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static attraction between oppositely charged groups in neighbouring
molecules is an important factor in the strength of the gluten network.

The upward bend of the reloading curve up to the point where flow
(i.e. the rupture of further links) occurs is probably mainly due to the
irregularity of assembly of the elastic members, but may also indicate
that individual chains are approaching the limit to which they can be
extended.

Evidence has been obtained that the starch paste penetrating the gluten
network has a “yield value”, in consequence of which there is elastic
hysteresis even when the cycle is carried out slowly enough to avoid elastic

after-effect.
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The Quantum Theory of Atomic Polarization
I—Polarization by a Uniform Field
By R. A. BuckiNnGaAM, B.A., Queen’s University, Belfast
(Communicated by J. K. Lennard-Jones, F.R.S.— Received 29 December 1936)

1—INTRODUCTION

Two problems of atomic energy, the energy of polarization of an atom in
a plane electrostatic field and the energy of interaction, or van der Waals
energy, of two distant atoms, are particularly suited to attack by approxi-
mate methods. In each, the disturbing field, whether that of the static field
or of the distant atom, is small in comparison with the internal fields acting
on the electrons of the atomic system, and so the standard methods by which
quantum mechanics deal with small disturbances, namely the perturbation
and variation methods, can be and have been successfully applied to these
problems. Though the perturbation method, strictly applied, is the more
accurate, since it takes into account the possible excited states of the
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system, its usefulness is restricted to atoms of simple structure, and having
relatively simple wave functions. Generally speaking the variation methods,
which require a knowledge of the unperturbed state of the system only, are
more suitable for larger atoms; ignorance of the excited states is largely
compensated for by expressing the perturbed wave functions in terms of
parameters, which are then chosen to make the total energy a minimum.

As one would expect, the atoms of hydrogen and helium have been studied
most fully, the perturbation theory being used by Wang, Eisenschitz and
London, and Lennard-Jones, and variation methods by Atanasoff, Hassé,
Slater and Kirkwood, Pauling and Beach.f Owing to the first order Stark
effect, the calculated polarizability of the hydrogen atom cannot be com-
pared with experiment, but the calculated value for helium agrees well in
most cases with that observed. The van der Waals energy of two hydrogen
atoms given by Pauling and Beach includes accurate values not only of the
usual dipole-dipole term, which varies as 1/R®, but also of the dipole-
quadripole and quadripole-quadripole terms, varying as 1/RS, 1/RY
respectively.

The most accurate calculation of the dipole-dipole term for two helium
atoms is probably that of Hassé (1930, 1931), and the higher order terms
have been estimated by Margenau (1931).

The treatment of larger atoms has been largely devoted to obtaining a
relation between the dipole-dipole constant ¢ (the van der Waals energy
being —¢/R®) and the polarizability «. It was started by London (1930),
who deduced that for two similar atoms

¢ = (const.) fa®,

where [ is the ionization potential. The use of the variation method by
Slater and Kirkwood (1931) suggested that

¢ = (const.) Not,

where N is the number of electrons in the outer shell, and though their work
was restricted mainly to hydrogenic wave functions and functions without
nodes, the method was later modified by Kirkwood (1932) to include any
type of wave function. A different line of approach was followed by Vinti
(1932), who used the Kuhn-Reiche sum rule to simplify the second order
terms of the perturbation theory (the first order terms vanish in these
problems), showing at the same time that the assumptions made were

t For the treatment of H: Wang (1927); Eisenschitz and London (1930): Lennard-
Jones (1930a); Pauling and Beach (1935). For H and He: Hassé (1930, 1931);
Slater and Kirkwood (1931). For He: Atanasoff (1930).
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implied also in Kirkwood’s variation method. ‘Using the same idea, Hell-
mann (1935) was able to extend the results of Vinti and Kirkwood, by
treating the electrons of each atom not as a single group but as a number
of shells, which in the variation method corresponds to the use of several
parameters instead of one, and by including the Pauli Principle.

In this paper, Kirkwood’s variation method is used throughout, with one
or more parameters and with inclusion of electron exchange, and formulae
derived for the polarizability of atoms with any number of electrons. The
results are somewhat more general than those of Hellmann. Calculations are
then made with the available wave functions of the rare gas atoms and alkali
ions, and the results compared with experiment as far as possible. In a
second paper, the van der Waals energy of atoms will be considered.

2— ENERGY OF PERTURBATION

We shall begin by deriving an expression for the increase in energy of an
atom containing N electrons when subject to a small perturbing field. We
shall assume that the electronic system is in a non-degenerate state which
can be adequately represented by a wave function involving the space and
spin co-ordinates of the electrons only. Thus if the unperturbed wave
function is ¥, and its complex conjugate is ¥*, the energy of the system is
given by

E- f WEHWdr / [wwar, (2:1)
N
where H = z {_. %Vfﬁ' [;},
p=1

V, being the potential energy of the pth electron, expressed as a function
of the space co-ordinates of the pth electron only, and V3 the Laplacian
operator for the same electron. The integration is carried out over the co-
ordinate space of every electron.

When an external field is applied to the system, let us suppose ¥, to be
increased by a small amount v, to V,+v,. H is therefore increased to
H +v, where v = Zv,, and at the same time the function ¥ is changed to

L] > "o =5 P . . e .
¥+ ®, where ®*® is of the order of magnitude of 2. The energy of the
perturbed state is then

: '<‘1’*+‘1’*)(H+u)wl+(1>)dr
B4h="r——iar — : (2.2)
J(‘]’*+‘I)*)(‘I’+(I))d~r
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h being the energy of perturbation we wish to evaluate. Nowin the problems
to be discussed later, » and ¥*® are odd functionsf of the electron co-
ordinates, and a number of integrals in (2-2) vanish, including

f PEWdr, J(D*v(bd'r, f PEpdr, f(D*Y’d'r.

Hence

E+h = a—}_b[f(?’*¢+¢*¥’)-vdr+f(¥’*+¢*)H(!P+<I))d-r:|, (2-3)

Qwhere a =fW*Y’dT, b= f D*Pdr.

S

ZBy transforming the integral containing V2 by Green’s Theorem, so that
%Dthe surface integral vanishes over the infinite boundary, and by neglecting
< terms in »* and higher powers of », and also terms of the form

S

=

o 7 4

= a f ¥V, Ddr — bJ‘Y’*I R, (2-4)
gowe find that

i P ff(srf*qucb*lp)vdr

° 2

2 b

% —Y [fgr&dp¢* .grad,@dr — afgradp‘ll* .grad,, Y/dr:l . (2-5)
2 2a%

.C—%The expression for 4 given by Kirkwood and Hellmann is slightly different
Zfrom (2:5), but follows immediately from it when @ is replaced by Yu,

S provided that we can neglect terms of the type
fgra(lI,W .grad,,u*¥dr —— [W*u”f’dr fgrad ¥* grad,Wdr. (2-6)

We then obtain
ho= éJ‘W*{zuv + 4 (grad,u®)} ¥dr. (2:7)
P

nloaded from https://ro

B Both (2:5) and (2-7) will be used in the applications which follow, and we
Q shall assume that the terms of which (2:4) and (2:6) are typical are small]
in comparison with other terms of the order of v2.

+ The sign of the function is changed if the co-ordinates of any electron are
re-versed in sign.

1 Tt can be shown that, when ¥ is real and satisfies the Schridinger equation for
ﬂx( atom exactly, Kirkwood’s result (2:7) holds without approximation. This suggests
that when @ cannot be written in the form %u, the neglect of the terms cor responding
to (2:4) and (2:6) is in fact justified. It is intended to examine these terms in a later
paper.

Vol. CLX—A., i
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3 PorarizaTioN BY A UNirorM FIELD

The results of § 2 will first be applied to the increase in energy of an atom
in a uniform plane electrostatic field. Let us assume that the wave function
of the atom when the electrostatic field is absent, is the determinant

YJ == | 'l,/al 1/1‘12 ...... ',"/a;\.' :‘, (3'1)
I/I.ﬂl f/fﬁz ...... “/,ﬂ_,\r t
VaWha weeees Y ‘

where i, V¥, ..., ¥, are the wave functions of the occupied electronic
states of the atom, the Greek suffix being an abbreviation for the four
quantum numbers #n, [, m, s, of the state, and the italic suffix indicating
the electron whose co-ordinates are inserted. The i/’s are assumed to include
the spin function as a factor, to be orthogonal and each to be normalized to
unity. If ¥*is the conjugate complex of ¥ then

a =J PEPdr = N

if the integration is carried out over the co-ordinate space of every electron.
¥ also satisfies the Pauli Exclusion Principle and permits any pair of
electrons to exchange places freely.

When the atom is subjected to an external field the 1/’s are changed. It
is convenient to express the perturbed function corresponding to op Which
contains the co-ordinates of the pth electron, in the form

zt!/pp (l +f(rp) 'l"n)

where v, is the increase in the potential energy of the pth electron and f0ry)
is a polynomial function of its radial co-ordinate. As a first approximation
we shall take f(r,) = A, a constant for all values of p and p. The perturbed
wave function of the whole atom is then obtained by replacing i, in the
determinant ¥ by 4 {1 +Av,) and therefore, if only linear terms in v, are
retained, it is

Y(1+Av),

where v = X»,. This function is likewise antisymmetrical in the electron
co-ordinates, and so satisfies the Pauli Principle.

m . . - - - .

I'he energy of perturbation is now given by (2-7); inserting a = N'!,
u = Av, we have

~

1 ,
h = N P22+ 1A2Y (grad )} Wdr. (3-2)

P
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Let r, be the position vector of the pth electron, and F a constant vector
representing the electrostatic field. Then in atomic units, the field perturbing
the pth electron is v, = —F.r, and so

N
- —p;(l«‘.r,,). (3-3)

With this expression for », (3-2) can easily be reduced to a sum of simple

integrals involving one electron wave functions only. As this part of the

process is long it is omitted here, though further details of this and similar
« reductions which arise later will be found in an appendix. We find that, after
§ averaging for all orientations of the atom relative to the direction of the
+ external field,

h = F23AR2+1NA?), (3-4)
where R = > (R?),
P
and (B%), = (r?),,— 5; (@)e4(®) o + (Yo p(¥) o + (2)ap(2) prt-

» The quantity (7
density v, i.e.

r%),, 18 the average value of 7* with respect to the charge

() V8 J Y, dr.

It is independent of the electron considered and so the electronic suffix is
mitted. The other terms in (R?), are exchange integrals, of which

o

(@)op = [3v, dr.

https://royalsoc1etypublish1ng org/ on 04 Augu

is typical. These integrals are discussed in detail in § 3a.

g We see that expression (3-4) for & contains the unknown parameter A,
£ which must be chosen to make the energy a minimum. Accordingly we
Q3 introduce the condition dh/dA = 0 which givesA = —2R?/3N and

I'mln 67\"

ownload

A The quantity of practical importance is the atomic polarizability o defined
by hpin.= — b F? and therefore given by

qjv (B2 (3:5)

o=

in atomic units.
In deriving (3-5) it was assumed that each wave function ¥, is per-
turbed in the same degree, determined by the parameter A. This is unlikely
H2
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to be accurate, if only because electrons in the inner shells are shielded by
those in the outer from a perturbing field acting from without, and so we
will consider the effect of using a different parameter for each electronic
wave function. Thus let us now assume the perturbed form of ¥, to be
Y,o(1+A,0,) where A, is a different constant for each state p from « to v.
The perturbed wave function of the atom, obtained by replacing i, in
¥ (3:1) by ¥,,(1+A,v,) now becomes, when only linear terms in v, are

retained,
Y+,

where @ = YA, >, D,,v,, D, being the first minor of i, in the deter-
14 P

minant . @ is no longer a simple multiple of ¥, and so equation (2-5) for
the energy of perturbation must be used instead of (2:7). However, this does
not affect the accuracy of the final result, as in the course of reduction to
simple integrals we neglect certain terms comparable with (2-6). After
averaging for all orientations of the atom as before, we obtain in place
of (3-4) N

hi= K2 ; {§A,(R2),+ §A3}, (3-6)

and when the parameters are chosen to make £ a minimum,

hmin, = —§F* 3 (R%);,
P

and a=4$>(R2, (3:7)
)

where the summation for p includes all the occupied electronic states.t
As a further refinement we shall take the perturbed form of Y, to bel

l,z'lﬂ”{l +/\p vp( 1+ au‘p'rp)}y

T By a:pp]ying the Kuhn-Reiche sum rule to the second order terms of the
perturbation theory, Hellmann (1935) obtains the following expressions for a:

a = 4); (1)@ — Z | (2) ]2
i k=i

Different orientations of the atom relative to the external field are not considered.
When written in the same way (3:7) becomes
= 4% f(>2 D3I [ 2L L
X 4“7’)(‘ )u_ "" (‘)1’k|2:’2'
i e
It is not clear why the two results should differ.

I In dealing with He, Hassé (1930) showed that for the introduction of the linear

term of the ;}»ulyxm}uiul f(ry) improved the calculated value of the polarizability
considerably. The higher powers of ry were found to have a negligible effect.
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where 1, likeA ,, is a different constant for each wave function. The analysis
is scarcely affected and yields the result

h=F 2; [BA(RR), + p,(B) 3+ FAL{L + 50, (r) p + 205(r%) 1,11, (3+8)
where  (R?), = (r*),,— cgp{(m)ap(w),m + ("o s (W) por+ (r2)5(2) )

and (R?), is the same as in (3-4). The minimum value of h gives for the
polarizability

4
3 §§ R22(1+4,), (3-9)
Q
> L B 40, (R,

2(r2) (R 3(r?) (R2

};9 1+4, = (7)ol K, : 0B (3-10)
<+ _§ (r)pp
%3 9(r%),,
% The quantity 4,, which may be regarded as a correction to the much
Ssimpler formula (3 7), is shown in § 40 to be important for the lighter atoms.
a0
=
Z 3a—Evaluation of Integrals
% The functions (R*®), and (R?®), which occur in formulae (3-5), (3-7) and
%’(3 10) for the atomic polarizability can easily be evaluated once the electronic

‘Swave functions are known. We have defined

% (R2) (7' pe 2 { x)pp ( )pp(!/)pp"f‘ (z)p'p (z)pp'}’

<

E}n which p, p’ are written shortly for the quantum numbers #, 1. m, s, and
En',l',m’, ¢, respectively and

£

S

ﬁ (%), = J. yarty,dr,  (x),, = [‘P;f.va,dr, ete.

3 J

< .

§ ¥, is usually expressed in spherical polar co-ordinates in the form
§(27r)—* R(nl | r) P™(cos ) e x spin function, where R(nl|7) is the radial

Qwave function, normalized to unity,and P,™! (cos #) the associated Legendre
funection. The angular and spin factors of (+%),,, (z),,. (), and (2),, can
be integrated at once, and incidentally (2),, vanishes unless the quantum
numbers of ¥, and ¥, satisfy

pr

|=l| =1, m'=m, & =s;
likewise (), (¥),, vanish unless

|V=t]| =1, |m'—-m|=1, & =s.
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The integration for r introduces integrals of the types

J‘w"“z[P("l | r)2dr, (P, nv =L rP(nl|r) Pl | r)dr,
0

()‘2)"1’ )
where P(nl|r) =r. R(nl|r) and we find eventually that for an atom con-

taining complete (n, 1) subgroups, :
(Rz)nhns = (Tz)nl. nl 2_(2l?1_3 Outs (3'11)

where o, is a function whose form depends upon the azimuthal quantum
number [, but is independent of the magnetic and spin quantum numbers.
Thus, for an atom containing complete s, p, d and [ shells:

o-nO =2 Z ('r)?:.'l, 7102 )
n

Op1 = 2 Z{(r)%u. nl =+ 2(7.)?1,'2, nl}'
n

Tp = 2 z {g(r)ﬁ’l, n2 %5 3(7‘)?)'3. 1:.2}’
n’

O3 =6 Z ()i, na-
n

(312)

The range of #’ in these sums depends upon the value of I (either 0, 1, 2, or 3)
associated with 2/, but it includes every occupied subgroup having the
quantum numbers 7', I'.

The terms (R?), are treated similarly, and we find

1

3 — 3 e #
(-R )nlms = (7‘ )nl, nl 2(2l+ l)Tnl’ (3 13)

where 7,, is simply related to o, as it is only necessary to replace ()2, m
where it oceurs in o,; by the product (r2),4. i (7),1, - For example

Tl = 2 ; {(7'2):.'0. nl (")n‘o. nl . 2(72)71’2. nl (r)n’Z, n..l}‘

When the atom contains incomplete subgroups, it is necessary first to
consider whether the electronic configuration is degenerate and, if so,
whether the previous argument needs to be modified. However, if an s shell
is incomplete, as in the alkali atoms, no modification is required other than
that the contribution of that shell to the o and 7 terms, as defined by (3:12),
shall be halved.

The self-consistent atomic fields calculated by Hartree and others provide
suitable functions P(nl | r) from which to evaluate (r2),; s (F)pr, e €8¢ BY
numerical integration, and we can therefore calculate the polarizability
of any atom or ion for which the self-consistent field is known, provided
proper care is taken when there is an incomplete subgroup. It is true that the
Hartree functions for the same I but different » are not exactly orthogonal,
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but the error is found to be too small to make it necessary to derive an
orthogonal set. A more important disadvantage is that they neglect
electron exchange entirely, and although the self-consistent field equations
have been niodified by Fock to include exchange, Fock wave functions have
as yet been calculated for very few atoms. A comparison of Hartree and
Fock functions is made below.

3b—Nwumerical Results and Discussion

In § 3, three different expressions for the polarizability of an atom were
N obtained by progressive application of the variation method. We shall now
%discuss the following points which arise in comparing the polarizabilities
aca-lculated from these formulae with each other and with experimental
é‘ values: the effect of exchange on the calculated polarizabilities; the effect of
=) introducing exchange in the electronic wave functions; the effect of the more
q accurate variation function leading to (3-9); and Kirkwood’s relation
= > between polarizability and magnetic susceptibility. These points will be
S 1llustrated with the help of available wave functions for atoms and ions with
_%Dcomplete subgroups.
% It was shown above that the functions (R2) , oceurring in (3-5) and (3:7)
Sdepend only on the quantum numbers » and / and hence the summation
Q‘\mthm each (n, [) subgroup can be carried out at once. If this is done and
”(3 11) substituted for (R?),, then (3-5) and (3:7) rewritten in c.g.s. units are
Frespectively

ublis

=

< 4(13

> — ORNYO, 8 = 2 I
) = (r?), Ot

£ gN[RE‘l 1)t e — Ot ]

2

E 02 % {ll nl ,,‘1—0'.,,1}2, II
g nl Vi

S

ﬁwhere @, is the radius of the first Bohr orbit in the hydrogen atom
%(4&3/9 = 0-654 x 10~ cm.?); the terms (r?),, ,, and o, are still expressed in

Satomic units. The summations are for all occupied subgroups, and

v = 2(21+1).

Downl

Of these results, I was derived from one parameter only, and should be
compared with that found by Kirkwood, using for the atomic wave function

the simple product
V=1 '//12 Yns

which takes no account of electron exchange; likewise with II we may
compare the result obtained by Hellmann, also neglecting exchange but
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using a different parameter for each subgroup of electrons. The formulae of
Kirkwood and Hellmann, which we will denote by LA, IL A respectively, are

o= 4-(’13){2 Vl(rz)ul. 111}2’ Ia
9N nl
4(13
a = _!_;02 pl(re):g:l. nls ITa
nl

in the same units and notation. It will be seen that the only difference is in
the absence of the terms o ;.

These four expressions for o exemplify two general principles; first, that
the inclusion of electron exchange, which is similar to the removal of a
constraint on the system, decreases the energy of perturbation and there-
fore the polarizability. Thus the values obtained from I and II are re-
spectively less than those obtained from Ia and Il A, since o, is always
positive. Secondly, it is generally true in applications of the variation
method with a given form for the perturbed wave function that, as more
parameters are introduced, the calculated energy approaches the exact
value as a lower limit. The energy of polarization being negative, we should
expect the calculated polarizability to increase in magnitude as the number
of parameters is increased; and, in fact, the values given by II and I1A are
respectively greater than those given by I and Ia. To illustrate these
remarks, the known Hartreet fields of Ne, A, Rb+ and Cs* have been

applied, as suggested in § 3a, to calculate values of &, which are shown in
Table 1.

TABLE [-——CALOULATED ATOMTIC POLARIZABILITIES : o % 1024

Method Ne A Rb* Cst

I With exchange 0-348 1:49 1-09 1-43

Ia Without exchange | 0-774 3-38 2-54 4-32

IT  With exchange | Parameter for 0-517 4-09 4-35 8-44
ITA Without exchange| each subgroup  0-969 7-16 7-47 169

One parameter

Table I shows that the inclusion of exchange terms in the formula for «
may reduce the calculated value by as much as 50 % - Before making any
comparison with experiment we must also consider the effect of exchange on
the electron wave functions, as shown by the difference between Hartree

i | amrindebte(l to Dr J. MeDougall for the use of unpublished wave functions
for Ne. Other Hartree fields have been used as follows: A, a field calculated by
J. McDougall and R. A. Buckingham ; Cs+ (and also K+) from D. R. Hartree (19345:
(Rb*’, )&nalytical wave functions derived from the Hartree funetion by J. C. Slater

1932). :
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and Fock functions. The few Fock functions which are known indicate the
change to be expected; thus D. R. and W. Hartree (1935)} have already
pointed out that in normal Be the term (r%),, o is about 12 9% less, and in
Nat (r%)y,, g, is about 13 9, less for the Fock field than for the Hartree field.
In Cl-, the decrease in (%), 5, is as much as 30 9,. The effect of exchange
on the o, terms can be examined in Na*, Cl-, and it is found that these
terms are practically the same for the Fock and Hartree fields. The corre-
sponding values of a.10* calculated from II are as follows:

- Hartree Fock
g Be 12:0 9:28
Sj Nat 0-183 0-134
2 B Ay 16-2 69
=)
=)

< The use of Fock functions thus leads to a further decrease in the calculated
Spolarizabilities, and therefore to better agreement with experiment, since
SHartree functions are found to give values which are too high. There is,
‘Bhowever, one important exception to this general statement: the Hartree
cjield for Na* gives a = 0-183 x 10-%, which is slightly larger than the
EO 17 x 10~* deduced by Mayer (1933) from spectroscopic data, but less than
Zthe 0-245 x 10~ given by Heydweiller’s (1925) measurements of the re-
'&'ractlwtles of alkali halides in solution. We are therefore led to consider the
Emore accurate formula (3-9) which, when written in c.g.s. units, is

4a3 1
s 50%1—,1{"1("2)141. -nl_o'-nl}2 (1 +Anl)' 111

/_/aroyalsome

This represents the closest approximation to the actual atomic system
hich has been considered, as the assumed system satisfies the Pauli
~Principle and allows two independent parameters for each subgroup. The
cdlﬂiculty in applying it arises from the calculation of the 4,, terms for
..cWhJCh accurate wave functions are necessary.
'g Nevertheless, the available functions indicate the relative importance of
Sthese terms in different atoms. In Table II are given the values of 1+4,,,
%tvhose in the first column being derived by numerical integration from self-
Aconsistent functions (Hartree functions, with the exception of Be and Na*,
for which Fock functions were used), and those in the second column from
analytical functions (Slater 1930) of the type r"*-1 exp (—n*r/Z—S), in
which »n* is an effective quantum number and S a screening constant.
Since the inner groups of electrons make a very small contribution to a.

1+ The Fock field for Nat+ was caleulated by V. Fock and M. Petrashen (1934).
I am indebted to Professor Hartree for information about the Fock field of Cl-
before it was published (Hartree, D. R. and W. 1936).

ttgs

m
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only the outer group in each atom has been considered, although a calcu-
lation for Na* shows that the contribution of an inner S-group may be
doubled. The large discrepancy between the two values for the 2p group of
neon may be understood by comparing the theoretical values of the magnetic
susceptibility y given by the same wave functions: thus the Slater function
underestimates the extension of the 2p charge distribution from the nucleus
and gives a susceptibility less than that observed, whereas the Hartree
function does the opposite. Hence the proper value of 1+ 4(2p) probably
lies between those given. For Na*, however, both the Slater and Fock
functionst appear to underestimate y. so that the correct value of 1+ 4(2p)
may be greater than 1-15. But the general conclusion is that the value of
1+ 4,, for an outer group differs appreciably from unity only for the lighter
atoms such as He, Ne, and Na*. Its effect is then to increase the calculated
polarizability, and for Na* the agreement with experiment is thereby
slightly improved.

Tasre 11
Self-consistent

funections Slater

He 14+ 4(1s) — 1125
Be 1+ 4(28) 1:00 1-:01
Ne 1+A4(2p) 1-40 1-03
A 1+ 4(3p) 1:004 1-00
Kr 1+ A(4p) — 1-00;
Xe 1+A4(5p) — 1-01
Nk [1+4(2s) 2.03 2.83
) 1 1+4(2p) 115 1-03
K+ 1+4(3p) 1-03 1:00

It is perhaps worth mentioning an empirical method of estimating these
correction terms. It was pointed out by Kirkwood that polarizability and
magnetic susceptibility are related quantities and using his result for «
(formula T4) he suggested the relation
- 1_2(_3%3 INT

= S
4me?

s

Further developments by the variation method show that this is hardly
Justified, though as an empirical relation it is more successful than one
would expect (Brindley 1933). However, we may make use of the result
that the main part of o comes from an outer group of electrons, say v, in

T The Slater and Fock functions give X=—417, 5:0x 10-% respectively. The

experimental value for ions in solution is about — 57 x 10-%, and for erystal ions
about —6-1 x 10-8, »
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number; then if (7%), and o, are the values of (%), ., and o, for this group,

its contribution to y is
Le*a}

A Bme? vo(r2)y - (3-14)

By comparing (3:14) and III, we find that approximately

i 6me?
s 4] +70= ~ Lo gl
SNow suppose « and y are known experimentally, and that y, can be

estnma,ted from y, as when the relative importance of the different electron
=0roups is known from the self-consistent field. If in addition o, which is
<usua]]y much smaller than the other terms, is given its theoretical value,
Ithen the relation (3-15) can be applied to find 1 + Af. The results in Table ITI
ghave been derived in this way. ‘

Tasre 111+

X 10 —x % 108 — Xo X 108 T 1+ A48
Ne 0-392 6:75 537 1-79 1-43
Nat 0-280 6:1 4:56 1-23 1-23
Cl- 3:01 24-2 18-9 574 0-84
A 1-63 19:54 14-7 477 0-79
K+ 1-09 14-6 10-7 3-67 1-03
Kr 2-46, 28.0 17-4 6-5% 0-95
Cst 2.712 35-1 19:3 8-37 0-96

T For the rare gases, the experimental values of o are taken from C. and M.
‘uthbertson (1911) and of y from Mann (1936). The data for the ions refer to ions in
the erystalline state; the values of y are those given by Brindley and Hoare (1935),
and the values of o are derived from the refractivities of the alkali halide erystals,
Smeasured by Spangenberg (1923)

3 i The value of o, for Kr is calculated from approximate self-consistent wave
Sfunctions for the 4s and 4p electrons, kindly sent to me by Professor D. R. Hartree.

t}_Ps://royalsocietypublishing.org/

m h

Direct comparison of the values of 1+ 4] with the theoretical values
A1+ 4, is hardly justified, since the error of approximation involved in (3-15)
is not known. Further errors may be introduced by inaccuracy in the wave
functions, affecting o, and the ratio y,/x, and in the experimental data,
which for the ions are especially uncertain. But although the values in
Table IIT must be accepted with caution, they do confirm the theoretical
result that the A terms are important for the lighter atoms Ne and Na*. Itis,
however, rather surprising that the A value for argon should be so large and
negative.

ownloade
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APPENDIX

Much of the integration required in § 3 is applicable to other problems,
and so we shall give a separate account of the methods used, beginning with
the integrals, such as those in (3-2), which contain the density function
Wy, This is replaced by the determinant 4 obtained by multiplication of
the determinants ¥* and ¥, defined by (3-1). 4 has the form

.A = all (112 ...... ah\r ) (1)
(O oy
(l/‘\ 1 a.)\‘a ...... a‘vN
where a,, 29’ »o ¥, the summation including all occupied states from

a to v, and A ha:s the property that it can easily be integrated over the co-
ordinate space of any electron (see Lennard-Jones 1930b). For instance, if

f(p) is a function of the co-ordinates of the pth electron only, then by com-

pleting the integration for all electrons except the pth, it is easily proved
that

N,J'{/*f '1!(17—, 'f}) Ay ATy,

a result which is independent of the choice of p. We can therefore drop the
electron suffix, and remove the factor 1/N by summing for p from 1 to N;
thus

1
wiS [ v rwrwar =3 [yipv, an @)

Similarly if g(p), g'(¢) are respectively functions of the co-ordinates of the
pth and gth electrons only, then by integrating for all electrons except the
pth and gth

1 ¢
Ni P g(p)g'(q) Pdr = ’f g(p)g %op Ypa | dT ,dT,

Tap Qg |

1
N(AY l )z “f-(/( 1)) .(/'((]) J(‘t,/:)) ‘)&‘up Vﬂq ﬁm/

p oo

,,1, l,bpq Vb Vop} AT, A7,
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This is likewise independent of the choice of p and ¢, and hence, dropping
the electron suffices,

N.E z Y*g(p)g'(q) Pdr

P q+p
=33 [vrownar[vzovir - [uzov,irfpse var ] @
Turning now to (3-2), we require the integral of »* where v = —Z(r .F).
v* may be written
Z{(rp.F)2+ g (r,.F)(r,.F)}
and so from (2) and (3) we get at once

N'J Y Wdr = E[J(Y.F)z UEy dr

£33 J (r.F) y* thr F)y* y. dr’

e |
J(r F) Yy, dr [ (. F) g g d'r ‘]

Let us introduce a system of rectangular axes in which r has direction
osines [, m, n, and F has direction-cosines a, f, y. Then if », F are the
‘Bmagnitudes of r and F

typublishing.org/ on 04 August 2022

ocie

J‘g.’/l’f (r.F2,dr = P2y r? (la+mf+ny)y ,dr,

g)s://royals

nd when we average for all values of [, m, n, i.e. for all orientations of the
atom relative to the direction of F, this integral reduces to

37%(r%),,
Now (r.F) is an odd function of » and so its average value with respect to

he charge density /) i, is zero; the second term in (4) therefore vanishes.
he remaining integrals can be treated like the first, and finally

=

ct+

Dognloaded from ht

1 .
N—!J.W* 1;2 Wdf = %—FZ pz [ (7-2 Z { U/J /m' (y)vp (y)p(f A~ (Z)crp (Z)pa'}]'

agHFp
Wealsorequire the integral of (grad,, »*),in which grad ,» = —grad (r,. F).
From (2) it follows that

NT P (grad, v)? W dr = E ¢*{gmd r.F)2 dr,
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and the right-hand side is easily shown to be equal to N. These results lead
at once to equation (3-4).

When it is necessary to use equation (2:5) for the perturbation energy,
rather more complicated integrals occur but they can be reduced in essen-
tially the same way. Instead of the charge density P*¥ we usually have
Vi 74§ D, Yyps 0 which D), is the first minor of '/’/m in the determinant

Y. D¥, and D,, are therefore determinants with (N — 1) rows and columns

and their product is likewise a determinant (N — 1) rows and columns, having

the form

s ) ' ' ’ ’ |
D,",‘,, D/w = (— )t Q31 zetiss Ay p—1 Q1 pia =veeer ain s
4 ’
g-1,1 @y, N
/ 4
@g41,1 g1, N
’ ’ ’ /
(Z\l ...... (1_\- P = a‘\’ I’+l ...... (1\ N
Have il = % o : R ’
where a,, = > {7, ,,, the summation including all states from « to »
ﬂxll
h e s . i : PN ol As Aav .
except p. The product of this determinant with /7 v, is, like (1), easily

integrated over the co-ordinate space of any electron, and we obtain the
following useful results:

EJI//;',‘,I I);',‘,l 110 V,ulf(p)dr = 0, when g+ p,
)

Ny 1 pydr, when g = p.

¥ 4
> Z,J ‘c,:’/;',‘qD;‘f,l D, V,p9(p)g'(t)dr = 0, when t+gq, )

D AF1
-

/* ' ) ’
Yoo Y, dr'—

p o

Viatydr[ped v,dr)

when t =¢q.

= N3 wrow,dr

axpl

Integrals which involve % D* 1) 4. (04 p) can also be reduced by

the same method, and we find that

f¢:p D:): I)ap l//ap dr = Oyl

f‘lltll thl ‘Da']) WUpf(p) dr = 0, - (5)

(v D8 Dy Vo 0(0) ' @ 7 = 0

- /
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Let us now consider the integral of Y*v®, where v = Zv as above, and
@ = ZA zwpp (23 P We write

: b tp*(z zr,)Z/\ ZVPP »p Vp >
in which the coefficient of /1 is

2 g YonDop Vp (Zt: ).

If ¥* in this expression is replaced by its expansion in terms of the elements

of the pth row, i.e. by Z Yrou Dy, then
WO = S S S V8Dl Dy V(05 20
) {4
When we apply equatlons (4) and insert v, = — (r,,. F) the terms which do

not vanish on integration give
17
i v - gz\pl:fglf:(r.F)ﬁ/fp(lT

- 3 [vse Byparfpsw Py |
o+
owhich by our previous results ?

= SR,
From (2-5) we have also the followinlg term involving grad,,:
fgrad,, &* . grad, Ddr — N [(D*(D dr J‘ grad, P*.grad, ¥dr.
Since @ = z A 2 ¥ op D, vpand D, , contains the co-ordinates of all electrons
< except the pth
grad, = Z/\p{ ),o(Vp grad, v, + v, grad,, ¥, ) + 2 Vv grad, D}

On mtegratlon we neglect all terms except that in (gmd v,)* assuming
that the remainder, which with the integral of grad,, ¥*. grad,, 'l’ are analo-
gous to (2-6), are small. Approximately therefore

1 1
N,,!_z lJ‘grad &* . grad, Ddr — N.Jq)*qﬁ dr [gradl, W, grad,, V’dr}

Downloaded from https: //royalsocietypublishing org/ on 04 August 2022

Ny EJ z/\ Dpl) 1/‘,[:1){2 Acr a'p a';:f Gradp 7‘p). dT
N] ZZAO "‘b‘pp Dpp pr Vpp (m‘a'dp U}))2 dT b‘\' (5)

-3 f grad(r. B2y dr by (4)
S
P
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Equation (3-6) for the energy of polarization follows at once from these

results.
The integrals which arise when we introduce the more accurate perturbed

functions described in § 3 do not require any extension of the method out-
lined above, and we shall therefore not give further details.

I am very grateful to Professor J. E. Lennard-Jones, F.R.S., for many
helpful discussions; also to the Department of Scientific and Industrial
Research for a grant during a period when many of these calculations
were made.

SUMMARY

The theory of the polarization of an atom by a uniform electric field is
developed, using a variation method introduced by Kirkwood, and the
atomic polarizabilities of several atoms containing closed electron groups
calculated from their self-consistent fields. It is verified that an anti-
symmetrical wave function for the atom gives better results than a sym-
metrical function. Higher approximations, in which more parameters are
introduced in the perturbed wave functions, are considered. Calculations
with the Fock fields of the atoms of Be, Na*, and Cl- show that the inclusion
of exchange in the electron wave functions has considerable effect on the
calculated polarizabilities.
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The Quantum Theory of Atomic Polarization
II—The van der Waals Energy of Two Atoms

By R. A. BuckingaaMm, B.A., Queen’s University, Belfast

(Communicated by J . E. Lennard-Jones, F.R.S.— Received 29 December 1936)

hing.org/ on 04 August 2022

In a previous paper (p. 94) (which will be referred to as Paper I), the
-Z polarizability of an atom ina uniform electric field was calculated by amethod
S of varying parameters. The same method can equally well be applied to find
2the energy of interaction of two atoms a large distance apart, by treating
'g their interaction as a perturbation of the system in which the atoms are
< separated by an infinite distance. The mutual energy, other than that arising
>*from the ionic charges, if they exist, of the atoms, is usually called the van
B = der Waals energy.

§~ We shall suppose that one atom contains N, electrons, and is represented
< in its unperturbed state by a determinantal wave function ¥, (as in
o equation (3-1) of Paper I), containing electronic functions of the type yfp o
3 — where p, may be any one of the N, occupied states a,, f;, ..., v, of this atom,
'g and p denotes that the spatial and spin co-ordinates of the pth electron are
= S inserted in y/,, . Similarly the second atom contains N, electrons, and is
B represented in 1ts unperturbed state by a determinant ¥%,, containing
Q functions i g where p, may be one of the N, occupied states ag, fa, ..., Vs,
and r refers to the co-ordinates of the rth electron. Then if we neglect any
exchange of electrons between the atoms, the wave function of the un-

perturbed system of two atoms is
¥=YY

and fY’*Wd‘r=11!N2!,
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