The Quantum Theory of Atoms in Molecules

From Solid State to DNA and Drug Design

Edited by Chérif F. Matta and Russell J. Boyd

WILEY-VCH Verlag GmbH & Co. KGaA

B 6/141

700/ nz

The Editors

Prof. Chérif F. Matta

Department of Chemistry & Physics Mount Saint Vincent University Halifax, Nova Scotia, B3M 2J6 Canada and Department of Chemistry Dalhousie University Halifax, Nova Scotia, B3H 4J3 Canada

Prof. Russell J. Boyd

Department of Chemistry Dalhousie University Halifax, Nova Scotia, B3H 4J3 Canada All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at (http://dnb.d-nb.de).

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

Typesetting Asco Typesetters. Hong Kong
Printing betz-druck GmbH, Darmstadt
Binding Litges & Dopf GmbH, Heppenheim
Cover Design Adam-Design, Weinheim

ISBN 978-3-527-30748-7

Contents

	Foreword VII
	Preface XIX
	List of Abbreviations Appearing in this Volume XXVII
	List of Contributors XXXIII
1	An Introduction to the Quantum Theory of Atoms in Molecules 1 Chérif F. Matta and Russell J. Boyd
1.1	Introduction 1
1.2	The Topology of the Electron Density 1
1.3	The Topology of the Electron Density Dictates the Form of Atoms in
	Molecules 5
1.4	The Bond and Virial Paths, and the Molecular and Virial Graphs 8
1.5	The Atomic Partitioning of Molecular Properties 9
1.6	The Nodal Surface in the Laplacian as the Reactive Surface of a
	Molecule 10
1.7	Bond Properties 10
1.7.1	The Electron Density at the BCP (ρ_b) 11
1.7.2	The Bonded Radius of an Atom (r_b) , and the Bond Path Length 11
1.7.3	The Laplacian of the Electron Density at the BCP $(\nabla^2 \rho_b)$ 11
1.7.4	The Bond Ellipticity (ε) 12
1.7.5	Energy Densities at the BCP 12
1.7.6	Electron Delocalization between Bonded Atoms: A Direct Measure of
	Bond Order 13
1.8	Atomic Properties 15
1.8.1	Atomic Electron Population $[N(\Omega)]$ and Charge $[q(\Omega)]$ 16
1.8.2	Atomic Volume [Vol.(Ω)] 16
1.8.3	Kinetic Energy $[T(\Omega)]$ 17
1.8.4	Laplacian $[L(\Omega)]$ 17
1.8.5	Total Atomic Energy $[E_e(\Omega)]$ 18

Contents		
1.8.6 1.8.7 1.9 1.9.1 1.9.2 1.10	Atomic Dipolar Polarization $[\mu(\Omega)]$ 20 Atomic Quadrupolar Polarization $[Q(\Omega)]$ 24 "Practical" Uses and Utility of QTAIM Bond and Atomic Properties 25 The Use of QTAIM Bond Critical Point Properties 25 The Use of QTAIM Atomic Properties 26 Steps of a Typical QTAIM Calculation 27 References 30	
Part i	Advances in Theory 35	
2	The Lagrangian Approach to Chemistry 37 Richard F. W. Bader	
2.1	Introduction 37	
2.1.1	From Observation, to Physics, to QTAIM 37	
2.2	The Lagrangian Approach 38	
2.2.1	What is The Lagrangian Approach and What Does it Do? 38	
2.2.2	The Lagrangian and the Action Principle – A Return to the Beginnings 39	
2.2.3	Minimization of the Action 40	
2.2.4	Steps in Minimizing the Action 41	
2.3	The Action Principle in Quantum Mechanics 42	
2.3.1	Schrödinger's Appeal to the Action 42	
2.3.2	Schrödinger's Minimization 42	
2.3.2.1	Two Ways of Expressing the Kinetic Energy 43	
2.3.3	Obtaining an Atom from Schrödinger's Variation 44	
2.3.3.1	The Role of Laplacian in the Definition of an Atom 45	
2.3.4	Getting Chemistry from $\delta G(\psi, \nabla \psi; \Omega)$ 46	
2.4	From Schrödinger to Schwinger 48	
2.4.1	From Dirac to Feynman and Schwinger 48	
2.4.2	From Schwinger to an Atom in a Molecule 49	
2.5	Molecular Structure and Structural Stability 52	
2.5.1	Definition of Molecular Structure 52	
2.5.2	Prediction of Structural Stability 53	
2.6	Reflections and the Future 53	
2.6.1	Reflections 53	
2.6.2	The Future 55 References 57	
3	Atomic Response Properties 61 Todd A. Keith	
3.1	Introduction 61	
3.2	Apparent Origin-dependence of Some Atomic Response Properties	62
3.3	Bond Contributions to "Null" Molecular Properties 64	UZ

3.4	Bond Contributions to Atomic Charges in Neutral Molecules 70
3.5	Atomic Contributions to Electric Dipole Moments of Neutral Molecules 71
3.6	Atomic Contributions to Electric Polarizabilities 73
3.7	Atomic Contributions to Vibrational Infrared Absorption Intensities 78
3.8	Atomic Nuclear Virial Energies 82
3.9	Atomic Contributions to Induced Electronic Magnetic Dipole Moments 88
3.10	Atomic Contributions to Magnetizabilities of Closed-Shell
	Molecules 90
	References 94
4	QTAIM Analysis of Raman Scattering Intensities: Insights into the Relationship Between Molecular Structure and Electronic Charge Flow 95
	Kathleen M. Gough, Richard Dawes, Jason R. Dwyer, and Tammy L. Welshman
4.1	Introduction 95
4.2	Background to the Problem 96
4.2.1	Conceptual Approach to a Solution 97
4.2.1.1	Experimental Measurement of Raman Scattering Intensities 97
4.2.1.2	Theoretical Modeling of Raman Scattering Intensities: What We Did and Why 99
4.3	Methodology 100
4.3.1	Modeling α and $\partial \alpha/\partial r$ 101
4.3.2	Recouping α From the Wavefunction, With QTAIM 102
4.3.3	Recovering $\partial \alpha / \partial r$ From QTAIM 103
4.4	Specific Examples of the Use of AIM2000 Software to Analyze Raman Intensities 103
4.4.1	Modeling α in H_2 104
4.4.1.1	Modeling $\Delta \bar{\alpha}/\Delta r$ in H ₂ 106
4.4.2	Modeling α and $\Delta \bar{\alpha}/\Delta r$ in CH ₄ 106
4.4.3	Additional Exercises for the Interested Reader 108
4.5	Patterns in α That Are Discovered Through QTAIM 109
4.6	Patterns in $\partial \alpha/\partial r_{CH}$ That Apply Across Different Structures, Conformations, Molecular Types: What is Transferable? 111
4.6.1	Patterns in $\Delta \bar{\alpha}/\Delta r_{CH}$ Revealed by QTAIM 111
4.6.1.1	QTAIM Analysis of $\Delta \tilde{\alpha}/\Delta r_{CH}$ in Small Alkanes 111
4.6.1.2	What Did We Learn From QTAIM That Can be Transferred to the Other Molecules? 113
4.7	What Can We Deduce From Simple Inspection of $\partial \bar{\alpha}/\partial r_{CH}$ and $\partial \bar{\alpha}/\partial r_{CC}$ From Gaussian? 114
4.7.1	Variations in $\partial \bar{\alpha}/\partial r_{CH}$ Among the Alkanes 114
4.7.2	$\Delta \bar{z}/\Delta r_{CH}$ in Cycloalkanes, Bicycloalkanes, and Hedranes 116
4.7.3	Patterns That Emerge in $\Delta \bar{\alpha}/\Delta r_{CC}$ of Alkanes 116

xıı	Contents	
ı	4.7.4	Unsaturated Hydrocarbons and the Silanes: C–H, C=C, and Si–Si Derivatives 117
	4.8	Conclusion 118 References 119
	5	Topological Atom-Atom Partitioning of Molecular Exchange Energy and its Multipolar Convergence 121 Michel Rafat and Paul L. A. Popelier
	5.1	Introduction 121
	5.2	Theoretical Background 123
	5.3	Details of Calculations 128
	5.4	Results and Discussion 130
	5.4.1	Convergence of the Exchange Energy 130
	5.4.2	Convergence of the Exchange Force 136
	5.4.3	Diagonalization of a Matrix of Exchange Moments 136
	5.5	Conclusion 139 References 139
	6	The ELF Topological Analysis Contribution to Conceptual Chemistry and Phenomenological Models 141 Bernard Silvi and Ronald J. Gillespie
	6.1	Introduction 141
	6.2	Why ELF and What is ELF? 142
	6.3	Concepts from the ELF Topology 144
	6.3.1	The Synaptic Order 145
	6.3.2	The Localization Domains 145
	6.3.3	ELF Population Analysis 147
	6.4	VSEPR Electron Domains and the Volume of ELF Basins 149
	6.5	Examples of the Correspondence Between ELF Basins and the Domains of the VSEPR Model 153
	6.5.1	Octet Molecules 153
	6.5.1.1	Hydrides (CH ₄ , NH ₃ , H ₂ O) 153
	6.5.1.2	AX ₄ (CH ₄ , CF ₄ , SiCl ₄) 154
	6.5.1.3	AX_3E and AX_2E_2 (NCl ₃ , OCl ₂) 154
	6.5.2	Hypervalent Molecules 155
	6.5.2.1	PCl ₅ and SF ₆ 155
	6.5.2.2	SF ₄ and ClF ₃ 155

6.5.2.3 AX₇ and AX₆E Molecules 155 Multiple Bonds 156

C2H4 and C2H2 156

Conclusions 158

References 159

Si₂Me₄ and Si₂Me₂ 157

6.5.3

6.5.3.1

6.5.3.2

6.6

Part II	Solid State and Surfaces 163
7	Solid State Applications of QTAIM and the Source Function – Molecular Crystals, Surfaces, Host–Guest Systems and Molecular Complexes 165 Carlo Gatti
7.1 7.2 7.2.1 7.3 7.3.1	Introduction 165 QTAIM Applied to Solids – the TOPOND Package 166 QTAIM Applied to Experimental Densities: TOPXD and XD Packages 168 QTAIM Applied to Molecular Crystals 170 Urea 171
7.3.1.1 7.4 7.4.1 7.4.2 7.5	Urea: Packing Effects 172 QTAIM Applied to Surfaces 179 Si(111)(1 \times 1) Clean and Hydrogen-covered Surfaces 180 Si(111)(2 \times 1) Reconstructed Surface 184 QTAIM Applied to Host–Guest Systems 186
7.5.1 7.5.2 7.6 7.6.1 7.6.2	Type I Inorganic Clathrates $A_8Ga_{16}Ge_{30}$ (A = Sr, Ba) 186 Sodium Electrosodalite 190 The Source Function: Theory 192 The Source Function and Chemical Transferability 194 Chemical Information from the Source Function: Long and
7.6.3	Short-range Bonding Effects in Molecular Complexes 196 The Source Function: Latest Developments 201 References 202
8	Topology and Properties of the Electron Density in Solids 207 Victor Luaña, Miguel A. Blanco, Aurora Costales, Paula Mori-Sánchez, and Angel Martín Pendás
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Introduction 207 The Electron Density Topology and the Atomic Basin Shape 209 Crystalline Isostructural Families and Topological Polymorphism 213 Topological Classification of Crystals 215 Bond Properties – Continuity from the Molecular to the Crystalline Regime 217 Basin Partition of the Thermodynamic Properties 219 Obtaining the Electron Density of Crystals 222 References 227
9	Atoms in Molecules Theory for Exploring the Nature of the Active Sites on Surfaces 231 Yosslen Aray, Jesus Rodríguez, and David Vega
9.1 9.2	Introduction 231 Implementing the Determination of the Topological Properties of $\rho(\mathbf{r})$ from a Three-dimensional Grid 231

IV.	Contents	
	9.3	An Application to Nanocatalyts – Exploring the Structure of the Hydrodesulfurization MoS ₂ Catalysts 236
	9.3.1	Catalyst Models 237
	9.3.2	The Full $\rho(\mathbf{r})$ Topology of the MoS ₂ Bulk 241
	9.3.3	The $\rho(\mathbf{r})$ Topology of the MoS ₂ Edges 245 References 254
	Part III	Experimental Electron Densities and Biological Molecules 257
	10	Interpretation of Experimental Electron Densities by Combination of the QTAMC and DFT 259 Vladimir G. Tsirelson
	10.1	Introduction 259
	10.2	Specificity of the Experimental Electron Density 261
	10.3	Approximate Electronic Energy Densities 262
	10.3.1	Kinetic and Potential Energy Densities 262
	10.3.2	Exchange and Correlation Energy Densities 271
	10.4	The Integrated Energy Quantities 275
	10.5	Concluding Remarks 276 References 278
	וו	Topological Analysis of Proteins as Derived from Medium and High- resolution Electron Density: Applications to Electrostatic Properties 285 Laurence Leherte, Benoît Guillot, Daniel P. Vercauteren, Virginie Pichon-Pesme, Christian Jelsch, Angélique Lagoutte, and Claude Lecomte
	11.1	Introduction 285
	11.2	Methodology and Technical Details 287
	11.2.1	Ultra-high X-ray Resolution Approach 287
	11.2.2	Medium-resolution Approach 289
	11.2.2.1	Promolecular Electron Density Distribution Calculated from Structure Factors 289
	11.2.2.2	Promolecular Electron Density Distribution Calculated from Atoms 290
	11.2.3	A Test System - Human Aldose Reductase 291
	11.3	Topological Properties of Multipolar Electron Density Database 294
	11.4	Analysis of Local Maxima in Experimental and Promolecular Medium- resolution Electron Density Distributions 298
	11.4.1	Experimental and Promolecular Electron Density Distributions Calculated from Structure Factors 299
	11.4.2	Promolecular Electron Density Distributions Calculated from Atoms (PASA Model) 301
	11.5	Calculation of Electrostatic Properties from Atomic and Fragment Representations of Human Aldose Reductase 305

Medium- and High-resolution Approaches of Electrostatic Potential

11.5.1

Computations 307

11.5.2 11.5.3 11.6	Electrostatic Potential Comparisons 309 Electrostatic Interaction Energies 312 Conclusions and Perspectives 312 References 314
12	Fragment Transferability Studied Theoretically and Experimentally with QTAIM – Implications for Electron Density and Invariom Modeling 317 Peter Luger and Birger Dittrich
12.1	Introduction 317
12.2	Experimental Electron-density Studies 318
12.2.1	Experimental Requirements 318
12.2.2	Recent Experimental Advances 319
12.2.2.1	Synchrotron Radiation Compared with Laboratory Sources 319
12.2.2.2	Data Collection at Ultra-low Temperatures (10-20 K) 321
12.3	Studying Transferability with QTAIM – Atomic and Bond Topological Properties of Amino Acids and Oligopeptides 323
12.4	Invariom Modeling 328
12.4.1	Invariom Notation, Choice of Model Compounds, and Practical Considerations 330
12.4,2	Support for Pseudoatom Fragments from QTAIM 331
12.5	Applications of Aspherical Invariom Scattering Factors 334
12.5.1	Molecular Geometry and Anisotropic Displacement Properties 334
12.5.2	Using the Enhanced Multipole Model Anomalous Dispersion Signal 335
12.5.3	Modeling the Electron Density of Oligopeptide and Protein
	Molecules 336
12.6	Conclusion 338
	References 339
Part IV	Chemical Bonding and Reactivity 343
13	Interactions Involving Metals – From "Chemical Categories" to QTAIM, and Backwards 345
	Piero Macchi and Angelo Sironi
13.1	Introduction 345
13.2	The Electron Density in Isolated Metal Atoms - Hints of
	Anomalies 345
13.3	Two-center Bonding 349
13.3.1	The Dative Bond 350
13.3.1.1	Metal Carbonyls 351
13.3.1.2	Donor-Acceptor Interactions of Heavy Elements 352
13.3.2	Direct Metal-Metal Bonding 352
13.4	Three-center Bonding 356
13.4.1	π-Complexes 357
13.4.2	σ-Complexes 363

(V)	Content

xvı	Contents	
,	13.4.2.2	Dihydrogen and Dihydride Coordination 364 Agostic Interactions 364 Hydride Bridges 367 Carbonyl-supported Metal–Metal Interactions 370
	13.5	Concluding Remarks 371 References 372
	14	Applications of the Quantum Theory of Atoms in Molecules in Organic Chemistry - Charge Distribution, Conformational Analysis and Molecular Interactions 375 Jesús Hernández-Trujillo, Fernando Cortés-Guzmán, and Gabriel Cuevas
	14.1	Introduction 375
	14.2	Electron Delocalization 375
	14.2.1	The Pair-density 375
	14.2.2	Jiiii 1 B
	14.3	Conformational Equilibria 380
	14.3.1	Rotational barriers 380
		Rotational Barrier of Ethane 380
		Rotational Barrier of 1,2-Disubstituted Ethanes 382
	14.3.2 14.4	Anomeric Effect on Heterocyclohexanes 386 Aromatic Molecules 391
	14.4.1	Electronic Structure of Polybenzenoid Hydrocarbons 391
	14.5	Conclusions 395
	11.5	References 396
	15	Aromaticity Analysis by Means of the Quantum Theory of Atoms in Molecules 399 Eduard Matito, Jordi Poater, and Miquel Solà
	15.1	Introduction 399
	15.2	The Fermi Hole and the Delocalization Index 401
	15.3	Electron Delocalization in Aromatic Systems 403
	15.4	Aromaticity Electronic Criteria Based on QTAIM 404
	15.4.1	The para-Delocalization Index (PDI) 404
	15.4.2	The Aromatic Fluctuation Index (FLU) 406
	15.4.3	The π -Fluctuation Aromatic Index (FLU $_{\pi}$) 407
	15.5	Applications of QTAIM to Aromaticity Analysis 409
	15.5.1	Aromaticity of Buckybowls and Fullerenes 409
	15.5.2	Effect of Substituents on Aromaticity 412
	15.5.3	Assessment of Clar's Aromatic π-Sextet Rule 416
	15.5.4	Aromaticity Along the Diels-Alder Reaction. The Failure of Some Aromaticity Indexes 418
	15.6	Conclusions 419 References 421

16	Topological Properties of the Electron Distribution in Hydrogen-bonded Systems 425 Ignasi Mata, Ibon Alkorta, Enrique Espinosa, Elies Molins, and José Elguero
16.1	Introduction 425
16.2	Topological Properties of the Hydrogen Bond 426
16.2.1	Topological Properties at the Bond Critical Point (BCP) 426
16.2.2	Integrated Properties 429
16.3	Energy Properties at the Bond Critical Point (BCP) 431
16.4	Topological Properties and Interaction Energy 435
16.5	Electron Localization Function, $\eta(\mathbf{r})$ 438
16.6	Complete Interaction Range 440
16.6.1	Dependence of Topological and Energy Properties on the Interaction Distance 440
16.6.2	Perturbed Systems 448
16.7	Concluding Remarks 450 References 450
17	Relationships between QTAIM and the Decomposition of the Interaction Energy – Comparison of Different Kinds of Hydrogen Bond 453 Sławomir J. Grabowski
17.1	Introduction 453
17.2	Diversity of Hydrogen-bonding Interactions 456
17.3	The Decomposition of the Interaction Energy 459
17.4	Relationships between the Topological and Energy Properties of Hydrogen Bonds 460
17.5	Various Other Interactions Related to Hydrogen Bonds 464
17.5.1	$H^+ \cdots \pi$ Interactions 464
17.5.2	Hydride Bonds 466
17.6	Summary 467 References 468
Part V	Application to Biological Sciences and Drug Design 471
18	QTAIM in Drug Discovery and Protein Modeling 473 Nagamani Sukumar and Curt M. Breneman
18.1	QSAR and Drug Discovery 473
18.2	Electron Density as the Basic Variable 474
18.3	Atom Typing Scheme and Generation of the Transferable Atom Equivalent (TAE) Library 476
18.4	TAE Reconstruction and Descriptor Generation 478
18.5	QTAIM-based Descriptors 480
18.5.1	TAE Descriptors 482
18.5.2	RECON Autocorrelation Descriptors 485
18.5.3	PEST Shape-Property Hybrid Descriptors 485

XVIII	Contents	
	18.5.4	Electron Density-based Molecular Similarity Analysis 487
	18.6	Sample Applications 489
	18.6.1	QSAR/QSPR with TAE Descriptors 489
	18.6.2	Protein Modeling with TAE Descriptors 491
	18.7	Conclusions 492
		References 494
	19	Fleshing-out Pharmacophores with Volume Rendering of the Laplacian of the Charge Density and Hyperwall Visualization Technology 499 Preston J. MacDougall and Christopher E. Henze
	19.1	Introduction 499
	19.2	Computational and Visualization Methods 501
	19.2.1	Computational Details 501
	19.2.2	Volume Rendering of the Laplacian of the Charge Density 501
	19.2.3	The Hyperwall 505
	19.2.4	Hyper-interactive Molecular Visualization 505
	19.3	Subatomic Pharmacophore Insights 507
	19.3.1	Hydrogen-bonding Donor Sites 507
	19.3.2	Inner-valence Shell Charge Concentration (i-VSCC) Features in
		Transition-metal Atoms 509
	19.3.3	Misdirected Valence in the Ligand Sphere of Transition-metal
		Complexes 511
	19.4	Conclusion 513
		References 514

Index 515