n − 1

α

)

|α〉〈α|, (E4)

the conditions of the SdP equation (9) can be now rewritten as

1
∑

p=0

ρ
α+p
β+p

√

√

√

√

√

(

n−1
α

)

(

n−1
β

)

(

n
α+p

)(

n
β+p

)

(

1

p

)

= δ(α− β)

(

n − 1

α

)

(n

k

)−1

I[0,1](k − α). (E5)

We note that the right-hand side of equation (E5) is zero if α > k or α < k − 1. In these cases, in the

diagonal (α = β) we have a condition of the form

ρααξα + ρα+1
α+1ξα+1 = 0, (E6)

for some ξα > 0 that we do not need to write here explicitly. Now, the semidefinite positivity

condition on ρ from the SdP equation (9) implies that the diagonal elements must be non-negative:

ραα � 0. Hence, for all α � k + 1 and α � k − 2 we must have ραα = ρα+1
α+1 = 0. The condition ρ 
 0

further implies that all the elements in the respective rows and columns must be zero. Therefore, the

only non-zero element ραα left is ρk
k, which must be 1 in virtue of equation (E5).
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• If we trace out two parties, i.e. we take m = n − 2, then a similar argument follows: we see that for

α > k or α < k − 2 we have a condition in the diagonal similar to the form of equation (E6)

ρααξα + ρα+1
α+1ξα+1 + ρα+2

α+2ξα+2 = 0. (E7)

Again, in equation (E7) we have a linear combination of ρ
α+p
α+p � 0 (because ρ 
 0) with strictly

positive weights ξ
α+p
α+p > 0. This implies that ραα = 0 for α 
= k, and a similar argument follows.

However, one needs to be careful in counting the number of zero and non-zero equations: we need

n > 4 for equation (E7) to exist. To this end, let us see the general case:

• If we trace out n − m parties, then we generalize the last two points: for α > k or α < k − (n − m)

the condition on the diagonal is
n−m
∑

p=0

ρ
α+p
α+pξα+p = 0, (E8)

which implies ρ
k+1+p
k+1+p = ρ

k−1−p
k−1−p = 0 for p � 0. This condition is nontrivial as long as the number of

equations (m − 1) is greater than the number of nonzero left hand sides (n − m + 1), i.e. whenever

m > n/2. Therefore, the condition ρ 
 0 implies that all the off-diagonal elements must be zero and

therefore ρk
k = 1.

• Suppose we trace out n − m parties. Then we have the following system of equations:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

n − m

0

) (

n − m

1

)

. . .

(

n − m

n − m

)

. . . 0

0

(

n − m

0

)

. . .

(

n − m

n − m − 1

)

. . . 0

...
...

. . .
...

. . .
...

0 0 . . .

(

n − m

n − 2m

)

. . .

(

n − m

n − m

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x0

x1

...
xn−m

...
xn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

n − m

k

)

I[0,n−m](k)
(

n − m

k − 1

)

I[0,n−m](k − 1)

...
(

n − m

k − m

)

I[0,n−m](k − m)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(E9)

where we have defined for simplicity xp := ρ
p
p

(

n
k

)

/
(

n
p

)

. If m > n/2, there must necessarily be zeroes

in the right-hand side of equation (E9).

The question about uniqueness of solutions of linear programs [106] and semidefinite programs [107,

108] is an intensive field of research, due to its connection to rigidity theory. For instance, the general

solution to the uniqueness of equation (11) can be expressed via

Theorem 2 [107]. If ρ is a max-rank solution of equation (11), and we write ρ = L†L, where L ∈ Cr×n, then ρ

is the unique solution of equation (11) if, and only if, the kernel of the linear space spanned by L†Aα
βL is trivial.

Corollary 4 [107]. If all the solutions to equation (11) share the same rank, then the solution must be unique.
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[44] Oszmaniec M, Augusiak R, Gogolin C, Kołodyński J, Acín A and Lewenstein M 2016 Random Bosonic states for robust quantum

metrology Phys. Rev. X 6 041044

[45] Grigoriy Blekherman R T and Parrilo P A (ed) 2013 Semidefinite Optimization and Convex Algebraic Geometry (Philadelphia:

Society for Industrial and Applied Mathematics)

[46] Tura J, De las Cuevas G, Augusiak R, Lewenstein M, Acín A and Cirac J I 2017 Energy as a detector of nonlocality of many-body

spin systems Phys. Rev. X 7 021005
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